|  | //=----------------------- InterleavedAccessPass.cpp -----------------------==// | 
|  | // | 
|  | // The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the Interleaved Access pass, which identifies | 
|  | // interleaved memory accesses and transforms into target specific intrinsics. | 
|  | // | 
|  | // An interleaved load reads data from memory into several vectors, with | 
|  | // DE-interleaving the data on a factor. An interleaved store writes several | 
|  | // vectors to memory with RE-interleaving the data on a factor. | 
|  | // | 
|  | // As interleaved accesses are hard to be identified in CodeGen (mainly because | 
|  | // the VECTOR_SHUFFLE DAG node is quite different from the shufflevector IR), | 
|  | // we identify and transform them to intrinsics in this pass. So the intrinsics | 
|  | // can be easily matched into target specific instructions later in CodeGen. | 
|  | // | 
|  | // E.g. An interleaved load (Factor = 2): | 
|  | //        %wide.vec = load <8 x i32>, <8 x i32>* %ptr | 
|  | //        %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6> | 
|  | //        %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7> | 
|  | // | 
|  | // It could be transformed into a ld2 intrinsic in AArch64 backend or a vld2 | 
|  | // intrinsic in ARM backend. | 
|  | // | 
|  | // E.g. An interleaved store (Factor = 3): | 
|  | //        %i.vec = shuffle <8 x i32> %v0, <8 x i32> %v1, | 
|  | //                                    <0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11> | 
|  | //        store <12 x i32> %i.vec, <12 x i32>* %ptr | 
|  | // | 
|  | // It could be transformed into a st3 intrinsic in AArch64 backend or a vst3 | 
|  | // intrinsic in ARM backend. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/IR/InstIterator.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetSubtargetInfo.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "interleaved-access" | 
|  |  | 
|  | static cl::opt<bool> LowerInterleavedAccesses( | 
|  | "lower-interleaved-accesses", | 
|  | cl::desc("Enable lowering interleaved accesses to intrinsics"), | 
|  | cl::init(false), cl::Hidden); | 
|  |  | 
|  | static unsigned MaxFactor; // The maximum supported interleave factor. | 
|  |  | 
|  | namespace llvm { | 
|  | static void initializeInterleavedAccessPass(PassRegistry &); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class InterleavedAccess : public FunctionPass { | 
|  |  | 
|  | public: | 
|  | static char ID; | 
|  | InterleavedAccess(const TargetMachine *TM = nullptr) | 
|  | : FunctionPass(ID), TM(TM), TLI(nullptr) { | 
|  | initializeInterleavedAccessPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | const char *getPassName() const override { return "Interleaved Access Pass"; } | 
|  |  | 
|  | bool runOnFunction(Function &F) override; | 
|  |  | 
|  | private: | 
|  | const TargetMachine *TM; | 
|  | const TargetLowering *TLI; | 
|  |  | 
|  | /// \brief Transform an interleaved load into target specific intrinsics. | 
|  | bool lowerInterleavedLoad(LoadInst *LI, | 
|  | SmallVector<Instruction *, 32> &DeadInsts); | 
|  |  | 
|  | /// \brief Transform an interleaved store into target specific intrinsics. | 
|  | bool lowerInterleavedStore(StoreInst *SI, | 
|  | SmallVector<Instruction *, 32> &DeadInsts); | 
|  | }; | 
|  | } // end anonymous namespace. | 
|  |  | 
|  | char InterleavedAccess::ID = 0; | 
|  | INITIALIZE_TM_PASS(InterleavedAccess, "interleaved-access", | 
|  | "Lower interleaved memory accesses to target specific intrinsics", | 
|  | false, false) | 
|  |  | 
|  | FunctionPass *llvm::createInterleavedAccessPass(const TargetMachine *TM) { | 
|  | return new InterleavedAccess(TM); | 
|  | } | 
|  |  | 
|  | /// \brief Check if the mask is a DE-interleave mask of the given factor | 
|  | /// \p Factor like: | 
|  | ///     <Index, Index+Factor, ..., Index+(NumElts-1)*Factor> | 
|  | static bool isDeInterleaveMaskOfFactor(ArrayRef<int> Mask, unsigned Factor, | 
|  | unsigned &Index) { | 
|  | // Check all potential start indices from 0 to (Factor - 1). | 
|  | for (Index = 0; Index < Factor; Index++) { | 
|  | unsigned i = 0; | 
|  |  | 
|  | // Check that elements are in ascending order by Factor. Ignore undef | 
|  | // elements. | 
|  | for (; i < Mask.size(); i++) | 
|  | if (Mask[i] >= 0 && static_cast<unsigned>(Mask[i]) != Index + i * Factor) | 
|  | break; | 
|  |  | 
|  | if (i == Mask.size()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Check if the mask is a DE-interleave mask for an interleaved load. | 
|  | /// | 
|  | /// E.g. DE-interleave masks (Factor = 2) could be: | 
|  | ///     <0, 2, 4, 6>    (mask of index 0 to extract even elements) | 
|  | ///     <1, 3, 5, 7>    (mask of index 1 to extract odd elements) | 
|  | static bool isDeInterleaveMask(ArrayRef<int> Mask, unsigned &Factor, | 
|  | unsigned &Index) { | 
|  | if (Mask.size() < 2) | 
|  | return false; | 
|  |  | 
|  | // Check potential Factors. | 
|  | for (Factor = 2; Factor <= MaxFactor; Factor++) | 
|  | if (isDeInterleaveMaskOfFactor(Mask, Factor, Index)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Check if the mask is RE-interleave mask for an interleaved store. | 
|  | /// | 
|  | /// I.e. <0, NumSubElts, ... , NumSubElts*(Factor - 1), 1, NumSubElts + 1, ...> | 
|  | /// | 
|  | /// E.g. The RE-interleave mask (Factor = 2) could be: | 
|  | ///     <0, 4, 1, 5, 2, 6, 3, 7> | 
|  | static bool isReInterleaveMask(ArrayRef<int> Mask, unsigned &Factor) { | 
|  | unsigned NumElts = Mask.size(); | 
|  | if (NumElts < 4) | 
|  | return false; | 
|  |  | 
|  | // Check potential Factors. | 
|  | for (Factor = 2; Factor <= MaxFactor; Factor++) { | 
|  | if (NumElts % Factor) | 
|  | continue; | 
|  |  | 
|  | unsigned NumSubElts = NumElts / Factor; | 
|  | if (!isPowerOf2_32(NumSubElts)) | 
|  | continue; | 
|  |  | 
|  | // Check whether each element matchs the RE-interleaved rule. Ignore undef | 
|  | // elements. | 
|  | unsigned i = 0; | 
|  | for (; i < NumElts; i++) | 
|  | if (Mask[i] >= 0 && | 
|  | static_cast<unsigned>(Mask[i]) != | 
|  | (i % Factor) * NumSubElts + i / Factor) | 
|  | break; | 
|  |  | 
|  | // Find a RE-interleaved mask of current factor. | 
|  | if (i == NumElts) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool InterleavedAccess::lowerInterleavedLoad( | 
|  | LoadInst *LI, SmallVector<Instruction *, 32> &DeadInsts) { | 
|  | if (!LI->isSimple()) | 
|  | return false; | 
|  |  | 
|  | SmallVector<ShuffleVectorInst *, 4> Shuffles; | 
|  |  | 
|  | // Check if all users of this load are shufflevectors. | 
|  | for (auto UI = LI->user_begin(), E = LI->user_end(); UI != E; UI++) { | 
|  | ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(*UI); | 
|  | if (!SVI || !isa<UndefValue>(SVI->getOperand(1))) | 
|  | return false; | 
|  |  | 
|  | Shuffles.push_back(SVI); | 
|  | } | 
|  |  | 
|  | if (Shuffles.empty()) | 
|  | return false; | 
|  |  | 
|  | unsigned Factor, Index; | 
|  |  | 
|  | // Check if the first shufflevector is DE-interleave shuffle. | 
|  | if (!isDeInterleaveMask(Shuffles[0]->getShuffleMask(), Factor, Index)) | 
|  | return false; | 
|  |  | 
|  | // Holds the corresponding index for each DE-interleave shuffle. | 
|  | SmallVector<unsigned, 4> Indices; | 
|  | Indices.push_back(Index); | 
|  |  | 
|  | Type *VecTy = Shuffles[0]->getType(); | 
|  |  | 
|  | // Check if other shufflevectors are also DE-interleaved of the same type | 
|  | // and factor as the first shufflevector. | 
|  | for (unsigned i = 1; i < Shuffles.size(); i++) { | 
|  | if (Shuffles[i]->getType() != VecTy) | 
|  | return false; | 
|  |  | 
|  | if (!isDeInterleaveMaskOfFactor(Shuffles[i]->getShuffleMask(), Factor, | 
|  | Index)) | 
|  | return false; | 
|  |  | 
|  | Indices.push_back(Index); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "IA: Found an interleaved load: " << *LI << "\n"); | 
|  |  | 
|  | // Try to create target specific intrinsics to replace the load and shuffles. | 
|  | if (!TLI->lowerInterleavedLoad(LI, Shuffles, Indices, Factor)) | 
|  | return false; | 
|  |  | 
|  | for (auto SVI : Shuffles) | 
|  | DeadInsts.push_back(SVI); | 
|  |  | 
|  | DeadInsts.push_back(LI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool InterleavedAccess::lowerInterleavedStore( | 
|  | StoreInst *SI, SmallVector<Instruction *, 32> &DeadInsts) { | 
|  | if (!SI->isSimple()) | 
|  | return false; | 
|  |  | 
|  | ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(SI->getValueOperand()); | 
|  | if (!SVI || !SVI->hasOneUse()) | 
|  | return false; | 
|  |  | 
|  | // Check if the shufflevector is RE-interleave shuffle. | 
|  | unsigned Factor; | 
|  | if (!isReInterleaveMask(SVI->getShuffleMask(), Factor)) | 
|  | return false; | 
|  |  | 
|  | DEBUG(dbgs() << "IA: Found an interleaved store: " << *SI << "\n"); | 
|  |  | 
|  | // Try to create target specific intrinsics to replace the store and shuffle. | 
|  | if (!TLI->lowerInterleavedStore(SI, SVI, Factor)) | 
|  | return false; | 
|  |  | 
|  | // Already have a new target specific interleaved store. Erase the old store. | 
|  | DeadInsts.push_back(SI); | 
|  | DeadInsts.push_back(SVI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool InterleavedAccess::runOnFunction(Function &F) { | 
|  | if (!TM || !LowerInterleavedAccesses) | 
|  | return false; | 
|  |  | 
|  | DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName() << "\n"); | 
|  |  | 
|  | TLI = TM->getSubtargetImpl(F)->getTargetLowering(); | 
|  | MaxFactor = TLI->getMaxSupportedInterleaveFactor(); | 
|  |  | 
|  | // Holds dead instructions that will be erased later. | 
|  | SmallVector<Instruction *, 32> DeadInsts; | 
|  | bool Changed = false; | 
|  |  | 
|  | for (auto &I : inst_range(F)) { | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(&I)) | 
|  | Changed |= lowerInterleavedLoad(LI, DeadInsts); | 
|  |  | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(&I)) | 
|  | Changed |= lowerInterleavedStore(SI, DeadInsts); | 
|  | } | 
|  |  | 
|  | for (auto I : DeadInsts) | 
|  | I->eraseFromParent(); | 
|  |  | 
|  | return Changed; | 
|  | } |