|  | //===-- Analysis.cpp --------------------------------------------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Analysis.h" | 
|  | #include "BenchmarkResult.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/Support/FormatVariadic.h" | 
|  | #include <unordered_set> | 
|  | #include <vector> | 
|  |  | 
|  | namespace exegesis { | 
|  |  | 
|  | static const char kCsvSep = ','; | 
|  |  | 
|  | static unsigned resolveSchedClassId(const llvm::MCSubtargetInfo &STI, | 
|  | unsigned SchedClassId, | 
|  | const llvm::MCInst &MCI) { | 
|  | const auto &SM = STI.getSchedModel(); | 
|  | while (SchedClassId && SM.getSchedClassDesc(SchedClassId)->isVariant()) | 
|  | SchedClassId = | 
|  | STI.resolveVariantSchedClass(SchedClassId, &MCI, SM.getProcessorID()); | 
|  | return SchedClassId; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | enum EscapeTag { kEscapeCsv, kEscapeHtml, kEscapeHtmlString }; | 
|  |  | 
|  | template <EscapeTag Tag> | 
|  | void writeEscaped(llvm::raw_ostream &OS, const llvm::StringRef S); | 
|  |  | 
|  | template <> | 
|  | void writeEscaped<kEscapeCsv>(llvm::raw_ostream &OS, const llvm::StringRef S) { | 
|  | if (std::find(S.begin(), S.end(), kCsvSep) == S.end()) { | 
|  | OS << S; | 
|  | } else { | 
|  | // Needs escaping. | 
|  | OS << '"'; | 
|  | for (const char C : S) { | 
|  | if (C == '"') | 
|  | OS << "\"\""; | 
|  | else | 
|  | OS << C; | 
|  | } | 
|  | OS << '"'; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <> | 
|  | void writeEscaped<kEscapeHtml>(llvm::raw_ostream &OS, const llvm::StringRef S) { | 
|  | for (const char C : S) { | 
|  | if (C == '<') | 
|  | OS << "<"; | 
|  | else if (C == '>') | 
|  | OS << ">"; | 
|  | else if (C == '&') | 
|  | OS << "&"; | 
|  | else | 
|  | OS << C; | 
|  | } | 
|  | } | 
|  |  | 
|  | template <> | 
|  | void writeEscaped<kEscapeHtmlString>(llvm::raw_ostream &OS, | 
|  | const llvm::StringRef S) { | 
|  | for (const char C : S) { | 
|  | if (C == '"') | 
|  | OS << "\\\""; | 
|  | else | 
|  | OS << C; | 
|  | } | 
|  | } | 
|  |  | 
|  | } // namespace | 
|  |  | 
|  | template <EscapeTag Tag> | 
|  | static void | 
|  | writeClusterId(llvm::raw_ostream &OS, | 
|  | const InstructionBenchmarkClustering::ClusterId &CID) { | 
|  | if (CID.isNoise()) | 
|  | writeEscaped<Tag>(OS, "[noise]"); | 
|  | else if (CID.isError()) | 
|  | writeEscaped<Tag>(OS, "[error]"); | 
|  | else | 
|  | OS << CID.getId(); | 
|  | } | 
|  |  | 
|  | template <EscapeTag Tag> | 
|  | static void writeMeasurementValue(llvm::raw_ostream &OS, const double Value) { | 
|  | writeEscaped<Tag>(OS, llvm::formatv("{0:F}", Value).str()); | 
|  | } | 
|  |  | 
|  | template <typename EscapeTag, EscapeTag Tag> | 
|  | void Analysis::writeSnippet(llvm::raw_ostream &OS, | 
|  | llvm::ArrayRef<uint8_t> Bytes, | 
|  | const char *Separator) const { | 
|  | llvm::SmallVector<std::string, 3> Lines; | 
|  | // Parse the asm snippet and print it. | 
|  | while (!Bytes.empty()) { | 
|  | llvm::MCInst MI; | 
|  | uint64_t MISize = 0; | 
|  | if (!Disasm_->getInstruction(MI, MISize, Bytes, 0, llvm::nulls(), | 
|  | llvm::nulls())) { | 
|  | writeEscaped<Tag>(OS, llvm::join(Lines, Separator)); | 
|  | writeEscaped<Tag>(OS, Separator); | 
|  | writeEscaped<Tag>(OS, "[error decoding asm snippet]"); | 
|  | return; | 
|  | } | 
|  | Lines.emplace_back(); | 
|  | std::string &Line = Lines.back(); | 
|  | llvm::raw_string_ostream OSS(Line); | 
|  | InstPrinter_->printInst(&MI, OSS, "", *SubtargetInfo_); | 
|  | Bytes = Bytes.drop_front(MISize); | 
|  | OSS.flush(); | 
|  | Line = llvm::StringRef(Line).trim().str(); | 
|  | } | 
|  | writeEscaped<Tag>(OS, llvm::join(Lines, Separator)); | 
|  | } | 
|  |  | 
|  | // Prints a row representing an instruction, along with scheduling info and | 
|  | // point coordinates (measurements). | 
|  | void Analysis::printInstructionRowCsv(const size_t PointId, | 
|  | llvm::raw_ostream &OS) const { | 
|  | const InstructionBenchmark &Point = Clustering_.getPoints()[PointId]; | 
|  | writeClusterId<kEscapeCsv>(OS, Clustering_.getClusterIdForPoint(PointId)); | 
|  | OS << kCsvSep; | 
|  | writeSnippet<EscapeTag, kEscapeCsv>(OS, Point.AssembledSnippet, "; "); | 
|  | OS << kCsvSep; | 
|  | writeEscaped<kEscapeCsv>(OS, Point.Key.Config); | 
|  | OS << kCsvSep; | 
|  | assert(!Point.Key.Instructions.empty()); | 
|  | const llvm::MCInst &MCI = Point.Key.Instructions[0]; | 
|  | const unsigned SchedClassId = resolveSchedClassId( | 
|  | *SubtargetInfo_, InstrInfo_->get(MCI.getOpcode()).getSchedClass(), MCI); | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | const llvm::MCSchedClassDesc *const SCDesc = | 
|  | SchedModel.getSchedClassDesc(SchedClassId); | 
|  | writeEscaped<kEscapeCsv>(OS, SCDesc->Name); | 
|  | #else | 
|  | OS << SchedClassId; | 
|  | #endif | 
|  | for (const auto &Measurement : Point.Measurements) { | 
|  | OS << kCsvSep; | 
|  | writeMeasurementValue<kEscapeCsv>(OS, Measurement.PerInstructionValue); | 
|  | } | 
|  | OS << "\n"; | 
|  | } | 
|  |  | 
|  | Analysis::Analysis(const llvm::Target &Target, | 
|  | const InstructionBenchmarkClustering &Clustering) | 
|  | : Clustering_(Clustering) { | 
|  | if (Clustering.getPoints().empty()) | 
|  | return; | 
|  |  | 
|  | const InstructionBenchmark &FirstPoint = Clustering.getPoints().front(); | 
|  | InstrInfo_.reset(Target.createMCInstrInfo()); | 
|  | RegInfo_.reset(Target.createMCRegInfo(FirstPoint.LLVMTriple)); | 
|  | AsmInfo_.reset(Target.createMCAsmInfo(*RegInfo_, FirstPoint.LLVMTriple)); | 
|  | SubtargetInfo_.reset(Target.createMCSubtargetInfo(FirstPoint.LLVMTriple, | 
|  | FirstPoint.CpuName, "")); | 
|  | InstPrinter_.reset(Target.createMCInstPrinter( | 
|  | llvm::Triple(FirstPoint.LLVMTriple), 0 /*default variant*/, *AsmInfo_, | 
|  | *InstrInfo_, *RegInfo_)); | 
|  |  | 
|  | Context_ = llvm::make_unique<llvm::MCContext>(AsmInfo_.get(), RegInfo_.get(), | 
|  | &ObjectFileInfo_); | 
|  | Disasm_.reset(Target.createMCDisassembler(*SubtargetInfo_, *Context_)); | 
|  | assert(Disasm_ && "cannot create MCDisassembler. missing call to " | 
|  | "InitializeXXXTargetDisassembler ?"); | 
|  | } | 
|  |  | 
|  | template <> | 
|  | llvm::Error | 
|  | Analysis::run<Analysis::PrintClusters>(llvm::raw_ostream &OS) const { | 
|  | if (Clustering_.getPoints().empty()) | 
|  | return llvm::Error::success(); | 
|  |  | 
|  | // Write the header. | 
|  | OS << "cluster_id" << kCsvSep << "opcode_name" << kCsvSep << "config" | 
|  | << kCsvSep << "sched_class"; | 
|  | for (const auto &Measurement : Clustering_.getPoints().front().Measurements) { | 
|  | OS << kCsvSep; | 
|  | writeEscaped<kEscapeCsv>(OS, Measurement.Key); | 
|  | } | 
|  | OS << "\n"; | 
|  |  | 
|  | // Write the points. | 
|  | const auto &Clusters = Clustering_.getValidClusters(); | 
|  | for (size_t I = 0, E = Clusters.size(); I < E; ++I) { | 
|  | for (const size_t PointId : Clusters[I].PointIndices) { | 
|  | printInstructionRowCsv(PointId, OS); | 
|  | } | 
|  | OS << "\n\n"; | 
|  | } | 
|  | return llvm::Error::success(); | 
|  | } | 
|  |  | 
|  | Analysis::ResolvedSchedClassAndPoints::ResolvedSchedClassAndPoints( | 
|  | ResolvedSchedClass &&RSC) | 
|  | : RSC(std::move(RSC)) {} | 
|  |  | 
|  | std::vector<Analysis::ResolvedSchedClassAndPoints> | 
|  | Analysis::makePointsPerSchedClass() const { | 
|  | std::vector<ResolvedSchedClassAndPoints> Entries; | 
|  | // Maps SchedClassIds to index in result. | 
|  | std::unordered_map<unsigned, size_t> SchedClassIdToIndex; | 
|  | const auto &Points = Clustering_.getPoints(); | 
|  | for (size_t PointId = 0, E = Points.size(); PointId < E; ++PointId) { | 
|  | const InstructionBenchmark &Point = Points[PointId]; | 
|  | if (!Point.Error.empty()) | 
|  | continue; | 
|  | assert(!Point.Key.Instructions.empty()); | 
|  | // FIXME: we should be using the tuple of classes for instructions in the | 
|  | // snippet as key. | 
|  | const llvm::MCInst &MCI = Point.Key.Instructions[0]; | 
|  | unsigned SchedClassId = InstrInfo_->get(MCI.getOpcode()).getSchedClass(); | 
|  | const bool WasVariant = SchedClassId && SubtargetInfo_->getSchedModel() | 
|  | .getSchedClassDesc(SchedClassId) | 
|  | ->isVariant(); | 
|  | SchedClassId = resolveSchedClassId(*SubtargetInfo_, SchedClassId, MCI); | 
|  | const auto IndexIt = SchedClassIdToIndex.find(SchedClassId); | 
|  | if (IndexIt == SchedClassIdToIndex.end()) { | 
|  | // Create a new entry. | 
|  | SchedClassIdToIndex.emplace(SchedClassId, Entries.size()); | 
|  | ResolvedSchedClassAndPoints Entry( | 
|  | ResolvedSchedClass(*SubtargetInfo_, SchedClassId, WasVariant)); | 
|  | Entry.PointIds.push_back(PointId); | 
|  | Entries.push_back(std::move(Entry)); | 
|  | } else { | 
|  | // Append to the existing entry. | 
|  | Entries[IndexIt->second].PointIds.push_back(PointId); | 
|  | } | 
|  | } | 
|  | return Entries; | 
|  | } | 
|  |  | 
|  | // Uops repeat the same opcode over again. Just show this opcode and show the | 
|  | // whole snippet only on hover. | 
|  | static void writeUopsSnippetHtml(llvm::raw_ostream &OS, | 
|  | const std::vector<llvm::MCInst> &Instructions, | 
|  | const llvm::MCInstrInfo &InstrInfo) { | 
|  | if (Instructions.empty()) | 
|  | return; | 
|  | writeEscaped<kEscapeHtml>(OS, InstrInfo.getName(Instructions[0].getOpcode())); | 
|  | if (Instructions.size() > 1) | 
|  | OS << " (x" << Instructions.size() << ")"; | 
|  | } | 
|  |  | 
|  | // Latency tries to find a serial path. Just show the opcode path and show the | 
|  | // whole snippet only on hover. | 
|  | static void | 
|  | writeLatencySnippetHtml(llvm::raw_ostream &OS, | 
|  | const std::vector<llvm::MCInst> &Instructions, | 
|  | const llvm::MCInstrInfo &InstrInfo) { | 
|  | bool First = true; | 
|  | for (const llvm::MCInst &Instr : Instructions) { | 
|  | if (First) | 
|  | First = false; | 
|  | else | 
|  | OS << " → "; | 
|  | writeEscaped<kEscapeHtml>(OS, InstrInfo.getName(Instr.getOpcode())); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Analysis::printSchedClassClustersHtml( | 
|  | const std::vector<SchedClassCluster> &Clusters, | 
|  | const ResolvedSchedClass &RSC, llvm::raw_ostream &OS) const { | 
|  | const auto &Points = Clustering_.getPoints(); | 
|  | OS << "<table class=\"sched-class-clusters\">"; | 
|  | OS << "<tr><th>ClusterId</th><th>Opcode/Config</th>"; | 
|  | assert(!Clusters.empty()); | 
|  | for (const auto &Measurement : | 
|  | Points[Clusters[0].getPointIds()[0]].Measurements) { | 
|  | OS << "<th>"; | 
|  | writeEscaped<kEscapeHtml>(OS, Measurement.Key); | 
|  | OS << "</th>"; | 
|  | } | 
|  | OS << "</tr>"; | 
|  | for (const SchedClassCluster &Cluster : Clusters) { | 
|  | OS << "<tr class=\"" | 
|  | << (Cluster.measurementsMatch(*SubtargetInfo_, RSC, Clustering_) | 
|  | ? "good-cluster" | 
|  | : "bad-cluster") | 
|  | << "\"><td>"; | 
|  | writeClusterId<kEscapeHtml>(OS, Cluster.id()); | 
|  | OS << "</td><td><ul>"; | 
|  | for (const size_t PointId : Cluster.getPointIds()) { | 
|  | const auto &Point = Points[PointId]; | 
|  | OS << "<li><span class=\"mono\" title=\""; | 
|  | writeSnippet<EscapeTag, kEscapeHtmlString>(OS, Point.AssembledSnippet, | 
|  | "\n"); | 
|  | OS << "\">"; | 
|  | switch (Point.Mode) { | 
|  | case InstructionBenchmark::Latency: | 
|  | writeLatencySnippetHtml(OS, Point.Key.Instructions, *InstrInfo_); | 
|  | break; | 
|  | case InstructionBenchmark::Uops: | 
|  | writeUopsSnippetHtml(OS, Point.Key.Instructions, *InstrInfo_); | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("invalid mode"); | 
|  | } | 
|  | OS << "</span> <span class=\"mono\">"; | 
|  | writeEscaped<kEscapeHtml>(OS, Point.Key.Config); | 
|  | OS << "</span></li>"; | 
|  | } | 
|  | OS << "</ul></td>"; | 
|  | for (const auto &Stats : Cluster.getRepresentative()) { | 
|  | OS << "<td class=\"measurement\">"; | 
|  | writeMeasurementValue<kEscapeHtml>(OS, Stats.avg()); | 
|  | OS << "<br><span class=\"minmax\">["; | 
|  | writeMeasurementValue<kEscapeHtml>(OS, Stats.min()); | 
|  | OS << ";"; | 
|  | writeMeasurementValue<kEscapeHtml>(OS, Stats.max()); | 
|  | OS << "]</span></td>"; | 
|  | } | 
|  | OS << "</tr>"; | 
|  | } | 
|  | OS << "</table>"; | 
|  | } | 
|  |  | 
|  | // Return the non-redundant list of WriteProcRes used by the given sched class. | 
|  | // The scheduling model for LLVM is such that each instruction has a certain | 
|  | // number of uops which consume resources which are described by WriteProcRes | 
|  | // entries. Each entry describe how many cycles are spent on a specific ProcRes | 
|  | // kind. | 
|  | // For example, an instruction might have 3 uOps, one dispatching on P0 | 
|  | // (ProcResIdx=1) and two on P06 (ProcResIdx = 7). | 
|  | // Note that LLVM additionally denormalizes resource consumption to include | 
|  | // usage of super resources by subresources. So in practice if there exists a | 
|  | // P016 (ProcResIdx=10), then the cycles consumed by P0 are also consumed by | 
|  | // P06 (ProcResIdx = 7) and P016 (ProcResIdx = 10), and the resources consumed | 
|  | // by P06 are also consumed by P016. In the figure below, parenthesized cycles | 
|  | // denote implied usage of superresources by subresources: | 
|  | //            P0      P06    P016 | 
|  | //     uOp1    1      (1)     (1) | 
|  | //     uOp2            1      (1) | 
|  | //     uOp3            1      (1) | 
|  | //     ============================= | 
|  | //             1       3       3 | 
|  | // Eventually we end up with three entries for the WriteProcRes of the | 
|  | // instruction: | 
|  | //    {ProcResIdx=1,  Cycles=1}  // P0 | 
|  | //    {ProcResIdx=7,  Cycles=3}  // P06 | 
|  | //    {ProcResIdx=10, Cycles=3}  // P016 | 
|  | // | 
|  | // Note that in this case, P016 does not contribute any cycles, so it would | 
|  | // be removed by this function. | 
|  | // FIXME: Move this to MCSubtargetInfo and use it in llvm-mca. | 
|  | static llvm::SmallVector<llvm::MCWriteProcResEntry, 8> | 
|  | getNonRedundantWriteProcRes(const llvm::MCSchedClassDesc &SCDesc, | 
|  | const llvm::MCSubtargetInfo &STI) { | 
|  | llvm::SmallVector<llvm::MCWriteProcResEntry, 8> Result; | 
|  | const auto &SM = STI.getSchedModel(); | 
|  | const unsigned NumProcRes = SM.getNumProcResourceKinds(); | 
|  |  | 
|  | // This assumes that the ProcResDescs are sorted in topological order, which | 
|  | // is guaranteed by the tablegen backend. | 
|  | llvm::SmallVector<float, 32> ProcResUnitUsage(NumProcRes); | 
|  | for (const auto *WPR = STI.getWriteProcResBegin(&SCDesc), | 
|  | *const WPREnd = STI.getWriteProcResEnd(&SCDesc); | 
|  | WPR != WPREnd; ++WPR) { | 
|  | const llvm::MCProcResourceDesc *const ProcResDesc = | 
|  | SM.getProcResource(WPR->ProcResourceIdx); | 
|  | if (ProcResDesc->SubUnitsIdxBegin == nullptr) { | 
|  | // This is a ProcResUnit. | 
|  | Result.push_back({WPR->ProcResourceIdx, WPR->Cycles}); | 
|  | ProcResUnitUsage[WPR->ProcResourceIdx] += WPR->Cycles; | 
|  | } else { | 
|  | // This is a ProcResGroup. First see if it contributes any cycles or if | 
|  | // it has cycles just from subunits. | 
|  | float RemainingCycles = WPR->Cycles; | 
|  | for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin; | 
|  | SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits; | 
|  | ++SubResIdx) { | 
|  | RemainingCycles -= ProcResUnitUsage[*SubResIdx]; | 
|  | } | 
|  | if (RemainingCycles < 0.01f) { | 
|  | // The ProcResGroup contributes no cycles of its own. | 
|  | continue; | 
|  | } | 
|  | // The ProcResGroup contributes `RemainingCycles` cycles of its own. | 
|  | Result.push_back({WPR->ProcResourceIdx, | 
|  | static_cast<uint16_t>(std::round(RemainingCycles))}); | 
|  | // Spread the remaining cycles over all subunits. | 
|  | for (const auto *SubResIdx = ProcResDesc->SubUnitsIdxBegin; | 
|  | SubResIdx != ProcResDesc->SubUnitsIdxBegin + ProcResDesc->NumUnits; | 
|  | ++SubResIdx) { | 
|  | ProcResUnitUsage[*SubResIdx] += RemainingCycles / ProcResDesc->NumUnits; | 
|  | } | 
|  | } | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | Analysis::ResolvedSchedClass::ResolvedSchedClass( | 
|  | const llvm::MCSubtargetInfo &STI, unsigned ResolvedSchedClassId, | 
|  | bool WasVariant) | 
|  | : SCDesc(STI.getSchedModel().getSchedClassDesc(ResolvedSchedClassId)), | 
|  | WasVariant(WasVariant), | 
|  | NonRedundantWriteProcRes(getNonRedundantWriteProcRes(*SCDesc, STI)), | 
|  | IdealizedProcResPressure(computeIdealizedProcResPressure( | 
|  | STI.getSchedModel(), NonRedundantWriteProcRes)) { | 
|  | assert((SCDesc == nullptr || !SCDesc->isVariant()) && | 
|  | "ResolvedSchedClass should never be variant"); | 
|  | } | 
|  |  | 
|  | void Analysis::SchedClassCluster::addPoint( | 
|  | size_t PointId, const InstructionBenchmarkClustering &Clustering) { | 
|  | PointIds.push_back(PointId); | 
|  | const auto &Point = Clustering.getPoints()[PointId]; | 
|  | if (ClusterId.isUndef()) { | 
|  | ClusterId = Clustering.getClusterIdForPoint(PointId); | 
|  | Representative.resize(Point.Measurements.size()); | 
|  | } | 
|  | for (size_t I = 0, E = Point.Measurements.size(); I < E; ++I) { | 
|  | Representative[I].push(Point.Measurements[I]); | 
|  | } | 
|  | assert(ClusterId == Clustering.getClusterIdForPoint(PointId)); | 
|  | } | 
|  |  | 
|  | // Returns a ProxResIdx by id or name. | 
|  | static unsigned findProcResIdx(const llvm::MCSubtargetInfo &STI, | 
|  | const llvm::StringRef NameOrId) { | 
|  | // Interpret the key as an ProcResIdx. | 
|  | unsigned ProcResIdx = 0; | 
|  | if (llvm::to_integer(NameOrId, ProcResIdx, 10)) | 
|  | return ProcResIdx; | 
|  | // Interpret the key as a ProcRes name. | 
|  | const auto &SchedModel = STI.getSchedModel(); | 
|  | for (int I = 0, E = SchedModel.getNumProcResourceKinds(); I < E; ++I) { | 
|  | if (NameOrId == SchedModel.getProcResource(I)->Name) | 
|  | return I; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool Analysis::SchedClassCluster::measurementsMatch( | 
|  | const llvm::MCSubtargetInfo &STI, const ResolvedSchedClass &RSC, | 
|  | const InstructionBenchmarkClustering &Clustering) const { | 
|  | const size_t NumMeasurements = Representative.size(); | 
|  | std::vector<BenchmarkMeasure> ClusterCenterPoint(NumMeasurements); | 
|  | std::vector<BenchmarkMeasure> SchedClassPoint(NumMeasurements); | 
|  | // Latency case. | 
|  | assert(!Clustering.getPoints().empty()); | 
|  | const InstructionBenchmark::ModeE Mode = Clustering.getPoints()[0].Mode; | 
|  | if (Mode == InstructionBenchmark::Latency) { | 
|  | if (NumMeasurements != 1) { | 
|  | llvm::errs() | 
|  | << "invalid number of measurements in latency mode: expected 1, got " | 
|  | << NumMeasurements << "\n"; | 
|  | return false; | 
|  | } | 
|  | // Find the latency. | 
|  | SchedClassPoint[0].PerInstructionValue = 0.0; | 
|  | for (unsigned I = 0; I < RSC.SCDesc->NumWriteLatencyEntries; ++I) { | 
|  | const llvm::MCWriteLatencyEntry *const WLE = | 
|  | STI.getWriteLatencyEntry(RSC.SCDesc, I); | 
|  | SchedClassPoint[0].PerInstructionValue = | 
|  | std::max<double>(SchedClassPoint[0].PerInstructionValue, WLE->Cycles); | 
|  | } | 
|  | ClusterCenterPoint[0].PerInstructionValue = Representative[0].avg(); | 
|  | } else if (Mode == InstructionBenchmark::Uops) { | 
|  | for (int I = 0, E = Representative.size(); I < E; ++I) { | 
|  | const auto Key = Representative[I].key(); | 
|  | uint16_t ProcResIdx = findProcResIdx(STI, Key); | 
|  | if (ProcResIdx > 0) { | 
|  | // Find the pressure on ProcResIdx `Key`. | 
|  | const auto ProcResPressureIt = | 
|  | std::find_if(RSC.IdealizedProcResPressure.begin(), | 
|  | RSC.IdealizedProcResPressure.end(), | 
|  | [ProcResIdx](const std::pair<uint16_t, float> &WPR) { | 
|  | return WPR.first == ProcResIdx; | 
|  | }); | 
|  | SchedClassPoint[I].PerInstructionValue = | 
|  | ProcResPressureIt == RSC.IdealizedProcResPressure.end() | 
|  | ? 0.0 | 
|  | : ProcResPressureIt->second; | 
|  | } else if (Key == "NumMicroOps") { | 
|  | SchedClassPoint[I].PerInstructionValue = RSC.SCDesc->NumMicroOps; | 
|  | } else { | 
|  | llvm::errs() << "expected `key` to be either a ProcResIdx or a ProcRes " | 
|  | "name, got " | 
|  | << Key << "\n"; | 
|  | return false; | 
|  | } | 
|  | ClusterCenterPoint[I].PerInstructionValue = Representative[I].avg(); | 
|  | } | 
|  | } else { | 
|  | llvm::errs() << "unimplemented measurement matching for mode " << Mode | 
|  | << "\n"; | 
|  | return false; | 
|  | } | 
|  | return Clustering.isNeighbour(ClusterCenterPoint, SchedClassPoint); | 
|  | } | 
|  |  | 
|  | void Analysis::printSchedClassDescHtml(const ResolvedSchedClass &RSC, | 
|  | llvm::raw_ostream &OS) const { | 
|  | OS << "<table class=\"sched-class-desc\">"; | 
|  | OS << "<tr><th>Valid</th><th>Variant</th><th>NumMicroOps</th><th>Latency</" | 
|  | "th><th>WriteProcRes</th><th title=\"This is the idealized unit " | 
|  | "resource (port) pressure assuming ideal distribution\">Idealized " | 
|  | "Resource Pressure</th></tr>"; | 
|  | if (RSC.SCDesc->isValid()) { | 
|  | const auto &SM = SubtargetInfo_->getSchedModel(); | 
|  | OS << "<tr><td>✔</td>"; | 
|  | OS << "<td>" << (RSC.WasVariant ? "✔" : "✕") << "</td>"; | 
|  | OS << "<td>" << RSC.SCDesc->NumMicroOps << "</td>"; | 
|  | // Latencies. | 
|  | OS << "<td><ul>"; | 
|  | for (int I = 0, E = RSC.SCDesc->NumWriteLatencyEntries; I < E; ++I) { | 
|  | const auto *const Entry = | 
|  | SubtargetInfo_->getWriteLatencyEntry(RSC.SCDesc, I); | 
|  | OS << "<li>" << Entry->Cycles; | 
|  | if (RSC.SCDesc->NumWriteLatencyEntries > 1) { | 
|  | // Dismabiguate if more than 1 latency. | 
|  | OS << " (WriteResourceID " << Entry->WriteResourceID << ")"; | 
|  | } | 
|  | OS << "</li>"; | 
|  | } | 
|  | OS << "</ul></td>"; | 
|  | // WriteProcRes. | 
|  | OS << "<td><ul>"; | 
|  | for (const auto &WPR : RSC.NonRedundantWriteProcRes) { | 
|  | OS << "<li><span class=\"mono\">"; | 
|  | writeEscaped<kEscapeHtml>(OS, | 
|  | SM.getProcResource(WPR.ProcResourceIdx)->Name); | 
|  | OS << "</span>: " << WPR.Cycles << "</li>"; | 
|  | } | 
|  | OS << "</ul></td>"; | 
|  | // Idealized port pressure. | 
|  | OS << "<td><ul>"; | 
|  | for (const auto &Pressure : RSC.IdealizedProcResPressure) { | 
|  | OS << "<li><span class=\"mono\">"; | 
|  | writeEscaped<kEscapeHtml>(OS, SubtargetInfo_->getSchedModel() | 
|  | .getProcResource(Pressure.first) | 
|  | ->Name); | 
|  | OS << "</span>: "; | 
|  | writeMeasurementValue<kEscapeHtml>(OS, Pressure.second); | 
|  | OS << "</li>"; | 
|  | } | 
|  | OS << "</ul></td>"; | 
|  | OS << "</tr>"; | 
|  | } else { | 
|  | OS << "<tr><td>✕</td><td></td><td></td></tr>"; | 
|  | } | 
|  | OS << "</table>"; | 
|  | } | 
|  |  | 
|  | static constexpr const char kHtmlHead[] = R"( | 
|  | <head> | 
|  | <title>llvm-exegesis Analysis Results</title> | 
|  | <style> | 
|  | body { | 
|  | font-family: sans-serif | 
|  | } | 
|  | span.sched-class-name { | 
|  | font-weight: bold; | 
|  | font-family: monospace; | 
|  | } | 
|  | span.opcode { | 
|  | font-family: monospace; | 
|  | } | 
|  | span.config { | 
|  | font-family: monospace; | 
|  | } | 
|  | div.inconsistency { | 
|  | margin-top: 50px; | 
|  | } | 
|  | table { | 
|  | margin-left: 50px; | 
|  | border-collapse: collapse; | 
|  | } | 
|  | table, table tr,td,th { | 
|  | border: 1px solid #444; | 
|  | } | 
|  | table ul { | 
|  | padding-left: 0px; | 
|  | margin: 0px; | 
|  | list-style-type: none; | 
|  | } | 
|  | table.sched-class-clusters td { | 
|  | padding-left: 10px; | 
|  | padding-right: 10px; | 
|  | padding-top: 10px; | 
|  | padding-bottom: 10px; | 
|  | } | 
|  | table.sched-class-desc td { | 
|  | padding-left: 10px; | 
|  | padding-right: 10px; | 
|  | padding-top: 2px; | 
|  | padding-bottom: 2px; | 
|  | } | 
|  | span.mono { | 
|  | font-family: monospace; | 
|  | } | 
|  | td.measurement { | 
|  | text-align: center; | 
|  | } | 
|  | tr.good-cluster td.measurement { | 
|  | color: #292 | 
|  | } | 
|  | tr.bad-cluster td.measurement { | 
|  | color: #922 | 
|  | } | 
|  | tr.good-cluster td.measurement span.minmax { | 
|  | color: #888; | 
|  | } | 
|  | tr.bad-cluster td.measurement span.minmax { | 
|  | color: #888; | 
|  | } | 
|  | </style> | 
|  | </head> | 
|  | )"; | 
|  |  | 
|  | template <> | 
|  | llvm::Error Analysis::run<Analysis::PrintSchedClassInconsistencies>( | 
|  | llvm::raw_ostream &OS) const { | 
|  | const auto &FirstPoint = Clustering_.getPoints()[0]; | 
|  | // Print the header. | 
|  | OS << "<!DOCTYPE html><html>" << kHtmlHead << "<body>"; | 
|  | OS << "<h1><span class=\"mono\">llvm-exegesis</span> Analysis Results</h1>"; | 
|  | OS << "<h3>Triple: <span class=\"mono\">"; | 
|  | writeEscaped<kEscapeHtml>(OS, FirstPoint.LLVMTriple); | 
|  | OS << "</span></h3><h3>Cpu: <span class=\"mono\">"; | 
|  | writeEscaped<kEscapeHtml>(OS, FirstPoint.CpuName); | 
|  | OS << "</span></h3>"; | 
|  |  | 
|  | for (const auto &RSCAndPoints : makePointsPerSchedClass()) { | 
|  | if (!RSCAndPoints.RSC.SCDesc) | 
|  | continue; | 
|  | // Bucket sched class points into sched class clusters. | 
|  | std::vector<SchedClassCluster> SchedClassClusters; | 
|  | for (const size_t PointId : RSCAndPoints.PointIds) { | 
|  | const auto &ClusterId = Clustering_.getClusterIdForPoint(PointId); | 
|  | if (!ClusterId.isValid()) | 
|  | continue; // Ignore noise and errors. FIXME: take noise into account ? | 
|  | auto SchedClassClusterIt = | 
|  | std::find_if(SchedClassClusters.begin(), SchedClassClusters.end(), | 
|  | [ClusterId](const SchedClassCluster &C) { | 
|  | return C.id() == ClusterId; | 
|  | }); | 
|  | if (SchedClassClusterIt == SchedClassClusters.end()) { | 
|  | SchedClassClusters.emplace_back(); | 
|  | SchedClassClusterIt = std::prev(SchedClassClusters.end()); | 
|  | } | 
|  | SchedClassClusterIt->addPoint(PointId, Clustering_); | 
|  | } | 
|  |  | 
|  | // Print any scheduling class that has at least one cluster that does not | 
|  | // match the checked-in data. | 
|  | if (std::all_of(SchedClassClusters.begin(), SchedClassClusters.end(), | 
|  | [this, &RSCAndPoints](const SchedClassCluster &C) { | 
|  | return C.measurementsMatch(*SubtargetInfo_, | 
|  | RSCAndPoints.RSC, Clustering_); | 
|  | })) | 
|  | continue; // Nothing weird. | 
|  |  | 
|  | OS << "<div class=\"inconsistency\"><p>Sched Class <span " | 
|  | "class=\"sched-class-name\">"; | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | writeEscaped<kEscapeHtml>(OS, RSCAndPoints.RSC.SCDesc->Name); | 
|  | #else | 
|  | OS << SchedClassId; | 
|  | #endif | 
|  | OS << "</span> contains instructions whose performance characteristics do" | 
|  | " not match that of LLVM:</p>"; | 
|  | printSchedClassClustersHtml(SchedClassClusters, RSCAndPoints.RSC, OS); | 
|  | OS << "<p>llvm SchedModel data:</p>"; | 
|  | printSchedClassDescHtml(RSCAndPoints.RSC, OS); | 
|  | OS << "</div>"; | 
|  | } | 
|  |  | 
|  | OS << "</body></html>"; | 
|  | return llvm::Error::success(); | 
|  | } | 
|  |  | 
|  | // Distributes a pressure budget as evenly as possible on the provided subunits | 
|  | // given the already existing port pressure distribution. | 
|  | // | 
|  | // The algorithm is as follows: while there is remaining pressure to | 
|  | // distribute, find the subunits with minimal pressure, and distribute | 
|  | // remaining pressure equally up to the pressure of the unit with | 
|  | // second-to-minimal pressure. | 
|  | // For example, let's assume we want to distribute 2*P1256 | 
|  | // (Subunits = [P1,P2,P5,P6]), and the starting DensePressure is: | 
|  | //     DensePressure =        P0   P1   P2   P3   P4   P5   P6   P7 | 
|  | //                           0.1  0.3  0.2  0.0  0.0  0.5  0.5  0.5 | 
|  | //     RemainingPressure = 2.0 | 
|  | // We sort the subunits by pressure: | 
|  | //     Subunits = [(P2,p=0.2), (P1,p=0.3), (P5,p=0.5), (P6, p=0.5)] | 
|  | // We'll first start by the subunits with minimal pressure, which are at | 
|  | // the beginning of the sorted array. In this example there is one (P2). | 
|  | // The subunit with second-to-minimal pressure is the next one in the | 
|  | // array (P1). So we distribute 0.1 pressure to P2, and remove 0.1 cycles | 
|  | // from the budget. | 
|  | //     Subunits = [(P2,p=0.3), (P1,p=0.3), (P5,p=0.5), (P5,p=0.5)] | 
|  | //     RemainingPressure = 1.9 | 
|  | // We repeat this process: distribute 0.2 pressure on each of the minimal | 
|  | // P2 and P1, decrease budget by 2*0.2: | 
|  | //     Subunits = [(P2,p=0.5), (P1,p=0.5), (P5,p=0.5), (P5,p=0.5)] | 
|  | //     RemainingPressure = 1.5 | 
|  | // There are no second-to-minimal subunits so we just share the remaining | 
|  | // budget (1.5 cycles) equally: | 
|  | //     Subunits = [(P2,p=0.875), (P1,p=0.875), (P5,p=0.875), (P5,p=0.875)] | 
|  | //     RemainingPressure = 0.0 | 
|  | // We stop as there is no remaining budget to distribute. | 
|  | void distributePressure(float RemainingPressure, | 
|  | llvm::SmallVector<uint16_t, 32> Subunits, | 
|  | llvm::SmallVector<float, 32> &DensePressure) { | 
|  | // Find the number of subunits with minimal pressure (they are at the | 
|  | // front). | 
|  | llvm::sort(Subunits, [&DensePressure](const uint16_t A, const uint16_t B) { | 
|  | return DensePressure[A] < DensePressure[B]; | 
|  | }); | 
|  | const auto getPressureForSubunit = [&DensePressure, | 
|  | &Subunits](size_t I) -> float & { | 
|  | return DensePressure[Subunits[I]]; | 
|  | }; | 
|  | size_t NumMinimalSU = 1; | 
|  | while (NumMinimalSU < Subunits.size() && | 
|  | getPressureForSubunit(NumMinimalSU) == getPressureForSubunit(0)) { | 
|  | ++NumMinimalSU; | 
|  | } | 
|  | while (RemainingPressure > 0.0f) { | 
|  | if (NumMinimalSU == Subunits.size()) { | 
|  | // All units are minimal, just distribute evenly and be done. | 
|  | for (size_t I = 0; I < NumMinimalSU; ++I) { | 
|  | getPressureForSubunit(I) += RemainingPressure / NumMinimalSU; | 
|  | } | 
|  | return; | 
|  | } | 
|  | // Distribute the remaining pressure equally. | 
|  | const float MinimalPressure = getPressureForSubunit(NumMinimalSU - 1); | 
|  | const float SecondToMinimalPressure = getPressureForSubunit(NumMinimalSU); | 
|  | assert(MinimalPressure < SecondToMinimalPressure); | 
|  | const float Increment = SecondToMinimalPressure - MinimalPressure; | 
|  | if (RemainingPressure <= NumMinimalSU * Increment) { | 
|  | // There is not enough remaining pressure. | 
|  | for (size_t I = 0; I < NumMinimalSU; ++I) { | 
|  | getPressureForSubunit(I) += RemainingPressure / NumMinimalSU; | 
|  | } | 
|  | return; | 
|  | } | 
|  | // Bump all minimal pressure subunits to `SecondToMinimalPressure`. | 
|  | for (size_t I = 0; I < NumMinimalSU; ++I) { | 
|  | getPressureForSubunit(I) = SecondToMinimalPressure; | 
|  | RemainingPressure -= SecondToMinimalPressure; | 
|  | } | 
|  | while (NumMinimalSU < Subunits.size() && | 
|  | getPressureForSubunit(NumMinimalSU) == SecondToMinimalPressure) { | 
|  | ++NumMinimalSU; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | std::vector<std::pair<uint16_t, float>> computeIdealizedProcResPressure( | 
|  | const llvm::MCSchedModel &SM, | 
|  | llvm::SmallVector<llvm::MCWriteProcResEntry, 8> WPRS) { | 
|  | // DensePressure[I] is the port pressure for Proc Resource I. | 
|  | llvm::SmallVector<float, 32> DensePressure(SM.getNumProcResourceKinds()); | 
|  | llvm::sort(WPRS, [](const llvm::MCWriteProcResEntry &A, | 
|  | const llvm::MCWriteProcResEntry &B) { | 
|  | return A.ProcResourceIdx < B.ProcResourceIdx; | 
|  | }); | 
|  | for (const llvm::MCWriteProcResEntry &WPR : WPRS) { | 
|  | // Get units for the entry. | 
|  | const llvm::MCProcResourceDesc *const ProcResDesc = | 
|  | SM.getProcResource(WPR.ProcResourceIdx); | 
|  | if (ProcResDesc->SubUnitsIdxBegin == nullptr) { | 
|  | // This is a ProcResUnit. | 
|  | DensePressure[WPR.ProcResourceIdx] += WPR.Cycles; | 
|  | } else { | 
|  | // This is a ProcResGroup. | 
|  | llvm::SmallVector<uint16_t, 32> Subunits(ProcResDesc->SubUnitsIdxBegin, | 
|  | ProcResDesc->SubUnitsIdxBegin + | 
|  | ProcResDesc->NumUnits); | 
|  | distributePressure(WPR.Cycles, Subunits, DensePressure); | 
|  | } | 
|  | } | 
|  | // Turn dense pressure into sparse pressure by removing zero entries. | 
|  | std::vector<std::pair<uint16_t, float>> Pressure; | 
|  | for (unsigned I = 0, E = SM.getNumProcResourceKinds(); I < E; ++I) { | 
|  | if (DensePressure[I] > 0.0f) | 
|  | Pressure.emplace_back(I, DensePressure[I]); | 
|  | } | 
|  | return Pressure; | 
|  | } | 
|  |  | 
|  | } // namespace exegesis |