|  | //===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the generic AliasAnalysis interface which is used as the | 
|  | // common interface used by all clients and implementations of alias analysis. | 
|  | // | 
|  | // This file also implements the default version of the AliasAnalysis interface | 
|  | // that is to be used when no other implementation is specified.  This does some | 
|  | // simple tests that detect obvious cases: two different global pointers cannot | 
|  | // alias, a global cannot alias a malloc, two different mallocs cannot alias, | 
|  | // etc. | 
|  | // | 
|  | // This alias analysis implementation really isn't very good for anything, but | 
|  | // it is very fast, and makes a nice clean default implementation.  Because it | 
|  | // handles lots of little corner cases, other, more complex, alias analysis | 
|  | // implementations may choose to rely on this pass to resolve these simple and | 
|  | // easy cases. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/BasicBlock.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/Type.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | // Register the AliasAnalysis interface, providing a nice name to refer to. | 
|  | INITIALIZE_ANALYSIS_GROUP(AliasAnalysis, "Alias Analysis", NoAA) | 
|  | char AliasAnalysis::ID = 0; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Default chaining methods | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | AliasAnalysis::AliasResult | 
|  | AliasAnalysis::alias(const Location &LocA, const Location &LocB) { | 
|  | assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); | 
|  | return AA->alias(LocA, LocB); | 
|  | } | 
|  |  | 
|  | bool AliasAnalysis::pointsToConstantMemory(const Location &Loc, | 
|  | bool OrLocal) { | 
|  | assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); | 
|  | return AA->pointsToConstantMemory(Loc, OrLocal); | 
|  | } | 
|  |  | 
|  | void AliasAnalysis::deleteValue(Value *V) { | 
|  | assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); | 
|  | AA->deleteValue(V); | 
|  | } | 
|  |  | 
|  | void AliasAnalysis::copyValue(Value *From, Value *To) { | 
|  | assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); | 
|  | AA->copyValue(From, To); | 
|  | } | 
|  |  | 
|  | void AliasAnalysis::addEscapingUse(Use &U) { | 
|  | assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); | 
|  | AA->addEscapingUse(U); | 
|  | } | 
|  |  | 
|  |  | 
|  | AliasAnalysis::ModRefResult | 
|  | AliasAnalysis::getModRefInfo(ImmutableCallSite CS, | 
|  | const Location &Loc) { | 
|  | assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); | 
|  |  | 
|  | ModRefBehavior MRB = getModRefBehavior(CS); | 
|  | if (MRB == DoesNotAccessMemory) | 
|  | return NoModRef; | 
|  |  | 
|  | ModRefResult Mask = ModRef; | 
|  | if (onlyReadsMemory(MRB)) | 
|  | Mask = Ref; | 
|  |  | 
|  | if (onlyAccessesArgPointees(MRB)) { | 
|  | bool doesAlias = false; | 
|  | if (doesAccessArgPointees(MRB)) { | 
|  | MDNode *CSTag = CS.getInstruction()->getMetadata(LLVMContext::MD_tbaa); | 
|  | for (ImmutableCallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); | 
|  | AI != AE; ++AI) { | 
|  | const Value *Arg = *AI; | 
|  | if (!Arg->getType()->isPointerTy()) | 
|  | continue; | 
|  | Location CSLoc(Arg, UnknownSize, CSTag); | 
|  | if (!isNoAlias(CSLoc, Loc)) { | 
|  | doesAlias = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!doesAlias) | 
|  | return NoModRef; | 
|  | } | 
|  |  | 
|  | // If Loc is a constant memory location, the call definitely could not | 
|  | // modify the memory location. | 
|  | if ((Mask & Mod) && pointsToConstantMemory(Loc)) | 
|  | Mask = ModRefResult(Mask & ~Mod); | 
|  |  | 
|  | // If this is the end of the chain, don't forward. | 
|  | if (!AA) return Mask; | 
|  |  | 
|  | // Otherwise, fall back to the next AA in the chain. But we can merge | 
|  | // in any mask we've managed to compute. | 
|  | return ModRefResult(AA->getModRefInfo(CS, Loc) & Mask); | 
|  | } | 
|  |  | 
|  | AliasAnalysis::ModRefResult | 
|  | AliasAnalysis::getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2) { | 
|  | assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); | 
|  |  | 
|  | // If CS1 or CS2 are readnone, they don't interact. | 
|  | ModRefBehavior CS1B = getModRefBehavior(CS1); | 
|  | if (CS1B == DoesNotAccessMemory) return NoModRef; | 
|  |  | 
|  | ModRefBehavior CS2B = getModRefBehavior(CS2); | 
|  | if (CS2B == DoesNotAccessMemory) return NoModRef; | 
|  |  | 
|  | // If they both only read from memory, there is no dependence. | 
|  | if (onlyReadsMemory(CS1B) && onlyReadsMemory(CS2B)) | 
|  | return NoModRef; | 
|  |  | 
|  | AliasAnalysis::ModRefResult Mask = ModRef; | 
|  |  | 
|  | // If CS1 only reads memory, the only dependence on CS2 can be | 
|  | // from CS1 reading memory written by CS2. | 
|  | if (onlyReadsMemory(CS1B)) | 
|  | Mask = ModRefResult(Mask & Ref); | 
|  |  | 
|  | // If CS2 only access memory through arguments, accumulate the mod/ref | 
|  | // information from CS1's references to the memory referenced by | 
|  | // CS2's arguments. | 
|  | if (onlyAccessesArgPointees(CS2B)) { | 
|  | AliasAnalysis::ModRefResult R = NoModRef; | 
|  | if (doesAccessArgPointees(CS2B)) { | 
|  | MDNode *CS2Tag = CS2.getInstruction()->getMetadata(LLVMContext::MD_tbaa); | 
|  | for (ImmutableCallSite::arg_iterator | 
|  | I = CS2.arg_begin(), E = CS2.arg_end(); I != E; ++I) { | 
|  | const Value *Arg = *I; | 
|  | if (!Arg->getType()->isPointerTy()) | 
|  | continue; | 
|  | Location CS2Loc(Arg, UnknownSize, CS2Tag); | 
|  | R = ModRefResult((R | getModRefInfo(CS1, CS2Loc)) & Mask); | 
|  | if (R == Mask) | 
|  | break; | 
|  | } | 
|  | } | 
|  | return R; | 
|  | } | 
|  |  | 
|  | // If CS1 only accesses memory through arguments, check if CS2 references | 
|  | // any of the memory referenced by CS1's arguments. If not, return NoModRef. | 
|  | if (onlyAccessesArgPointees(CS1B)) { | 
|  | AliasAnalysis::ModRefResult R = NoModRef; | 
|  | if (doesAccessArgPointees(CS1B)) { | 
|  | MDNode *CS1Tag = CS1.getInstruction()->getMetadata(LLVMContext::MD_tbaa); | 
|  | for (ImmutableCallSite::arg_iterator | 
|  | I = CS1.arg_begin(), E = CS1.arg_end(); I != E; ++I) { | 
|  | const Value *Arg = *I; | 
|  | if (!Arg->getType()->isPointerTy()) | 
|  | continue; | 
|  | Location CS1Loc(Arg, UnknownSize, CS1Tag); | 
|  | if (getModRefInfo(CS2, CS1Loc) != NoModRef) { | 
|  | R = Mask; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (R == NoModRef) | 
|  | return R; | 
|  | } | 
|  |  | 
|  | // If this is the end of the chain, don't forward. | 
|  | if (!AA) return Mask; | 
|  |  | 
|  | // Otherwise, fall back to the next AA in the chain. But we can merge | 
|  | // in any mask we've managed to compute. | 
|  | return ModRefResult(AA->getModRefInfo(CS1, CS2) & Mask); | 
|  | } | 
|  |  | 
|  | AliasAnalysis::ModRefBehavior | 
|  | AliasAnalysis::getModRefBehavior(ImmutableCallSite CS) { | 
|  | assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); | 
|  |  | 
|  | ModRefBehavior Min = UnknownModRefBehavior; | 
|  |  | 
|  | // Call back into the alias analysis with the other form of getModRefBehavior | 
|  | // to see if it can give a better response. | 
|  | if (const Function *F = CS.getCalledFunction()) | 
|  | Min = getModRefBehavior(F); | 
|  |  | 
|  | // If this is the end of the chain, don't forward. | 
|  | if (!AA) return Min; | 
|  |  | 
|  | // Otherwise, fall back to the next AA in the chain. But we can merge | 
|  | // in any result we've managed to compute. | 
|  | return ModRefBehavior(AA->getModRefBehavior(CS) & Min); | 
|  | } | 
|  |  | 
|  | AliasAnalysis::ModRefBehavior | 
|  | AliasAnalysis::getModRefBehavior(const Function *F) { | 
|  | assert(AA && "AA didn't call InitializeAliasAnalysis in its run method!"); | 
|  | return AA->getModRefBehavior(F); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // AliasAnalysis non-virtual helper method implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | AliasAnalysis::Location AliasAnalysis::getLocation(const LoadInst *LI) { | 
|  | return Location(LI->getPointerOperand(), | 
|  | getTypeStoreSize(LI->getType()), | 
|  | LI->getMetadata(LLVMContext::MD_tbaa)); | 
|  | } | 
|  |  | 
|  | AliasAnalysis::Location AliasAnalysis::getLocation(const StoreInst *SI) { | 
|  | return Location(SI->getPointerOperand(), | 
|  | getTypeStoreSize(SI->getValueOperand()->getType()), | 
|  | SI->getMetadata(LLVMContext::MD_tbaa)); | 
|  | } | 
|  |  | 
|  | AliasAnalysis::Location AliasAnalysis::getLocation(const VAArgInst *VI) { | 
|  | return Location(VI->getPointerOperand(), | 
|  | UnknownSize, | 
|  | VI->getMetadata(LLVMContext::MD_tbaa)); | 
|  | } | 
|  |  | 
|  |  | 
|  | AliasAnalysis::Location | 
|  | AliasAnalysis::getLocationForSource(const MemTransferInst *MTI) { | 
|  | uint64_t Size = UnknownSize; | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength())) | 
|  | Size = C->getValue().getZExtValue(); | 
|  |  | 
|  | // memcpy/memmove can have TBAA tags. For memcpy, they apply | 
|  | // to both the source and the destination. | 
|  | MDNode *TBAATag = MTI->getMetadata(LLVMContext::MD_tbaa); | 
|  |  | 
|  | return Location(MTI->getRawSource(), Size, TBAATag); | 
|  | } | 
|  |  | 
|  | AliasAnalysis::Location | 
|  | AliasAnalysis::getLocationForDest(const MemIntrinsic *MTI) { | 
|  | uint64_t Size = UnknownSize; | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(MTI->getLength())) | 
|  | Size = C->getValue().getZExtValue(); | 
|  |  | 
|  | // memcpy/memmove can have TBAA tags. For memcpy, they apply | 
|  | // to both the source and the destination. | 
|  | MDNode *TBAATag = MTI->getMetadata(LLVMContext::MD_tbaa); | 
|  |  | 
|  | return Location(MTI->getRawDest(), Size, TBAATag); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | AliasAnalysis::ModRefResult | 
|  | AliasAnalysis::getModRefInfo(const LoadInst *L, const Location &Loc) { | 
|  | // Be conservative in the face of volatile. | 
|  | if (L->isVolatile()) | 
|  | return ModRef; | 
|  |  | 
|  | // If the load address doesn't alias the given address, it doesn't read | 
|  | // or write the specified memory. | 
|  | if (!alias(getLocation(L), Loc)) | 
|  | return NoModRef; | 
|  |  | 
|  | // Otherwise, a load just reads. | 
|  | return Ref; | 
|  | } | 
|  |  | 
|  | AliasAnalysis::ModRefResult | 
|  | AliasAnalysis::getModRefInfo(const StoreInst *S, const Location &Loc) { | 
|  | // Be conservative in the face of volatile. | 
|  | if (S->isVolatile()) | 
|  | return ModRef; | 
|  |  | 
|  | // If the store address cannot alias the pointer in question, then the | 
|  | // specified memory cannot be modified by the store. | 
|  | if (!alias(getLocation(S), Loc)) | 
|  | return NoModRef; | 
|  |  | 
|  | // If the pointer is a pointer to constant memory, then it could not have been | 
|  | // modified by this store. | 
|  | if (pointsToConstantMemory(Loc)) | 
|  | return NoModRef; | 
|  |  | 
|  | // Otherwise, a store just writes. | 
|  | return Mod; | 
|  | } | 
|  |  | 
|  | AliasAnalysis::ModRefResult | 
|  | AliasAnalysis::getModRefInfo(const VAArgInst *V, const Location &Loc) { | 
|  | // If the va_arg address cannot alias the pointer in question, then the | 
|  | // specified memory cannot be accessed by the va_arg. | 
|  | if (!alias(getLocation(V), Loc)) | 
|  | return NoModRef; | 
|  |  | 
|  | // If the pointer is a pointer to constant memory, then it could not have been | 
|  | // modified by this va_arg. | 
|  | if (pointsToConstantMemory(Loc)) | 
|  | return NoModRef; | 
|  |  | 
|  | // Otherwise, a va_arg reads and writes. | 
|  | return ModRef; | 
|  | } | 
|  |  | 
|  | // AliasAnalysis destructor: DO NOT move this to the header file for | 
|  | // AliasAnalysis or else clients of the AliasAnalysis class may not depend on | 
|  | // the AliasAnalysis.o file in the current .a file, causing alias analysis | 
|  | // support to not be included in the tool correctly! | 
|  | // | 
|  | AliasAnalysis::~AliasAnalysis() {} | 
|  |  | 
|  | /// InitializeAliasAnalysis - Subclasses must call this method to initialize the | 
|  | /// AliasAnalysis interface before any other methods are called. | 
|  | /// | 
|  | void AliasAnalysis::InitializeAliasAnalysis(Pass *P) { | 
|  | TD = P->getAnalysisIfAvailable<TargetData>(); | 
|  | AA = &P->getAnalysis<AliasAnalysis>(); | 
|  | } | 
|  |  | 
|  | // getAnalysisUsage - All alias analysis implementations should invoke this | 
|  | // directly (using AliasAnalysis::getAnalysisUsage(AU)). | 
|  | void AliasAnalysis::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.addRequired<AliasAnalysis>();         // All AA's chain | 
|  | } | 
|  |  | 
|  | /// getTypeStoreSize - Return the TargetData store size for the given type, | 
|  | /// if known, or a conservative value otherwise. | 
|  | /// | 
|  | uint64_t AliasAnalysis::getTypeStoreSize(const Type *Ty) { | 
|  | return TD ? TD->getTypeStoreSize(Ty) : UnknownSize; | 
|  | } | 
|  |  | 
|  | /// canBasicBlockModify - Return true if it is possible for execution of the | 
|  | /// specified basic block to modify the value pointed to by Ptr. | 
|  | /// | 
|  | bool AliasAnalysis::canBasicBlockModify(const BasicBlock &BB, | 
|  | const Location &Loc) { | 
|  | return canInstructionRangeModify(BB.front(), BB.back(), Loc); | 
|  | } | 
|  |  | 
|  | /// canInstructionRangeModify - Return true if it is possible for the execution | 
|  | /// of the specified instructions to modify the value pointed to by Ptr.  The | 
|  | /// instructions to consider are all of the instructions in the range of [I1,I2] | 
|  | /// INCLUSIVE.  I1 and I2 must be in the same basic block. | 
|  | /// | 
|  | bool AliasAnalysis::canInstructionRangeModify(const Instruction &I1, | 
|  | const Instruction &I2, | 
|  | const Location &Loc) { | 
|  | assert(I1.getParent() == I2.getParent() && | 
|  | "Instructions not in same basic block!"); | 
|  | BasicBlock::const_iterator I = &I1; | 
|  | BasicBlock::const_iterator E = &I2; | 
|  | ++E;  // Convert from inclusive to exclusive range. | 
|  |  | 
|  | for (; I != E; ++I) // Check every instruction in range | 
|  | if (getModRefInfo(I, Loc) & Mod) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isNoAliasCall - Return true if this pointer is returned by a noalias | 
|  | /// function. | 
|  | bool llvm::isNoAliasCall(const Value *V) { | 
|  | if (isa<CallInst>(V) || isa<InvokeInst>(V)) | 
|  | return ImmutableCallSite(cast<Instruction>(V)) | 
|  | .paramHasAttr(0, Attribute::NoAlias); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// isIdentifiedObject - Return true if this pointer refers to a distinct and | 
|  | /// identifiable object.  This returns true for: | 
|  | ///    Global Variables and Functions (but not Global Aliases) | 
|  | ///    Allocas and Mallocs | 
|  | ///    ByVal and NoAlias Arguments | 
|  | ///    NoAlias returns | 
|  | /// | 
|  | bool llvm::isIdentifiedObject(const Value *V) { | 
|  | if (isa<AllocaInst>(V)) | 
|  | return true; | 
|  | if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V)) | 
|  | return true; | 
|  | if (isNoAliasCall(V)) | 
|  | return true; | 
|  | if (const Argument *A = dyn_cast<Argument>(V)) | 
|  | return A->hasNoAliasAttr() || A->hasByValAttr(); | 
|  | return false; | 
|  | } |