|  | //===- CodeExtractor.cpp - Pull code region into a new function -----------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the interface to tear out a code region, such as an | 
|  | // individual loop or a parallel section, into a new function, replacing it with | 
|  | // a call to the new function. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Utils/FunctionUtils.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/Intrinsics.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/Module.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Analysis/Dominators.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/Verifier.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include <algorithm> | 
|  | #include <set> | 
|  | using namespace llvm; | 
|  |  | 
|  | // Provide a command-line option to aggregate function arguments into a struct | 
|  | // for functions produced by the code extractor. This is useful when converting | 
|  | // extracted functions to pthread-based code, as only one argument (void*) can | 
|  | // be passed in to pthread_create(). | 
|  | static cl::opt<bool> | 
|  | AggregateArgsOpt("aggregate-extracted-args", cl::Hidden, | 
|  | cl::desc("Aggregate arguments to code-extracted functions")); | 
|  |  | 
|  | namespace { | 
|  | class CodeExtractor { | 
|  | typedef SetVector<Value*> Values; | 
|  | SetVector<BasicBlock*> BlocksToExtract; | 
|  | DominatorTree* DT; | 
|  | bool AggregateArgs; | 
|  | unsigned NumExitBlocks; | 
|  | const Type *RetTy; | 
|  | public: | 
|  | CodeExtractor(DominatorTree* dt = 0, bool AggArgs = false) | 
|  | : DT(dt), AggregateArgs(AggArgs||AggregateArgsOpt), NumExitBlocks(~0U) {} | 
|  |  | 
|  | Function *ExtractCodeRegion(const std::vector<BasicBlock*> &code); | 
|  |  | 
|  | bool isEligible(const std::vector<BasicBlock*> &code); | 
|  |  | 
|  | private: | 
|  | /// definedInRegion - Return true if the specified value is defined in the | 
|  | /// extracted region. | 
|  | bool definedInRegion(Value *V) const { | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | if (BlocksToExtract.count(I->getParent())) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// definedInCaller - Return true if the specified value is defined in the | 
|  | /// function being code extracted, but not in the region being extracted. | 
|  | /// These values must be passed in as live-ins to the function. | 
|  | bool definedInCaller(Value *V) const { | 
|  | if (isa<Argument>(V)) return true; | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | if (!BlocksToExtract.count(I->getParent())) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void severSplitPHINodes(BasicBlock *&Header); | 
|  | void splitReturnBlocks(); | 
|  | void findInputsOutputs(Values &inputs, Values &outputs); | 
|  |  | 
|  | Function *constructFunction(const Values &inputs, | 
|  | const Values &outputs, | 
|  | BasicBlock *header, | 
|  | BasicBlock *newRootNode, BasicBlock *newHeader, | 
|  | Function *oldFunction, Module *M); | 
|  |  | 
|  | void moveCodeToFunction(Function *newFunction); | 
|  |  | 
|  | void emitCallAndSwitchStatement(Function *newFunction, | 
|  | BasicBlock *newHeader, | 
|  | Values &inputs, | 
|  | Values &outputs); | 
|  |  | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// severSplitPHINodes - If a PHI node has multiple inputs from outside of the | 
|  | /// region, we need to split the entry block of the region so that the PHI node | 
|  | /// is easier to deal with. | 
|  | void CodeExtractor::severSplitPHINodes(BasicBlock *&Header) { | 
|  | bool HasPredsFromRegion = false; | 
|  | unsigned NumPredsOutsideRegion = 0; | 
|  |  | 
|  | if (Header != &Header->getParent()->getEntryBlock()) { | 
|  | PHINode *PN = dyn_cast<PHINode>(Header->begin()); | 
|  | if (!PN) return;  // No PHI nodes. | 
|  |  | 
|  | // If the header node contains any PHI nodes, check to see if there is more | 
|  | // than one entry from outside the region.  If so, we need to sever the | 
|  | // header block into two. | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | if (BlocksToExtract.count(PN->getIncomingBlock(i))) | 
|  | HasPredsFromRegion = true; | 
|  | else | 
|  | ++NumPredsOutsideRegion; | 
|  |  | 
|  | // If there is one (or fewer) predecessor from outside the region, we don't | 
|  | // need to do anything special. | 
|  | if (NumPredsOutsideRegion <= 1) return; | 
|  | } | 
|  |  | 
|  | // Otherwise, we need to split the header block into two pieces: one | 
|  | // containing PHI nodes merging values from outside of the region, and a | 
|  | // second that contains all of the code for the block and merges back any | 
|  | // incoming values from inside of the region. | 
|  | BasicBlock::iterator AfterPHIs = Header->getFirstNonPHI(); | 
|  | BasicBlock *NewBB = Header->splitBasicBlock(AfterPHIs, | 
|  | Header->getName()+".ce"); | 
|  |  | 
|  | // We only want to code extract the second block now, and it becomes the new | 
|  | // header of the region. | 
|  | BasicBlock *OldPred = Header; | 
|  | BlocksToExtract.remove(OldPred); | 
|  | BlocksToExtract.insert(NewBB); | 
|  | Header = NewBB; | 
|  |  | 
|  | // Okay, update dominator sets. The blocks that dominate the new one are the | 
|  | // blocks that dominate TIBB plus the new block itself. | 
|  | if (DT) | 
|  | DT->splitBlock(NewBB); | 
|  |  | 
|  | // Okay, now we need to adjust the PHI nodes and any branches from within the | 
|  | // region to go to the new header block instead of the old header block. | 
|  | if (HasPredsFromRegion) { | 
|  | PHINode *PN = cast<PHINode>(OldPred->begin()); | 
|  | // Loop over all of the predecessors of OldPred that are in the region, | 
|  | // changing them to branch to NewBB instead. | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | if (BlocksToExtract.count(PN->getIncomingBlock(i))) { | 
|  | TerminatorInst *TI = PN->getIncomingBlock(i)->getTerminator(); | 
|  | TI->replaceUsesOfWith(OldPred, NewBB); | 
|  | } | 
|  |  | 
|  | // Okay, everthing within the region is now branching to the right block, we | 
|  | // just have to update the PHI nodes now, inserting PHI nodes into NewBB. | 
|  | for (AfterPHIs = OldPred->begin(); isa<PHINode>(AfterPHIs); ++AfterPHIs) { | 
|  | PHINode *PN = cast<PHINode>(AfterPHIs); | 
|  | // Create a new PHI node in the new region, which has an incoming value | 
|  | // from OldPred of PN. | 
|  | PHINode *NewPN = PHINode::Create(PN->getType(), PN->getName()+".ce", | 
|  | NewBB->begin()); | 
|  | NewPN->addIncoming(PN, OldPred); | 
|  |  | 
|  | // Loop over all of the incoming value in PN, moving them to NewPN if they | 
|  | // are from the extracted region. | 
|  | for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { | 
|  | if (BlocksToExtract.count(PN->getIncomingBlock(i))) { | 
|  | NewPN->addIncoming(PN->getIncomingValue(i), PN->getIncomingBlock(i)); | 
|  | PN->removeIncomingValue(i); | 
|  | --i; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeExtractor::splitReturnBlocks() { | 
|  | for (SetVector<BasicBlock*>::iterator I = BlocksToExtract.begin(), | 
|  | E = BlocksToExtract.end(); I != E; ++I) | 
|  | if (ReturnInst *RI = dyn_cast<ReturnInst>((*I)->getTerminator())) { | 
|  | BasicBlock *New = (*I)->splitBasicBlock(RI, (*I)->getName()+".ret"); | 
|  | if (DT) { | 
|  | // Old dominates New. New node domiantes all other nodes dominated | 
|  | //by Old. | 
|  | DomTreeNode *OldNode = DT->getNode(*I); | 
|  | SmallVector<DomTreeNode*, 8> Children; | 
|  | for (DomTreeNode::iterator DI = OldNode->begin(), DE = OldNode->end(); | 
|  | DI != DE; ++DI) | 
|  | Children.push_back(*DI); | 
|  |  | 
|  | DomTreeNode *NewNode = DT->addNewBlock(New, *I); | 
|  |  | 
|  | for (SmallVector<DomTreeNode*, 8>::iterator I = Children.begin(), | 
|  | E = Children.end(); I != E; ++I) | 
|  | DT->changeImmediateDominator(*I, NewNode); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // findInputsOutputs - Find inputs to, outputs from the code region. | 
|  | // | 
|  | void CodeExtractor::findInputsOutputs(Values &inputs, Values &outputs) { | 
|  | std::set<BasicBlock*> ExitBlocks; | 
|  | for (SetVector<BasicBlock*>::const_iterator ci = BlocksToExtract.begin(), | 
|  | ce = BlocksToExtract.end(); ci != ce; ++ci) { | 
|  | BasicBlock *BB = *ci; | 
|  |  | 
|  | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { | 
|  | // If a used value is defined outside the region, it's an input.  If an | 
|  | // instruction is used outside the region, it's an output. | 
|  | for (User::op_iterator O = I->op_begin(), E = I->op_end(); O != E; ++O) | 
|  | if (definedInCaller(*O)) | 
|  | inputs.insert(*O); | 
|  |  | 
|  | // Consider uses of this instruction (outputs). | 
|  | for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); | 
|  | UI != E; ++UI) | 
|  | if (!definedInRegion(*UI)) { | 
|  | outputs.insert(I); | 
|  | break; | 
|  | } | 
|  | } // for: insts | 
|  |  | 
|  | // Keep track of the exit blocks from the region. | 
|  | TerminatorInst *TI = BB->getTerminator(); | 
|  | for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) | 
|  | if (!BlocksToExtract.count(TI->getSuccessor(i))) | 
|  | ExitBlocks.insert(TI->getSuccessor(i)); | 
|  | } // for: basic blocks | 
|  |  | 
|  | NumExitBlocks = ExitBlocks.size(); | 
|  | } | 
|  |  | 
|  | /// constructFunction - make a function based on inputs and outputs, as follows: | 
|  | /// f(in0, ..., inN, out0, ..., outN) | 
|  | /// | 
|  | Function *CodeExtractor::constructFunction(const Values &inputs, | 
|  | const Values &outputs, | 
|  | BasicBlock *header, | 
|  | BasicBlock *newRootNode, | 
|  | BasicBlock *newHeader, | 
|  | Function *oldFunction, | 
|  | Module *M) { | 
|  | DEBUG(dbgs() << "inputs: " << inputs.size() << "\n"); | 
|  | DEBUG(dbgs() << "outputs: " << outputs.size() << "\n"); | 
|  |  | 
|  | // This function returns unsigned, outputs will go back by reference. | 
|  | switch (NumExitBlocks) { | 
|  | case 0: | 
|  | case 1: RetTy = Type::getVoidTy(header->getContext()); break; | 
|  | case 2: RetTy = Type::getInt1Ty(header->getContext()); break; | 
|  | default: RetTy = Type::getInt16Ty(header->getContext()); break; | 
|  | } | 
|  |  | 
|  | std::vector<const Type*> paramTy; | 
|  |  | 
|  | // Add the types of the input values to the function's argument list | 
|  | for (Values::const_iterator i = inputs.begin(), | 
|  | e = inputs.end(); i != e; ++i) { | 
|  | const Value *value = *i; | 
|  | DEBUG(dbgs() << "value used in func: " << *value << "\n"); | 
|  | paramTy.push_back(value->getType()); | 
|  | } | 
|  |  | 
|  | // Add the types of the output values to the function's argument list. | 
|  | for (Values::const_iterator I = outputs.begin(), E = outputs.end(); | 
|  | I != E; ++I) { | 
|  | DEBUG(dbgs() << "instr used in func: " << **I << "\n"); | 
|  | if (AggregateArgs) | 
|  | paramTy.push_back((*I)->getType()); | 
|  | else | 
|  | paramTy.push_back(PointerType::getUnqual((*I)->getType())); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Function type: " << *RetTy << " f("); | 
|  | for (std::vector<const Type*>::iterator i = paramTy.begin(), | 
|  | e = paramTy.end(); i != e; ++i) | 
|  | DEBUG(dbgs() << **i << ", "); | 
|  | DEBUG(dbgs() << ")\n"); | 
|  |  | 
|  | if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { | 
|  | PointerType *StructPtr = | 
|  | PointerType::getUnqual(StructType::get(M->getContext(), paramTy)); | 
|  | paramTy.clear(); | 
|  | paramTy.push_back(StructPtr); | 
|  | } | 
|  | const FunctionType *funcType = | 
|  | FunctionType::get(RetTy, paramTy, false); | 
|  |  | 
|  | // Create the new function | 
|  | Function *newFunction = Function::Create(funcType, | 
|  | GlobalValue::InternalLinkage, | 
|  | oldFunction->getName() + "_" + | 
|  | header->getName(), M); | 
|  | // If the old function is no-throw, so is the new one. | 
|  | if (oldFunction->doesNotThrow()) | 
|  | newFunction->setDoesNotThrow(true); | 
|  |  | 
|  | newFunction->getBasicBlockList().push_back(newRootNode); | 
|  |  | 
|  | // Create an iterator to name all of the arguments we inserted. | 
|  | Function::arg_iterator AI = newFunction->arg_begin(); | 
|  |  | 
|  | // Rewrite all users of the inputs in the extracted region to use the | 
|  | // arguments (or appropriate addressing into struct) instead. | 
|  | for (unsigned i = 0, e = inputs.size(); i != e; ++i) { | 
|  | Value *RewriteVal; | 
|  | if (AggregateArgs) { | 
|  | Value *Idx[2]; | 
|  | Idx[0] = Constant::getNullValue(Type::getInt32Ty(header->getContext())); | 
|  | Idx[1] = ConstantInt::get(Type::getInt32Ty(header->getContext()), i); | 
|  | TerminatorInst *TI = newFunction->begin()->getTerminator(); | 
|  | GetElementPtrInst *GEP = | 
|  | GetElementPtrInst::Create(AI, Idx, Idx+2, | 
|  | "gep_" + inputs[i]->getName(), TI); | 
|  | RewriteVal = new LoadInst(GEP, "loadgep_" + inputs[i]->getName(), TI); | 
|  | } else | 
|  | RewriteVal = AI++; | 
|  |  | 
|  | std::vector<User*> Users(inputs[i]->use_begin(), inputs[i]->use_end()); | 
|  | for (std::vector<User*>::iterator use = Users.begin(), useE = Users.end(); | 
|  | use != useE; ++use) | 
|  | if (Instruction* inst = dyn_cast<Instruction>(*use)) | 
|  | if (BlocksToExtract.count(inst->getParent())) | 
|  | inst->replaceUsesOfWith(inputs[i], RewriteVal); | 
|  | } | 
|  |  | 
|  | // Set names for input and output arguments. | 
|  | if (!AggregateArgs) { | 
|  | AI = newFunction->arg_begin(); | 
|  | for (unsigned i = 0, e = inputs.size(); i != e; ++i, ++AI) | 
|  | AI->setName(inputs[i]->getName()); | 
|  | for (unsigned i = 0, e = outputs.size(); i != e; ++i, ++AI) | 
|  | AI->setName(outputs[i]->getName()+".out"); | 
|  | } | 
|  |  | 
|  | // Rewrite branches to basic blocks outside of the loop to new dummy blocks | 
|  | // within the new function. This must be done before we lose track of which | 
|  | // blocks were originally in the code region. | 
|  | std::vector<User*> Users(header->use_begin(), header->use_end()); | 
|  | for (unsigned i = 0, e = Users.size(); i != e; ++i) | 
|  | // The BasicBlock which contains the branch is not in the region | 
|  | // modify the branch target to a new block | 
|  | if (TerminatorInst *TI = dyn_cast<TerminatorInst>(Users[i])) | 
|  | if (!BlocksToExtract.count(TI->getParent()) && | 
|  | TI->getParent()->getParent() == oldFunction) | 
|  | TI->replaceUsesOfWith(header, newHeader); | 
|  |  | 
|  | return newFunction; | 
|  | } | 
|  |  | 
|  | /// FindPhiPredForUseInBlock - Given a value and a basic block, find a PHI | 
|  | /// that uses the value within the basic block, and return the predecessor | 
|  | /// block associated with that use, or return 0 if none is found. | 
|  | static BasicBlock* FindPhiPredForUseInBlock(Value* Used, BasicBlock* BB) { | 
|  | for (Value::use_iterator UI = Used->use_begin(), | 
|  | UE = Used->use_end(); UI != UE; ++UI) { | 
|  | PHINode *P = dyn_cast<PHINode>(*UI); | 
|  | if (P && P->getParent() == BB) | 
|  | return P->getIncomingBlock(UI); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// emitCallAndSwitchStatement - This method sets up the caller side by adding | 
|  | /// the call instruction, splitting any PHI nodes in the header block as | 
|  | /// necessary. | 
|  | void CodeExtractor:: | 
|  | emitCallAndSwitchStatement(Function *newFunction, BasicBlock *codeReplacer, | 
|  | Values &inputs, Values &outputs) { | 
|  | // Emit a call to the new function, passing in: *pointer to struct (if | 
|  | // aggregating parameters), or plan inputs and allocated memory for outputs | 
|  | std::vector<Value*> params, StructValues, ReloadOutputs, Reloads; | 
|  |  | 
|  | LLVMContext &Context = newFunction->getContext(); | 
|  |  | 
|  | // Add inputs as params, or to be filled into the struct | 
|  | for (Values::iterator i = inputs.begin(), e = inputs.end(); i != e; ++i) | 
|  | if (AggregateArgs) | 
|  | StructValues.push_back(*i); | 
|  | else | 
|  | params.push_back(*i); | 
|  |  | 
|  | // Create allocas for the outputs | 
|  | for (Values::iterator i = outputs.begin(), e = outputs.end(); i != e; ++i) { | 
|  | if (AggregateArgs) { | 
|  | StructValues.push_back(*i); | 
|  | } else { | 
|  | AllocaInst *alloca = | 
|  | new AllocaInst((*i)->getType(), 0, (*i)->getName()+".loc", | 
|  | codeReplacer->getParent()->begin()->begin()); | 
|  | ReloadOutputs.push_back(alloca); | 
|  | params.push_back(alloca); | 
|  | } | 
|  | } | 
|  |  | 
|  | AllocaInst *Struct = 0; | 
|  | if (AggregateArgs && (inputs.size() + outputs.size() > 0)) { | 
|  | std::vector<const Type*> ArgTypes; | 
|  | for (Values::iterator v = StructValues.begin(), | 
|  | ve = StructValues.end(); v != ve; ++v) | 
|  | ArgTypes.push_back((*v)->getType()); | 
|  |  | 
|  | // Allocate a struct at the beginning of this function | 
|  | Type *StructArgTy = StructType::get(newFunction->getContext(), ArgTypes); | 
|  | Struct = | 
|  | new AllocaInst(StructArgTy, 0, "structArg", | 
|  | codeReplacer->getParent()->begin()->begin()); | 
|  | params.push_back(Struct); | 
|  |  | 
|  | for (unsigned i = 0, e = inputs.size(); i != e; ++i) { | 
|  | Value *Idx[2]; | 
|  | Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); | 
|  | Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), i); | 
|  | GetElementPtrInst *GEP = | 
|  | GetElementPtrInst::Create(Struct, Idx, Idx + 2, | 
|  | "gep_" + StructValues[i]->getName()); | 
|  | codeReplacer->getInstList().push_back(GEP); | 
|  | StoreInst *SI = new StoreInst(StructValues[i], GEP); | 
|  | codeReplacer->getInstList().push_back(SI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit the call to the function | 
|  | CallInst *call = CallInst::Create(newFunction, params.begin(), params.end(), | 
|  | NumExitBlocks > 1 ? "targetBlock" : ""); | 
|  | codeReplacer->getInstList().push_back(call); | 
|  |  | 
|  | Function::arg_iterator OutputArgBegin = newFunction->arg_begin(); | 
|  | unsigned FirstOut = inputs.size(); | 
|  | if (!AggregateArgs) | 
|  | std::advance(OutputArgBegin, inputs.size()); | 
|  |  | 
|  | // Reload the outputs passed in by reference | 
|  | for (unsigned i = 0, e = outputs.size(); i != e; ++i) { | 
|  | Value *Output = 0; | 
|  | if (AggregateArgs) { | 
|  | Value *Idx[2]; | 
|  | Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); | 
|  | Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), FirstOut + i); | 
|  | GetElementPtrInst *GEP | 
|  | = GetElementPtrInst::Create(Struct, Idx, Idx + 2, | 
|  | "gep_reload_" + outputs[i]->getName()); | 
|  | codeReplacer->getInstList().push_back(GEP); | 
|  | Output = GEP; | 
|  | } else { | 
|  | Output = ReloadOutputs[i]; | 
|  | } | 
|  | LoadInst *load = new LoadInst(Output, outputs[i]->getName()+".reload"); | 
|  | Reloads.push_back(load); | 
|  | codeReplacer->getInstList().push_back(load); | 
|  | std::vector<User*> Users(outputs[i]->use_begin(), outputs[i]->use_end()); | 
|  | for (unsigned u = 0, e = Users.size(); u != e; ++u) { | 
|  | Instruction *inst = cast<Instruction>(Users[u]); | 
|  | if (!BlocksToExtract.count(inst->getParent())) | 
|  | inst->replaceUsesOfWith(outputs[i], load); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now we can emit a switch statement using the call as a value. | 
|  | SwitchInst *TheSwitch = | 
|  | SwitchInst::Create(Constant::getNullValue(Type::getInt16Ty(Context)), | 
|  | codeReplacer, 0, codeReplacer); | 
|  |  | 
|  | // Since there may be multiple exits from the original region, make the new | 
|  | // function return an unsigned, switch on that number.  This loop iterates | 
|  | // over all of the blocks in the extracted region, updating any terminator | 
|  | // instructions in the to-be-extracted region that branch to blocks that are | 
|  | // not in the region to be extracted. | 
|  | std::map<BasicBlock*, BasicBlock*> ExitBlockMap; | 
|  |  | 
|  | unsigned switchVal = 0; | 
|  | for (SetVector<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), | 
|  | e = BlocksToExtract.end(); i != e; ++i) { | 
|  | TerminatorInst *TI = (*i)->getTerminator(); | 
|  | for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) | 
|  | if (!BlocksToExtract.count(TI->getSuccessor(i))) { | 
|  | BasicBlock *OldTarget = TI->getSuccessor(i); | 
|  | // add a new basic block which returns the appropriate value | 
|  | BasicBlock *&NewTarget = ExitBlockMap[OldTarget]; | 
|  | if (!NewTarget) { | 
|  | // If we don't already have an exit stub for this non-extracted | 
|  | // destination, create one now! | 
|  | NewTarget = BasicBlock::Create(Context, | 
|  | OldTarget->getName() + ".exitStub", | 
|  | newFunction); | 
|  | unsigned SuccNum = switchVal++; | 
|  |  | 
|  | Value *brVal = 0; | 
|  | switch (NumExitBlocks) { | 
|  | case 0: | 
|  | case 1: break;  // No value needed. | 
|  | case 2:         // Conditional branch, return a bool | 
|  | brVal = ConstantInt::get(Type::getInt1Ty(Context), !SuccNum); | 
|  | break; | 
|  | default: | 
|  | brVal = ConstantInt::get(Type::getInt16Ty(Context), SuccNum); | 
|  | break; | 
|  | } | 
|  |  | 
|  | ReturnInst *NTRet = ReturnInst::Create(Context, brVal, NewTarget); | 
|  |  | 
|  | // Update the switch instruction. | 
|  | TheSwitch->addCase(ConstantInt::get(Type::getInt16Ty(Context), | 
|  | SuccNum), | 
|  | OldTarget); | 
|  |  | 
|  | // Restore values just before we exit | 
|  | Function::arg_iterator OAI = OutputArgBegin; | 
|  | for (unsigned out = 0, e = outputs.size(); out != e; ++out) { | 
|  | // For an invoke, the normal destination is the only one that is | 
|  | // dominated by the result of the invocation | 
|  | BasicBlock *DefBlock = cast<Instruction>(outputs[out])->getParent(); | 
|  |  | 
|  | bool DominatesDef = true; | 
|  |  | 
|  | if (InvokeInst *Invoke = dyn_cast<InvokeInst>(outputs[out])) { | 
|  | DefBlock = Invoke->getNormalDest(); | 
|  |  | 
|  | // Make sure we are looking at the original successor block, not | 
|  | // at a newly inserted exit block, which won't be in the dominator | 
|  | // info. | 
|  | for (std::map<BasicBlock*, BasicBlock*>::iterator I = | 
|  | ExitBlockMap.begin(), E = ExitBlockMap.end(); I != E; ++I) | 
|  | if (DefBlock == I->second) { | 
|  | DefBlock = I->first; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // In the extract block case, if the block we are extracting ends | 
|  | // with an invoke instruction, make sure that we don't emit a | 
|  | // store of the invoke value for the unwind block. | 
|  | if (!DT && DefBlock != OldTarget) | 
|  | DominatesDef = false; | 
|  | } | 
|  |  | 
|  | if (DT) { | 
|  | DominatesDef = DT->dominates(DefBlock, OldTarget); | 
|  |  | 
|  | // If the output value is used by a phi in the target block, | 
|  | // then we need to test for dominance of the phi's predecessor | 
|  | // instead.  Unfortunately, this a little complicated since we | 
|  | // have already rewritten uses of the value to uses of the reload. | 
|  | BasicBlock* pred = FindPhiPredForUseInBlock(Reloads[out], | 
|  | OldTarget); | 
|  | if (pred && DT && DT->dominates(DefBlock, pred)) | 
|  | DominatesDef = true; | 
|  | } | 
|  |  | 
|  | if (DominatesDef) { | 
|  | if (AggregateArgs) { | 
|  | Value *Idx[2]; | 
|  | Idx[0] = Constant::getNullValue(Type::getInt32Ty(Context)); | 
|  | Idx[1] = ConstantInt::get(Type::getInt32Ty(Context), | 
|  | FirstOut+out); | 
|  | GetElementPtrInst *GEP = | 
|  | GetElementPtrInst::Create(OAI, Idx, Idx + 2, | 
|  | "gep_" + outputs[out]->getName(), | 
|  | NTRet); | 
|  | new StoreInst(outputs[out], GEP, NTRet); | 
|  | } else { | 
|  | new StoreInst(outputs[out], OAI, NTRet); | 
|  | } | 
|  | } | 
|  | // Advance output iterator even if we don't emit a store | 
|  | if (!AggregateArgs) ++OAI; | 
|  | } | 
|  | } | 
|  |  | 
|  | // rewrite the original branch instruction with this new target | 
|  | TI->setSuccessor(i, NewTarget); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that we've done the deed, simplify the switch instruction. | 
|  | const Type *OldFnRetTy = TheSwitch->getParent()->getParent()->getReturnType(); | 
|  | switch (NumExitBlocks) { | 
|  | case 0: | 
|  | // There are no successors (the block containing the switch itself), which | 
|  | // means that previously this was the last part of the function, and hence | 
|  | // this should be rewritten as a `ret' | 
|  |  | 
|  | // Check if the function should return a value | 
|  | if (OldFnRetTy->isVoidTy()) { | 
|  | ReturnInst::Create(Context, 0, TheSwitch);  // Return void | 
|  | } else if (OldFnRetTy == TheSwitch->getCondition()->getType()) { | 
|  | // return what we have | 
|  | ReturnInst::Create(Context, TheSwitch->getCondition(), TheSwitch); | 
|  | } else { | 
|  | // Otherwise we must have code extracted an unwind or something, just | 
|  | // return whatever we want. | 
|  | ReturnInst::Create(Context, | 
|  | Constant::getNullValue(OldFnRetTy), TheSwitch); | 
|  | } | 
|  |  | 
|  | TheSwitch->eraseFromParent(); | 
|  | break; | 
|  | case 1: | 
|  | // Only a single destination, change the switch into an unconditional | 
|  | // branch. | 
|  | BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch); | 
|  | TheSwitch->eraseFromParent(); | 
|  | break; | 
|  | case 2: | 
|  | BranchInst::Create(TheSwitch->getSuccessor(1), TheSwitch->getSuccessor(2), | 
|  | call, TheSwitch); | 
|  | TheSwitch->eraseFromParent(); | 
|  | break; | 
|  | default: | 
|  | // Otherwise, make the default destination of the switch instruction be one | 
|  | // of the other successors. | 
|  | TheSwitch->setOperand(0, call); | 
|  | TheSwitch->setSuccessor(0, TheSwitch->getSuccessor(NumExitBlocks)); | 
|  | TheSwitch->removeCase(NumExitBlocks);  // Remove redundant case | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void CodeExtractor::moveCodeToFunction(Function *newFunction) { | 
|  | Function *oldFunc = (*BlocksToExtract.begin())->getParent(); | 
|  | Function::BasicBlockListType &oldBlocks = oldFunc->getBasicBlockList(); | 
|  | Function::BasicBlockListType &newBlocks = newFunction->getBasicBlockList(); | 
|  |  | 
|  | for (SetVector<BasicBlock*>::const_iterator i = BlocksToExtract.begin(), | 
|  | e = BlocksToExtract.end(); i != e; ++i) { | 
|  | // Delete the basic block from the old function, and the list of blocks | 
|  | oldBlocks.remove(*i); | 
|  |  | 
|  | // Insert this basic block into the new function | 
|  | newBlocks.push_back(*i); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ExtractRegion - Removes a loop from a function, replaces it with a call to | 
|  | /// new function. Returns pointer to the new function. | 
|  | /// | 
|  | /// algorithm: | 
|  | /// | 
|  | /// find inputs and outputs for the region | 
|  | /// | 
|  | /// for inputs: add to function as args, map input instr* to arg# | 
|  | /// for outputs: add allocas for scalars, | 
|  | ///             add to func as args, map output instr* to arg# | 
|  | /// | 
|  | /// rewrite func to use argument #s instead of instr* | 
|  | /// | 
|  | /// for each scalar output in the function: at every exit, store intermediate | 
|  | /// computed result back into memory. | 
|  | /// | 
|  | Function *CodeExtractor:: | 
|  | ExtractCodeRegion(const std::vector<BasicBlock*> &code) { | 
|  | if (!isEligible(code)) | 
|  | return 0; | 
|  |  | 
|  | // 1) Find inputs, outputs | 
|  | // 2) Construct new function | 
|  | //  * Add allocas for defs, pass as args by reference | 
|  | //  * Pass in uses as args | 
|  | // 3) Move code region, add call instr to func | 
|  | // | 
|  | BlocksToExtract.insert(code.begin(), code.end()); | 
|  |  | 
|  | Values inputs, outputs; | 
|  |  | 
|  | // Assumption: this is a single-entry code region, and the header is the first | 
|  | // block in the region. | 
|  | BasicBlock *header = code[0]; | 
|  |  | 
|  | for (unsigned i = 1, e = code.size(); i != e; ++i) | 
|  | for (pred_iterator PI = pred_begin(code[i]), E = pred_end(code[i]); | 
|  | PI != E; ++PI) | 
|  | assert(BlocksToExtract.count(*PI) && | 
|  | "No blocks in this region may have entries from outside the region" | 
|  | " except for the first block!"); | 
|  |  | 
|  | // If we have to split PHI nodes or the entry block, do so now. | 
|  | severSplitPHINodes(header); | 
|  |  | 
|  | // If we have any return instructions in the region, split those blocks so | 
|  | // that the return is not in the region. | 
|  | splitReturnBlocks(); | 
|  |  | 
|  | Function *oldFunction = header->getParent(); | 
|  |  | 
|  | // This takes place of the original loop | 
|  | BasicBlock *codeReplacer = BasicBlock::Create(header->getContext(), | 
|  | "codeRepl", oldFunction, | 
|  | header); | 
|  |  | 
|  | // The new function needs a root node because other nodes can branch to the | 
|  | // head of the region, but the entry node of a function cannot have preds. | 
|  | BasicBlock *newFuncRoot = BasicBlock::Create(header->getContext(), | 
|  | "newFuncRoot"); | 
|  | newFuncRoot->getInstList().push_back(BranchInst::Create(header)); | 
|  |  | 
|  | // Find inputs to, outputs from the code region. | 
|  | findInputsOutputs(inputs, outputs); | 
|  |  | 
|  | // Construct new function based on inputs/outputs & add allocas for all defs. | 
|  | Function *newFunction = constructFunction(inputs, outputs, header, | 
|  | newFuncRoot, | 
|  | codeReplacer, oldFunction, | 
|  | oldFunction->getParent()); | 
|  |  | 
|  | emitCallAndSwitchStatement(newFunction, codeReplacer, inputs, outputs); | 
|  |  | 
|  | moveCodeToFunction(newFunction); | 
|  |  | 
|  | // Loop over all of the PHI nodes in the header block, and change any | 
|  | // references to the old incoming edge to be the new incoming edge. | 
|  | for (BasicBlock::iterator I = header->begin(); isa<PHINode>(I); ++I) { | 
|  | PHINode *PN = cast<PHINode>(I); | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | if (!BlocksToExtract.count(PN->getIncomingBlock(i))) | 
|  | PN->setIncomingBlock(i, newFuncRoot); | 
|  | } | 
|  |  | 
|  | // Look at all successors of the codeReplacer block.  If any of these blocks | 
|  | // had PHI nodes in them, we need to update the "from" block to be the code | 
|  | // replacer, not the original block in the extracted region. | 
|  | std::vector<BasicBlock*> Succs(succ_begin(codeReplacer), | 
|  | succ_end(codeReplacer)); | 
|  | for (unsigned i = 0, e = Succs.size(); i != e; ++i) | 
|  | for (BasicBlock::iterator I = Succs[i]->begin(); isa<PHINode>(I); ++I) { | 
|  | PHINode *PN = cast<PHINode>(I); | 
|  | std::set<BasicBlock*> ProcessedPreds; | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | if (BlocksToExtract.count(PN->getIncomingBlock(i))) { | 
|  | if (ProcessedPreds.insert(PN->getIncomingBlock(i)).second) | 
|  | PN->setIncomingBlock(i, codeReplacer); | 
|  | else { | 
|  | // There were multiple entries in the PHI for this block, now there | 
|  | // is only one, so remove the duplicated entries. | 
|  | PN->removeIncomingValue(i, false); | 
|  | --i; --e; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //cerr << "NEW FUNCTION: " << *newFunction; | 
|  | //  verifyFunction(*newFunction); | 
|  |  | 
|  | //  cerr << "OLD FUNCTION: " << *oldFunction; | 
|  | //  verifyFunction(*oldFunction); | 
|  |  | 
|  | DEBUG(if (verifyFunction(*newFunction)) | 
|  | llvm_report_error("verifyFunction failed!")); | 
|  | return newFunction; | 
|  | } | 
|  |  | 
|  | bool CodeExtractor::isEligible(const std::vector<BasicBlock*> &code) { | 
|  | // Deny code region if it contains allocas or vastarts. | 
|  | for (std::vector<BasicBlock*>::const_iterator BB = code.begin(), e=code.end(); | 
|  | BB != e; ++BB) | 
|  | for (BasicBlock::const_iterator I = (*BB)->begin(), Ie = (*BB)->end(); | 
|  | I != Ie; ++I) | 
|  | if (isa<AllocaInst>(*I)) | 
|  | return false; | 
|  | else if (const CallInst *CI = dyn_cast<CallInst>(I)) | 
|  | if (const Function *F = CI->getCalledFunction()) | 
|  | if (F->getIntrinsicID() == Intrinsic::vastart) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ExtractCodeRegion - slurp a sequence of basic blocks into a brand new | 
|  | /// function | 
|  | /// | 
|  | Function* llvm::ExtractCodeRegion(DominatorTree &DT, | 
|  | const std::vector<BasicBlock*> &code, | 
|  | bool AggregateArgs) { | 
|  | return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(code); | 
|  | } | 
|  |  | 
|  | /// ExtractBasicBlock - slurp a natural loop into a brand new function | 
|  | /// | 
|  | Function* llvm::ExtractLoop(DominatorTree &DT, Loop *L, bool AggregateArgs) { | 
|  | return CodeExtractor(&DT, AggregateArgs).ExtractCodeRegion(L->getBlocks()); | 
|  | } | 
|  |  | 
|  | /// ExtractBasicBlock - slurp a basic block into a brand new function | 
|  | /// | 
|  | Function* llvm::ExtractBasicBlock(BasicBlock *BB, bool AggregateArgs) { | 
|  | std::vector<BasicBlock*> Blocks; | 
|  | Blocks.push_back(BB); | 
|  | return CodeExtractor(0, AggregateArgs).ExtractCodeRegion(Blocks); | 
|  | } |