blob: 53871a9bff8f73c12b25ea361f7666f4eaedc1a9 [file] [log] [blame]
//===- lib/ReaderWriter/ELF/ReaderELF.cpp ---------------------------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief Defines the ELF Reader and all helper sub classes to consume an ELF
/// file and produces atoms out of it.
///
//===----------------------------------------------------------------------===//
#include "lld/ReaderWriter/ReaderELF.h"
#include "lld/ReaderWriter/ReaderArchive.h"
#include "lld/Core/File.h"
#include "lld/Core/Reference.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Object/ELF.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/Endian.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Memory.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/system_error.h"
#include "AtomsELF.h"
#include <map>
#include <vector>
using namespace lld;
using llvm::support::endianness;
using namespace llvm::object;
namespace {
// \brief Read a binary, find out based on the symbol table contents what kind
// of symbol it is and create corresponding atoms for it
template<class ELFT>
class FileELF: public File {
typedef Elf_Sym_Impl<ELFT> Elf_Sym;
typedef Elf_Shdr_Impl<ELFT> Elf_Shdr;
typedef Elf_Rel_Impl<ELFT, false> Elf_Rel;
typedef Elf_Rel_Impl<ELFT, true> Elf_Rela;
public:
FileELF(std::unique_ptr<llvm::MemoryBuffer> MB, llvm::error_code &EC)
: File(MB->getBufferIdentifier()) {
llvm::OwningPtr<Binary> binaryFile;
EC = createBinary(MB.release(), binaryFile);
if (EC)
return;
// Point Obj to correct class and bitwidth ELF object
_objFile.reset(llvm::dyn_cast<ELFObjectFile<ELFT>>(binaryFile.get()));
if (!_objFile) {
EC = make_error_code(object_error::invalid_file_type);
return;
}
binaryFile.take();
std::map< const Elf_Shdr *, std::vector<const Elf_Sym *>> sectionSymbols;
// Handle: SHT_REL and SHT_RELA sections:
// Increment over the sections, when REL/RELA section types are found add
// the contents to the RelocationReferences map.
section_iterator sit(_objFile->begin_sections());
section_iterator sie(_objFile->end_sections());
for (; sit != sie; sit.increment(EC)) {
if (EC)
return;
const Elf_Shdr *section = _objFile->getElfSection(sit);
if (section->sh_type == llvm::ELF::SHT_RELA) {
llvm::StringRef sectionName;
if ((EC = _objFile->getSectionName(section, sectionName)))
return;
// Get rid of the leading .rela so Atoms can use their own section
// name to find the relocs.
sectionName = sectionName.drop_front(5);
auto rai(_objFile->beginELFRela(section));
auto rae(_objFile->endELFRela(section));
auto &Ref = _relocationAddendRefences[sectionName];
for (; rai != rae; rai++) {
Ref.push_back(&*rai);
}
}
if (section->sh_type == llvm::ELF::SHT_REL) {
llvm::StringRef sectionName;
if ((EC = _objFile->getSectionName(section, sectionName)))
return;
// Get rid of the leading .rel so Atoms can use their own section
// name to find the relocs.
sectionName = sectionName.drop_front(4);
auto ri(_objFile->beginELFRel(section));
auto re(_objFile->endELFRel(section));
auto &Ref = _relocationReferences[sectionName];
for (; ri != re; ri++) {
Ref.push_back(&*ri);
}
}
}
// Increment over all the symbols collecting atoms and symbol names for
// later use.
symbol_iterator it(_objFile->begin_symbols());
symbol_iterator ie(_objFile->end_symbols());
for (; it != ie; it.increment(EC)) {
if (EC)
return;
if ((EC = it->getSection(sit)))
return;
const Elf_Shdr *section = _objFile->getElfSection(sit);
const Elf_Sym *symbol = _objFile->getElfSymbol(it);
llvm::StringRef symbolName;
if ((EC = _objFile->getSymbolName(section, symbol, symbolName)))
return;
if (symbol->st_shndx == llvm::ELF::SHN_ABS) {
// Create an absolute atom.
auto *newAtom = new (_readerStorage.Allocate<
ELFAbsoluteAtom<ELFT> > ())
ELFAbsoluteAtom<ELFT>(
*this, symbolName, symbol, symbol->st_value);
_absoluteAtoms._atoms.push_back(newAtom);
_symbolToAtomMapping.insert(std::make_pair(symbol, newAtom));
} else if (symbol->st_shndx == llvm::ELF::SHN_UNDEF) {
// Create an undefined atom.
auto *newAtom = new (_readerStorage.Allocate<
ELFUndefinedAtom<ELFT> > ())
ELFUndefinedAtom<ELFT>(
*this, symbolName, symbol);
_undefinedAtoms._atoms.push_back(newAtom);
_symbolToAtomMapping.insert(std::make_pair(symbol, newAtom));
} else {
// This is actually a defined symbol. Add it to its section's list of
// symbols.
if (symbol->getType() == llvm::ELF::STT_NOTYPE
|| symbol->getType() == llvm::ELF::STT_OBJECT
|| symbol->getType() == llvm::ELF::STT_FUNC
|| symbol->getType() == llvm::ELF::STT_GNU_IFUNC
|| symbol->getType() == llvm::ELF::STT_SECTION
|| symbol->getType() == llvm::ELF::STT_FILE
|| symbol->getType() == llvm::ELF::STT_TLS
|| symbol->getType() == llvm::ELF::STT_COMMON
|| symbol->st_shndx == llvm::ELF::SHN_COMMON) {
sectionSymbols[section].push_back(symbol);
} else {
llvm::errs() << "Unable to create atom for: " << symbolName << "\n";
EC = object_error::parse_failed;
return;
}
}
}
for (auto &i : sectionSymbols) {
auto &symbols = i.second;
llvm::StringRef symbolName;
llvm::StringRef sectionName;
// Sort symbols by position.
std::stable_sort(symbols.begin(), symbols.end(),
[](const Elf_Sym *A, const Elf_Sym *B) {
return A->st_value < B->st_value;
});
// i.first is the section the symbol lives in
for (auto si = symbols.begin(), se = symbols.end(); si != se; ++si) {
StringRef symbolContents;
if ((EC = _objFile->getSectionContents(i.first, symbolContents)))
return;
if ((EC = _objFile->getSymbolName(i.first, *si, symbolName)))
return;
if ((EC = _objFile->getSectionName(i.first, sectionName)))
return;
bool isCommon = false;
if (((*si)->getType() == llvm::ELF::STT_COMMON)
|| (*si)->st_shndx == llvm::ELF::SHN_COMMON)
isCommon = true;
// Get the symbol's content:
llvm::ArrayRef<uint8_t> symbolData;
uint64_t contentSize;
// If the next symbol is at the same location
if (si + 1 == se) {
// if this is the last symbol, take up the remaining data.
contentSize = (isCommon) ? 0
: ((i.first)->sh_size - (*si)->st_value);
}
else {
contentSize = (isCommon) ? 0
: (*(si + 1))->st_value - (*si)->st_value;
}
symbolData = llvm::ArrayRef<uint8_t>((uint8_t *)symbolContents.data()
+ (*si)->st_value, contentSize);
unsigned int referenceStart = _references.size();
// Only relocations that are inside the domain of the atom are added.
// Add Rela (those with r_addend) references:
for (auto &rai : _relocationAddendRefences[sectionName]) {
if ((rai->r_offset >= (*si)->st_value) &&
(rai->r_offset < (*si)->st_value+contentSize)) {
auto *ERef = new (_readerStorage.Allocate<
ELFReference<ELFT> > ())
ELFReference<ELFT> (
rai, rai->r_offset-(*si)->st_value, nullptr);
_references.push_back(ERef);
}
}
// Add Rel references.
for (auto &ri : _relocationReferences[sectionName]) {
if (((ri)->r_offset >= (*si)->st_value) &&
((ri)->r_offset < (*si)->st_value+contentSize)) {
auto *ERef = new (_readerStorage.Allocate<
ELFReference<ELFT> > ())
ELFReference<ELFT> (
(ri), (ri)->r_offset-(*si)->st_value, nullptr);
_references.push_back(ERef);
}
}
// Create the DefinedAtom and add it to the list of DefinedAtoms.
auto *newAtom = new (_readerStorage.Allocate<
ELFDefinedAtom<ELFT> > ())
ELFDefinedAtom<ELFT>(
*this, symbolName, sectionName, *si, i.first, symbolData,
referenceStart, _references.size(), _references);
_definedAtoms._atoms.push_back(newAtom);
_symbolToAtomMapping.insert(std::make_pair((*si), newAtom));
}
}
// All the Atoms and References are created. Now update each Reference's
// target with the Atom pointer it refers to.
for (auto &ri : _references) {
const Elf_Sym *Symbol = _objFile->getElfSymbol(ri->targetSymbolIndex());
ri->setTarget(findAtom (Symbol));
}
}
virtual const atom_collection<DefinedAtom> &defined() const {
return _definedAtoms;
}
virtual const atom_collection<UndefinedAtom> &undefined() const {
return _undefinedAtoms;
}
virtual const atom_collection<SharedLibraryAtom> &sharedLibrary() const {
return _sharedLibraryAtoms;
}
virtual const atom_collection<AbsoluteAtom> &absolute() const {
return _absoluteAtoms;
}
Atom *findAtom(const Elf_Sym *symbol) {
return (_symbolToAtomMapping.lookup(symbol));
}
private:
std::unique_ptr<ELFObjectFile<ELFT> >
_objFile;
atom_collection_vector<DefinedAtom> _definedAtoms;
atom_collection_vector<UndefinedAtom> _undefinedAtoms;
atom_collection_vector<SharedLibraryAtom> _sharedLibraryAtoms;
atom_collection_vector<AbsoluteAtom> _absoluteAtoms;
/// \brief _relocationAddendRefences and _relocationReferences contain the
/// list of relocations references. In ELF, if a section named, ".text" has
/// relocations will also have a section named ".rel.text" or ".rela.text"
/// which will hold the entries. -- .rel or .rela is prepended to create
/// the SHT_REL(A) section name.
std::map<llvm::StringRef, std::vector<const Elf_Rela *> >
_relocationAddendRefences;
std::map<llvm::StringRef, std::vector<const Elf_Rel *> >
_relocationReferences;
std::vector<ELFReference<ELFT> *>
_references;
llvm::DenseMap<const Elf_Sym *, Atom *> _symbolToAtomMapping;
llvm::BumpPtrAllocator _readerStorage;
};
// \brief A reader object that will instantiate correct FileELF by examining the
// memory buffer for ELF class and bitwidth
class ReaderELF: public Reader {
public:
ReaderELF(const ReaderOptionsELF &,
ReaderOptionsArchive &readerOptionsArchive)
: _readerOptionsArchive(readerOptionsArchive)
, _readerArchive(_readerOptionsArchive) {
_readerOptionsArchive.setReader(this);
}
error_code parseFile(std::unique_ptr<MemoryBuffer> mb, std::vector<
std::unique_ptr<File> > &result) {
using llvm::object::ELFType;
llvm::error_code ec;
std::unique_ptr<File> f;
std::pair<unsigned char, unsigned char> Ident;
llvm::sys::LLVMFileType fileType =
llvm::sys::IdentifyFileType(mb->getBufferStart(),
static_cast<unsigned>(mb->getBufferSize()));
std::size_t MaxAlignment =
1ULL << llvm::CountTrailingZeros_64(uintptr_t(mb->getBufferStart()));
switch (fileType) {
case llvm::sys::ELF_Relocatable_FileType:
Ident = getElfArchType(&*mb);
// Instantiate the correct FileELF template instance based on the Ident
// pair. Once the File is created we push the file to the vector of files
// already created during parser's life.
if (Ident.first == llvm::ELF::ELFCLASS32 && Ident.second
== llvm::ELF::ELFDATA2LSB) {
if (MaxAlignment >= 4)
f.reset(new FileELF<ELFType<llvm::support::little, 4, false>>(
std::move(mb), ec));
else if (MaxAlignment >= 2)
f.reset(new FileELF<ELFType<llvm::support::little, 2, false>>(
std::move(mb), ec));
else
llvm_unreachable("Invalid alignment for ELF file!");
} else if (Ident.first == llvm::ELF::ELFCLASS32 && Ident.second
== llvm::ELF::ELFDATA2MSB) {
if (MaxAlignment >= 4)
f.reset(new FileELF<ELFType<llvm::support::big, 4, false>>(
std::move(mb), ec));
else if (MaxAlignment >= 2)
f.reset(new FileELF<ELFType<llvm::support::big, 2, false>>(
std::move(mb), ec));
else
llvm_unreachable("Invalid alignment for ELF file!");
} else if (Ident.first == llvm::ELF::ELFCLASS64 && Ident.second
== llvm::ELF::ELFDATA2MSB) {
if (MaxAlignment >= 8)
f.reset(new FileELF<ELFType<llvm::support::big, 8, true>>(
std::move(mb), ec));
else if (MaxAlignment >= 2)
f.reset(new FileELF<ELFType<llvm::support::big, 2, true>>(
std::move(mb), ec));
else
llvm_unreachable("Invalid alignment for ELF file!");
} else if (Ident.first == llvm::ELF::ELFCLASS64 && Ident.second
== llvm::ELF::ELFDATA2LSB) {
if (MaxAlignment >= 8)
f.reset(new FileELF<ELFType<llvm::support::little, 8, true>>(
std::move(mb), ec));
else if (MaxAlignment >= 2)
f.reset(new FileELF<ELFType<llvm::support::little, 2, true>>(
std::move(mb), ec));
else
llvm_unreachable("Invalid alignment for ELF file!");
}
if (!ec)
result.push_back(std::move(f));
break;
case llvm::sys::Archive_FileType:
ec = _readerArchive.parseFile(std::move(mb), result);
break;
default:
llvm_unreachable("not supported format");
break;
}
if (ec)
return ec;
return error_code::success();
}
private:
ReaderOptionsArchive &_readerOptionsArchive;
ReaderArchive _readerArchive;
};
} // end anon namespace.
namespace lld {
ReaderOptionsELF::ReaderOptionsELF() {
}
ReaderOptionsELF::~ReaderOptionsELF() {
}
Reader *createReaderELF(const ReaderOptionsELF &options,
ReaderOptionsArchive &optionsArchive) {
return new ReaderELF(options, optionsArchive);
}
} // end namespace lld