|  | //===------ SemaDeclCXX.cpp - Semantic Analysis for C++ Declarations ------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | //  This file implements semantic analysis for C++ declarations. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Sema.h" | 
|  | #include "SemaInherit.h" | 
|  | #include "clang/AST/ASTConsumer.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/DeclVisitor.h" | 
|  | #include "clang/AST/TypeOrdering.h" | 
|  | #include "clang/AST/StmtVisitor.h" | 
|  | #include "clang/Lex/Preprocessor.h" | 
|  | #include "clang/Parse/DeclSpec.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include <algorithm> // for std::equal | 
|  | #include <map> | 
|  |  | 
|  | using namespace clang; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // CheckDefaultArgumentVisitor | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  | /// CheckDefaultArgumentVisitor - C++ [dcl.fct.default] Traverses | 
|  | /// the default argument of a parameter to determine whether it | 
|  | /// contains any ill-formed subexpressions. For example, this will | 
|  | /// diagnose the use of local variables or parameters within the | 
|  | /// default argument expression. | 
|  | class VISIBILITY_HIDDEN CheckDefaultArgumentVisitor | 
|  | : public StmtVisitor<CheckDefaultArgumentVisitor, bool> { | 
|  | Expr *DefaultArg; | 
|  | Sema *S; | 
|  |  | 
|  | public: | 
|  | CheckDefaultArgumentVisitor(Expr *defarg, Sema *s) | 
|  | : DefaultArg(defarg), S(s) {} | 
|  |  | 
|  | bool VisitExpr(Expr *Node); | 
|  | bool VisitDeclRefExpr(DeclRefExpr *DRE); | 
|  | bool VisitCXXThisExpr(CXXThisExpr *ThisE); | 
|  | }; | 
|  |  | 
|  | /// VisitExpr - Visit all of the children of this expression. | 
|  | bool CheckDefaultArgumentVisitor::VisitExpr(Expr *Node) { | 
|  | bool IsInvalid = false; | 
|  | for (Stmt::child_iterator I = Node->child_begin(), | 
|  | E = Node->child_end(); I != E; ++I) | 
|  | IsInvalid |= Visit(*I); | 
|  | return IsInvalid; | 
|  | } | 
|  |  | 
|  | /// VisitDeclRefExpr - Visit a reference to a declaration, to | 
|  | /// determine whether this declaration can be used in the default | 
|  | /// argument expression. | 
|  | bool CheckDefaultArgumentVisitor::VisitDeclRefExpr(DeclRefExpr *DRE) { | 
|  | NamedDecl *Decl = DRE->getDecl(); | 
|  | if (ParmVarDecl *Param = dyn_cast<ParmVarDecl>(Decl)) { | 
|  | // C++ [dcl.fct.default]p9 | 
|  | //   Default arguments are evaluated each time the function is | 
|  | //   called. The order of evaluation of function arguments is | 
|  | //   unspecified. Consequently, parameters of a function shall not | 
|  | //   be used in default argument expressions, even if they are not | 
|  | //   evaluated. Parameters of a function declared before a default | 
|  | //   argument expression are in scope and can hide namespace and | 
|  | //   class member names. | 
|  | return S->Diag(DRE->getSourceRange().getBegin(), | 
|  | diag::err_param_default_argument_references_param) | 
|  | << Param->getDeclName() << DefaultArg->getSourceRange(); | 
|  | } else if (VarDecl *VDecl = dyn_cast<VarDecl>(Decl)) { | 
|  | // C++ [dcl.fct.default]p7 | 
|  | //   Local variables shall not be used in default argument | 
|  | //   expressions. | 
|  | if (VDecl->isBlockVarDecl()) | 
|  | return S->Diag(DRE->getSourceRange().getBegin(), | 
|  | diag::err_param_default_argument_references_local) | 
|  | << VDecl->getDeclName() << DefaultArg->getSourceRange(); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// VisitCXXThisExpr - Visit a C++ "this" expression. | 
|  | bool CheckDefaultArgumentVisitor::VisitCXXThisExpr(CXXThisExpr *ThisE) { | 
|  | // C++ [dcl.fct.default]p8: | 
|  | //   The keyword this shall not be used in a default argument of a | 
|  | //   member function. | 
|  | return S->Diag(ThisE->getSourceRange().getBegin(), | 
|  | diag::err_param_default_argument_references_this) | 
|  | << ThisE->getSourceRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ActOnParamDefaultArgument - Check whether the default argument | 
|  | /// provided for a function parameter is well-formed. If so, attach it | 
|  | /// to the parameter declaration. | 
|  | void | 
|  | Sema::ActOnParamDefaultArgument(DeclPtrTy param, SourceLocation EqualLoc, | 
|  | ExprArg defarg) { | 
|  | if (!param || !defarg.get()) | 
|  | return; | 
|  |  | 
|  | ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>()); | 
|  | UnparsedDefaultArgLocs.erase(Param); | 
|  |  | 
|  | ExprOwningPtr<Expr> DefaultArg(this, defarg.takeAs<Expr>()); | 
|  | QualType ParamType = Param->getType(); | 
|  |  | 
|  | // Default arguments are only permitted in C++ | 
|  | if (!getLangOptions().CPlusPlus) { | 
|  | Diag(EqualLoc, diag::err_param_default_argument) | 
|  | << DefaultArg->getSourceRange(); | 
|  | Param->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // C++ [dcl.fct.default]p5 | 
|  | //   A default argument expression is implicitly converted (clause | 
|  | //   4) to the parameter type. The default argument expression has | 
|  | //   the same semantic constraints as the initializer expression in | 
|  | //   a declaration of a variable of the parameter type, using the | 
|  | //   copy-initialization semantics (8.5). | 
|  | Expr *DefaultArgPtr = DefaultArg.get(); | 
|  | bool DefaultInitFailed = CheckInitializerTypes(DefaultArgPtr, ParamType, | 
|  | EqualLoc, | 
|  | Param->getDeclName(), | 
|  | /*DirectInit=*/false); | 
|  | if (DefaultArgPtr != DefaultArg.get()) { | 
|  | DefaultArg.take(); | 
|  | DefaultArg.reset(DefaultArgPtr); | 
|  | } | 
|  | if (DefaultInitFailed) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Check that the default argument is well-formed | 
|  | CheckDefaultArgumentVisitor DefaultArgChecker(DefaultArg.get(), this); | 
|  | if (DefaultArgChecker.Visit(DefaultArg.get())) { | 
|  | Param->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | DefaultArgPtr = MaybeCreateCXXExprWithTemporaries(DefaultArg.take(), | 
|  | /*DestroyTemps=*/false); | 
|  |  | 
|  | // Okay: add the default argument to the parameter | 
|  | Param->setDefaultArg(DefaultArgPtr); | 
|  | } | 
|  |  | 
|  | /// ActOnParamUnparsedDefaultArgument - We've seen a default | 
|  | /// argument for a function parameter, but we can't parse it yet | 
|  | /// because we're inside a class definition. Note that this default | 
|  | /// argument will be parsed later. | 
|  | void Sema::ActOnParamUnparsedDefaultArgument(DeclPtrTy param, | 
|  | SourceLocation EqualLoc, | 
|  | SourceLocation ArgLoc) { | 
|  | if (!param) | 
|  | return; | 
|  |  | 
|  | ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>()); | 
|  | if (Param) | 
|  | Param->setUnparsedDefaultArg(); | 
|  |  | 
|  | UnparsedDefaultArgLocs[Param] = ArgLoc; | 
|  | } | 
|  |  | 
|  | /// ActOnParamDefaultArgumentError - Parsing or semantic analysis of | 
|  | /// the default argument for the parameter param failed. | 
|  | void Sema::ActOnParamDefaultArgumentError(DeclPtrTy param) { | 
|  | if (!param) | 
|  | return; | 
|  |  | 
|  | ParmVarDecl *Param = cast<ParmVarDecl>(param.getAs<Decl>()); | 
|  |  | 
|  | Param->setInvalidDecl(); | 
|  |  | 
|  | UnparsedDefaultArgLocs.erase(Param); | 
|  | } | 
|  |  | 
|  | /// CheckExtraCXXDefaultArguments - Check for any extra default | 
|  | /// arguments in the declarator, which is not a function declaration | 
|  | /// or definition and therefore is not permitted to have default | 
|  | /// arguments. This routine should be invoked for every declarator | 
|  | /// that is not a function declaration or definition. | 
|  | void Sema::CheckExtraCXXDefaultArguments(Declarator &D) { | 
|  | // C++ [dcl.fct.default]p3 | 
|  | //   A default argument expression shall be specified only in the | 
|  | //   parameter-declaration-clause of a function declaration or in a | 
|  | //   template-parameter (14.1). It shall not be specified for a | 
|  | //   parameter pack. If it is specified in a | 
|  | //   parameter-declaration-clause, it shall not occur within a | 
|  | //   declarator or abstract-declarator of a parameter-declaration. | 
|  | for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i) { | 
|  | DeclaratorChunk &chunk = D.getTypeObject(i); | 
|  | if (chunk.Kind == DeclaratorChunk::Function) { | 
|  | for (unsigned argIdx = 0, e = chunk.Fun.NumArgs; argIdx != e; ++argIdx) { | 
|  | ParmVarDecl *Param = | 
|  | cast<ParmVarDecl>(chunk.Fun.ArgInfo[argIdx].Param.getAs<Decl>()); | 
|  | if (Param->hasUnparsedDefaultArg()) { | 
|  | CachedTokens *Toks = chunk.Fun.ArgInfo[argIdx].DefaultArgTokens; | 
|  | Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) | 
|  | << SourceRange((*Toks)[1].getLocation(), Toks->back().getLocation()); | 
|  | delete Toks; | 
|  | chunk.Fun.ArgInfo[argIdx].DefaultArgTokens = 0; | 
|  | } else if (Param->getDefaultArg()) { | 
|  | Diag(Param->getLocation(), diag::err_param_default_argument_nonfunc) | 
|  | << Param->getDefaultArg()->getSourceRange(); | 
|  | Param->setDefaultArg(0); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // MergeCXXFunctionDecl - Merge two declarations of the same C++ | 
|  | // function, once we already know that they have the same | 
|  | // type. Subroutine of MergeFunctionDecl. Returns true if there was an | 
|  | // error, false otherwise. | 
|  | bool Sema::MergeCXXFunctionDecl(FunctionDecl *New, FunctionDecl *Old) { | 
|  | bool Invalid = false; | 
|  |  | 
|  | // C++ [dcl.fct.default]p4: | 
|  | // | 
|  | //   For non-template functions, default arguments can be added in | 
|  | //   later declarations of a function in the same | 
|  | //   scope. Declarations in different scopes have completely | 
|  | //   distinct sets of default arguments. That is, declarations in | 
|  | //   inner scopes do not acquire default arguments from | 
|  | //   declarations in outer scopes, and vice versa. In a given | 
|  | //   function declaration, all parameters subsequent to a | 
|  | //   parameter with a default argument shall have default | 
|  | //   arguments supplied in this or previous declarations. A | 
|  | //   default argument shall not be redefined by a later | 
|  | //   declaration (not even to the same value). | 
|  | for (unsigned p = 0, NumParams = Old->getNumParams(); p < NumParams; ++p) { | 
|  | ParmVarDecl *OldParam = Old->getParamDecl(p); | 
|  | ParmVarDecl *NewParam = New->getParamDecl(p); | 
|  |  | 
|  | if(OldParam->getDefaultArg() && NewParam->getDefaultArg()) { | 
|  | Diag(NewParam->getLocation(), | 
|  | diag::err_param_default_argument_redefinition) | 
|  | << NewParam->getDefaultArg()->getSourceRange(); | 
|  | Diag(OldParam->getLocation(), diag::note_previous_definition); | 
|  | Invalid = true; | 
|  | } else if (OldParam->getDefaultArg()) { | 
|  | // Merge the old default argument into the new parameter | 
|  | NewParam->setDefaultArg(OldParam->getDefaultArg()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CheckEquivalentExceptionSpec( | 
|  | Old->getType()->getAsFunctionProtoType(), Old->getLocation(), | 
|  | New->getType()->getAsFunctionProtoType(), New->getLocation())) { | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | return Invalid; | 
|  | } | 
|  |  | 
|  | /// CheckCXXDefaultArguments - Verify that the default arguments for a | 
|  | /// function declaration are well-formed according to C++ | 
|  | /// [dcl.fct.default]. | 
|  | void Sema::CheckCXXDefaultArguments(FunctionDecl *FD) { | 
|  | unsigned NumParams = FD->getNumParams(); | 
|  | unsigned p; | 
|  |  | 
|  | // Find first parameter with a default argument | 
|  | for (p = 0; p < NumParams; ++p) { | 
|  | ParmVarDecl *Param = FD->getParamDecl(p); | 
|  | if (Param->getDefaultArg()) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // C++ [dcl.fct.default]p4: | 
|  | //   In a given function declaration, all parameters | 
|  | //   subsequent to a parameter with a default argument shall | 
|  | //   have default arguments supplied in this or previous | 
|  | //   declarations. A default argument shall not be redefined | 
|  | //   by a later declaration (not even to the same value). | 
|  | unsigned LastMissingDefaultArg = 0; | 
|  | for(; p < NumParams; ++p) { | 
|  | ParmVarDecl *Param = FD->getParamDecl(p); | 
|  | if (!Param->getDefaultArg()) { | 
|  | if (Param->isInvalidDecl()) | 
|  | /* We already complained about this parameter. */; | 
|  | else if (Param->getIdentifier()) | 
|  | Diag(Param->getLocation(), | 
|  | diag::err_param_default_argument_missing_name) | 
|  | << Param->getIdentifier(); | 
|  | else | 
|  | Diag(Param->getLocation(), | 
|  | diag::err_param_default_argument_missing); | 
|  |  | 
|  | LastMissingDefaultArg = p; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LastMissingDefaultArg > 0) { | 
|  | // Some default arguments were missing. Clear out all of the | 
|  | // default arguments up to (and including) the last missing | 
|  | // default argument, so that we leave the function parameters | 
|  | // in a semantically valid state. | 
|  | for (p = 0; p <= LastMissingDefaultArg; ++p) { | 
|  | ParmVarDecl *Param = FD->getParamDecl(p); | 
|  | if (Param->hasDefaultArg()) { | 
|  | if (!Param->hasUnparsedDefaultArg()) | 
|  | Param->getDefaultArg()->Destroy(Context); | 
|  | Param->setDefaultArg(0); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isCurrentClassName - Determine whether the identifier II is the | 
|  | /// name of the class type currently being defined. In the case of | 
|  | /// nested classes, this will only return true if II is the name of | 
|  | /// the innermost class. | 
|  | bool Sema::isCurrentClassName(const IdentifierInfo &II, Scope *, | 
|  | const CXXScopeSpec *SS) { | 
|  | CXXRecordDecl *CurDecl; | 
|  | if (SS && SS->isSet() && !SS->isInvalid()) { | 
|  | DeclContext *DC = computeDeclContext(*SS); | 
|  | CurDecl = dyn_cast_or_null<CXXRecordDecl>(DC); | 
|  | } else | 
|  | CurDecl = dyn_cast_or_null<CXXRecordDecl>(CurContext); | 
|  |  | 
|  | if (CurDecl) | 
|  | return &II == CurDecl->getIdentifier(); | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// \brief Check the validity of a C++ base class specifier. | 
|  | /// | 
|  | /// \returns a new CXXBaseSpecifier if well-formed, emits diagnostics | 
|  | /// and returns NULL otherwise. | 
|  | CXXBaseSpecifier * | 
|  | Sema::CheckBaseSpecifier(CXXRecordDecl *Class, | 
|  | SourceRange SpecifierRange, | 
|  | bool Virtual, AccessSpecifier Access, | 
|  | QualType BaseType, | 
|  | SourceLocation BaseLoc) { | 
|  | // C++ [class.union]p1: | 
|  | //   A union shall not have base classes. | 
|  | if (Class->isUnion()) { | 
|  | Diag(Class->getLocation(), diag::err_base_clause_on_union) | 
|  | << SpecifierRange; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (BaseType->isDependentType()) | 
|  | return new CXXBaseSpecifier(SpecifierRange, Virtual, | 
|  | Class->getTagKind() == RecordDecl::TK_class, | 
|  | Access, BaseType); | 
|  |  | 
|  | // Base specifiers must be record types. | 
|  | if (!BaseType->isRecordType()) { | 
|  | Diag(BaseLoc, diag::err_base_must_be_class) << SpecifierRange; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // C++ [class.union]p1: | 
|  | //   A union shall not be used as a base class. | 
|  | if (BaseType->isUnionType()) { | 
|  | Diag(BaseLoc, diag::err_union_as_base_class) << SpecifierRange; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // C++ [class.derived]p2: | 
|  | //   The class-name in a base-specifier shall not be an incompletely | 
|  | //   defined class. | 
|  | if (RequireCompleteType(BaseLoc, BaseType, diag::err_incomplete_base_class, | 
|  | SpecifierRange)) | 
|  | return 0; | 
|  |  | 
|  | // If the base class is polymorphic, the new one is, too. | 
|  | RecordDecl *BaseDecl = BaseType->getAsRecordType()->getDecl(); | 
|  | assert(BaseDecl && "Record type has no declaration"); | 
|  | BaseDecl = BaseDecl->getDefinition(Context); | 
|  | assert(BaseDecl && "Base type is not incomplete, but has no definition"); | 
|  | if (cast<CXXRecordDecl>(BaseDecl)->isPolymorphic()) | 
|  | Class->setPolymorphic(true); | 
|  |  | 
|  | // C++ [dcl.init.aggr]p1: | 
|  | //   An aggregate is [...] a class with [...] no base classes [...]. | 
|  | Class->setAggregate(false); | 
|  | Class->setPOD(false); | 
|  |  | 
|  | if (Virtual) { | 
|  | // C++ [class.ctor]p5: | 
|  | //   A constructor is trivial if its class has no virtual base classes. | 
|  | Class->setHasTrivialConstructor(false); | 
|  | } else { | 
|  | // C++ [class.ctor]p5: | 
|  | //   A constructor is trivial if all the direct base classes of its | 
|  | //   class have trivial constructors. | 
|  | Class->setHasTrivialConstructor(cast<CXXRecordDecl>(BaseDecl)-> | 
|  | hasTrivialConstructor()); | 
|  | } | 
|  |  | 
|  | // C++ [class.ctor]p3: | 
|  | //   A destructor is trivial if all the direct base classes of its class | 
|  | //   have trivial destructors. | 
|  | Class->setHasTrivialDestructor(cast<CXXRecordDecl>(BaseDecl)-> | 
|  | hasTrivialDestructor()); | 
|  |  | 
|  | // Create the base specifier. | 
|  | // FIXME: Allocate via ASTContext? | 
|  | return new CXXBaseSpecifier(SpecifierRange, Virtual, | 
|  | Class->getTagKind() == RecordDecl::TK_class, | 
|  | Access, BaseType); | 
|  | } | 
|  |  | 
|  | /// ActOnBaseSpecifier - Parsed a base specifier. A base specifier is | 
|  | /// one entry in the base class list of a class specifier, for | 
|  | /// example: | 
|  | ///    class foo : public bar, virtual private baz { | 
|  | /// 'public bar' and 'virtual private baz' are each base-specifiers. | 
|  | Sema::BaseResult | 
|  | Sema::ActOnBaseSpecifier(DeclPtrTy classdecl, SourceRange SpecifierRange, | 
|  | bool Virtual, AccessSpecifier Access, | 
|  | TypeTy *basetype, SourceLocation BaseLoc) { | 
|  | if (!classdecl) | 
|  | return true; | 
|  |  | 
|  | AdjustDeclIfTemplate(classdecl); | 
|  | CXXRecordDecl *Class = cast<CXXRecordDecl>(classdecl.getAs<Decl>()); | 
|  | QualType BaseType = QualType::getFromOpaquePtr(basetype); | 
|  | if (CXXBaseSpecifier *BaseSpec = CheckBaseSpecifier(Class, SpecifierRange, | 
|  | Virtual, Access, | 
|  | BaseType, BaseLoc)) | 
|  | return BaseSpec; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Performs the actual work of attaching the given base class | 
|  | /// specifiers to a C++ class. | 
|  | bool Sema::AttachBaseSpecifiers(CXXRecordDecl *Class, CXXBaseSpecifier **Bases, | 
|  | unsigned NumBases) { | 
|  | if (NumBases == 0) | 
|  | return false; | 
|  |  | 
|  | // Used to keep track of which base types we have already seen, so | 
|  | // that we can properly diagnose redundant direct base types. Note | 
|  | // that the key is always the unqualified canonical type of the base | 
|  | // class. | 
|  | std::map<QualType, CXXBaseSpecifier*, QualTypeOrdering> KnownBaseTypes; | 
|  |  | 
|  | // Copy non-redundant base specifiers into permanent storage. | 
|  | unsigned NumGoodBases = 0; | 
|  | bool Invalid = false; | 
|  | for (unsigned idx = 0; idx < NumBases; ++idx) { | 
|  | QualType NewBaseType | 
|  | = Context.getCanonicalType(Bases[idx]->getType()); | 
|  | NewBaseType = NewBaseType.getUnqualifiedType(); | 
|  |  | 
|  | if (KnownBaseTypes[NewBaseType]) { | 
|  | // C++ [class.mi]p3: | 
|  | //   A class shall not be specified as a direct base class of a | 
|  | //   derived class more than once. | 
|  | Diag(Bases[idx]->getSourceRange().getBegin(), | 
|  | diag::err_duplicate_base_class) | 
|  | << KnownBaseTypes[NewBaseType]->getType() | 
|  | << Bases[idx]->getSourceRange(); | 
|  |  | 
|  | // Delete the duplicate base class specifier; we're going to | 
|  | // overwrite its pointer later. | 
|  | delete Bases[idx]; | 
|  |  | 
|  | Invalid = true; | 
|  | } else { | 
|  | // Okay, add this new base class. | 
|  | KnownBaseTypes[NewBaseType] = Bases[idx]; | 
|  | Bases[NumGoodBases++] = Bases[idx]; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Attach the remaining base class specifiers to the derived class. | 
|  | Class->setBases(Context, Bases, NumGoodBases); | 
|  |  | 
|  | // Delete the remaining (good) base class specifiers, since their | 
|  | // data has been copied into the CXXRecordDecl. | 
|  | for (unsigned idx = 0; idx < NumGoodBases; ++idx) | 
|  | delete Bases[idx]; | 
|  |  | 
|  | return Invalid; | 
|  | } | 
|  |  | 
|  | /// ActOnBaseSpecifiers - Attach the given base specifiers to the | 
|  | /// class, after checking whether there are any duplicate base | 
|  | /// classes. | 
|  | void Sema::ActOnBaseSpecifiers(DeclPtrTy ClassDecl, BaseTy **Bases, | 
|  | unsigned NumBases) { | 
|  | if (!ClassDecl || !Bases || !NumBases) | 
|  | return; | 
|  |  | 
|  | AdjustDeclIfTemplate(ClassDecl); | 
|  | AttachBaseSpecifiers(cast<CXXRecordDecl>(ClassDecl.getAs<Decl>()), | 
|  | (CXXBaseSpecifier**)(Bases), NumBases); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // C++ class member Handling | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ActOnCXXMemberDeclarator - This is invoked when a C++ class member | 
|  | /// declarator is parsed. 'AS' is the access specifier, 'BW' specifies the | 
|  | /// bitfield width if there is one and 'InitExpr' specifies the initializer if | 
|  | /// any. | 
|  | Sema::DeclPtrTy | 
|  | Sema::ActOnCXXMemberDeclarator(Scope *S, AccessSpecifier AS, Declarator &D, | 
|  | ExprTy *BW, ExprTy *InitExpr, bool Deleted) { | 
|  | const DeclSpec &DS = D.getDeclSpec(); | 
|  | DeclarationName Name = GetNameForDeclarator(D); | 
|  | Expr *BitWidth = static_cast<Expr*>(BW); | 
|  | Expr *Init = static_cast<Expr*>(InitExpr); | 
|  | SourceLocation Loc = D.getIdentifierLoc(); | 
|  |  | 
|  | bool isFunc = D.isFunctionDeclarator(); | 
|  |  | 
|  | // C++ 9.2p6: A member shall not be declared to have automatic storage | 
|  | // duration (auto, register) or with the extern storage-class-specifier. | 
|  | // C++ 7.1.1p8: The mutable specifier can be applied only to names of class | 
|  | // data members and cannot be applied to names declared const or static, | 
|  | // and cannot be applied to reference members. | 
|  | switch (DS.getStorageClassSpec()) { | 
|  | case DeclSpec::SCS_unspecified: | 
|  | case DeclSpec::SCS_typedef: | 
|  | case DeclSpec::SCS_static: | 
|  | // FALL THROUGH. | 
|  | break; | 
|  | case DeclSpec::SCS_mutable: | 
|  | if (isFunc) { | 
|  | if (DS.getStorageClassSpecLoc().isValid()) | 
|  | Diag(DS.getStorageClassSpecLoc(), diag::err_mutable_function); | 
|  | else | 
|  | Diag(DS.getThreadSpecLoc(), diag::err_mutable_function); | 
|  |  | 
|  | // FIXME: It would be nicer if the keyword was ignored only for this | 
|  | // declarator. Otherwise we could get follow-up errors. | 
|  | D.getMutableDeclSpec().ClearStorageClassSpecs(); | 
|  | } else { | 
|  | QualType T = GetTypeForDeclarator(D, S); | 
|  | diag::kind err = static_cast<diag::kind>(0); | 
|  | if (T->isReferenceType()) | 
|  | err = diag::err_mutable_reference; | 
|  | else if (T.isConstQualified()) | 
|  | err = diag::err_mutable_const; | 
|  | if (err != 0) { | 
|  | if (DS.getStorageClassSpecLoc().isValid()) | 
|  | Diag(DS.getStorageClassSpecLoc(), err); | 
|  | else | 
|  | Diag(DS.getThreadSpecLoc(), err); | 
|  | // FIXME: It would be nicer if the keyword was ignored only for this | 
|  | // declarator. Otherwise we could get follow-up errors. | 
|  | D.getMutableDeclSpec().ClearStorageClassSpecs(); | 
|  | } | 
|  | } | 
|  | break; | 
|  | default: | 
|  | if (DS.getStorageClassSpecLoc().isValid()) | 
|  | Diag(DS.getStorageClassSpecLoc(), | 
|  | diag::err_storageclass_invalid_for_member); | 
|  | else | 
|  | Diag(DS.getThreadSpecLoc(), diag::err_storageclass_invalid_for_member); | 
|  | D.getMutableDeclSpec().ClearStorageClassSpecs(); | 
|  | } | 
|  |  | 
|  | if (!isFunc && | 
|  | D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_typename && | 
|  | D.getNumTypeObjects() == 0) { | 
|  | // Check also for this case: | 
|  | // | 
|  | // typedef int f(); | 
|  | // f a; | 
|  | // | 
|  | QualType TDType = QualType::getFromOpaquePtr(DS.getTypeRep()); | 
|  | isFunc = TDType->isFunctionType(); | 
|  | } | 
|  |  | 
|  | bool isInstField = ((DS.getStorageClassSpec() == DeclSpec::SCS_unspecified || | 
|  | DS.getStorageClassSpec() == DeclSpec::SCS_mutable) && | 
|  | !isFunc); | 
|  |  | 
|  | Decl *Member; | 
|  | if (isInstField) { | 
|  | Member = HandleField(S, cast<CXXRecordDecl>(CurContext), Loc, D, BitWidth, | 
|  | AS); | 
|  | assert(Member && "HandleField never returns null"); | 
|  | } else { | 
|  | Member = ActOnDeclarator(S, D).getAs<Decl>(); | 
|  | if (!Member) { | 
|  | if (BitWidth) DeleteExpr(BitWidth); | 
|  | return DeclPtrTy(); | 
|  | } | 
|  |  | 
|  | // Non-instance-fields can't have a bitfield. | 
|  | if (BitWidth) { | 
|  | if (Member->isInvalidDecl()) { | 
|  | // don't emit another diagnostic. | 
|  | } else if (isa<VarDecl>(Member)) { | 
|  | // C++ 9.6p3: A bit-field shall not be a static member. | 
|  | // "static member 'A' cannot be a bit-field" | 
|  | Diag(Loc, diag::err_static_not_bitfield) | 
|  | << Name << BitWidth->getSourceRange(); | 
|  | } else if (isa<TypedefDecl>(Member)) { | 
|  | // "typedef member 'x' cannot be a bit-field" | 
|  | Diag(Loc, diag::err_typedef_not_bitfield) | 
|  | << Name << BitWidth->getSourceRange(); | 
|  | } else { | 
|  | // A function typedef ("typedef int f(); f a;"). | 
|  | // C++ 9.6p3: A bit-field shall have integral or enumeration type. | 
|  | Diag(Loc, diag::err_not_integral_type_bitfield) | 
|  | << Name << cast<ValueDecl>(Member)->getType() | 
|  | << BitWidth->getSourceRange(); | 
|  | } | 
|  |  | 
|  | DeleteExpr(BitWidth); | 
|  | BitWidth = 0; | 
|  | Member->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | Member->setAccess(AS); | 
|  | } | 
|  |  | 
|  | assert((Name || isInstField) && "No identifier for non-field ?"); | 
|  |  | 
|  | if (Init) | 
|  | AddInitializerToDecl(DeclPtrTy::make(Member), ExprArg(*this, Init), false); | 
|  | if (Deleted) // FIXME: Source location is not very good. | 
|  | SetDeclDeleted(DeclPtrTy::make(Member), D.getSourceRange().getBegin()); | 
|  |  | 
|  | if (isInstField) { | 
|  | FieldCollector->Add(cast<FieldDecl>(Member)); | 
|  | return DeclPtrTy(); | 
|  | } | 
|  | return DeclPtrTy::make(Member); | 
|  | } | 
|  |  | 
|  | /// ActOnMemInitializer - Handle a C++ member initializer. | 
|  | Sema::MemInitResult | 
|  | Sema::ActOnMemInitializer(DeclPtrTy ConstructorD, | 
|  | Scope *S, | 
|  | const CXXScopeSpec &SS, | 
|  | IdentifierInfo *MemberOrBase, | 
|  | TypeTy *TemplateTypeTy, | 
|  | SourceLocation IdLoc, | 
|  | SourceLocation LParenLoc, | 
|  | ExprTy **Args, unsigned NumArgs, | 
|  | SourceLocation *CommaLocs, | 
|  | SourceLocation RParenLoc) { | 
|  | if (!ConstructorD) | 
|  | return true; | 
|  |  | 
|  | CXXConstructorDecl *Constructor | 
|  | = dyn_cast<CXXConstructorDecl>(ConstructorD.getAs<Decl>()); | 
|  | if (!Constructor) { | 
|  | // The user wrote a constructor initializer on a function that is | 
|  | // not a C++ constructor. Ignore the error for now, because we may | 
|  | // have more member initializers coming; we'll diagnose it just | 
|  | // once in ActOnMemInitializers. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | CXXRecordDecl *ClassDecl = Constructor->getParent(); | 
|  |  | 
|  | // C++ [class.base.init]p2: | 
|  | //   Names in a mem-initializer-id are looked up in the scope of the | 
|  | //   constructor’s class and, if not found in that scope, are looked | 
|  | //   up in the scope containing the constructor’s | 
|  | //   definition. [Note: if the constructor’s class contains a member | 
|  | //   with the same name as a direct or virtual base class of the | 
|  | //   class, a mem-initializer-id naming the member or base class and | 
|  | //   composed of a single identifier refers to the class member. A | 
|  | //   mem-initializer-id for the hidden base class may be specified | 
|  | //   using a qualified name. ] | 
|  | if (!SS.getScopeRep() && !TemplateTypeTy) { | 
|  | // Look for a member, first. | 
|  | FieldDecl *Member = 0; | 
|  | DeclContext::lookup_result Result | 
|  | = ClassDecl->lookup(MemberOrBase); | 
|  | if (Result.first != Result.second) | 
|  | Member = dyn_cast<FieldDecl>(*Result.first); | 
|  |  | 
|  | // FIXME: Handle members of an anonymous union. | 
|  |  | 
|  | if (Member) { | 
|  | // FIXME: Perform direct initialization of the member. | 
|  | return new CXXBaseOrMemberInitializer(Member, (Expr **)Args, NumArgs, | 
|  | IdLoc); | 
|  | } | 
|  | } | 
|  | // It didn't name a member, so see if it names a class. | 
|  | TypeTy *BaseTy = TemplateTypeTy ? TemplateTypeTy | 
|  | : getTypeName(*MemberOrBase, IdLoc, S, &SS); | 
|  | if (!BaseTy) | 
|  | return Diag(IdLoc, diag::err_mem_init_not_member_or_class) | 
|  | << MemberOrBase << SourceRange(IdLoc, RParenLoc); | 
|  |  | 
|  | QualType BaseType = QualType::getFromOpaquePtr(BaseTy); | 
|  | if (!BaseType->isRecordType() && !BaseType->isDependentType()) | 
|  | return Diag(IdLoc, diag::err_base_init_does_not_name_class) | 
|  | << BaseType << SourceRange(IdLoc, RParenLoc); | 
|  |  | 
|  | // C++ [class.base.init]p2: | 
|  | //   [...] Unless the mem-initializer-id names a nonstatic data | 
|  | //   member of the constructor’s class or a direct or virtual base | 
|  | //   of that class, the mem-initializer is ill-formed. A | 
|  | //   mem-initializer-list can initialize a base class using any | 
|  | //   name that denotes that base class type. | 
|  |  | 
|  | // First, check for a direct base class. | 
|  | const CXXBaseSpecifier *DirectBaseSpec = 0; | 
|  | for (CXXRecordDecl::base_class_const_iterator Base = ClassDecl->bases_begin(); | 
|  | Base != ClassDecl->bases_end(); ++Base) { | 
|  | if (Context.getCanonicalType(BaseType).getUnqualifiedType() == | 
|  | Context.getCanonicalType(Base->getType()).getUnqualifiedType()) { | 
|  | // We found a direct base of this type. That's what we're | 
|  | // initializing. | 
|  | DirectBaseSpec = &*Base; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check for a virtual base class. | 
|  | // FIXME: We might be able to short-circuit this if we know in advance that | 
|  | // there are no virtual bases. | 
|  | const CXXBaseSpecifier *VirtualBaseSpec = 0; | 
|  | if (!DirectBaseSpec || !DirectBaseSpec->isVirtual()) { | 
|  | // We haven't found a base yet; search the class hierarchy for a | 
|  | // virtual base class. | 
|  | BasePaths Paths(/*FindAmbiguities=*/true, /*RecordPaths=*/true, | 
|  | /*DetectVirtual=*/false); | 
|  | if (IsDerivedFrom(Context.getTypeDeclType(ClassDecl), BaseType, Paths)) { | 
|  | for (BasePaths::paths_iterator Path = Paths.begin(); | 
|  | Path != Paths.end(); ++Path) { | 
|  | if (Path->back().Base->isVirtual()) { | 
|  | VirtualBaseSpec = Path->back().Base; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // C++ [base.class.init]p2: | 
|  | //   If a mem-initializer-id is ambiguous because it designates both | 
|  | //   a direct non-virtual base class and an inherited virtual base | 
|  | //   class, the mem-initializer is ill-formed. | 
|  | if (DirectBaseSpec && VirtualBaseSpec) | 
|  | return Diag(IdLoc, diag::err_base_init_direct_and_virtual) | 
|  | << MemberOrBase << SourceRange(IdLoc, RParenLoc); | 
|  | // C++ [base.class.init]p2: | 
|  | // Unless the mem-initializer-id names a nonstatic data membeer of the | 
|  | // constructor's class ot a direst or virtual base of that class, the | 
|  | // mem-initializer is ill-formed. | 
|  | if (!DirectBaseSpec && !VirtualBaseSpec) | 
|  | return Diag(IdLoc, diag::err_not_direct_base_or_virtual) | 
|  | << BaseType << ClassDecl->getNameAsCString() | 
|  | << SourceRange(IdLoc, RParenLoc); | 
|  |  | 
|  |  | 
|  | return new CXXBaseOrMemberInitializer(BaseType, (Expr **)Args, NumArgs, | 
|  | IdLoc); | 
|  | } | 
|  |  | 
|  | void Sema::ActOnMemInitializers(DeclPtrTy ConstructorDecl, | 
|  | SourceLocation ColonLoc, | 
|  | MemInitTy **MemInits, unsigned NumMemInits) { | 
|  | if (!ConstructorDecl) | 
|  | return; | 
|  |  | 
|  | CXXConstructorDecl *Constructor | 
|  | = dyn_cast<CXXConstructorDecl>(ConstructorDecl.getAs<Decl>()); | 
|  |  | 
|  | if (!Constructor) { | 
|  | Diag(ColonLoc, diag::err_only_constructors_take_base_inits); | 
|  | return; | 
|  | } | 
|  | llvm::DenseMap<void*, CXXBaseOrMemberInitializer *>Members; | 
|  | bool err = false; | 
|  | for (unsigned i = 0; i < NumMemInits; i++) { | 
|  | CXXBaseOrMemberInitializer *Member = | 
|  | static_cast<CXXBaseOrMemberInitializer*>(MemInits[i]); | 
|  | void *KeyToMember = Member->getBaseOrMember(); | 
|  | // For fields injected into the class via declaration of an anonymous union, | 
|  | // use its anonymous union class declaration as the unique key. | 
|  | if (FieldDecl *Field = Member->getMember()) | 
|  | if (Field->getDeclContext()->isRecord() && | 
|  | cast<RecordDecl>(Field->getDeclContext())->isAnonymousStructOrUnion()) | 
|  | KeyToMember = static_cast<void *>(Field->getDeclContext()); | 
|  | CXXBaseOrMemberInitializer *&PrevMember = Members[KeyToMember]; | 
|  | if (!PrevMember) { | 
|  | PrevMember = Member; | 
|  | continue; | 
|  | } | 
|  | if (FieldDecl *Field = Member->getMember()) | 
|  | Diag(Member->getSourceLocation(), | 
|  | diag::error_multiple_mem_initialization) | 
|  | << Field->getNameAsString(); | 
|  | else { | 
|  | Type *BaseClass = Member->getBaseClass(); | 
|  | assert(BaseClass && "ActOnMemInitializers - neither field or base"); | 
|  | Diag(Member->getSourceLocation(), | 
|  | diag::error_multiple_base_initialization) | 
|  | << BaseClass->getDesugaredType(true); | 
|  | } | 
|  | Diag(PrevMember->getSourceLocation(), diag::note_previous_initializer) | 
|  | << 0; | 
|  | err = true; | 
|  | } | 
|  | if (!err) | 
|  | Constructor->setBaseOrMemberInitializers(Context, | 
|  | reinterpret_cast<CXXBaseOrMemberInitializer **>(MemInits), | 
|  | NumMemInits); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// PureVirtualMethodCollector - traverses a class and its superclasses | 
|  | /// and determines if it has any pure virtual methods. | 
|  | class VISIBILITY_HIDDEN PureVirtualMethodCollector { | 
|  | ASTContext &Context; | 
|  |  | 
|  | public: | 
|  | typedef llvm::SmallVector<const CXXMethodDecl*, 8> MethodList; | 
|  |  | 
|  | private: | 
|  | MethodList Methods; | 
|  |  | 
|  | void Collect(const CXXRecordDecl* RD, MethodList& Methods); | 
|  |  | 
|  | public: | 
|  | PureVirtualMethodCollector(ASTContext &Ctx, const CXXRecordDecl* RD) | 
|  | : Context(Ctx) { | 
|  |  | 
|  | MethodList List; | 
|  | Collect(RD, List); | 
|  |  | 
|  | // Copy the temporary list to methods, and make sure to ignore any | 
|  | // null entries. | 
|  | for (size_t i = 0, e = List.size(); i != e; ++i) { | 
|  | if (List[i]) | 
|  | Methods.push_back(List[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool empty() const { return Methods.empty(); } | 
|  |  | 
|  | MethodList::const_iterator methods_begin() { return Methods.begin(); } | 
|  | MethodList::const_iterator methods_end() { return Methods.end(); } | 
|  | }; | 
|  |  | 
|  | void PureVirtualMethodCollector::Collect(const CXXRecordDecl* RD, | 
|  | MethodList& Methods) { | 
|  | // First, collect the pure virtual methods for the base classes. | 
|  | for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(), | 
|  | BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base) { | 
|  | if (const RecordType *RT = Base->getType()->getAsRecordType()) { | 
|  | const CXXRecordDecl *BaseDecl = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | if (BaseDecl && BaseDecl->isAbstract()) | 
|  | Collect(BaseDecl, Methods); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Next, zero out any pure virtual methods that this class overrides. | 
|  | typedef llvm::SmallPtrSet<const CXXMethodDecl*, 4> MethodSetTy; | 
|  |  | 
|  | MethodSetTy OverriddenMethods; | 
|  | size_t MethodsSize = Methods.size(); | 
|  |  | 
|  | for (RecordDecl::decl_iterator i = RD->decls_begin(), e = RD->decls_end(); | 
|  | i != e; ++i) { | 
|  | // Traverse the record, looking for methods. | 
|  | if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*i)) { | 
|  | // If the method is pure virtual, add it to the methods vector. | 
|  | if (MD->isPure()) { | 
|  | Methods.push_back(MD); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, record all the overridden methods in our set. | 
|  | for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(), | 
|  | E = MD->end_overridden_methods(); I != E; ++I) { | 
|  | // Keep track of the overridden methods. | 
|  | OverriddenMethods.insert(*I); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now go through the methods and zero out all the ones we know are | 
|  | // overridden. | 
|  | for (size_t i = 0, e = MethodsSize; i != e; ++i) { | 
|  | if (OverriddenMethods.count(Methods[i])) | 
|  | Methods[i] = 0; | 
|  | } | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Sema::RequireNonAbstractType(SourceLocation Loc, QualType T, | 
|  | unsigned DiagID, AbstractDiagSelID SelID, | 
|  | const CXXRecordDecl *CurrentRD) { | 
|  |  | 
|  | if (!getLangOptions().CPlusPlus) | 
|  | return false; | 
|  |  | 
|  | if (const ArrayType *AT = Context.getAsArrayType(T)) | 
|  | return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID, | 
|  | CurrentRD); | 
|  |  | 
|  | if (const PointerType *PT = T->getAsPointerType()) { | 
|  | // Find the innermost pointer type. | 
|  | while (const PointerType *T = PT->getPointeeType()->getAsPointerType()) | 
|  | PT = T; | 
|  |  | 
|  | if (const ArrayType *AT = Context.getAsArrayType(PT->getPointeeType())) | 
|  | return RequireNonAbstractType(Loc, AT->getElementType(), DiagID, SelID, | 
|  | CurrentRD); | 
|  | } | 
|  |  | 
|  | const RecordType *RT = T->getAsRecordType(); | 
|  | if (!RT) | 
|  | return false; | 
|  |  | 
|  | const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); | 
|  | if (!RD) | 
|  | return false; | 
|  |  | 
|  | if (CurrentRD && CurrentRD != RD) | 
|  | return false; | 
|  |  | 
|  | if (!RD->isAbstract()) | 
|  | return false; | 
|  |  | 
|  | Diag(Loc, DiagID) << RD->getDeclName() << SelID; | 
|  |  | 
|  | // Check if we've already emitted the list of pure virtual functions for this | 
|  | // class. | 
|  | if (PureVirtualClassDiagSet && PureVirtualClassDiagSet->count(RD)) | 
|  | return true; | 
|  |  | 
|  | PureVirtualMethodCollector Collector(Context, RD); | 
|  |  | 
|  | for (PureVirtualMethodCollector::MethodList::const_iterator I = | 
|  | Collector.methods_begin(), E = Collector.methods_end(); I != E; ++I) { | 
|  | const CXXMethodDecl *MD = *I; | 
|  |  | 
|  | Diag(MD->getLocation(), diag::note_pure_virtual_function) << | 
|  | MD->getDeclName(); | 
|  | } | 
|  |  | 
|  | if (!PureVirtualClassDiagSet) | 
|  | PureVirtualClassDiagSet.reset(new RecordDeclSetTy); | 
|  | PureVirtualClassDiagSet->insert(RD); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | class VISIBILITY_HIDDEN AbstractClassUsageDiagnoser | 
|  | : public DeclVisitor<AbstractClassUsageDiagnoser, bool> { | 
|  | Sema &SemaRef; | 
|  | CXXRecordDecl *AbstractClass; | 
|  |  | 
|  | bool VisitDeclContext(const DeclContext *DC) { | 
|  | bool Invalid = false; | 
|  |  | 
|  | for (CXXRecordDecl::decl_iterator I = DC->decls_begin(), | 
|  | E = DC->decls_end(); I != E; ++I) | 
|  | Invalid |= Visit(*I); | 
|  |  | 
|  | return Invalid; | 
|  | } | 
|  |  | 
|  | public: | 
|  | AbstractClassUsageDiagnoser(Sema& SemaRef, CXXRecordDecl *ac) | 
|  | : SemaRef(SemaRef), AbstractClass(ac) { | 
|  | Visit(SemaRef.Context.getTranslationUnitDecl()); | 
|  | } | 
|  |  | 
|  | bool VisitFunctionDecl(const FunctionDecl *FD) { | 
|  | if (FD->isThisDeclarationADefinition()) { | 
|  | // No need to do the check if we're in a definition, because it requires | 
|  | // that the return/param types are complete. | 
|  | // because that requires | 
|  | return VisitDeclContext(FD); | 
|  | } | 
|  |  | 
|  | // Check the return type. | 
|  | QualType RTy = FD->getType()->getAsFunctionType()->getResultType(); | 
|  | bool Invalid = | 
|  | SemaRef.RequireNonAbstractType(FD->getLocation(), RTy, | 
|  | diag::err_abstract_type_in_decl, | 
|  | Sema::AbstractReturnType, | 
|  | AbstractClass); | 
|  |  | 
|  | for (FunctionDecl::param_const_iterator I = FD->param_begin(), | 
|  | E = FD->param_end(); I != E; ++I) { | 
|  | const ParmVarDecl *VD = *I; | 
|  | Invalid |= | 
|  | SemaRef.RequireNonAbstractType(VD->getLocation(), | 
|  | VD->getOriginalType(), | 
|  | diag::err_abstract_type_in_decl, | 
|  | Sema::AbstractParamType, | 
|  | AbstractClass); | 
|  | } | 
|  |  | 
|  | return Invalid; | 
|  | } | 
|  |  | 
|  | bool VisitDecl(const Decl* D) { | 
|  | if (const DeclContext *DC = dyn_cast<DeclContext>(D)) | 
|  | return VisitDeclContext(DC); | 
|  |  | 
|  | return false; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | void Sema::ActOnFinishCXXMemberSpecification(Scope* S, SourceLocation RLoc, | 
|  | DeclPtrTy TagDecl, | 
|  | SourceLocation LBrac, | 
|  | SourceLocation RBrac) { | 
|  | if (!TagDecl) | 
|  | return; | 
|  |  | 
|  | AdjustDeclIfTemplate(TagDecl); | 
|  | ActOnFields(S, RLoc, TagDecl, | 
|  | (DeclPtrTy*)FieldCollector->getCurFields(), | 
|  | FieldCollector->getCurNumFields(), LBrac, RBrac, 0); | 
|  |  | 
|  | CXXRecordDecl *RD = cast<CXXRecordDecl>(TagDecl.getAs<Decl>()); | 
|  | if (!RD->isAbstract()) { | 
|  | // Collect all the pure virtual methods and see if this is an abstract | 
|  | // class after all. | 
|  | PureVirtualMethodCollector Collector(Context, RD); | 
|  | if (!Collector.empty()) | 
|  | RD->setAbstract(true); | 
|  | } | 
|  |  | 
|  | if (RD->isAbstract()) | 
|  | AbstractClassUsageDiagnoser(*this, RD); | 
|  |  | 
|  | if (RD->hasTrivialConstructor() || RD->hasTrivialDestructor()) { | 
|  | for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); | 
|  | i != e; ++i) { | 
|  | // All the nonstatic data members must have trivial constructors. | 
|  | QualType FTy = i->getType(); | 
|  | while (const ArrayType *AT = Context.getAsArrayType(FTy)) | 
|  | FTy = AT->getElementType(); | 
|  |  | 
|  | if (const RecordType *RT = FTy->getAsRecordType()) { | 
|  | CXXRecordDecl *FieldRD = cast<CXXRecordDecl>(RT->getDecl()); | 
|  |  | 
|  | if (!FieldRD->hasTrivialConstructor()) | 
|  | RD->setHasTrivialConstructor(false); | 
|  | if (!FieldRD->hasTrivialDestructor()) | 
|  | RD->setHasTrivialDestructor(false); | 
|  |  | 
|  | // If RD has neither a trivial constructor nor a trivial destructor | 
|  | // we don't need to continue checking. | 
|  | if (!RD->hasTrivialConstructor() && !RD->hasTrivialDestructor()) | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!RD->isDependentType()) | 
|  | AddImplicitlyDeclaredMembersToClass(RD); | 
|  | } | 
|  |  | 
|  | /// AddImplicitlyDeclaredMembersToClass - Adds any implicitly-declared | 
|  | /// special functions, such as the default constructor, copy | 
|  | /// constructor, or destructor, to the given C++ class (C++ | 
|  | /// [special]p1).  This routine can only be executed just before the | 
|  | /// definition of the class is complete. | 
|  | void Sema::AddImplicitlyDeclaredMembersToClass(CXXRecordDecl *ClassDecl) { | 
|  | QualType ClassType = Context.getTypeDeclType(ClassDecl); | 
|  | ClassType = Context.getCanonicalType(ClassType); | 
|  |  | 
|  | // FIXME: Implicit declarations have exception specifications, which are | 
|  | // the union of the specifications of the implicitly called functions. | 
|  |  | 
|  | if (!ClassDecl->hasUserDeclaredConstructor()) { | 
|  | // C++ [class.ctor]p5: | 
|  | //   A default constructor for a class X is a constructor of class X | 
|  | //   that can be called without an argument. If there is no | 
|  | //   user-declared constructor for class X, a default constructor is | 
|  | //   implicitly declared. An implicitly-declared default constructor | 
|  | //   is an inline public member of its class. | 
|  | DeclarationName Name | 
|  | = Context.DeclarationNames.getCXXConstructorName(ClassType); | 
|  | CXXConstructorDecl *DefaultCon = | 
|  | CXXConstructorDecl::Create(Context, ClassDecl, | 
|  | ClassDecl->getLocation(), Name, | 
|  | Context.getFunctionType(Context.VoidTy, | 
|  | 0, 0, false, 0), | 
|  | /*isExplicit=*/false, | 
|  | /*isInline=*/true, | 
|  | /*isImplicitlyDeclared=*/true); | 
|  | DefaultCon->setAccess(AS_public); | 
|  | DefaultCon->setImplicit(); | 
|  | ClassDecl->addDecl(DefaultCon); | 
|  | } | 
|  |  | 
|  | if (!ClassDecl->hasUserDeclaredCopyConstructor()) { | 
|  | // C++ [class.copy]p4: | 
|  | //   If the class definition does not explicitly declare a copy | 
|  | //   constructor, one is declared implicitly. | 
|  |  | 
|  | // C++ [class.copy]p5: | 
|  | //   The implicitly-declared copy constructor for a class X will | 
|  | //   have the form | 
|  | // | 
|  | //       X::X(const X&) | 
|  | // | 
|  | //   if | 
|  | bool HasConstCopyConstructor = true; | 
|  |  | 
|  | //     -- each direct or virtual base class B of X has a copy | 
|  | //        constructor whose first parameter is of type const B& or | 
|  | //        const volatile B&, and | 
|  | for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); | 
|  | HasConstCopyConstructor && Base != ClassDecl->bases_end(); ++Base) { | 
|  | const CXXRecordDecl *BaseClassDecl | 
|  | = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl()); | 
|  | HasConstCopyConstructor | 
|  | = BaseClassDecl->hasConstCopyConstructor(Context); | 
|  | } | 
|  |  | 
|  | //     -- for all the nonstatic data members of X that are of a | 
|  | //        class type M (or array thereof), each such class type | 
|  | //        has a copy constructor whose first parameter is of type | 
|  | //        const M& or const volatile M&. | 
|  | for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(); | 
|  | HasConstCopyConstructor && Field != ClassDecl->field_end(); | 
|  | ++Field) { | 
|  | QualType FieldType = (*Field)->getType(); | 
|  | if (const ArrayType *Array = Context.getAsArrayType(FieldType)) | 
|  | FieldType = Array->getElementType(); | 
|  | if (const RecordType *FieldClassType = FieldType->getAsRecordType()) { | 
|  | const CXXRecordDecl *FieldClassDecl | 
|  | = cast<CXXRecordDecl>(FieldClassType->getDecl()); | 
|  | HasConstCopyConstructor | 
|  | = FieldClassDecl->hasConstCopyConstructor(Context); | 
|  | } | 
|  | } | 
|  |  | 
|  | //   Otherwise, the implicitly declared copy constructor will have | 
|  | //   the form | 
|  | // | 
|  | //       X::X(X&) | 
|  | QualType ArgType = ClassType; | 
|  | if (HasConstCopyConstructor) | 
|  | ArgType = ArgType.withConst(); | 
|  | ArgType = Context.getLValueReferenceType(ArgType); | 
|  |  | 
|  | //   An implicitly-declared copy constructor is an inline public | 
|  | //   member of its class. | 
|  | DeclarationName Name | 
|  | = Context.DeclarationNames.getCXXConstructorName(ClassType); | 
|  | CXXConstructorDecl *CopyConstructor | 
|  | = CXXConstructorDecl::Create(Context, ClassDecl, | 
|  | ClassDecl->getLocation(), Name, | 
|  | Context.getFunctionType(Context.VoidTy, | 
|  | &ArgType, 1, | 
|  | false, 0), | 
|  | /*isExplicit=*/false, | 
|  | /*isInline=*/true, | 
|  | /*isImplicitlyDeclared=*/true); | 
|  | CopyConstructor->setAccess(AS_public); | 
|  | CopyConstructor->setImplicit(); | 
|  |  | 
|  | // Add the parameter to the constructor. | 
|  | ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyConstructor, | 
|  | ClassDecl->getLocation(), | 
|  | /*IdentifierInfo=*/0, | 
|  | ArgType, VarDecl::None, 0); | 
|  | CopyConstructor->setParams(Context, &FromParam, 1); | 
|  | ClassDecl->addDecl(CopyConstructor); | 
|  | } | 
|  |  | 
|  | if (!ClassDecl->hasUserDeclaredCopyAssignment()) { | 
|  | // Note: The following rules are largely analoguous to the copy | 
|  | // constructor rules. Note that virtual bases are not taken into account | 
|  | // for determining the argument type of the operator. Note also that | 
|  | // operators taking an object instead of a reference are allowed. | 
|  | // | 
|  | // C++ [class.copy]p10: | 
|  | //   If the class definition does not explicitly declare a copy | 
|  | //   assignment operator, one is declared implicitly. | 
|  | //   The implicitly-defined copy assignment operator for a class X | 
|  | //   will have the form | 
|  | // | 
|  | //       X& X::operator=(const X&) | 
|  | // | 
|  | //   if | 
|  | bool HasConstCopyAssignment = true; | 
|  |  | 
|  | //       -- each direct base class B of X has a copy assignment operator | 
|  | //          whose parameter is of type const B&, const volatile B& or B, | 
|  | //          and | 
|  | for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); | 
|  | HasConstCopyAssignment && Base != ClassDecl->bases_end(); ++Base) { | 
|  | const CXXRecordDecl *BaseClassDecl | 
|  | = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl()); | 
|  | HasConstCopyAssignment = BaseClassDecl->hasConstCopyAssignment(Context); | 
|  | } | 
|  |  | 
|  | //       -- for all the nonstatic data members of X that are of a class | 
|  | //          type M (or array thereof), each such class type has a copy | 
|  | //          assignment operator whose parameter is of type const M&, | 
|  | //          const volatile M& or M. | 
|  | for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(); | 
|  | HasConstCopyAssignment && Field != ClassDecl->field_end(); | 
|  | ++Field) { | 
|  | QualType FieldType = (*Field)->getType(); | 
|  | if (const ArrayType *Array = Context.getAsArrayType(FieldType)) | 
|  | FieldType = Array->getElementType(); | 
|  | if (const RecordType *FieldClassType = FieldType->getAsRecordType()) { | 
|  | const CXXRecordDecl *FieldClassDecl | 
|  | = cast<CXXRecordDecl>(FieldClassType->getDecl()); | 
|  | HasConstCopyAssignment | 
|  | = FieldClassDecl->hasConstCopyAssignment(Context); | 
|  | } | 
|  | } | 
|  |  | 
|  | //   Otherwise, the implicitly declared copy assignment operator will | 
|  | //   have the form | 
|  | // | 
|  | //       X& X::operator=(X&) | 
|  | QualType ArgType = ClassType; | 
|  | QualType RetType = Context.getLValueReferenceType(ArgType); | 
|  | if (HasConstCopyAssignment) | 
|  | ArgType = ArgType.withConst(); | 
|  | ArgType = Context.getLValueReferenceType(ArgType); | 
|  |  | 
|  | //   An implicitly-declared copy assignment operator is an inline public | 
|  | //   member of its class. | 
|  | DeclarationName Name = | 
|  | Context.DeclarationNames.getCXXOperatorName(OO_Equal); | 
|  | CXXMethodDecl *CopyAssignment = | 
|  | CXXMethodDecl::Create(Context, ClassDecl, ClassDecl->getLocation(), Name, | 
|  | Context.getFunctionType(RetType, &ArgType, 1, | 
|  | false, 0), | 
|  | /*isStatic=*/false, /*isInline=*/true); | 
|  | CopyAssignment->setAccess(AS_public); | 
|  | CopyAssignment->setImplicit(); | 
|  |  | 
|  | // Add the parameter to the operator. | 
|  | ParmVarDecl *FromParam = ParmVarDecl::Create(Context, CopyAssignment, | 
|  | ClassDecl->getLocation(), | 
|  | /*IdentifierInfo=*/0, | 
|  | ArgType, VarDecl::None, 0); | 
|  | CopyAssignment->setParams(Context, &FromParam, 1); | 
|  |  | 
|  | // Don't call addedAssignmentOperator. There is no way to distinguish an | 
|  | // implicit from an explicit assignment operator. | 
|  | ClassDecl->addDecl(CopyAssignment); | 
|  | } | 
|  |  | 
|  | if (!ClassDecl->hasUserDeclaredDestructor()) { | 
|  | // C++ [class.dtor]p2: | 
|  | //   If a class has no user-declared destructor, a destructor is | 
|  | //   declared implicitly. An implicitly-declared destructor is an | 
|  | //   inline public member of its class. | 
|  | DeclarationName Name | 
|  | = Context.DeclarationNames.getCXXDestructorName(ClassType); | 
|  | CXXDestructorDecl *Destructor | 
|  | = CXXDestructorDecl::Create(Context, ClassDecl, | 
|  | ClassDecl->getLocation(), Name, | 
|  | Context.getFunctionType(Context.VoidTy, | 
|  | 0, 0, false, 0), | 
|  | /*isInline=*/true, | 
|  | /*isImplicitlyDeclared=*/true); | 
|  | Destructor->setAccess(AS_public); | 
|  | Destructor->setImplicit(); | 
|  | ClassDecl->addDecl(Destructor); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::ActOnReenterTemplateScope(Scope *S, DeclPtrTy TemplateD) { | 
|  | TemplateDecl *Template = TemplateD.getAs<TemplateDecl>(); | 
|  | if (!Template) | 
|  | return; | 
|  |  | 
|  | TemplateParameterList *Params = Template->getTemplateParameters(); | 
|  | for (TemplateParameterList::iterator Param = Params->begin(), | 
|  | ParamEnd = Params->end(); | 
|  | Param != ParamEnd; ++Param) { | 
|  | NamedDecl *Named = cast<NamedDecl>(*Param); | 
|  | if (Named->getDeclName()) { | 
|  | S->AddDecl(DeclPtrTy::make(Named)); | 
|  | IdResolver.AddDecl(Named); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ActOnStartDelayedCXXMethodDeclaration - We have completed | 
|  | /// parsing a top-level (non-nested) C++ class, and we are now | 
|  | /// parsing those parts of the given Method declaration that could | 
|  | /// not be parsed earlier (C++ [class.mem]p2), such as default | 
|  | /// arguments. This action should enter the scope of the given | 
|  | /// Method declaration as if we had just parsed the qualified method | 
|  | /// name. However, it should not bring the parameters into scope; | 
|  | /// that will be performed by ActOnDelayedCXXMethodParameter. | 
|  | void Sema::ActOnStartDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) { | 
|  | if (!MethodD) | 
|  | return; | 
|  |  | 
|  | CXXScopeSpec SS; | 
|  | FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>()); | 
|  | QualType ClassTy | 
|  | = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); | 
|  | SS.setScopeRep( | 
|  | NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr())); | 
|  | ActOnCXXEnterDeclaratorScope(S, SS); | 
|  | } | 
|  |  | 
|  | /// ActOnDelayedCXXMethodParameter - We've already started a delayed | 
|  | /// C++ method declaration. We're (re-)introducing the given | 
|  | /// function parameter into scope for use in parsing later parts of | 
|  | /// the method declaration. For example, we could see an | 
|  | /// ActOnParamDefaultArgument event for this parameter. | 
|  | void Sema::ActOnDelayedCXXMethodParameter(Scope *S, DeclPtrTy ParamD) { | 
|  | if (!ParamD) | 
|  | return; | 
|  |  | 
|  | ParmVarDecl *Param = cast<ParmVarDecl>(ParamD.getAs<Decl>()); | 
|  |  | 
|  | // If this parameter has an unparsed default argument, clear it out | 
|  | // to make way for the parsed default argument. | 
|  | if (Param->hasUnparsedDefaultArg()) | 
|  | Param->setDefaultArg(0); | 
|  |  | 
|  | S->AddDecl(DeclPtrTy::make(Param)); | 
|  | if (Param->getDeclName()) | 
|  | IdResolver.AddDecl(Param); | 
|  | } | 
|  |  | 
|  | /// ActOnFinishDelayedCXXMethodDeclaration - We have finished | 
|  | /// processing the delayed method declaration for Method. The method | 
|  | /// declaration is now considered finished. There may be a separate | 
|  | /// ActOnStartOfFunctionDef action later (not necessarily | 
|  | /// immediately!) for this method, if it was also defined inside the | 
|  | /// class body. | 
|  | void Sema::ActOnFinishDelayedCXXMethodDeclaration(Scope *S, DeclPtrTy MethodD) { | 
|  | if (!MethodD) | 
|  | return; | 
|  |  | 
|  | FunctionDecl *Method = cast<FunctionDecl>(MethodD.getAs<Decl>()); | 
|  | CXXScopeSpec SS; | 
|  | QualType ClassTy | 
|  | = Context.getTypeDeclType(cast<RecordDecl>(Method->getDeclContext())); | 
|  | SS.setScopeRep( | 
|  | NestedNameSpecifier::Create(Context, 0, false, ClassTy.getTypePtr())); | 
|  | ActOnCXXExitDeclaratorScope(S, SS); | 
|  |  | 
|  | // Now that we have our default arguments, check the constructor | 
|  | // again. It could produce additional diagnostics or affect whether | 
|  | // the class has implicitly-declared destructors, among other | 
|  | // things. | 
|  | if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(Method)) | 
|  | CheckConstructor(Constructor); | 
|  |  | 
|  | // Check the default arguments, which we may have added. | 
|  | if (!Method->isInvalidDecl()) | 
|  | CheckCXXDefaultArguments(Method); | 
|  | } | 
|  |  | 
|  | /// CheckConstructorDeclarator - Called by ActOnDeclarator to check | 
|  | /// the well-formedness of the constructor declarator @p D with type @p | 
|  | /// R. If there are any errors in the declarator, this routine will | 
|  | /// emit diagnostics and set the invalid bit to true.  In any case, the type | 
|  | /// will be updated to reflect a well-formed type for the constructor and | 
|  | /// returned. | 
|  | QualType Sema::CheckConstructorDeclarator(Declarator &D, QualType R, | 
|  | FunctionDecl::StorageClass &SC) { | 
|  | bool isVirtual = D.getDeclSpec().isVirtualSpecified(); | 
|  |  | 
|  | // C++ [class.ctor]p3: | 
|  | //   A constructor shall not be virtual (10.3) or static (9.4). A | 
|  | //   constructor can be invoked for a const, volatile or const | 
|  | //   volatile object. A constructor shall not be declared const, | 
|  | //   volatile, or const volatile (9.3.2). | 
|  | if (isVirtual) { | 
|  | if (!D.isInvalidType()) | 
|  | Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) | 
|  | << "virtual" << SourceRange(D.getDeclSpec().getVirtualSpecLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()); | 
|  | D.setInvalidType(); | 
|  | } | 
|  | if (SC == FunctionDecl::Static) { | 
|  | if (!D.isInvalidType()) | 
|  | Diag(D.getIdentifierLoc(), diag::err_constructor_cannot_be) | 
|  | << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()); | 
|  | D.setInvalidType(); | 
|  | SC = FunctionDecl::None; | 
|  | } | 
|  |  | 
|  | DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; | 
|  | if (FTI.TypeQuals != 0) { | 
|  | if (FTI.TypeQuals & QualType::Const) | 
|  | Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) | 
|  | << "const" << SourceRange(D.getIdentifierLoc()); | 
|  | if (FTI.TypeQuals & QualType::Volatile) | 
|  | Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) | 
|  | << "volatile" << SourceRange(D.getIdentifierLoc()); | 
|  | if (FTI.TypeQuals & QualType::Restrict) | 
|  | Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_constructor) | 
|  | << "restrict" << SourceRange(D.getIdentifierLoc()); | 
|  | } | 
|  |  | 
|  | // Rebuild the function type "R" without any type qualifiers (in | 
|  | // case any of the errors above fired) and with "void" as the | 
|  | // return type, since constructors don't have return types. We | 
|  | // *always* have to do this, because GetTypeForDeclarator will | 
|  | // put in a result type of "int" when none was specified. | 
|  | const FunctionProtoType *Proto = R->getAsFunctionProtoType(); | 
|  | return Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(), | 
|  | Proto->getNumArgs(), | 
|  | Proto->isVariadic(), 0); | 
|  | } | 
|  |  | 
|  | /// CheckConstructor - Checks a fully-formed constructor for | 
|  | /// well-formedness, issuing any diagnostics required. Returns true if | 
|  | /// the constructor declarator is invalid. | 
|  | void Sema::CheckConstructor(CXXConstructorDecl *Constructor) { | 
|  | CXXRecordDecl *ClassDecl | 
|  | = dyn_cast<CXXRecordDecl>(Constructor->getDeclContext()); | 
|  | if (!ClassDecl) | 
|  | return Constructor->setInvalidDecl(); | 
|  |  | 
|  | // C++ [class.copy]p3: | 
|  | //   A declaration of a constructor for a class X is ill-formed if | 
|  | //   its first parameter is of type (optionally cv-qualified) X and | 
|  | //   either there are no other parameters or else all other | 
|  | //   parameters have default arguments. | 
|  | if (!Constructor->isInvalidDecl() && | 
|  | ((Constructor->getNumParams() == 1) || | 
|  | (Constructor->getNumParams() > 1 && | 
|  | Constructor->getParamDecl(1)->hasDefaultArg()))) { | 
|  | QualType ParamType = Constructor->getParamDecl(0)->getType(); | 
|  | QualType ClassTy = Context.getTagDeclType(ClassDecl); | 
|  | if (Context.getCanonicalType(ParamType).getUnqualifiedType() == ClassTy) { | 
|  | SourceLocation ParamLoc = Constructor->getParamDecl(0)->getLocation(); | 
|  | Diag(ParamLoc, diag::err_constructor_byvalue_arg) | 
|  | << CodeModificationHint::CreateInsertion(ParamLoc, " const &"); | 
|  | Constructor->setInvalidDecl(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Notify the class that we've added a constructor. | 
|  | ClassDecl->addedConstructor(Context, Constructor); | 
|  | } | 
|  |  | 
|  | static inline bool | 
|  | FTIHasSingleVoidArgument(DeclaratorChunk::FunctionTypeInfo &FTI) { | 
|  | return (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 && | 
|  | FTI.ArgInfo[0].Param && | 
|  | FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()); | 
|  | } | 
|  |  | 
|  | /// CheckDestructorDeclarator - Called by ActOnDeclarator to check | 
|  | /// the well-formednes of the destructor declarator @p D with type @p | 
|  | /// R. If there are any errors in the declarator, this routine will | 
|  | /// emit diagnostics and set the declarator to invalid.  Even if this happens, | 
|  | /// will be updated to reflect a well-formed type for the destructor and | 
|  | /// returned. | 
|  | QualType Sema::CheckDestructorDeclarator(Declarator &D, | 
|  | FunctionDecl::StorageClass& SC) { | 
|  | // C++ [class.dtor]p1: | 
|  | //   [...] A typedef-name that names a class is a class-name | 
|  | //   (7.1.3); however, a typedef-name that names a class shall not | 
|  | //   be used as the identifier in the declarator for a destructor | 
|  | //   declaration. | 
|  | QualType DeclaratorType = QualType::getFromOpaquePtr(D.getDeclaratorIdType()); | 
|  | if (isa<TypedefType>(DeclaratorType)) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_destructor_typedef_name) | 
|  | << DeclaratorType; | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // C++ [class.dtor]p2: | 
|  | //   A destructor is used to destroy objects of its class type. A | 
|  | //   destructor takes no parameters, and no return type can be | 
|  | //   specified for it (not even void). The address of a destructor | 
|  | //   shall not be taken. A destructor shall not be static. A | 
|  | //   destructor can be invoked for a const, volatile or const | 
|  | //   volatile object. A destructor shall not be declared const, | 
|  | //   volatile or const volatile (9.3.2). | 
|  | if (SC == FunctionDecl::Static) { | 
|  | if (!D.isInvalidType()) | 
|  | Diag(D.getIdentifierLoc(), diag::err_destructor_cannot_be) | 
|  | << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()); | 
|  | SC = FunctionDecl::None; | 
|  | D.setInvalidType(); | 
|  | } | 
|  | if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) { | 
|  | // Destructors don't have return types, but the parser will | 
|  | // happily parse something like: | 
|  | // | 
|  | //   class X { | 
|  | //     float ~X(); | 
|  | //   }; | 
|  | // | 
|  | // The return type will be eliminated later. | 
|  | Diag(D.getIdentifierLoc(), diag::err_destructor_return_type) | 
|  | << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()); | 
|  | } | 
|  |  | 
|  | DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun; | 
|  | if (FTI.TypeQuals != 0 && !D.isInvalidType()) { | 
|  | if (FTI.TypeQuals & QualType::Const) | 
|  | Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) | 
|  | << "const" << SourceRange(D.getIdentifierLoc()); | 
|  | if (FTI.TypeQuals & QualType::Volatile) | 
|  | Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) | 
|  | << "volatile" << SourceRange(D.getIdentifierLoc()); | 
|  | if (FTI.TypeQuals & QualType::Restrict) | 
|  | Diag(D.getIdentifierLoc(), diag::err_invalid_qualified_destructor) | 
|  | << "restrict" << SourceRange(D.getIdentifierLoc()); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // Make sure we don't have any parameters. | 
|  | if (FTI.NumArgs > 0 && !FTIHasSingleVoidArgument(FTI)) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_destructor_with_params); | 
|  |  | 
|  | // Delete the parameters. | 
|  | FTI.freeArgs(); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // Make sure the destructor isn't variadic. | 
|  | if (FTI.isVariadic) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_destructor_variadic); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // Rebuild the function type "R" without any type qualifiers or | 
|  | // parameters (in case any of the errors above fired) and with | 
|  | // "void" as the return type, since destructors don't have return | 
|  | // types. We *always* have to do this, because GetTypeForDeclarator | 
|  | // will put in a result type of "int" when none was specified. | 
|  | return Context.getFunctionType(Context.VoidTy, 0, 0, false, 0); | 
|  | } | 
|  |  | 
|  | /// CheckConversionDeclarator - Called by ActOnDeclarator to check the | 
|  | /// well-formednes of the conversion function declarator @p D with | 
|  | /// type @p R. If there are any errors in the declarator, this routine | 
|  | /// will emit diagnostics and return true. Otherwise, it will return | 
|  | /// false. Either way, the type @p R will be updated to reflect a | 
|  | /// well-formed type for the conversion operator. | 
|  | void Sema::CheckConversionDeclarator(Declarator &D, QualType &R, | 
|  | FunctionDecl::StorageClass& SC) { | 
|  | // C++ [class.conv.fct]p1: | 
|  | //   Neither parameter types nor return type can be specified. The | 
|  | //   type of a conversion function (8.3.5) is “function taking no | 
|  | //   parameter returning conversion-type-id.” | 
|  | if (SC == FunctionDecl::Static) { | 
|  | if (!D.isInvalidType()) | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_not_member) | 
|  | << "static" << SourceRange(D.getDeclSpec().getStorageClassSpecLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()); | 
|  | D.setInvalidType(); | 
|  | SC = FunctionDecl::None; | 
|  | } | 
|  | if (D.getDeclSpec().hasTypeSpecifier() && !D.isInvalidType()) { | 
|  | // Conversion functions don't have return types, but the parser will | 
|  | // happily parse something like: | 
|  | // | 
|  | //   class X { | 
|  | //     float operator bool(); | 
|  | //   }; | 
|  | // | 
|  | // The return type will be changed later anyway. | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_return_type) | 
|  | << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()) | 
|  | << SourceRange(D.getIdentifierLoc()); | 
|  | } | 
|  |  | 
|  | // Make sure we don't have any parameters. | 
|  | if (R->getAsFunctionProtoType()->getNumArgs() > 0) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_with_params); | 
|  |  | 
|  | // Delete the parameters. | 
|  | D.getTypeObject(0).Fun.freeArgs(); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // Make sure the conversion function isn't variadic. | 
|  | if (R->getAsFunctionProtoType()->isVariadic() && !D.isInvalidType()) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_variadic); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // C++ [class.conv.fct]p4: | 
|  | //   The conversion-type-id shall not represent a function type nor | 
|  | //   an array type. | 
|  | QualType ConvType = QualType::getFromOpaquePtr(D.getDeclaratorIdType()); | 
|  | if (ConvType->isArrayType()) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_to_array); | 
|  | ConvType = Context.getPointerType(ConvType); | 
|  | D.setInvalidType(); | 
|  | } else if (ConvType->isFunctionType()) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_conv_function_to_function); | 
|  | ConvType = Context.getPointerType(ConvType); | 
|  | D.setInvalidType(); | 
|  | } | 
|  |  | 
|  | // Rebuild the function type "R" without any parameters (in case any | 
|  | // of the errors above fired) and with the conversion type as the | 
|  | // return type. | 
|  | R = Context.getFunctionType(ConvType, 0, 0, false, | 
|  | R->getAsFunctionProtoType()->getTypeQuals()); | 
|  |  | 
|  | // C++0x explicit conversion operators. | 
|  | if (D.getDeclSpec().isExplicitSpecified() && !getLangOptions().CPlusPlus0x) | 
|  | Diag(D.getDeclSpec().getExplicitSpecLoc(), | 
|  | diag::warn_explicit_conversion_functions) | 
|  | << SourceRange(D.getDeclSpec().getExplicitSpecLoc()); | 
|  | } | 
|  |  | 
|  | /// ActOnConversionDeclarator - Called by ActOnDeclarator to complete | 
|  | /// the declaration of the given C++ conversion function. This routine | 
|  | /// is responsible for recording the conversion function in the C++ | 
|  | /// class, if possible. | 
|  | Sema::DeclPtrTy Sema::ActOnConversionDeclarator(CXXConversionDecl *Conversion) { | 
|  | assert(Conversion && "Expected to receive a conversion function declaration"); | 
|  |  | 
|  | // Set the lexical context of this conversion function | 
|  | Conversion->setLexicalDeclContext(CurContext); | 
|  |  | 
|  | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(Conversion->getDeclContext()); | 
|  |  | 
|  | // Make sure we aren't redeclaring the conversion function. | 
|  | QualType ConvType = Context.getCanonicalType(Conversion->getConversionType()); | 
|  |  | 
|  | // C++ [class.conv.fct]p1: | 
|  | //   [...] A conversion function is never used to convert a | 
|  | //   (possibly cv-qualified) object to the (possibly cv-qualified) | 
|  | //   same object type (or a reference to it), to a (possibly | 
|  | //   cv-qualified) base class of that type (or a reference to it), | 
|  | //   or to (possibly cv-qualified) void. | 
|  | // FIXME: Suppress this warning if the conversion function ends up being a | 
|  | // virtual function that overrides a virtual function in a base class. | 
|  | QualType ClassType | 
|  | = Context.getCanonicalType(Context.getTypeDeclType(ClassDecl)); | 
|  | if (const ReferenceType *ConvTypeRef = ConvType->getAsReferenceType()) | 
|  | ConvType = ConvTypeRef->getPointeeType(); | 
|  | if (ConvType->isRecordType()) { | 
|  | ConvType = Context.getCanonicalType(ConvType).getUnqualifiedType(); | 
|  | if (ConvType == ClassType) | 
|  | Diag(Conversion->getLocation(), diag::warn_conv_to_self_not_used) | 
|  | << ClassType; | 
|  | else if (IsDerivedFrom(ClassType, ConvType)) | 
|  | Diag(Conversion->getLocation(), diag::warn_conv_to_base_not_used) | 
|  | <<  ClassType << ConvType; | 
|  | } else if (ConvType->isVoidType()) { | 
|  | Diag(Conversion->getLocation(), diag::warn_conv_to_void_not_used) | 
|  | << ClassType << ConvType; | 
|  | } | 
|  |  | 
|  | if (Conversion->getPreviousDeclaration()) { | 
|  | OverloadedFunctionDecl *Conversions = ClassDecl->getConversionFunctions(); | 
|  | for (OverloadedFunctionDecl::function_iterator | 
|  | Conv = Conversions->function_begin(), | 
|  | ConvEnd = Conversions->function_end(); | 
|  | Conv != ConvEnd; ++Conv) { | 
|  | if (*Conv | 
|  | == cast_or_null<NamedDecl>(Conversion->getPreviousDeclaration())) { | 
|  | *Conv = Conversion; | 
|  | return DeclPtrTy::make(Conversion); | 
|  | } | 
|  | } | 
|  | assert(Conversion->isInvalidDecl() && "Conversion should not get here."); | 
|  | } else | 
|  | ClassDecl->addConversionFunction(Context, Conversion); | 
|  |  | 
|  | return DeclPtrTy::make(Conversion); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Namespace Handling | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ActOnStartNamespaceDef - This is called at the start of a namespace | 
|  | /// definition. | 
|  | Sema::DeclPtrTy Sema::ActOnStartNamespaceDef(Scope *NamespcScope, | 
|  | SourceLocation IdentLoc, | 
|  | IdentifierInfo *II, | 
|  | SourceLocation LBrace) { | 
|  | NamespaceDecl *Namespc = | 
|  | NamespaceDecl::Create(Context, CurContext, IdentLoc, II); | 
|  | Namespc->setLBracLoc(LBrace); | 
|  |  | 
|  | Scope *DeclRegionScope = NamespcScope->getParent(); | 
|  |  | 
|  | if (II) { | 
|  | // C++ [namespace.def]p2: | 
|  | // The identifier in an original-namespace-definition shall not have been | 
|  | // previously defined in the declarative region in which the | 
|  | // original-namespace-definition appears. The identifier in an | 
|  | // original-namespace-definition is the name of the namespace. Subsequently | 
|  | // in that declarative region, it is treated as an original-namespace-name. | 
|  |  | 
|  | NamedDecl *PrevDecl = LookupName(DeclRegionScope, II, LookupOrdinaryName, | 
|  | true); | 
|  |  | 
|  | if (NamespaceDecl *OrigNS = dyn_cast_or_null<NamespaceDecl>(PrevDecl)) { | 
|  | // This is an extended namespace definition. | 
|  | // Attach this namespace decl to the chain of extended namespace | 
|  | // definitions. | 
|  | OrigNS->setNextNamespace(Namespc); | 
|  | Namespc->setOriginalNamespace(OrigNS->getOriginalNamespace()); | 
|  |  | 
|  | // Remove the previous declaration from the scope. | 
|  | if (DeclRegionScope->isDeclScope(DeclPtrTy::make(OrigNS))) { | 
|  | IdResolver.RemoveDecl(OrigNS); | 
|  | DeclRegionScope->RemoveDecl(DeclPtrTy::make(OrigNS)); | 
|  | } | 
|  | } else if (PrevDecl) { | 
|  | // This is an invalid name redefinition. | 
|  | Diag(Namespc->getLocation(), diag::err_redefinition_different_kind) | 
|  | << Namespc->getDeclName(); | 
|  | Diag(PrevDecl->getLocation(), diag::note_previous_definition); | 
|  | Namespc->setInvalidDecl(); | 
|  | // Continue on to push Namespc as current DeclContext and return it. | 
|  | } | 
|  |  | 
|  | PushOnScopeChains(Namespc, DeclRegionScope); | 
|  | } else { | 
|  | // FIXME: Handle anonymous namespaces | 
|  | } | 
|  |  | 
|  | // Although we could have an invalid decl (i.e. the namespace name is a | 
|  | // redefinition), push it as current DeclContext and try to continue parsing. | 
|  | // FIXME: We should be able to push Namespc here, so that the each DeclContext | 
|  | // for the namespace has the declarations that showed up in that particular | 
|  | // namespace definition. | 
|  | PushDeclContext(NamespcScope, Namespc); | 
|  | return DeclPtrTy::make(Namespc); | 
|  | } | 
|  |  | 
|  | /// ActOnFinishNamespaceDef - This callback is called after a namespace is | 
|  | /// exited. Decl is the DeclTy returned by ActOnStartNamespaceDef. | 
|  | void Sema::ActOnFinishNamespaceDef(DeclPtrTy D, SourceLocation RBrace) { | 
|  | Decl *Dcl = D.getAs<Decl>(); | 
|  | NamespaceDecl *Namespc = dyn_cast_or_null<NamespaceDecl>(Dcl); | 
|  | assert(Namespc && "Invalid parameter, expected NamespaceDecl"); | 
|  | Namespc->setRBracLoc(RBrace); | 
|  | PopDeclContext(); | 
|  | } | 
|  |  | 
|  | Sema::DeclPtrTy Sema::ActOnUsingDirective(Scope *S, | 
|  | SourceLocation UsingLoc, | 
|  | SourceLocation NamespcLoc, | 
|  | const CXXScopeSpec &SS, | 
|  | SourceLocation IdentLoc, | 
|  | IdentifierInfo *NamespcName, | 
|  | AttributeList *AttrList) { | 
|  | assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); | 
|  | assert(NamespcName && "Invalid NamespcName."); | 
|  | assert(IdentLoc.isValid() && "Invalid NamespceName location."); | 
|  | assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); | 
|  |  | 
|  | UsingDirectiveDecl *UDir = 0; | 
|  |  | 
|  | // Lookup namespace name. | 
|  | LookupResult R = LookupParsedName(S, &SS, NamespcName, | 
|  | LookupNamespaceName, false); | 
|  | if (R.isAmbiguous()) { | 
|  | DiagnoseAmbiguousLookup(R, NamespcName, IdentLoc); | 
|  | return DeclPtrTy(); | 
|  | } | 
|  | if (NamedDecl *NS = R) { | 
|  | assert(isa<NamespaceDecl>(NS) && "expected namespace decl"); | 
|  | // C++ [namespace.udir]p1: | 
|  | //   A using-directive specifies that the names in the nominated | 
|  | //   namespace can be used in the scope in which the | 
|  | //   using-directive appears after the using-directive. During | 
|  | //   unqualified name lookup (3.4.1), the names appear as if they | 
|  | //   were declared in the nearest enclosing namespace which | 
|  | //   contains both the using-directive and the nominated | 
|  | //   namespace. [Note: in this context, “contains” means “contains | 
|  | //   directly or indirectly”. ] | 
|  |  | 
|  | // Find enclosing context containing both using-directive and | 
|  | // nominated namespace. | 
|  | DeclContext *CommonAncestor = cast<DeclContext>(NS); | 
|  | while (CommonAncestor && !CommonAncestor->Encloses(CurContext)) | 
|  | CommonAncestor = CommonAncestor->getParent(); | 
|  |  | 
|  | UDir = UsingDirectiveDecl::Create(Context, | 
|  | CurContext, UsingLoc, | 
|  | NamespcLoc, | 
|  | SS.getRange(), | 
|  | (NestedNameSpecifier *)SS.getScopeRep(), | 
|  | IdentLoc, | 
|  | cast<NamespaceDecl>(NS), | 
|  | CommonAncestor); | 
|  | PushUsingDirective(S, UDir); | 
|  | } else { | 
|  | Diag(IdentLoc, diag::err_expected_namespace_name) << SS.getRange(); | 
|  | } | 
|  |  | 
|  | // FIXME: We ignore attributes for now. | 
|  | delete AttrList; | 
|  | return DeclPtrTy::make(UDir); | 
|  | } | 
|  |  | 
|  | void Sema::PushUsingDirective(Scope *S, UsingDirectiveDecl *UDir) { | 
|  | // If scope has associated entity, then using directive is at namespace | 
|  | // or translation unit scope. We add UsingDirectiveDecls, into | 
|  | // it's lookup structure. | 
|  | if (DeclContext *Ctx = static_cast<DeclContext*>(S->getEntity())) | 
|  | Ctx->addDecl(UDir); | 
|  | else | 
|  | // Otherwise it is block-sope. using-directives will affect lookup | 
|  | // only to the end of scope. | 
|  | S->PushUsingDirective(DeclPtrTy::make(UDir)); | 
|  | } | 
|  |  | 
|  |  | 
|  | Sema::DeclPtrTy Sema::ActOnUsingDeclaration(Scope *S, | 
|  | SourceLocation UsingLoc, | 
|  | const CXXScopeSpec &SS, | 
|  | SourceLocation IdentLoc, | 
|  | IdentifierInfo *TargetName, | 
|  | OverloadedOperatorKind Op, | 
|  | AttributeList *AttrList, | 
|  | bool IsTypeName) { | 
|  | assert(!SS.isInvalid() && "Invalid CXXScopeSpec."); | 
|  | assert((TargetName || Op) && "Invalid TargetName."); | 
|  | assert(IdentLoc.isValid() && "Invalid TargetName location."); | 
|  | assert(S->getFlags() & Scope::DeclScope && "Invalid Scope."); | 
|  |  | 
|  | UsingDecl *UsingAlias = 0; | 
|  |  | 
|  | DeclarationName Name; | 
|  | if (TargetName) | 
|  | Name = TargetName; | 
|  | else | 
|  | Name = Context.DeclarationNames.getCXXOperatorName(Op); | 
|  |  | 
|  | // Lookup target name. | 
|  | LookupResult R = LookupParsedName(S, &SS, Name, LookupOrdinaryName, false); | 
|  |  | 
|  | if (NamedDecl *NS = R) { | 
|  | if (IsTypeName && !isa<TypeDecl>(NS)) { | 
|  | Diag(IdentLoc, diag::err_using_typename_non_type); | 
|  | } | 
|  | UsingAlias = UsingDecl::Create(Context, CurContext, IdentLoc, SS.getRange(), | 
|  | NS->getLocation(), UsingLoc, NS, | 
|  | static_cast<NestedNameSpecifier *>(SS.getScopeRep()), | 
|  | IsTypeName); | 
|  | PushOnScopeChains(UsingAlias, S); | 
|  | } else { | 
|  | Diag(IdentLoc, diag::err_using_requires_qualname) << SS.getRange(); | 
|  | } | 
|  |  | 
|  | // FIXME: We ignore attributes for now. | 
|  | delete AttrList; | 
|  | return DeclPtrTy::make(UsingAlias); | 
|  | } | 
|  |  | 
|  | /// getNamespaceDecl - Returns the namespace a decl represents. If the decl | 
|  | /// is a namespace alias, returns the namespace it points to. | 
|  | static inline NamespaceDecl *getNamespaceDecl(NamedDecl *D) { | 
|  | if (NamespaceAliasDecl *AD = dyn_cast_or_null<NamespaceAliasDecl>(D)) | 
|  | return AD->getNamespace(); | 
|  | return dyn_cast_or_null<NamespaceDecl>(D); | 
|  | } | 
|  |  | 
|  | Sema::DeclPtrTy Sema::ActOnNamespaceAliasDef(Scope *S, | 
|  | SourceLocation NamespaceLoc, | 
|  | SourceLocation AliasLoc, | 
|  | IdentifierInfo *Alias, | 
|  | const CXXScopeSpec &SS, | 
|  | SourceLocation IdentLoc, | 
|  | IdentifierInfo *Ident) { | 
|  |  | 
|  | // Lookup the namespace name. | 
|  | LookupResult R = LookupParsedName(S, &SS, Ident, LookupNamespaceName, false); | 
|  |  | 
|  | // Check if we have a previous declaration with the same name. | 
|  | if (NamedDecl *PrevDecl = LookupName(S, Alias, LookupOrdinaryName, true)) { | 
|  | if (NamespaceAliasDecl *AD = dyn_cast<NamespaceAliasDecl>(PrevDecl)) { | 
|  | // We already have an alias with the same name that points to the same | 
|  | // namespace, so don't create a new one. | 
|  | if (!R.isAmbiguous() && AD->getNamespace() == getNamespaceDecl(R)) | 
|  | return DeclPtrTy(); | 
|  | } | 
|  |  | 
|  | unsigned DiagID = isa<NamespaceDecl>(PrevDecl) ? diag::err_redefinition : | 
|  | diag::err_redefinition_different_kind; | 
|  | Diag(AliasLoc, DiagID) << Alias; | 
|  | Diag(PrevDecl->getLocation(), diag::note_previous_definition); | 
|  | return DeclPtrTy(); | 
|  | } | 
|  |  | 
|  | if (R.isAmbiguous()) { | 
|  | DiagnoseAmbiguousLookup(R, Ident, IdentLoc); | 
|  | return DeclPtrTy(); | 
|  | } | 
|  |  | 
|  | if (!R) { | 
|  | Diag(NamespaceLoc, diag::err_expected_namespace_name) << SS.getRange(); | 
|  | return DeclPtrTy(); | 
|  | } | 
|  |  | 
|  | NamespaceAliasDecl *AliasDecl = | 
|  | NamespaceAliasDecl::Create(Context, CurContext, NamespaceLoc, AliasLoc, | 
|  | Alias, SS.getRange(), | 
|  | (NestedNameSpecifier *)SS.getScopeRep(), | 
|  | IdentLoc, R); | 
|  |  | 
|  | CurContext->addDecl(AliasDecl); | 
|  | return DeclPtrTy::make(AliasDecl); | 
|  | } | 
|  |  | 
|  | void Sema::DefineImplicitDefaultConstructor(SourceLocation CurrentLocation, | 
|  | CXXConstructorDecl *Constructor) { | 
|  | assert((Constructor->isImplicit() && Constructor->isDefaultConstructor() && | 
|  | !Constructor->isUsed()) && | 
|  | "DefineImplicitDefaultConstructor - call it for implicit default ctor"); | 
|  |  | 
|  | CXXRecordDecl *ClassDecl | 
|  | = cast<CXXRecordDecl>(Constructor->getDeclContext()); | 
|  | assert(ClassDecl && "DefineImplicitDefaultConstructor - invalid constructor"); | 
|  | // Before the implicitly-declared default constructor for a class is | 
|  | // implicitly defined, all the implicitly-declared default constructors | 
|  | // for its base class and its non-static data members shall have been | 
|  | // implicitly defined. | 
|  | bool err = false; | 
|  | for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), | 
|  | E = ClassDecl->bases_end(); Base != E; ++Base) { | 
|  | CXXRecordDecl *BaseClassDecl | 
|  | = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl()); | 
|  | if (!BaseClassDecl->hasTrivialConstructor()) { | 
|  | if (CXXConstructorDecl *BaseCtor = | 
|  | BaseClassDecl->getDefaultConstructor(Context)) | 
|  | MarkDeclarationReferenced(CurrentLocation, BaseCtor); | 
|  | else { | 
|  | Diag(CurrentLocation, diag::err_defining_default_ctor) | 
|  | << Context.getTagDeclType(ClassDecl) << 1 | 
|  | << Context.getTagDeclType(BaseClassDecl); | 
|  | Diag(BaseClassDecl->getLocation(), diag::note_previous_class_decl) | 
|  | << Context.getTagDeclType(BaseClassDecl); | 
|  | err = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), | 
|  | E = ClassDecl->field_end(); Field != E; ++Field) { | 
|  | QualType FieldType = Context.getCanonicalType((*Field)->getType()); | 
|  | if (const ArrayType *Array = Context.getAsArrayType(FieldType)) | 
|  | FieldType = Array->getElementType(); | 
|  | if (const RecordType *FieldClassType = FieldType->getAsRecordType()) { | 
|  | CXXRecordDecl *FieldClassDecl | 
|  | = cast<CXXRecordDecl>(FieldClassType->getDecl()); | 
|  | if (!FieldClassDecl->hasTrivialConstructor()) { | 
|  | if (CXXConstructorDecl *FieldCtor = | 
|  | FieldClassDecl->getDefaultConstructor(Context)) | 
|  | MarkDeclarationReferenced(CurrentLocation, FieldCtor); | 
|  | else { | 
|  | Diag(CurrentLocation, diag::err_defining_default_ctor) | 
|  | << Context.getTagDeclType(ClassDecl) << 0 << | 
|  | Context.getTagDeclType(FieldClassDecl); | 
|  | Diag(FieldClassDecl->getLocation(), diag::note_previous_class_decl) | 
|  | << Context.getTagDeclType(FieldClassDecl); | 
|  | err = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | else if (FieldType->isReferenceType()) { | 
|  | Diag(CurrentLocation, diag::err_unintialized_member) | 
|  | << Context.getTagDeclType(ClassDecl) << 0 << Field->getDeclName(); | 
|  | Diag((*Field)->getLocation(), diag::note_declared_at); | 
|  | err = true; | 
|  | } | 
|  | else if (FieldType.isConstQualified()) { | 
|  | Diag(CurrentLocation, diag::err_unintialized_member) | 
|  | << Context.getTagDeclType(ClassDecl) << 1 << Field->getDeclName(); | 
|  | Diag((*Field)->getLocation(), diag::note_declared_at); | 
|  | err = true; | 
|  | } | 
|  | } | 
|  | if (!err) | 
|  | Constructor->setUsed(); | 
|  | else | 
|  | Constructor->setInvalidDecl(); | 
|  | } | 
|  |  | 
|  | void Sema::DefineImplicitDestructor(SourceLocation CurrentLocation, | 
|  | CXXDestructorDecl *Destructor) { | 
|  | assert((Destructor->isImplicit() && !Destructor->isUsed()) && | 
|  | "DefineImplicitDestructor - call it for implicit default dtor"); | 
|  |  | 
|  | CXXRecordDecl *ClassDecl | 
|  | = cast<CXXRecordDecl>(Destructor->getDeclContext()); | 
|  | assert(ClassDecl && "DefineImplicitDestructor - invalid destructor"); | 
|  | // C++ [class.dtor] p5 | 
|  | // Before the implicitly-declared default destructor for a class is | 
|  | // implicitly defined, all the implicitly-declared default destructors | 
|  | // for its base class and its non-static data members shall have been | 
|  | // implicitly defined. | 
|  | for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), | 
|  | E = ClassDecl->bases_end(); Base != E; ++Base) { | 
|  | CXXRecordDecl *BaseClassDecl | 
|  | = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl()); | 
|  | if (!BaseClassDecl->hasTrivialDestructor()) { | 
|  | if (CXXDestructorDecl *BaseDtor = | 
|  | const_cast<CXXDestructorDecl*>(BaseClassDecl->getDestructor(Context))) | 
|  | MarkDeclarationReferenced(CurrentLocation, BaseDtor); | 
|  | else | 
|  | assert(false && | 
|  | "DefineImplicitDestructor - missing dtor in a base class"); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), | 
|  | E = ClassDecl->field_end(); Field != E; ++Field) { | 
|  | QualType FieldType = Context.getCanonicalType((*Field)->getType()); | 
|  | if (const ArrayType *Array = Context.getAsArrayType(FieldType)) | 
|  | FieldType = Array->getElementType(); | 
|  | if (const RecordType *FieldClassType = FieldType->getAsRecordType()) { | 
|  | CXXRecordDecl *FieldClassDecl | 
|  | = cast<CXXRecordDecl>(FieldClassType->getDecl()); | 
|  | if (!FieldClassDecl->hasTrivialDestructor()) { | 
|  | if (CXXDestructorDecl *FieldDtor = | 
|  | const_cast<CXXDestructorDecl*>( | 
|  | FieldClassDecl->getDestructor(Context))) | 
|  | MarkDeclarationReferenced(CurrentLocation, FieldDtor); | 
|  | else | 
|  | assert(false && | 
|  | "DefineImplicitDestructor - missing dtor in class of a data member"); | 
|  | } | 
|  | } | 
|  | } | 
|  | Destructor->setUsed(); | 
|  | } | 
|  |  | 
|  | void Sema::DefineImplicitOverloadedAssign(SourceLocation CurrentLocation, | 
|  | CXXMethodDecl *MethodDecl) { | 
|  | assert((MethodDecl->isImplicit() && MethodDecl->isOverloadedOperator() && | 
|  | MethodDecl->getOverloadedOperator() == OO_Equal && | 
|  | !MethodDecl->isUsed()) && | 
|  | "DefineImplicitOverloadedAssign - call it for implicit assignment op"); | 
|  |  | 
|  | CXXRecordDecl *ClassDecl | 
|  | = cast<CXXRecordDecl>(MethodDecl->getDeclContext()); | 
|  |  | 
|  | // C++[class.copy] p12 | 
|  | // Before the implicitly-declared copy assignment operator for a class is | 
|  | // implicitly defined, all implicitly-declared copy assignment operators | 
|  | // for its direct base classes and its nonstatic data members shall have | 
|  | // been implicitly defined. | 
|  | bool err = false; | 
|  | for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(), | 
|  | E = ClassDecl->bases_end(); Base != E; ++Base) { | 
|  | CXXRecordDecl *BaseClassDecl | 
|  | = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl()); | 
|  | if (CXXMethodDecl *BaseAssignOpMethod = | 
|  | getAssignOperatorMethod(MethodDecl->getParamDecl(0), BaseClassDecl)) | 
|  | MarkDeclarationReferenced(CurrentLocation, BaseAssignOpMethod); | 
|  | } | 
|  | for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), | 
|  | E = ClassDecl->field_end(); Field != E; ++Field) { | 
|  | QualType FieldType = Context.getCanonicalType((*Field)->getType()); | 
|  | if (const ArrayType *Array = Context.getAsArrayType(FieldType)) | 
|  | FieldType = Array->getElementType(); | 
|  | if (const RecordType *FieldClassType = FieldType->getAsRecordType()) { | 
|  | CXXRecordDecl *FieldClassDecl | 
|  | = cast<CXXRecordDecl>(FieldClassType->getDecl()); | 
|  | if (CXXMethodDecl *FieldAssignOpMethod = | 
|  | getAssignOperatorMethod(MethodDecl->getParamDecl(0), FieldClassDecl)) | 
|  | MarkDeclarationReferenced(CurrentLocation, FieldAssignOpMethod); | 
|  | } | 
|  | else if (FieldType->isReferenceType()) { | 
|  | Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) | 
|  | << Context.getTagDeclType(ClassDecl) << 0 << (*Field)->getNameAsCString(); | 
|  | Diag((*Field)->getLocation(), diag::note_declared_at); | 
|  | Diag(CurrentLocation, diag::note_first_required_here); | 
|  | err = true; | 
|  | } | 
|  | else if (FieldType.isConstQualified()) { | 
|  | Diag(ClassDecl->getLocation(), diag::err_uninitialized_member_for_assign) | 
|  | << Context.getTagDeclType(ClassDecl) << 1 << (*Field)->getNameAsCString(); | 
|  | Diag((*Field)->getLocation(), diag::note_declared_at); | 
|  | Diag(CurrentLocation, diag::note_first_required_here); | 
|  | err = true; | 
|  | } | 
|  | } | 
|  | if (!err) | 
|  | MethodDecl->setUsed(); | 
|  | } | 
|  |  | 
|  | CXXMethodDecl * | 
|  | Sema::getAssignOperatorMethod(ParmVarDecl *ParmDecl, | 
|  | CXXRecordDecl *ClassDecl) { | 
|  | QualType LHSType = Context.getTypeDeclType(ClassDecl); | 
|  | QualType RHSType(LHSType); | 
|  | // If class's assignment operator argument is const/volatile qualified, | 
|  | // look for operator = (const/volatile B&). Otherwise, look for | 
|  | // operator = (B&). | 
|  | if (ParmDecl->getType().isConstQualified()) | 
|  | RHSType.addConst(); | 
|  | if (ParmDecl->getType().isVolatileQualified()) | 
|  | RHSType.addVolatile(); | 
|  | ExprOwningPtr<Expr> LHS(this,  new (Context) DeclRefExpr(ParmDecl, | 
|  | LHSType, | 
|  | SourceLocation())); | 
|  | ExprOwningPtr<Expr> RHS(this,  new (Context) DeclRefExpr(ParmDecl, | 
|  | RHSType, | 
|  | SourceLocation())); | 
|  | Expr *Args[2] = { &*LHS, &*RHS }; | 
|  | OverloadCandidateSet CandidateSet; | 
|  | AddMemberOperatorCandidates(clang::OO_Equal, SourceLocation(), Args, 2, | 
|  | CandidateSet); | 
|  | OverloadCandidateSet::iterator Best; | 
|  | if (BestViableFunction(CandidateSet, | 
|  | ClassDecl->getLocation(), Best) == OR_Success) | 
|  | return cast<CXXMethodDecl>(Best->Function); | 
|  | assert(false && | 
|  | "getAssignOperatorMethod - copy assignment operator method not found"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void Sema::DefineImplicitCopyConstructor(SourceLocation CurrentLocation, | 
|  | CXXConstructorDecl *CopyConstructor, | 
|  | unsigned TypeQuals) { | 
|  | assert((CopyConstructor->isImplicit() && | 
|  | CopyConstructor->isCopyConstructor(Context, TypeQuals) && | 
|  | !CopyConstructor->isUsed()) && | 
|  | "DefineImplicitCopyConstructor - call it for implicit copy ctor"); | 
|  |  | 
|  | CXXRecordDecl *ClassDecl | 
|  | = cast<CXXRecordDecl>(CopyConstructor->getDeclContext()); | 
|  | assert(ClassDecl && "DefineImplicitCopyConstructor - invalid constructor"); | 
|  | // C++ [class.copy] p209 | 
|  | // Before the implicitly-declared copy constructor for a class is | 
|  | // implicitly defined, all the implicitly-declared copy constructors | 
|  | // for its base class and its non-static data members shall have been | 
|  | // implicitly defined. | 
|  | for (CXXRecordDecl::base_class_iterator Base = ClassDecl->bases_begin(); | 
|  | Base != ClassDecl->bases_end(); ++Base) { | 
|  | CXXRecordDecl *BaseClassDecl | 
|  | = cast<CXXRecordDecl>(Base->getType()->getAsRecordType()->getDecl()); | 
|  | if (CXXConstructorDecl *BaseCopyCtor = | 
|  | BaseClassDecl->getCopyConstructor(Context, TypeQuals)) | 
|  | MarkDeclarationReferenced(CurrentLocation, BaseCopyCtor); | 
|  | } | 
|  | for (CXXRecordDecl::field_iterator Field = ClassDecl->field_begin(), | 
|  | FieldEnd = ClassDecl->field_end(); | 
|  | Field != FieldEnd; ++Field) { | 
|  | QualType FieldType = Context.getCanonicalType((*Field)->getType()); | 
|  | if (const ArrayType *Array = Context.getAsArrayType(FieldType)) | 
|  | FieldType = Array->getElementType(); | 
|  | if (const RecordType *FieldClassType = FieldType->getAsRecordType()) { | 
|  | CXXRecordDecl *FieldClassDecl | 
|  | = cast<CXXRecordDecl>(FieldClassType->getDecl()); | 
|  | if (CXXConstructorDecl *FieldCopyCtor = | 
|  | FieldClassDecl->getCopyConstructor(Context, TypeQuals)) | 
|  | MarkDeclarationReferenced(CurrentLocation, FieldCopyCtor); | 
|  | } | 
|  | } | 
|  | CopyConstructor->setUsed(); | 
|  | } | 
|  |  | 
|  | void Sema::InitializeVarWithConstructor(VarDecl *VD, | 
|  | CXXConstructorDecl *Constructor, | 
|  | QualType DeclInitType, | 
|  | Expr **Exprs, unsigned NumExprs) { | 
|  | Expr *Temp = CXXConstructExpr::Create(Context, DeclInitType, Constructor, | 
|  | false, Exprs, NumExprs); | 
|  | MarkDeclarationReferenced(VD->getLocation(), Constructor); | 
|  | VD->setInit(Context, Temp); | 
|  | } | 
|  |  | 
|  | void Sema::MarkDestructorReferenced(SourceLocation Loc, QualType DeclInitType) | 
|  | { | 
|  | CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>( | 
|  | DeclInitType->getAsRecordType()->getDecl()); | 
|  | if (!ClassDecl->hasTrivialDestructor()) | 
|  | if (CXXDestructorDecl *Destructor = | 
|  | const_cast<CXXDestructorDecl*>(ClassDecl->getDestructor(Context))) | 
|  | MarkDeclarationReferenced(Loc, Destructor); | 
|  | } | 
|  |  | 
|  | /// AddCXXDirectInitializerToDecl - This action is called immediately after | 
|  | /// ActOnDeclarator, when a C++ direct initializer is present. | 
|  | /// e.g: "int x(1);" | 
|  | void Sema::AddCXXDirectInitializerToDecl(DeclPtrTy Dcl, | 
|  | SourceLocation LParenLoc, | 
|  | MultiExprArg Exprs, | 
|  | SourceLocation *CommaLocs, | 
|  | SourceLocation RParenLoc) { | 
|  | unsigned NumExprs = Exprs.size(); | 
|  | assert(NumExprs != 0 && Exprs.get() && "missing expressions"); | 
|  | Decl *RealDecl = Dcl.getAs<Decl>(); | 
|  |  | 
|  | // If there is no declaration, there was an error parsing it.  Just ignore | 
|  | // the initializer. | 
|  | if (RealDecl == 0) | 
|  | return; | 
|  |  | 
|  | VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl); | 
|  | if (!VDecl) { | 
|  | Diag(RealDecl->getLocation(), diag::err_illegal_initializer); | 
|  | RealDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // FIXME: Need to handle dependent types and expressions here. | 
|  |  | 
|  | // We will treat direct-initialization as a copy-initialization: | 
|  | //    int x(1);  -as-> int x = 1; | 
|  | //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c); | 
|  | // | 
|  | // Clients that want to distinguish between the two forms, can check for | 
|  | // direct initializer using VarDecl::hasCXXDirectInitializer(). | 
|  | // A major benefit is that clients that don't particularly care about which | 
|  | // exactly form was it (like the CodeGen) can handle both cases without | 
|  | // special case code. | 
|  |  | 
|  | // C++ 8.5p11: | 
|  | // The form of initialization (using parentheses or '=') is generally | 
|  | // insignificant, but does matter when the entity being initialized has a | 
|  | // class type. | 
|  | QualType DeclInitType = VDecl->getType(); | 
|  | if (const ArrayType *Array = Context.getAsArrayType(DeclInitType)) | 
|  | DeclInitType = Array->getElementType(); | 
|  |  | 
|  | // FIXME: This isn't the right place to complete the type. | 
|  | if (RequireCompleteType(VDecl->getLocation(), VDecl->getType(), | 
|  | diag::err_typecheck_decl_incomplete_type)) { | 
|  | VDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (VDecl->getType()->isRecordType()) { | 
|  | CXXConstructorDecl *Constructor | 
|  | = PerformInitializationByConstructor(DeclInitType, | 
|  | (Expr **)Exprs.get(), NumExprs, | 
|  | VDecl->getLocation(), | 
|  | SourceRange(VDecl->getLocation(), | 
|  | RParenLoc), | 
|  | VDecl->getDeclName(), | 
|  | IK_Direct); | 
|  | if (!Constructor) | 
|  | RealDecl->setInvalidDecl(); | 
|  | else { | 
|  | VDecl->setCXXDirectInitializer(true); | 
|  | InitializeVarWithConstructor(VDecl, Constructor, DeclInitType, | 
|  | (Expr**)Exprs.release(), NumExprs); | 
|  | // FIXME. Must do all that is needed to destroy the object | 
|  | // on scope exit. For now, just mark the destructor as used. | 
|  | MarkDestructorReferenced(VDecl->getLocation(), DeclInitType); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (NumExprs > 1) { | 
|  | Diag(CommaLocs[0], diag::err_builtin_direct_init_more_than_one_arg) | 
|  | << SourceRange(VDecl->getLocation(), RParenLoc); | 
|  | RealDecl->setInvalidDecl(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Let clients know that initialization was done with a direct initializer. | 
|  | VDecl->setCXXDirectInitializer(true); | 
|  |  | 
|  | assert(NumExprs == 1 && "Expected 1 expression"); | 
|  | // Set the init expression, handles conversions. | 
|  | AddInitializerToDecl(Dcl, ExprArg(*this, Exprs.release()[0]), | 
|  | /*DirectInit=*/true); | 
|  | } | 
|  |  | 
|  | /// PerformInitializationByConstructor - Perform initialization by | 
|  | /// constructor (C++ [dcl.init]p14), which may occur as part of | 
|  | /// direct-initialization or copy-initialization. We are initializing | 
|  | /// an object of type @p ClassType with the given arguments @p | 
|  | /// Args. @p Loc is the location in the source code where the | 
|  | /// initializer occurs (e.g., a declaration, member initializer, | 
|  | /// functional cast, etc.) while @p Range covers the whole | 
|  | /// initialization. @p InitEntity is the entity being initialized, | 
|  | /// which may by the name of a declaration or a type. @p Kind is the | 
|  | /// kind of initialization we're performing, which affects whether | 
|  | /// explicit constructors will be considered. When successful, returns | 
|  | /// the constructor that will be used to perform the initialization; | 
|  | /// when the initialization fails, emits a diagnostic and returns | 
|  | /// null. | 
|  | CXXConstructorDecl * | 
|  | Sema::PerformInitializationByConstructor(QualType ClassType, | 
|  | Expr **Args, unsigned NumArgs, | 
|  | SourceLocation Loc, SourceRange Range, | 
|  | DeclarationName InitEntity, | 
|  | InitializationKind Kind) { | 
|  | const RecordType *ClassRec = ClassType->getAsRecordType(); | 
|  | assert(ClassRec && "Can only initialize a class type here"); | 
|  |  | 
|  | // C++ [dcl.init]p14: | 
|  | // | 
|  | //   If the initialization is direct-initialization, or if it is | 
|  | //   copy-initialization where the cv-unqualified version of the | 
|  | //   source type is the same class as, or a derived class of, the | 
|  | //   class of the destination, constructors are considered. The | 
|  | //   applicable constructors are enumerated (13.3.1.3), and the | 
|  | //   best one is chosen through overload resolution (13.3). The | 
|  | //   constructor so selected is called to initialize the object, | 
|  | //   with the initializer expression(s) as its argument(s). If no | 
|  | //   constructor applies, or the overload resolution is ambiguous, | 
|  | //   the initialization is ill-formed. | 
|  | const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl()); | 
|  | OverloadCandidateSet CandidateSet; | 
|  |  | 
|  | // Add constructors to the overload set. | 
|  | DeclarationName ConstructorName | 
|  | = Context.DeclarationNames.getCXXConstructorName( | 
|  | Context.getCanonicalType(ClassType.getUnqualifiedType())); | 
|  | DeclContext::lookup_const_iterator Con, ConEnd; | 
|  | for (llvm::tie(Con, ConEnd) = ClassDecl->lookup(ConstructorName); | 
|  | Con != ConEnd; ++Con) { | 
|  | CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(*Con); | 
|  | if ((Kind == IK_Direct) || | 
|  | (Kind == IK_Copy && Constructor->isConvertingConstructor()) || | 
|  | (Kind == IK_Default && Constructor->isDefaultConstructor())) | 
|  | AddOverloadCandidate(Constructor, Args, NumArgs, CandidateSet); | 
|  | } | 
|  |  | 
|  | // FIXME: When we decide not to synthesize the implicitly-declared | 
|  | // constructors, we'll need to make them appear here. | 
|  |  | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (BestViableFunction(CandidateSet, Loc, Best)) { | 
|  | case OR_Success: | 
|  | // We found a constructor. Return it. | 
|  | return cast<CXXConstructorDecl>(Best->Function); | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  | if (InitEntity) | 
|  | Diag(Loc, diag::err_ovl_no_viable_function_in_init) | 
|  | << InitEntity << Range; | 
|  | else | 
|  | Diag(Loc, diag::err_ovl_no_viable_function_in_init) | 
|  | << ClassType << Range; | 
|  | PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/false); | 
|  | return 0; | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | if (InitEntity) | 
|  | Diag(Loc, diag::err_ovl_ambiguous_init) << InitEntity << Range; | 
|  | else | 
|  | Diag(Loc, diag::err_ovl_ambiguous_init) << ClassType << Range; | 
|  | PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); | 
|  | return 0; | 
|  |  | 
|  | case OR_Deleted: | 
|  | if (InitEntity) | 
|  | Diag(Loc, diag::err_ovl_deleted_init) | 
|  | << Best->Function->isDeleted() | 
|  | << InitEntity << Range; | 
|  | else | 
|  | Diag(Loc, diag::err_ovl_deleted_init) | 
|  | << Best->Function->isDeleted() | 
|  | << InitEntity << Range; | 
|  | PrintOverloadCandidates(CandidateSet, /*OnlyViable=*/true); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// CompareReferenceRelationship - Compare the two types T1 and T2 to | 
|  | /// determine whether they are reference-related, | 
|  | /// reference-compatible, reference-compatible with added | 
|  | /// qualification, or incompatible, for use in C++ initialization by | 
|  | /// reference (C++ [dcl.ref.init]p4). Neither type can be a reference | 
|  | /// type, and the first type (T1) is the pointee type of the reference | 
|  | /// type being initialized. | 
|  | Sema::ReferenceCompareResult | 
|  | Sema::CompareReferenceRelationship(QualType T1, QualType T2, | 
|  | bool& DerivedToBase) { | 
|  | assert(!T1->isReferenceType() && | 
|  | "T1 must be the pointee type of the reference type"); | 
|  | assert(!T2->isReferenceType() && "T2 cannot be a reference type"); | 
|  |  | 
|  | T1 = Context.getCanonicalType(T1); | 
|  | T2 = Context.getCanonicalType(T2); | 
|  | QualType UnqualT1 = T1.getUnqualifiedType(); | 
|  | QualType UnqualT2 = T2.getUnqualifiedType(); | 
|  |  | 
|  | // C++ [dcl.init.ref]p4: | 
|  | //   Given types “cv1 T1” and “cv2 T2,” “cv1 T1” is | 
|  | //   reference-related to “cv2 T2” if T1 is the same type as T2, or | 
|  | //   T1 is a base class of T2. | 
|  | if (UnqualT1 == UnqualT2) | 
|  | DerivedToBase = false; | 
|  | else if (IsDerivedFrom(UnqualT2, UnqualT1)) | 
|  | DerivedToBase = true; | 
|  | else | 
|  | return Ref_Incompatible; | 
|  |  | 
|  | // At this point, we know that T1 and T2 are reference-related (at | 
|  | // least). | 
|  |  | 
|  | // C++ [dcl.init.ref]p4: | 
|  | //   "cv1 T1” is reference-compatible with “cv2 T2” if T1 is | 
|  | //   reference-related to T2 and cv1 is the same cv-qualification | 
|  | //   as, or greater cv-qualification than, cv2. For purposes of | 
|  | //   overload resolution, cases for which cv1 is greater | 
|  | //   cv-qualification than cv2 are identified as | 
|  | //   reference-compatible with added qualification (see 13.3.3.2). | 
|  | if (T1.getCVRQualifiers() == T2.getCVRQualifiers()) | 
|  | return Ref_Compatible; | 
|  | else if (T1.isMoreQualifiedThan(T2)) | 
|  | return Ref_Compatible_With_Added_Qualification; | 
|  | else | 
|  | return Ref_Related; | 
|  | } | 
|  |  | 
|  | /// CheckReferenceInit - Check the initialization of a reference | 
|  | /// variable with the given initializer (C++ [dcl.init.ref]). Init is | 
|  | /// the initializer (either a simple initializer or an initializer | 
|  | /// list), and DeclType is the type of the declaration. When ICS is | 
|  | /// non-null, this routine will compute the implicit conversion | 
|  | /// sequence according to C++ [over.ics.ref] and will not produce any | 
|  | /// diagnostics; when ICS is null, it will emit diagnostics when any | 
|  | /// errors are found. Either way, a return value of true indicates | 
|  | /// that there was a failure, a return value of false indicates that | 
|  | /// the reference initialization succeeded. | 
|  | /// | 
|  | /// When @p SuppressUserConversions, user-defined conversions are | 
|  | /// suppressed. | 
|  | /// When @p AllowExplicit, we also permit explicit user-defined | 
|  | /// conversion functions. | 
|  | /// When @p ForceRValue, we unconditionally treat the initializer as an rvalue. | 
|  | bool | 
|  | Sema::CheckReferenceInit(Expr *&Init, QualType DeclType, | 
|  | ImplicitConversionSequence *ICS, | 
|  | bool SuppressUserConversions, | 
|  | bool AllowExplicit, bool ForceRValue) { | 
|  | assert(DeclType->isReferenceType() && "Reference init needs a reference"); | 
|  |  | 
|  | QualType T1 = DeclType->getAsReferenceType()->getPointeeType(); | 
|  | QualType T2 = Init->getType(); | 
|  |  | 
|  | // If the initializer is the address of an overloaded function, try | 
|  | // to resolve the overloaded function. If all goes well, T2 is the | 
|  | // type of the resulting function. | 
|  | if (Context.getCanonicalType(T2) == Context.OverloadTy) { | 
|  | FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Init, DeclType, | 
|  | ICS != 0); | 
|  | if (Fn) { | 
|  | // Since we're performing this reference-initialization for | 
|  | // real, update the initializer with the resulting function. | 
|  | if (!ICS) { | 
|  | if (DiagnoseUseOfDecl(Fn, Init->getSourceRange().getBegin())) | 
|  | return true; | 
|  |  | 
|  | FixOverloadedFunctionReference(Init, Fn); | 
|  | } | 
|  |  | 
|  | T2 = Fn->getType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute some basic properties of the types and the initializer. | 
|  | bool isRValRef = DeclType->isRValueReferenceType(); | 
|  | bool DerivedToBase = false; | 
|  | Expr::isLvalueResult InitLvalue = ForceRValue ? Expr::LV_InvalidExpression : | 
|  | Init->isLvalue(Context); | 
|  | ReferenceCompareResult RefRelationship | 
|  | = CompareReferenceRelationship(T1, T2, DerivedToBase); | 
|  |  | 
|  | // Most paths end in a failed conversion. | 
|  | if (ICS) | 
|  | ICS->ConversionKind = ImplicitConversionSequence::BadConversion; | 
|  |  | 
|  | // C++ [dcl.init.ref]p5: | 
|  | //   A reference to type “cv1 T1” is initialized by an expression | 
|  | //   of type “cv2 T2” as follows: | 
|  |  | 
|  | //     -- If the initializer expression | 
|  |  | 
|  | // Rvalue references cannot bind to lvalues (N2812). | 
|  | // There is absolutely no situation where they can. In particular, note that | 
|  | // this is ill-formed, even if B has a user-defined conversion to A&&: | 
|  | //   B b; | 
|  | //   A&& r = b; | 
|  | if (isRValRef && InitLvalue == Expr::LV_Valid) { | 
|  | if (!ICS) | 
|  | Diag(Init->getSourceRange().getBegin(), diag::err_lvalue_to_rvalue_ref) | 
|  | << Init->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool BindsDirectly = false; | 
|  | //       -- is an lvalue (but is not a bit-field), and “cv1 T1” is | 
|  | //          reference-compatible with “cv2 T2,” or | 
|  | // | 
|  | // Note that the bit-field check is skipped if we are just computing | 
|  | // the implicit conversion sequence (C++ [over.best.ics]p2). | 
|  | if (InitLvalue == Expr::LV_Valid && (ICS || !Init->getBitField()) && | 
|  | RefRelationship >= Ref_Compatible_With_Added_Qualification) { | 
|  | BindsDirectly = true; | 
|  |  | 
|  | if (ICS) { | 
|  | // C++ [over.ics.ref]p1: | 
|  | //   When a parameter of reference type binds directly (8.5.3) | 
|  | //   to an argument expression, the implicit conversion sequence | 
|  | //   is the identity conversion, unless the argument expression | 
|  | //   has a type that is a derived class of the parameter type, | 
|  | //   in which case the implicit conversion sequence is a | 
|  | //   derived-to-base Conversion (13.3.3.1). | 
|  | ICS->ConversionKind = ImplicitConversionSequence::StandardConversion; | 
|  | ICS->Standard.First = ICK_Identity; | 
|  | ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; | 
|  | ICS->Standard.Third = ICK_Identity; | 
|  | ICS->Standard.FromTypePtr = T2.getAsOpaquePtr(); | 
|  | ICS->Standard.ToTypePtr = T1.getAsOpaquePtr(); | 
|  | ICS->Standard.ReferenceBinding = true; | 
|  | ICS->Standard.DirectBinding = true; | 
|  | ICS->Standard.RRefBinding = false; | 
|  | ICS->Standard.CopyConstructor = 0; | 
|  |  | 
|  | // Nothing more to do: the inaccessibility/ambiguity check for | 
|  | // derived-to-base conversions is suppressed when we're | 
|  | // computing the implicit conversion sequence (C++ | 
|  | // [over.best.ics]p2). | 
|  | return false; | 
|  | } else { | 
|  | // Perform the conversion. | 
|  | // FIXME: Binding to a subobject of the lvalue is going to require more | 
|  | // AST annotation than this. | 
|  | ImpCastExprToType(Init, T1, /*isLvalue=*/true); | 
|  | } | 
|  | } | 
|  |  | 
|  | //       -- has a class type (i.e., T2 is a class type) and can be | 
|  | //          implicitly converted to an lvalue of type “cv3 T3,” | 
|  | //          where “cv1 T1” is reference-compatible with “cv3 T3” | 
|  | //          92) (this conversion is selected by enumerating the | 
|  | //          applicable conversion functions (13.3.1.6) and choosing | 
|  | //          the best one through overload resolution (13.3)), | 
|  | if (!isRValRef && !SuppressUserConversions && T2->isRecordType()) { | 
|  | // FIXME: Look for conversions in base classes! | 
|  | CXXRecordDecl *T2RecordDecl | 
|  | = dyn_cast<CXXRecordDecl>(T2->getAsRecordType()->getDecl()); | 
|  |  | 
|  | OverloadCandidateSet CandidateSet; | 
|  | OverloadedFunctionDecl *Conversions | 
|  | = T2RecordDecl->getConversionFunctions(); | 
|  | for (OverloadedFunctionDecl::function_iterator Func | 
|  | = Conversions->function_begin(); | 
|  | Func != Conversions->function_end(); ++Func) { | 
|  | CXXConversionDecl *Conv = cast<CXXConversionDecl>(*Func); | 
|  |  | 
|  | // If the conversion function doesn't return a reference type, | 
|  | // it can't be considered for this conversion. | 
|  | if (Conv->getConversionType()->isLValueReferenceType() && | 
|  | (AllowExplicit || !Conv->isExplicit())) | 
|  | AddConversionCandidate(Conv, Init, DeclType, CandidateSet); | 
|  | } | 
|  |  | 
|  | OverloadCandidateSet::iterator Best; | 
|  | switch (BestViableFunction(CandidateSet, Init->getLocStart(), Best)) { | 
|  | case OR_Success: | 
|  | // This is a direct binding. | 
|  | BindsDirectly = true; | 
|  |  | 
|  | if (ICS) { | 
|  | // C++ [over.ics.ref]p1: | 
|  | // | 
|  | //   [...] If the parameter binds directly to the result of | 
|  | //   applying a conversion function to the argument | 
|  | //   expression, the implicit conversion sequence is a | 
|  | //   user-defined conversion sequence (13.3.3.1.2), with the | 
|  | //   second standard conversion sequence either an identity | 
|  | //   conversion or, if the conversion function returns an | 
|  | //   entity of a type that is a derived class of the parameter | 
|  | //   type, a derived-to-base Conversion. | 
|  | ICS->ConversionKind = ImplicitConversionSequence::UserDefinedConversion; | 
|  | ICS->UserDefined.Before = Best->Conversions[0].Standard; | 
|  | ICS->UserDefined.After = Best->FinalConversion; | 
|  | ICS->UserDefined.ConversionFunction = Best->Function; | 
|  | assert(ICS->UserDefined.After.ReferenceBinding && | 
|  | ICS->UserDefined.After.DirectBinding && | 
|  | "Expected a direct reference binding!"); | 
|  | return false; | 
|  | } else { | 
|  | // Perform the conversion. | 
|  | // FIXME: Binding to a subobject of the lvalue is going to require more | 
|  | // AST annotation than this. | 
|  | ImpCastExprToType(Init, T1, /*isLvalue=*/true); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case OR_Ambiguous: | 
|  | assert(false && "Ambiguous reference binding conversions not implemented."); | 
|  | return true; | 
|  |  | 
|  | case OR_No_Viable_Function: | 
|  | case OR_Deleted: | 
|  | // There was no suitable conversion, or we found a deleted | 
|  | // conversion; continue with other checks. | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BindsDirectly) { | 
|  | // C++ [dcl.init.ref]p4: | 
|  | //   [...] In all cases where the reference-related or | 
|  | //   reference-compatible relationship of two types is used to | 
|  | //   establish the validity of a reference binding, and T1 is a | 
|  | //   base class of T2, a program that necessitates such a binding | 
|  | //   is ill-formed if T1 is an inaccessible (clause 11) or | 
|  | //   ambiguous (10.2) base class of T2. | 
|  | // | 
|  | // Note that we only check this condition when we're allowed to | 
|  | // complain about errors, because we should not be checking for | 
|  | // ambiguity (or inaccessibility) unless the reference binding | 
|  | // actually happens. | 
|  | if (DerivedToBase) | 
|  | return CheckDerivedToBaseConversion(T2, T1, | 
|  | Init->getSourceRange().getBegin(), | 
|  | Init->getSourceRange()); | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //     -- Otherwise, the reference shall be to a non-volatile const | 
|  | //        type (i.e., cv1 shall be const), or the reference shall be an | 
|  | //        rvalue reference and the initializer expression shall be an rvalue. | 
|  | if (!isRValRef && T1.getCVRQualifiers() != QualType::Const) { | 
|  | if (!ICS) | 
|  | Diag(Init->getSourceRange().getBegin(), | 
|  | diag::err_not_reference_to_const_init) | 
|  | << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value") | 
|  | << T2 << Init->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //       -- If the initializer expression is an rvalue, with T2 a | 
|  | //          class type, and “cv1 T1” is reference-compatible with | 
|  | //          “cv2 T2,” the reference is bound in one of the | 
|  | //          following ways (the choice is implementation-defined): | 
|  | // | 
|  | //          -- The reference is bound to the object represented by | 
|  | //             the rvalue (see 3.10) or to a sub-object within that | 
|  | //             object. | 
|  | // | 
|  | //          -- A temporary of type “cv1 T2” [sic] is created, and | 
|  | //             a constructor is called to copy the entire rvalue | 
|  | //             object into the temporary. The reference is bound to | 
|  | //             the temporary or to a sub-object within the | 
|  | //             temporary. | 
|  | // | 
|  | //          The constructor that would be used to make the copy | 
|  | //          shall be callable whether or not the copy is actually | 
|  | //          done. | 
|  | // | 
|  | // Note that C++0x [dcl.init.ref]p5 takes away this implementation | 
|  | // freedom, so we will always take the first option and never build | 
|  | // a temporary in this case. FIXME: We will, however, have to check | 
|  | // for the presence of a copy constructor in C++98/03 mode. | 
|  | if (InitLvalue != Expr::LV_Valid && T2->isRecordType() && | 
|  | RefRelationship >= Ref_Compatible_With_Added_Qualification) { | 
|  | if (ICS) { | 
|  | ICS->ConversionKind = ImplicitConversionSequence::StandardConversion; | 
|  | ICS->Standard.First = ICK_Identity; | 
|  | ICS->Standard.Second = DerivedToBase? ICK_Derived_To_Base : ICK_Identity; | 
|  | ICS->Standard.Third = ICK_Identity; | 
|  | ICS->Standard.FromTypePtr = T2.getAsOpaquePtr(); | 
|  | ICS->Standard.ToTypePtr = T1.getAsOpaquePtr(); | 
|  | ICS->Standard.ReferenceBinding = true; | 
|  | ICS->Standard.DirectBinding = false; | 
|  | ICS->Standard.RRefBinding = isRValRef; | 
|  | ICS->Standard.CopyConstructor = 0; | 
|  | } else { | 
|  | // FIXME: Binding to a subobject of the rvalue is going to require more | 
|  | // AST annotation than this. | 
|  | ImpCastExprToType(Init, T1, /*isLvalue=*/false); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //       -- Otherwise, a temporary of type “cv1 T1” is created and | 
|  | //          initialized from the initializer expression using the | 
|  | //          rules for a non-reference copy initialization (8.5). The | 
|  | //          reference is then bound to the temporary. If T1 is | 
|  | //          reference-related to T2, cv1 must be the same | 
|  | //          cv-qualification as, or greater cv-qualification than, | 
|  | //          cv2; otherwise, the program is ill-formed. | 
|  | if (RefRelationship == Ref_Related) { | 
|  | // If cv1 == cv2 or cv1 is a greater cv-qualified than cv2, then | 
|  | // we would be reference-compatible or reference-compatible with | 
|  | // added qualification. But that wasn't the case, so the reference | 
|  | // initialization fails. | 
|  | if (!ICS) | 
|  | Diag(Init->getSourceRange().getBegin(), | 
|  | diag::err_reference_init_drops_quals) | 
|  | << T1 << (InitLvalue != Expr::LV_Valid? "temporary" : "value") | 
|  | << T2 << Init->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If at least one of the types is a class type, the types are not | 
|  | // related, and we aren't allowed any user conversions, the | 
|  | // reference binding fails. This case is important for breaking | 
|  | // recursion, since TryImplicitConversion below will attempt to | 
|  | // create a temporary through the use of a copy constructor. | 
|  | if (SuppressUserConversions && RefRelationship == Ref_Incompatible && | 
|  | (T1->isRecordType() || T2->isRecordType())) { | 
|  | if (!ICS) | 
|  | Diag(Init->getSourceRange().getBegin(), | 
|  | diag::err_typecheck_convert_incompatible) | 
|  | << DeclType << Init->getType() << "initializing" << Init->getSourceRange(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Actually try to convert the initializer to T1. | 
|  | if (ICS) { | 
|  | // C++ [over.ics.ref]p2: | 
|  | // | 
|  | //   When a parameter of reference type is not bound directly to | 
|  | //   an argument expression, the conversion sequence is the one | 
|  | //   required to convert the argument expression to the | 
|  | //   underlying type of the reference according to | 
|  | //   13.3.3.1. Conceptually, this conversion sequence corresponds | 
|  | //   to copy-initializing a temporary of the underlying type with | 
|  | //   the argument expression. Any difference in top-level | 
|  | //   cv-qualification is subsumed by the initialization itself | 
|  | //   and does not constitute a conversion. | 
|  | *ICS = TryImplicitConversion(Init, T1, SuppressUserConversions); | 
|  | // Of course, that's still a reference binding. | 
|  | if (ICS->ConversionKind == ImplicitConversionSequence::StandardConversion) { | 
|  | ICS->Standard.ReferenceBinding = true; | 
|  | ICS->Standard.RRefBinding = isRValRef; | 
|  | } else if(ICS->ConversionKind == | 
|  | ImplicitConversionSequence::UserDefinedConversion) { | 
|  | ICS->UserDefined.After.ReferenceBinding = true; | 
|  | ICS->UserDefined.After.RRefBinding = isRValRef; | 
|  | } | 
|  | return ICS->ConversionKind == ImplicitConversionSequence::BadConversion; | 
|  | } else { | 
|  | return PerformImplicitConversion(Init, T1, "initializing"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// CheckOverloadedOperatorDeclaration - Check whether the declaration | 
|  | /// of this overloaded operator is well-formed. If so, returns false; | 
|  | /// otherwise, emits appropriate diagnostics and returns true. | 
|  | bool Sema::CheckOverloadedOperatorDeclaration(FunctionDecl *FnDecl) { | 
|  | assert(FnDecl && FnDecl->isOverloadedOperator() && | 
|  | "Expected an overloaded operator declaration"); | 
|  |  | 
|  | OverloadedOperatorKind Op = FnDecl->getOverloadedOperator(); | 
|  |  | 
|  | // C++ [over.oper]p5: | 
|  | //   The allocation and deallocation functions, operator new, | 
|  | //   operator new[], operator delete and operator delete[], are | 
|  | //   described completely in 3.7.3. The attributes and restrictions | 
|  | //   found in the rest of this subclause do not apply to them unless | 
|  | //   explicitly stated in 3.7.3. | 
|  | // FIXME: Write a separate routine for checking this. For now, just allow it. | 
|  | if (Op == OO_New || Op == OO_Array_New || | 
|  | Op == OO_Delete || Op == OO_Array_Delete) | 
|  | return false; | 
|  |  | 
|  | // C++ [over.oper]p6: | 
|  | //   An operator function shall either be a non-static member | 
|  | //   function or be a non-member function and have at least one | 
|  | //   parameter whose type is a class, a reference to a class, an | 
|  | //   enumeration, or a reference to an enumeration. | 
|  | if (CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(FnDecl)) { | 
|  | if (MethodDecl->isStatic()) | 
|  | return Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_overload_static) << FnDecl->getDeclName(); | 
|  | } else { | 
|  | bool ClassOrEnumParam = false; | 
|  | for (FunctionDecl::param_iterator Param = FnDecl->param_begin(), | 
|  | ParamEnd = FnDecl->param_end(); | 
|  | Param != ParamEnd; ++Param) { | 
|  | QualType ParamType = (*Param)->getType().getNonReferenceType(); | 
|  | if (ParamType->isDependentType() || ParamType->isRecordType() || | 
|  | ParamType->isEnumeralType()) { | 
|  | ClassOrEnumParam = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!ClassOrEnumParam) | 
|  | return Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_overload_needs_class_or_enum) | 
|  | << FnDecl->getDeclName(); | 
|  | } | 
|  |  | 
|  | // C++ [over.oper]p8: | 
|  | //   An operator function cannot have default arguments (8.3.6), | 
|  | //   except where explicitly stated below. | 
|  | // | 
|  | // Only the function-call operator allows default arguments | 
|  | // (C++ [over.call]p1). | 
|  | if (Op != OO_Call) { | 
|  | for (FunctionDecl::param_iterator Param = FnDecl->param_begin(); | 
|  | Param != FnDecl->param_end(); ++Param) { | 
|  | if ((*Param)->hasUnparsedDefaultArg()) | 
|  | return Diag((*Param)->getLocation(), | 
|  | diag::err_operator_overload_default_arg) | 
|  | << FnDecl->getDeclName(); | 
|  | else if (Expr *DefArg = (*Param)->getDefaultArg()) | 
|  | return Diag((*Param)->getLocation(), | 
|  | diag::err_operator_overload_default_arg) | 
|  | << FnDecl->getDeclName() << DefArg->getSourceRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static const bool OperatorUses[NUM_OVERLOADED_OPERATORS][3] = { | 
|  | { false, false, false } | 
|  | #define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \ | 
|  | , { Unary, Binary, MemberOnly } | 
|  | #include "clang/Basic/OperatorKinds.def" | 
|  | }; | 
|  |  | 
|  | bool CanBeUnaryOperator = OperatorUses[Op][0]; | 
|  | bool CanBeBinaryOperator = OperatorUses[Op][1]; | 
|  | bool MustBeMemberOperator = OperatorUses[Op][2]; | 
|  |  | 
|  | // C++ [over.oper]p8: | 
|  | //   [...] Operator functions cannot have more or fewer parameters | 
|  | //   than the number required for the corresponding operator, as | 
|  | //   described in the rest of this subclause. | 
|  | unsigned NumParams = FnDecl->getNumParams() | 
|  | + (isa<CXXMethodDecl>(FnDecl)? 1 : 0); | 
|  | if (Op != OO_Call && | 
|  | ((NumParams == 1 && !CanBeUnaryOperator) || | 
|  | (NumParams == 2 && !CanBeBinaryOperator) || | 
|  | (NumParams < 1) || (NumParams > 2))) { | 
|  | // We have the wrong number of parameters. | 
|  | unsigned ErrorKind; | 
|  | if (CanBeUnaryOperator && CanBeBinaryOperator) { | 
|  | ErrorKind = 2;  // 2 -> unary or binary. | 
|  | } else if (CanBeUnaryOperator) { | 
|  | ErrorKind = 0;  // 0 -> unary | 
|  | } else { | 
|  | assert(CanBeBinaryOperator && | 
|  | "All non-call overloaded operators are unary or binary!"); | 
|  | ErrorKind = 1;  // 1 -> binary | 
|  | } | 
|  |  | 
|  | return Diag(FnDecl->getLocation(), diag::err_operator_overload_must_be) | 
|  | << FnDecl->getDeclName() << NumParams << ErrorKind; | 
|  | } | 
|  |  | 
|  | // Overloaded operators other than operator() cannot be variadic. | 
|  | if (Op != OO_Call && | 
|  | FnDecl->getType()->getAsFunctionProtoType()->isVariadic()) { | 
|  | return Diag(FnDecl->getLocation(), diag::err_operator_overload_variadic) | 
|  | << FnDecl->getDeclName(); | 
|  | } | 
|  |  | 
|  | // Some operators must be non-static member functions. | 
|  | if (MustBeMemberOperator && !isa<CXXMethodDecl>(FnDecl)) { | 
|  | return Diag(FnDecl->getLocation(), | 
|  | diag::err_operator_overload_must_be_member) | 
|  | << FnDecl->getDeclName(); | 
|  | } | 
|  |  | 
|  | // C++ [over.inc]p1: | 
|  | //   The user-defined function called operator++ implements the | 
|  | //   prefix and postfix ++ operator. If this function is a member | 
|  | //   function with no parameters, or a non-member function with one | 
|  | //   parameter of class or enumeration type, it defines the prefix | 
|  | //   increment operator ++ for objects of that type. If the function | 
|  | //   is a member function with one parameter (which shall be of type | 
|  | //   int) or a non-member function with two parameters (the second | 
|  | //   of which shall be of type int), it defines the postfix | 
|  | //   increment operator ++ for objects of that type. | 
|  | if ((Op == OO_PlusPlus || Op == OO_MinusMinus) && NumParams == 2) { | 
|  | ParmVarDecl *LastParam = FnDecl->getParamDecl(FnDecl->getNumParams() - 1); | 
|  | bool ParamIsInt = false; | 
|  | if (const BuiltinType *BT = LastParam->getType()->getAsBuiltinType()) | 
|  | ParamIsInt = BT->getKind() == BuiltinType::Int; | 
|  |  | 
|  | if (!ParamIsInt) | 
|  | return Diag(LastParam->getLocation(), | 
|  | diag::err_operator_overload_post_incdec_must_be_int) | 
|  | << LastParam->getType() << (Op == OO_MinusMinus); | 
|  | } | 
|  |  | 
|  | // Notify the class if it got an assignment operator. | 
|  | if (Op == OO_Equal) { | 
|  | // Would have returned earlier otherwise. | 
|  | assert(isa<CXXMethodDecl>(FnDecl) && | 
|  | "Overloaded = not member, but not filtered."); | 
|  | CXXMethodDecl *Method = cast<CXXMethodDecl>(FnDecl); | 
|  | Method->getParent()->addedAssignmentOperator(Context, Method); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ActOnStartLinkageSpecification - Parsed the beginning of a C++ | 
|  | /// linkage specification, including the language and (if present) | 
|  | /// the '{'. ExternLoc is the location of the 'extern', LangLoc is | 
|  | /// the location of the language string literal, which is provided | 
|  | /// by Lang/StrSize. LBraceLoc, if valid, provides the location of | 
|  | /// the '{' brace. Otherwise, this linkage specification does not | 
|  | /// have any braces. | 
|  | Sema::DeclPtrTy Sema::ActOnStartLinkageSpecification(Scope *S, | 
|  | SourceLocation ExternLoc, | 
|  | SourceLocation LangLoc, | 
|  | const char *Lang, | 
|  | unsigned StrSize, | 
|  | SourceLocation LBraceLoc) { | 
|  | LinkageSpecDecl::LanguageIDs Language; | 
|  | if (strncmp(Lang, "\"C\"", StrSize) == 0) | 
|  | Language = LinkageSpecDecl::lang_c; | 
|  | else if (strncmp(Lang, "\"C++\"", StrSize) == 0) | 
|  | Language = LinkageSpecDecl::lang_cxx; | 
|  | else { | 
|  | Diag(LangLoc, diag::err_bad_language); | 
|  | return DeclPtrTy(); | 
|  | } | 
|  |  | 
|  | // FIXME: Add all the various semantics of linkage specifications | 
|  |  | 
|  | LinkageSpecDecl *D = LinkageSpecDecl::Create(Context, CurContext, | 
|  | LangLoc, Language, | 
|  | LBraceLoc.isValid()); | 
|  | CurContext->addDecl(D); | 
|  | PushDeclContext(S, D); | 
|  | return DeclPtrTy::make(D); | 
|  | } | 
|  |  | 
|  | /// ActOnFinishLinkageSpecification - Completely the definition of | 
|  | /// the C++ linkage specification LinkageSpec. If RBraceLoc is | 
|  | /// valid, it's the position of the closing '}' brace in a linkage | 
|  | /// specification that uses braces. | 
|  | Sema::DeclPtrTy Sema::ActOnFinishLinkageSpecification(Scope *S, | 
|  | DeclPtrTy LinkageSpec, | 
|  | SourceLocation RBraceLoc) { | 
|  | if (LinkageSpec) | 
|  | PopDeclContext(); | 
|  | return LinkageSpec; | 
|  | } | 
|  |  | 
|  | /// \brief Perform semantic analysis for the variable declaration that | 
|  | /// occurs within a C++ catch clause, returning the newly-created | 
|  | /// variable. | 
|  | VarDecl *Sema::BuildExceptionDeclaration(Scope *S, QualType ExDeclType, | 
|  | IdentifierInfo *Name, | 
|  | SourceLocation Loc, | 
|  | SourceRange Range) { | 
|  | bool Invalid = false; | 
|  |  | 
|  | // Arrays and functions decay. | 
|  | if (ExDeclType->isArrayType()) | 
|  | ExDeclType = Context.getArrayDecayedType(ExDeclType); | 
|  | else if (ExDeclType->isFunctionType()) | 
|  | ExDeclType = Context.getPointerType(ExDeclType); | 
|  |  | 
|  | // C++ 15.3p1: The exception-declaration shall not denote an incomplete type. | 
|  | // The exception-declaration shall not denote a pointer or reference to an | 
|  | // incomplete type, other than [cv] void*. | 
|  | // N2844 forbids rvalue references. | 
|  | if(!ExDeclType->isDependentType() && ExDeclType->isRValueReferenceType()) { | 
|  | Diag(Loc, diag::err_catch_rvalue_ref) << Range; | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | QualType BaseType = ExDeclType; | 
|  | int Mode = 0; // 0 for direct type, 1 for pointer, 2 for reference | 
|  | unsigned DK = diag::err_catch_incomplete; | 
|  | if (const PointerType *Ptr = BaseType->getAsPointerType()) { | 
|  | BaseType = Ptr->getPointeeType(); | 
|  | Mode = 1; | 
|  | DK = diag::err_catch_incomplete_ptr; | 
|  | } else if(const ReferenceType *Ref = BaseType->getAsReferenceType()) { | 
|  | // For the purpose of error recovery, we treat rvalue refs like lvalue refs. | 
|  | BaseType = Ref->getPointeeType(); | 
|  | Mode = 2; | 
|  | DK = diag::err_catch_incomplete_ref; | 
|  | } | 
|  | if (!Invalid && (Mode == 0 || !BaseType->isVoidType()) && | 
|  | !BaseType->isDependentType() && RequireCompleteType(Loc, BaseType, DK)) | 
|  | Invalid = true; | 
|  |  | 
|  | if (!Invalid && !ExDeclType->isDependentType() && | 
|  | RequireNonAbstractType(Loc, ExDeclType, | 
|  | diag::err_abstract_type_in_decl, | 
|  | AbstractVariableType)) | 
|  | Invalid = true; | 
|  |  | 
|  | // FIXME: Need to test for ability to copy-construct and destroy the | 
|  | // exception variable. | 
|  |  | 
|  | // FIXME: Need to check for abstract classes. | 
|  |  | 
|  | VarDecl *ExDecl = VarDecl::Create(Context, CurContext, Loc, | 
|  | Name, ExDeclType, VarDecl::None, | 
|  | Range.getBegin()); | 
|  |  | 
|  | if (Invalid) | 
|  | ExDecl->setInvalidDecl(); | 
|  |  | 
|  | return ExDecl; | 
|  | } | 
|  |  | 
|  | /// ActOnExceptionDeclarator - Parsed the exception-declarator in a C++ catch | 
|  | /// handler. | 
|  | Sema::DeclPtrTy Sema::ActOnExceptionDeclarator(Scope *S, Declarator &D) { | 
|  | QualType ExDeclType = GetTypeForDeclarator(D, S); | 
|  |  | 
|  | bool Invalid = D.isInvalidType(); | 
|  | IdentifierInfo *II = D.getIdentifier(); | 
|  | if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) { | 
|  | // The scope should be freshly made just for us. There is just no way | 
|  | // it contains any previous declaration. | 
|  | assert(!S->isDeclScope(DeclPtrTy::make(PrevDecl))); | 
|  | if (PrevDecl->isTemplateParameter()) { | 
|  | // Maybe we will complain about the shadowed template parameter. | 
|  | DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (D.getCXXScopeSpec().isSet() && !Invalid) { | 
|  | Diag(D.getIdentifierLoc(), diag::err_qualified_catch_declarator) | 
|  | << D.getCXXScopeSpec().getRange(); | 
|  | Invalid = true; | 
|  | } | 
|  |  | 
|  | VarDecl *ExDecl = BuildExceptionDeclaration(S, ExDeclType, | 
|  | D.getIdentifier(), | 
|  | D.getIdentifierLoc(), | 
|  | D.getDeclSpec().getSourceRange()); | 
|  |  | 
|  | if (Invalid) | 
|  | ExDecl->setInvalidDecl(); | 
|  |  | 
|  | // Add the exception declaration into this scope. | 
|  | if (II) | 
|  | PushOnScopeChains(ExDecl, S); | 
|  | else | 
|  | CurContext->addDecl(ExDecl); | 
|  |  | 
|  | ProcessDeclAttributes(S, ExDecl, D); | 
|  | return DeclPtrTy::make(ExDecl); | 
|  | } | 
|  |  | 
|  | Sema::DeclPtrTy Sema::ActOnStaticAssertDeclaration(SourceLocation AssertLoc, | 
|  | ExprArg assertexpr, | 
|  | ExprArg assertmessageexpr) { | 
|  | Expr *AssertExpr = (Expr *)assertexpr.get(); | 
|  | StringLiteral *AssertMessage = | 
|  | cast<StringLiteral>((Expr *)assertmessageexpr.get()); | 
|  |  | 
|  | if (!AssertExpr->isTypeDependent() && !AssertExpr->isValueDependent()) { | 
|  | llvm::APSInt Value(32); | 
|  | if (!AssertExpr->isIntegerConstantExpr(Value, Context)) { | 
|  | Diag(AssertLoc, diag::err_static_assert_expression_is_not_constant) << | 
|  | AssertExpr->getSourceRange(); | 
|  | return DeclPtrTy(); | 
|  | } | 
|  |  | 
|  | if (Value == 0) { | 
|  | std::string str(AssertMessage->getStrData(), | 
|  | AssertMessage->getByteLength()); | 
|  | Diag(AssertLoc, diag::err_static_assert_failed) | 
|  | << str << AssertExpr->getSourceRange(); | 
|  | } | 
|  | } | 
|  |  | 
|  | assertexpr.release(); | 
|  | assertmessageexpr.release(); | 
|  | Decl *Decl = StaticAssertDecl::Create(Context, CurContext, AssertLoc, | 
|  | AssertExpr, AssertMessage); | 
|  |  | 
|  | CurContext->addDecl(Decl); | 
|  | return DeclPtrTy::make(Decl); | 
|  | } | 
|  |  | 
|  | bool Sema::ActOnFriendDecl(Scope *S, SourceLocation FriendLoc, DeclPtrTy Dcl) { | 
|  | if (!(S->getFlags() & Scope::ClassScope)) { | 
|  | Diag(FriendLoc, diag::err_friend_decl_outside_class); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void Sema::SetDeclDeleted(DeclPtrTy dcl, SourceLocation DelLoc) { | 
|  | Decl *Dcl = dcl.getAs<Decl>(); | 
|  | FunctionDecl *Fn = dyn_cast<FunctionDecl>(Dcl); | 
|  | if (!Fn) { | 
|  | Diag(DelLoc, diag::err_deleted_non_function); | 
|  | return; | 
|  | } | 
|  | if (const FunctionDecl *Prev = Fn->getPreviousDeclaration()) { | 
|  | Diag(DelLoc, diag::err_deleted_decl_not_first); | 
|  | Diag(Prev->getLocation(), diag::note_previous_declaration); | 
|  | // If the declaration wasn't the first, we delete the function anyway for | 
|  | // recovery. | 
|  | } | 
|  | Fn->setDeleted(); | 
|  | } | 
|  |  | 
|  | static void SearchForReturnInStmt(Sema &Self, Stmt *S) { | 
|  | for (Stmt::child_iterator CI = S->child_begin(), E = S->child_end(); CI != E; | 
|  | ++CI) { | 
|  | Stmt *SubStmt = *CI; | 
|  | if (!SubStmt) | 
|  | continue; | 
|  | if (isa<ReturnStmt>(SubStmt)) | 
|  | Self.Diag(SubStmt->getSourceRange().getBegin(), | 
|  | diag::err_return_in_constructor_handler); | 
|  | if (!isa<Expr>(SubStmt)) | 
|  | SearchForReturnInStmt(Self, SubStmt); | 
|  | } | 
|  | } | 
|  |  | 
|  | void Sema::DiagnoseReturnInConstructorExceptionHandler(CXXTryStmt *TryBlock) { | 
|  | for (unsigned I = 0, E = TryBlock->getNumHandlers(); I != E; ++I) { | 
|  | CXXCatchStmt *Handler = TryBlock->getHandler(I); | 
|  | SearchForReturnInStmt(*this, Handler); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool Sema::CheckOverridingFunctionReturnType(const CXXMethodDecl *New, | 
|  | const CXXMethodDecl *Old) { | 
|  | QualType NewTy = New->getType()->getAsFunctionType()->getResultType(); | 
|  | QualType OldTy = Old->getType()->getAsFunctionType()->getResultType(); | 
|  |  | 
|  | QualType CNewTy = Context.getCanonicalType(NewTy); | 
|  | QualType COldTy = Context.getCanonicalType(OldTy); | 
|  |  | 
|  | if (CNewTy == COldTy && | 
|  | CNewTy.getCVRQualifiers() == COldTy.getCVRQualifiers()) | 
|  | return false; | 
|  |  | 
|  | // Check if the return types are covariant | 
|  | QualType NewClassTy, OldClassTy; | 
|  |  | 
|  | /// Both types must be pointers or references to classes. | 
|  | if (PointerType *NewPT = dyn_cast<PointerType>(NewTy)) { | 
|  | if (PointerType *OldPT = dyn_cast<PointerType>(OldTy)) { | 
|  | NewClassTy = NewPT->getPointeeType(); | 
|  | OldClassTy = OldPT->getPointeeType(); | 
|  | } | 
|  | } else if (ReferenceType *NewRT = dyn_cast<ReferenceType>(NewTy)) { | 
|  | if (ReferenceType *OldRT = dyn_cast<ReferenceType>(OldTy)) { | 
|  | NewClassTy = NewRT->getPointeeType(); | 
|  | OldClassTy = OldRT->getPointeeType(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The return types aren't either both pointers or references to a class type. | 
|  | if (NewClassTy.isNull()) { | 
|  | Diag(New->getLocation(), | 
|  | diag::err_different_return_type_for_overriding_virtual_function) | 
|  | << New->getDeclName() << NewTy << OldTy; | 
|  | Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (NewClassTy.getUnqualifiedType() != OldClassTy.getUnqualifiedType()) { | 
|  | // Check if the new class derives from the old class. | 
|  | if (!IsDerivedFrom(NewClassTy, OldClassTy)) { | 
|  | Diag(New->getLocation(), | 
|  | diag::err_covariant_return_not_derived) | 
|  | << New->getDeclName() << NewTy << OldTy; | 
|  | Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Check if we the conversion from derived to base is valid. | 
|  | if (CheckDerivedToBaseConversion(NewClassTy, OldClassTy, | 
|  | diag::err_covariant_return_inaccessible_base, | 
|  | diag::err_covariant_return_ambiguous_derived_to_base_conv, | 
|  | // FIXME: Should this point to the return type? | 
|  | New->getLocation(), SourceRange(), New->getDeclName())) { | 
|  | Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The qualifiers of the return types must be the same. | 
|  | if (CNewTy.getCVRQualifiers() != COldTy.getCVRQualifiers()) { | 
|  | Diag(New->getLocation(), | 
|  | diag::err_covariant_return_type_different_qualifications) | 
|  | << New->getDeclName() << NewTy << OldTy; | 
|  | Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  |  | 
|  | // The new class type must have the same or less qualifiers as the old type. | 
|  | if (NewClassTy.isMoreQualifiedThan(OldClassTy)) { | 
|  | Diag(New->getLocation(), | 
|  | diag::err_covariant_return_type_class_type_more_qualified) | 
|  | << New->getDeclName() << NewTy << OldTy; | 
|  | Diag(Old->getLocation(), diag::note_overridden_virtual_function); | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool Sema::CheckOverridingFunctionExceptionSpec(const CXXMethodDecl *New, | 
|  | const CXXMethodDecl *Old) | 
|  | { | 
|  | return CheckExceptionSpecSubset(diag::err_override_exception_spec, | 
|  | diag::note_overridden_virtual_function, | 
|  | Old->getType()->getAsFunctionProtoType(), | 
|  | Old->getLocation(), | 
|  | New->getType()->getAsFunctionProtoType(), | 
|  | New->getLocation()); | 
|  | } | 
|  |  | 
|  | /// ActOnCXXEnterDeclInitializer - Invoked when we are about to parse an | 
|  | /// initializer for the declaration 'Dcl'. | 
|  | /// After this method is called, according to [C++ 3.4.1p13], if 'Dcl' is a | 
|  | /// static data member of class X, names should be looked up in the scope of | 
|  | /// class X. | 
|  | void Sema::ActOnCXXEnterDeclInitializer(Scope *S, DeclPtrTy Dcl) { | 
|  | Decl *D = Dcl.getAs<Decl>(); | 
|  | // If there is no declaration, there was an error parsing it. | 
|  | if (D == 0) | 
|  | return; | 
|  |  | 
|  | // Check whether it is a declaration with a nested name specifier like | 
|  | // int foo::bar; | 
|  | if (!D->isOutOfLine()) | 
|  | return; | 
|  |  | 
|  | // C++ [basic.lookup.unqual]p13 | 
|  | // | 
|  | // A name used in the definition of a static data member of class X | 
|  | // (after the qualified-id of the static member) is looked up as if the name | 
|  | // was used in a member function of X. | 
|  |  | 
|  | // Change current context into the context of the initializing declaration. | 
|  | EnterDeclaratorContext(S, D->getDeclContext()); | 
|  | } | 
|  |  | 
|  | /// ActOnCXXExitDeclInitializer - Invoked after we are finished parsing an | 
|  | /// initializer for the declaration 'Dcl'. | 
|  | void Sema::ActOnCXXExitDeclInitializer(Scope *S, DeclPtrTy Dcl) { | 
|  | Decl *D = Dcl.getAs<Decl>(); | 
|  | // If there is no declaration, there was an error parsing it. | 
|  | if (D == 0) | 
|  | return; | 
|  |  | 
|  | // Check whether it is a declaration with a nested name specifier like | 
|  | // int foo::bar; | 
|  | if (!D->isOutOfLine()) | 
|  | return; | 
|  |  | 
|  | assert(S->getEntity() == D->getDeclContext() && "Context imbalance!"); | 
|  | ExitDeclaratorContext(S); | 
|  | } |