|  | //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements the ScheduleDAG class, which is a base class used by | 
|  | // scheduling implementation classes. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "pre-RA-sched" | 
|  | #include "llvm/CodeGen/ScheduleDAG.h" | 
|  | #include "llvm/CodeGen/ScheduleHazardRecognizer.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <climits> | 
|  | using namespace llvm; | 
|  |  | 
|  | ScheduleDAG::ScheduleDAG(MachineFunction &mf) | 
|  | : TM(mf.getTarget()), | 
|  | TII(TM.getInstrInfo()), | 
|  | TRI(TM.getRegisterInfo()), | 
|  | TLI(TM.getTargetLowering()), | 
|  | MF(mf), MRI(mf.getRegInfo()), | 
|  | ConstPool(MF.getConstantPool()), | 
|  | EntrySU(), ExitSU() { | 
|  | } | 
|  |  | 
|  | ScheduleDAG::~ScheduleDAG() {} | 
|  |  | 
|  | /// dump - dump the schedule. | 
|  | void ScheduleDAG::dumpSchedule() const { | 
|  | for (unsigned i = 0, e = Sequence.size(); i != e; i++) { | 
|  | if (SUnit *SU = Sequence[i]) | 
|  | SU->dump(this); | 
|  | else | 
|  | dbgs() << "**** NOOP ****\n"; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Run - perform scheduling. | 
|  | /// | 
|  | void ScheduleDAG::Run(MachineBasicBlock *bb, | 
|  | MachineBasicBlock::iterator insertPos) { | 
|  | BB = bb; | 
|  | InsertPos = insertPos; | 
|  |  | 
|  | SUnits.clear(); | 
|  | Sequence.clear(); | 
|  | EntrySU = SUnit(); | 
|  | ExitSU = SUnit(); | 
|  |  | 
|  | Schedule(); | 
|  |  | 
|  | DEBUG({ | 
|  | dbgs() << "*** Final schedule ***\n"; | 
|  | dumpSchedule(); | 
|  | dbgs() << '\n'; | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// addPred - This adds the specified edge as a pred of the current node if | 
|  | /// not already.  It also adds the current node as a successor of the | 
|  | /// specified node. | 
|  | void SUnit::addPred(const SDep &D) { | 
|  | // If this node already has this depenence, don't add a redundant one. | 
|  | for (SmallVector<SDep, 4>::const_iterator I = Preds.begin(), E = Preds.end(); | 
|  | I != E; ++I) | 
|  | if (*I == D) | 
|  | return; | 
|  | // Now add a corresponding succ to N. | 
|  | SDep P = D; | 
|  | P.setSUnit(this); | 
|  | SUnit *N = D.getSUnit(); | 
|  | // Update the bookkeeping. | 
|  | if (D.getKind() == SDep::Data) { | 
|  | assert(NumPreds < UINT_MAX && "NumPreds will overflow!"); | 
|  | assert(N->NumSuccs < UINT_MAX && "NumSuccs will overflow!"); | 
|  | ++NumPreds; | 
|  | ++N->NumSuccs; | 
|  | } | 
|  | if (!N->isScheduled) { | 
|  | assert(NumPredsLeft < UINT_MAX && "NumPredsLeft will overflow!"); | 
|  | ++NumPredsLeft; | 
|  | } | 
|  | if (!isScheduled) { | 
|  | assert(N->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!"); | 
|  | ++N->NumSuccsLeft; | 
|  | } | 
|  | Preds.push_back(D); | 
|  | N->Succs.push_back(P); | 
|  | if (P.getLatency() != 0) { | 
|  | this->setDepthDirty(); | 
|  | N->setHeightDirty(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// removePred - This removes the specified edge as a pred of the current | 
|  | /// node if it exists.  It also removes the current node as a successor of | 
|  | /// the specified node. | 
|  | void SUnit::removePred(const SDep &D) { | 
|  | // Find the matching predecessor. | 
|  | for (SmallVector<SDep, 4>::iterator I = Preds.begin(), E = Preds.end(); | 
|  | I != E; ++I) | 
|  | if (*I == D) { | 
|  | bool FoundSucc = false; | 
|  | // Find the corresponding successor in N. | 
|  | SDep P = D; | 
|  | P.setSUnit(this); | 
|  | SUnit *N = D.getSUnit(); | 
|  | for (SmallVector<SDep, 4>::iterator II = N->Succs.begin(), | 
|  | EE = N->Succs.end(); II != EE; ++II) | 
|  | if (*II == P) { | 
|  | FoundSucc = true; | 
|  | N->Succs.erase(II); | 
|  | break; | 
|  | } | 
|  | assert(FoundSucc && "Mismatching preds / succs lists!"); | 
|  | Preds.erase(I); | 
|  | // Update the bookkeeping. | 
|  | if (P.getKind() == SDep::Data) { | 
|  | assert(NumPreds > 0 && "NumPreds will underflow!"); | 
|  | assert(N->NumSuccs > 0 && "NumSuccs will underflow!"); | 
|  | --NumPreds; | 
|  | --N->NumSuccs; | 
|  | } | 
|  | if (!N->isScheduled) { | 
|  | assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!"); | 
|  | --NumPredsLeft; | 
|  | } | 
|  | if (!isScheduled) { | 
|  | assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!"); | 
|  | --N->NumSuccsLeft; | 
|  | } | 
|  | if (P.getLatency() != 0) { | 
|  | this->setDepthDirty(); | 
|  | N->setHeightDirty(); | 
|  | } | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | void SUnit::setDepthDirty() { | 
|  | if (!isDepthCurrent) return; | 
|  | SmallVector<SUnit*, 8> WorkList; | 
|  | WorkList.push_back(this); | 
|  | do { | 
|  | SUnit *SU = WorkList.pop_back_val(); | 
|  | SU->isDepthCurrent = false; | 
|  | for (SUnit::const_succ_iterator I = SU->Succs.begin(), | 
|  | E = SU->Succs.end(); I != E; ++I) { | 
|  | SUnit *SuccSU = I->getSUnit(); | 
|  | if (SuccSU->isDepthCurrent) | 
|  | WorkList.push_back(SuccSU); | 
|  | } | 
|  | } while (!WorkList.empty()); | 
|  | } | 
|  |  | 
|  | void SUnit::setHeightDirty() { | 
|  | if (!isHeightCurrent) return; | 
|  | SmallVector<SUnit*, 8> WorkList; | 
|  | WorkList.push_back(this); | 
|  | do { | 
|  | SUnit *SU = WorkList.pop_back_val(); | 
|  | SU->isHeightCurrent = false; | 
|  | for (SUnit::const_pred_iterator I = SU->Preds.begin(), | 
|  | E = SU->Preds.end(); I != E; ++I) { | 
|  | SUnit *PredSU = I->getSUnit(); | 
|  | if (PredSU->isHeightCurrent) | 
|  | WorkList.push_back(PredSU); | 
|  | } | 
|  | } while (!WorkList.empty()); | 
|  | } | 
|  |  | 
|  | /// setDepthToAtLeast - Update this node's successors to reflect the | 
|  | /// fact that this node's depth just increased. | 
|  | /// | 
|  | void SUnit::setDepthToAtLeast(unsigned NewDepth) { | 
|  | if (NewDepth <= getDepth()) | 
|  | return; | 
|  | setDepthDirty(); | 
|  | Depth = NewDepth; | 
|  | isDepthCurrent = true; | 
|  | } | 
|  |  | 
|  | /// setHeightToAtLeast - Update this node's predecessors to reflect the | 
|  | /// fact that this node's height just increased. | 
|  | /// | 
|  | void SUnit::setHeightToAtLeast(unsigned NewHeight) { | 
|  | if (NewHeight <= getHeight()) | 
|  | return; | 
|  | setHeightDirty(); | 
|  | Height = NewHeight; | 
|  | isHeightCurrent = true; | 
|  | } | 
|  |  | 
|  | /// ComputeDepth - Calculate the maximal path from the node to the exit. | 
|  | /// | 
|  | void SUnit::ComputeDepth() { | 
|  | SmallVector<SUnit*, 8> WorkList; | 
|  | WorkList.push_back(this); | 
|  | do { | 
|  | SUnit *Cur = WorkList.back(); | 
|  |  | 
|  | bool Done = true; | 
|  | unsigned MaxPredDepth = 0; | 
|  | for (SUnit::const_pred_iterator I = Cur->Preds.begin(), | 
|  | E = Cur->Preds.end(); I != E; ++I) { | 
|  | SUnit *PredSU = I->getSUnit(); | 
|  | if (PredSU->isDepthCurrent) | 
|  | MaxPredDepth = std::max(MaxPredDepth, | 
|  | PredSU->Depth + I->getLatency()); | 
|  | else { | 
|  | Done = false; | 
|  | WorkList.push_back(PredSU); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Done) { | 
|  | WorkList.pop_back(); | 
|  | if (MaxPredDepth != Cur->Depth) { | 
|  | Cur->setDepthDirty(); | 
|  | Cur->Depth = MaxPredDepth; | 
|  | } | 
|  | Cur->isDepthCurrent = true; | 
|  | } | 
|  | } while (!WorkList.empty()); | 
|  | } | 
|  |  | 
|  | /// ComputeHeight - Calculate the maximal path from the node to the entry. | 
|  | /// | 
|  | void SUnit::ComputeHeight() { | 
|  | SmallVector<SUnit*, 8> WorkList; | 
|  | WorkList.push_back(this); | 
|  | do { | 
|  | SUnit *Cur = WorkList.back(); | 
|  |  | 
|  | bool Done = true; | 
|  | unsigned MaxSuccHeight = 0; | 
|  | for (SUnit::const_succ_iterator I = Cur->Succs.begin(), | 
|  | E = Cur->Succs.end(); I != E; ++I) { | 
|  | SUnit *SuccSU = I->getSUnit(); | 
|  | if (SuccSU->isHeightCurrent) | 
|  | MaxSuccHeight = std::max(MaxSuccHeight, | 
|  | SuccSU->Height + I->getLatency()); | 
|  | else { | 
|  | Done = false; | 
|  | WorkList.push_back(SuccSU); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Done) { | 
|  | WorkList.pop_back(); | 
|  | if (MaxSuccHeight != Cur->Height) { | 
|  | Cur->setHeightDirty(); | 
|  | Cur->Height = MaxSuccHeight; | 
|  | } | 
|  | Cur->isHeightCurrent = true; | 
|  | } | 
|  | } while (!WorkList.empty()); | 
|  | } | 
|  |  | 
|  | /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or | 
|  | /// a group of nodes flagged together. | 
|  | void SUnit::dump(const ScheduleDAG *G) const { | 
|  | dbgs() << "SU(" << NodeNum << "): "; | 
|  | G->dumpNode(this); | 
|  | } | 
|  |  | 
|  | void SUnit::dumpAll(const ScheduleDAG *G) const { | 
|  | dump(G); | 
|  |  | 
|  | dbgs() << "  # preds left       : " << NumPredsLeft << "\n"; | 
|  | dbgs() << "  # succs left       : " << NumSuccsLeft << "\n"; | 
|  | dbgs() << "  Latency            : " << Latency << "\n"; | 
|  | dbgs() << "  Depth              : " << Depth << "\n"; | 
|  | dbgs() << "  Height             : " << Height << "\n"; | 
|  |  | 
|  | if (Preds.size() != 0) { | 
|  | dbgs() << "  Predecessors:\n"; | 
|  | for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end(); | 
|  | I != E; ++I) { | 
|  | dbgs() << "   "; | 
|  | switch (I->getKind()) { | 
|  | case SDep::Data:        dbgs() << "val "; break; | 
|  | case SDep::Anti:        dbgs() << "anti"; break; | 
|  | case SDep::Output:      dbgs() << "out "; break; | 
|  | case SDep::Order:       dbgs() << "ch  "; break; | 
|  | } | 
|  | dbgs() << "#"; | 
|  | dbgs() << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")"; | 
|  | if (I->isArtificial()) | 
|  | dbgs() << " *"; | 
|  | dbgs() << ": Latency=" << I->getLatency(); | 
|  | dbgs() << "\n"; | 
|  | } | 
|  | } | 
|  | if (Succs.size() != 0) { | 
|  | dbgs() << "  Successors:\n"; | 
|  | for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end(); | 
|  | I != E; ++I) { | 
|  | dbgs() << "   "; | 
|  | switch (I->getKind()) { | 
|  | case SDep::Data:        dbgs() << "val "; break; | 
|  | case SDep::Anti:        dbgs() << "anti"; break; | 
|  | case SDep::Output:      dbgs() << "out "; break; | 
|  | case SDep::Order:       dbgs() << "ch  "; break; | 
|  | } | 
|  | dbgs() << "#"; | 
|  | dbgs() << I->getSUnit() << " - SU(" << I->getSUnit()->NodeNum << ")"; | 
|  | if (I->isArtificial()) | 
|  | dbgs() << " *"; | 
|  | dbgs() << ": Latency=" << I->getLatency(); | 
|  | dbgs() << "\n"; | 
|  | } | 
|  | } | 
|  | dbgs() << "\n"; | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | /// VerifySchedule - Verify that all SUnits were scheduled and that | 
|  | /// their state is consistent. | 
|  | /// | 
|  | void ScheduleDAG::VerifySchedule(bool isBottomUp) { | 
|  | bool AnyNotSched = false; | 
|  | unsigned DeadNodes = 0; | 
|  | unsigned Noops = 0; | 
|  | for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { | 
|  | if (!SUnits[i].isScheduled) { | 
|  | if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) { | 
|  | ++DeadNodes; | 
|  | continue; | 
|  | } | 
|  | if (!AnyNotSched) | 
|  | dbgs() << "*** Scheduling failed! ***\n"; | 
|  | SUnits[i].dump(this); | 
|  | dbgs() << "has not been scheduled!\n"; | 
|  | AnyNotSched = true; | 
|  | } | 
|  | if (SUnits[i].isScheduled && | 
|  | (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getDepth()) > | 
|  | unsigned(INT_MAX)) { | 
|  | if (!AnyNotSched) | 
|  | dbgs() << "*** Scheduling failed! ***\n"; | 
|  | SUnits[i].dump(this); | 
|  | dbgs() << "has an unexpected " | 
|  | << (isBottomUp ? "Height" : "Depth") << " value!\n"; | 
|  | AnyNotSched = true; | 
|  | } | 
|  | if (isBottomUp) { | 
|  | if (SUnits[i].NumSuccsLeft != 0) { | 
|  | if (!AnyNotSched) | 
|  | dbgs() << "*** Scheduling failed! ***\n"; | 
|  | SUnits[i].dump(this); | 
|  | dbgs() << "has successors left!\n"; | 
|  | AnyNotSched = true; | 
|  | } | 
|  | } else { | 
|  | if (SUnits[i].NumPredsLeft != 0) { | 
|  | if (!AnyNotSched) | 
|  | dbgs() << "*** Scheduling failed! ***\n"; | 
|  | SUnits[i].dump(this); | 
|  | dbgs() << "has predecessors left!\n"; | 
|  | AnyNotSched = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | for (unsigned i = 0, e = Sequence.size(); i != e; ++i) | 
|  | if (!Sequence[i]) | 
|  | ++Noops; | 
|  | assert(!AnyNotSched); | 
|  | assert(Sequence.size() + DeadNodes - Noops == SUnits.size() && | 
|  | "The number of nodes scheduled doesn't match the expected number!"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /// InitDAGTopologicalSorting - create the initial topological | 
|  | /// ordering from the DAG to be scheduled. | 
|  | /// | 
|  | /// The idea of the algorithm is taken from | 
|  | /// "Online algorithms for managing the topological order of | 
|  | /// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly | 
|  | /// This is the MNR algorithm, which was first introduced by | 
|  | /// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in | 
|  | /// "Maintaining a topological order under edge insertions". | 
|  | /// | 
|  | /// Short description of the algorithm: | 
|  | /// | 
|  | /// Topological ordering, ord, of a DAG maps each node to a topological | 
|  | /// index so that for all edges X->Y it is the case that ord(X) < ord(Y). | 
|  | /// | 
|  | /// This means that if there is a path from the node X to the node Z, | 
|  | /// then ord(X) < ord(Z). | 
|  | /// | 
|  | /// This property can be used to check for reachability of nodes: | 
|  | /// if Z is reachable from X, then an insertion of the edge Z->X would | 
|  | /// create a cycle. | 
|  | /// | 
|  | /// The algorithm first computes a topological ordering for the DAG by | 
|  | /// initializing the Index2Node and Node2Index arrays and then tries to keep | 
|  | /// the ordering up-to-date after edge insertions by reordering the DAG. | 
|  | /// | 
|  | /// On insertion of the edge X->Y, the algorithm first marks by calling DFS | 
|  | /// the nodes reachable from Y, and then shifts them using Shift to lie | 
|  | /// immediately after X in Index2Node. | 
|  | void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() { | 
|  | unsigned DAGSize = SUnits.size(); | 
|  | std::vector<SUnit*> WorkList; | 
|  | WorkList.reserve(DAGSize); | 
|  |  | 
|  | Index2Node.resize(DAGSize); | 
|  | Node2Index.resize(DAGSize); | 
|  |  | 
|  | // Initialize the data structures. | 
|  | for (unsigned i = 0, e = DAGSize; i != e; ++i) { | 
|  | SUnit *SU = &SUnits[i]; | 
|  | int NodeNum = SU->NodeNum; | 
|  | unsigned Degree = SU->Succs.size(); | 
|  | // Temporarily use the Node2Index array as scratch space for degree counts. | 
|  | Node2Index[NodeNum] = Degree; | 
|  |  | 
|  | // Is it a node without dependencies? | 
|  | if (Degree == 0) { | 
|  | assert(SU->Succs.empty() && "SUnit should have no successors"); | 
|  | // Collect leaf nodes. | 
|  | WorkList.push_back(SU); | 
|  | } | 
|  | } | 
|  |  | 
|  | int Id = DAGSize; | 
|  | while (!WorkList.empty()) { | 
|  | SUnit *SU = WorkList.back(); | 
|  | WorkList.pop_back(); | 
|  | Allocate(SU->NodeNum, --Id); | 
|  | for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); | 
|  | I != E; ++I) { | 
|  | SUnit *SU = I->getSUnit(); | 
|  | if (!--Node2Index[SU->NodeNum]) | 
|  | // If all dependencies of the node are processed already, | 
|  | // then the node can be computed now. | 
|  | WorkList.push_back(SU); | 
|  | } | 
|  | } | 
|  |  | 
|  | Visited.resize(DAGSize); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Check correctness of the ordering | 
|  | for (unsigned i = 0, e = DAGSize; i != e; ++i) { | 
|  | SUnit *SU = &SUnits[i]; | 
|  | for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); | 
|  | I != E; ++I) { | 
|  | assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] && | 
|  | "Wrong topological sorting"); | 
|  | } | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /// AddPred - Updates the topological ordering to accomodate an edge | 
|  | /// to be added from SUnit X to SUnit Y. | 
|  | void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) { | 
|  | int UpperBound, LowerBound; | 
|  | LowerBound = Node2Index[Y->NodeNum]; | 
|  | UpperBound = Node2Index[X->NodeNum]; | 
|  | bool HasLoop = false; | 
|  | // Is Ord(X) < Ord(Y) ? | 
|  | if (LowerBound < UpperBound) { | 
|  | // Update the topological order. | 
|  | Visited.reset(); | 
|  | DFS(Y, UpperBound, HasLoop); | 
|  | assert(!HasLoop && "Inserted edge creates a loop!"); | 
|  | // Recompute topological indexes. | 
|  | Shift(Visited, LowerBound, UpperBound); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// RemovePred - Updates the topological ordering to accomodate an | 
|  | /// an edge to be removed from the specified node N from the predecessors | 
|  | /// of the current node M. | 
|  | void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) { | 
|  | // InitDAGTopologicalSorting(); | 
|  | } | 
|  |  | 
|  | /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark | 
|  | /// all nodes affected by the edge insertion. These nodes will later get new | 
|  | /// topological indexes by means of the Shift method. | 
|  | void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound, | 
|  | bool& HasLoop) { | 
|  | std::vector<const SUnit*> WorkList; | 
|  | WorkList.reserve(SUnits.size()); | 
|  |  | 
|  | WorkList.push_back(SU); | 
|  | do { | 
|  | SU = WorkList.back(); | 
|  | WorkList.pop_back(); | 
|  | Visited.set(SU->NodeNum); | 
|  | for (int I = SU->Succs.size()-1; I >= 0; --I) { | 
|  | int s = SU->Succs[I].getSUnit()->NodeNum; | 
|  | if (Node2Index[s] == UpperBound) { | 
|  | HasLoop = true; | 
|  | return; | 
|  | } | 
|  | // Visit successors if not already and in affected region. | 
|  | if (!Visited.test(s) && Node2Index[s] < UpperBound) { | 
|  | WorkList.push_back(SU->Succs[I].getSUnit()); | 
|  | } | 
|  | } | 
|  | } while (!WorkList.empty()); | 
|  | } | 
|  |  | 
|  | /// Shift - Renumber the nodes so that the topological ordering is | 
|  | /// preserved. | 
|  | void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound, | 
|  | int UpperBound) { | 
|  | std::vector<int> L; | 
|  | int shift = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = LowerBound; i <= UpperBound; ++i) { | 
|  | // w is node at topological index i. | 
|  | int w = Index2Node[i]; | 
|  | if (Visited.test(w)) { | 
|  | // Unmark. | 
|  | Visited.reset(w); | 
|  | L.push_back(w); | 
|  | shift = shift + 1; | 
|  | } else { | 
|  | Allocate(w, i - shift); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned j = 0; j < L.size(); ++j) { | 
|  | Allocate(L[j], i - shift); | 
|  | i = i + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will | 
|  | /// create a cycle. | 
|  | bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *SU, SUnit *TargetSU) { | 
|  | if (IsReachable(TargetSU, SU)) | 
|  | return true; | 
|  | for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end(); | 
|  | I != E; ++I) | 
|  | if (I->isAssignedRegDep() && | 
|  | IsReachable(TargetSU, I->getSUnit())) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// IsReachable - Checks if SU is reachable from TargetSU. | 
|  | bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU, | 
|  | const SUnit *TargetSU) { | 
|  | // If insertion of the edge SU->TargetSU would create a cycle | 
|  | // then there is a path from TargetSU to SU. | 
|  | int UpperBound, LowerBound; | 
|  | LowerBound = Node2Index[TargetSU->NodeNum]; | 
|  | UpperBound = Node2Index[SU->NodeNum]; | 
|  | bool HasLoop = false; | 
|  | // Is Ord(TargetSU) < Ord(SU) ? | 
|  | if (LowerBound < UpperBound) { | 
|  | Visited.reset(); | 
|  | // There may be a path from TargetSU to SU. Check for it. | 
|  | DFS(TargetSU, UpperBound, HasLoop); | 
|  | } | 
|  | return HasLoop; | 
|  | } | 
|  |  | 
|  | /// Allocate - assign the topological index to the node n. | 
|  | void ScheduleDAGTopologicalSort::Allocate(int n, int index) { | 
|  | Node2Index[n] = index; | 
|  | Index2Node[index] = n; | 
|  | } | 
|  |  | 
|  | ScheduleDAGTopologicalSort::ScheduleDAGTopologicalSort( | 
|  | std::vector<SUnit> &sunits) | 
|  | : SUnits(sunits) {} | 
|  |  | 
|  | ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {} |