|  | //===-- X86/X86MCCodeEmitter.cpp - Convert X86 code to machine code -------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the X86MCCodeEmitter class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "mccodeemitter" | 
|  | #include "MCTargetDesc/X86MCTargetDesc.h" | 
|  | #include "MCTargetDesc/X86BaseInfo.h" | 
|  | #include "MCTargetDesc/X86FixupKinds.h" | 
|  | #include "llvm/MC/MCCodeEmitter.h" | 
|  | #include "llvm/MC/MCExpr.h" | 
|  | #include "llvm/MC/MCInst.h" | 
|  | #include "llvm/MC/MCInstrInfo.h" | 
|  | #include "llvm/MC/MCRegisterInfo.h" | 
|  | #include "llvm/MC/MCSubtargetInfo.h" | 
|  | #include "llvm/MC/MCSymbol.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  | class X86MCCodeEmitter : public MCCodeEmitter { | 
|  | X86MCCodeEmitter(const X86MCCodeEmitter &); // DO NOT IMPLEMENT | 
|  | void operator=(const X86MCCodeEmitter &); // DO NOT IMPLEMENT | 
|  | const MCInstrInfo &MCII; | 
|  | const MCSubtargetInfo &STI; | 
|  | MCContext &Ctx; | 
|  | public: | 
|  | X86MCCodeEmitter(const MCInstrInfo &mcii, const MCSubtargetInfo &sti, | 
|  | MCContext &ctx) | 
|  | : MCII(mcii), STI(sti), Ctx(ctx) { | 
|  | } | 
|  |  | 
|  | ~X86MCCodeEmitter() {} | 
|  |  | 
|  | bool is64BitMode() const { | 
|  | // FIXME: Can tablegen auto-generate this? | 
|  | return (STI.getFeatureBits() & X86::Mode64Bit) != 0; | 
|  | } | 
|  |  | 
|  | static unsigned GetX86RegNum(const MCOperand &MO) { | 
|  | return X86_MC::getX86RegNum(MO.getReg()); | 
|  | } | 
|  |  | 
|  | // On regular x86, both XMM0-XMM7 and XMM8-XMM15 are encoded in the range | 
|  | // 0-7 and the difference between the 2 groups is given by the REX prefix. | 
|  | // In the VEX prefix, registers are seen sequencially from 0-15 and encoded | 
|  | // in 1's complement form, example: | 
|  | // | 
|  | //  ModRM field => XMM9 => 1 | 
|  | //  VEX.VVVV    => XMM9 => ~9 | 
|  | // | 
|  | // See table 4-35 of Intel AVX Programming Reference for details. | 
|  | static unsigned char getVEXRegisterEncoding(const MCInst &MI, | 
|  | unsigned OpNum) { | 
|  | unsigned SrcReg = MI.getOperand(OpNum).getReg(); | 
|  | unsigned SrcRegNum = GetX86RegNum(MI.getOperand(OpNum)); | 
|  | if ((SrcReg >= X86::XMM8 && SrcReg <= X86::XMM15) || | 
|  | (SrcReg >= X86::YMM8 && SrcReg <= X86::YMM15)) | 
|  | SrcRegNum += 8; | 
|  |  | 
|  | // The registers represented through VEX_VVVV should | 
|  | // be encoded in 1's complement form. | 
|  | return (~SrcRegNum) & 0xf; | 
|  | } | 
|  |  | 
|  | void EmitByte(unsigned char C, unsigned &CurByte, raw_ostream &OS) const { | 
|  | OS << (char)C; | 
|  | ++CurByte; | 
|  | } | 
|  |  | 
|  | void EmitConstant(uint64_t Val, unsigned Size, unsigned &CurByte, | 
|  | raw_ostream &OS) const { | 
|  | // Output the constant in little endian byte order. | 
|  | for (unsigned i = 0; i != Size; ++i) { | 
|  | EmitByte(Val & 255, CurByte, OS); | 
|  | Val >>= 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | void EmitImmediate(const MCOperand &Disp, | 
|  | unsigned ImmSize, MCFixupKind FixupKind, | 
|  | unsigned &CurByte, raw_ostream &OS, | 
|  | SmallVectorImpl<MCFixup> &Fixups, | 
|  | int ImmOffset = 0) const; | 
|  |  | 
|  | inline static unsigned char ModRMByte(unsigned Mod, unsigned RegOpcode, | 
|  | unsigned RM) { | 
|  | assert(Mod < 4 && RegOpcode < 8 && RM < 8 && "ModRM Fields out of range!"); | 
|  | return RM | (RegOpcode << 3) | (Mod << 6); | 
|  | } | 
|  |  | 
|  | void EmitRegModRMByte(const MCOperand &ModRMReg, unsigned RegOpcodeFld, | 
|  | unsigned &CurByte, raw_ostream &OS) const { | 
|  | EmitByte(ModRMByte(3, RegOpcodeFld, GetX86RegNum(ModRMReg)), CurByte, OS); | 
|  | } | 
|  |  | 
|  | void EmitSIBByte(unsigned SS, unsigned Index, unsigned Base, | 
|  | unsigned &CurByte, raw_ostream &OS) const { | 
|  | // SIB byte is in the same format as the ModRMByte. | 
|  | EmitByte(ModRMByte(SS, Index, Base), CurByte, OS); | 
|  | } | 
|  |  | 
|  |  | 
|  | void EmitMemModRMByte(const MCInst &MI, unsigned Op, | 
|  | unsigned RegOpcodeField, | 
|  | uint64_t TSFlags, unsigned &CurByte, raw_ostream &OS, | 
|  | SmallVectorImpl<MCFixup> &Fixups) const; | 
|  |  | 
|  | void EncodeInstruction(const MCInst &MI, raw_ostream &OS, | 
|  | SmallVectorImpl<MCFixup> &Fixups) const; | 
|  |  | 
|  | void EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand, | 
|  | const MCInst &MI, const MCInstrDesc &Desc, | 
|  | raw_ostream &OS) const; | 
|  |  | 
|  | void EmitSegmentOverridePrefix(uint64_t TSFlags, unsigned &CurByte, | 
|  | int MemOperand, const MCInst &MI, | 
|  | raw_ostream &OS) const; | 
|  |  | 
|  | void EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, int MemOperand, | 
|  | const MCInst &MI, const MCInstrDesc &Desc, | 
|  | raw_ostream &OS) const; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  |  | 
|  | MCCodeEmitter *llvm::createX86MCCodeEmitter(const MCInstrInfo &MCII, | 
|  | const MCSubtargetInfo &STI, | 
|  | MCContext &Ctx) { | 
|  | return new X86MCCodeEmitter(MCII, STI, Ctx); | 
|  | } | 
|  |  | 
|  | /// isDisp8 - Return true if this signed displacement fits in a 8-bit | 
|  | /// sign-extended field. | 
|  | static bool isDisp8(int Value) { | 
|  | return Value == (signed char)Value; | 
|  | } | 
|  |  | 
|  | /// getImmFixupKind - Return the appropriate fixup kind to use for an immediate | 
|  | /// in an instruction with the specified TSFlags. | 
|  | static MCFixupKind getImmFixupKind(uint64_t TSFlags) { | 
|  | unsigned Size = X86II::getSizeOfImm(TSFlags); | 
|  | bool isPCRel = X86II::isImmPCRel(TSFlags); | 
|  |  | 
|  | return MCFixup::getKindForSize(Size, isPCRel); | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  | // FIXME: TableGen this? | 
|  | extern MCRegisterClass X86MCRegisterClasses[]; // In X86GenRegisterInfo.inc. | 
|  | } | 
|  |  | 
|  | /// Is32BitMemOperand - Return true if the specified instruction with a memory | 
|  | /// operand should emit the 0x67 prefix byte in 64-bit mode due to a 32-bit | 
|  | /// memory operand.  Op specifies the operand # of the memoperand. | 
|  | static bool Is32BitMemOperand(const MCInst &MI, unsigned Op) { | 
|  | const MCOperand &BaseReg  = MI.getOperand(Op+X86::AddrBaseReg); | 
|  | const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); | 
|  |  | 
|  | if ((BaseReg.getReg() != 0 && | 
|  | X86MCRegisterClasses[X86::GR32RegClassID].contains(BaseReg.getReg())) || | 
|  | (IndexReg.getReg() != 0 && | 
|  | X86MCRegisterClasses[X86::GR32RegClassID].contains(IndexReg.getReg()))) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// StartsWithGlobalOffsetTable - Return true for the simple cases where this | 
|  | /// expression starts with _GLOBAL_OFFSET_TABLE_. This is a needed to support | 
|  | /// PIC on ELF i386 as that symbol is magic. We check only simple case that | 
|  | /// are know to be used: _GLOBAL_OFFSET_TABLE_ by itself or at the start | 
|  | /// of a binary expression. | 
|  | static bool StartsWithGlobalOffsetTable(const MCExpr *Expr) { | 
|  | if (Expr->getKind() == MCExpr::Binary) { | 
|  | const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Expr); | 
|  | Expr = BE->getLHS(); | 
|  | } | 
|  |  | 
|  | if (Expr->getKind() != MCExpr::SymbolRef) | 
|  | return false; | 
|  |  | 
|  | const MCSymbolRefExpr *Ref = static_cast<const MCSymbolRefExpr*>(Expr); | 
|  | const MCSymbol &S = Ref->getSymbol(); | 
|  | return S.getName() == "_GLOBAL_OFFSET_TABLE_"; | 
|  | } | 
|  |  | 
|  | void X86MCCodeEmitter:: | 
|  | EmitImmediate(const MCOperand &DispOp, unsigned Size, MCFixupKind FixupKind, | 
|  | unsigned &CurByte, raw_ostream &OS, | 
|  | SmallVectorImpl<MCFixup> &Fixups, int ImmOffset) const { | 
|  | const MCExpr *Expr = NULL; | 
|  | if (DispOp.isImm()) { | 
|  | // If this is a simple integer displacement that doesn't require a relocation, | 
|  | // emit it now. | 
|  | if (FixupKind != FK_PCRel_1 && | 
|  | FixupKind != FK_PCRel_2 && | 
|  | FixupKind != FK_PCRel_4) { | 
|  | EmitConstant(DispOp.getImm()+ImmOffset, Size, CurByte, OS); | 
|  | return; | 
|  | } | 
|  | Expr = MCConstantExpr::Create(DispOp.getImm(), Ctx); | 
|  | } else { | 
|  | Expr = DispOp.getExpr(); | 
|  | } | 
|  |  | 
|  | // If we have an immoffset, add it to the expression. | 
|  | if ((FixupKind == FK_Data_4 || | 
|  | FixupKind == MCFixupKind(X86::reloc_signed_4byte)) && | 
|  | StartsWithGlobalOffsetTable(Expr)) { | 
|  | assert(ImmOffset == 0); | 
|  |  | 
|  | FixupKind = MCFixupKind(X86::reloc_global_offset_table); | 
|  | ImmOffset = CurByte; | 
|  | } | 
|  |  | 
|  | // If the fixup is pc-relative, we need to bias the value to be relative to | 
|  | // the start of the field, not the end of the field. | 
|  | if (FixupKind == FK_PCRel_4 || | 
|  | FixupKind == MCFixupKind(X86::reloc_riprel_4byte) || | 
|  | FixupKind == MCFixupKind(X86::reloc_riprel_4byte_movq_load)) | 
|  | ImmOffset -= 4; | 
|  | if (FixupKind == FK_PCRel_2) | 
|  | ImmOffset -= 2; | 
|  | if (FixupKind == FK_PCRel_1) | 
|  | ImmOffset -= 1; | 
|  |  | 
|  | if (ImmOffset) | 
|  | Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(ImmOffset, Ctx), | 
|  | Ctx); | 
|  |  | 
|  | // Emit a symbolic constant as a fixup and 4 zeros. | 
|  | Fixups.push_back(MCFixup::Create(CurByte, Expr, FixupKind)); | 
|  | EmitConstant(0, Size, CurByte, OS); | 
|  | } | 
|  |  | 
|  | void X86MCCodeEmitter::EmitMemModRMByte(const MCInst &MI, unsigned Op, | 
|  | unsigned RegOpcodeField, | 
|  | uint64_t TSFlags, unsigned &CurByte, | 
|  | raw_ostream &OS, | 
|  | SmallVectorImpl<MCFixup> &Fixups) const{ | 
|  | const MCOperand &Disp     = MI.getOperand(Op+X86::AddrDisp); | 
|  | const MCOperand &Base     = MI.getOperand(Op+X86::AddrBaseReg); | 
|  | const MCOperand &Scale    = MI.getOperand(Op+X86::AddrScaleAmt); | 
|  | const MCOperand &IndexReg = MI.getOperand(Op+X86::AddrIndexReg); | 
|  | unsigned BaseReg = Base.getReg(); | 
|  |  | 
|  | // Handle %rip relative addressing. | 
|  | if (BaseReg == X86::RIP) {    // [disp32+RIP] in X86-64 mode | 
|  | assert(is64BitMode() && "Rip-relative addressing requires 64-bit mode"); | 
|  | assert(IndexReg.getReg() == 0 && "Invalid rip-relative address"); | 
|  | EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS); | 
|  |  | 
|  | unsigned FixupKind = X86::reloc_riprel_4byte; | 
|  |  | 
|  | // movq loads are handled with a special relocation form which allows the | 
|  | // linker to eliminate some loads for GOT references which end up in the | 
|  | // same linkage unit. | 
|  | if (MI.getOpcode() == X86::MOV64rm) | 
|  | FixupKind = X86::reloc_riprel_4byte_movq_load; | 
|  |  | 
|  | // rip-relative addressing is actually relative to the *next* instruction. | 
|  | // Since an immediate can follow the mod/rm byte for an instruction, this | 
|  | // means that we need to bias the immediate field of the instruction with | 
|  | // the size of the immediate field.  If we have this case, add it into the | 
|  | // expression to emit. | 
|  | int ImmSize = X86II::hasImm(TSFlags) ? X86II::getSizeOfImm(TSFlags) : 0; | 
|  |  | 
|  | EmitImmediate(Disp, 4, MCFixupKind(FixupKind), | 
|  | CurByte, OS, Fixups, -ImmSize); | 
|  | return; | 
|  | } | 
|  |  | 
|  | unsigned BaseRegNo = BaseReg ? GetX86RegNum(Base) : -1U; | 
|  |  | 
|  | // Determine whether a SIB byte is needed. | 
|  | // If no BaseReg, issue a RIP relative instruction only if the MCE can | 
|  | // resolve addresses on-the-fly, otherwise use SIB (Intel Manual 2A, table | 
|  | // 2-7) and absolute references. | 
|  |  | 
|  | if (// The SIB byte must be used if there is an index register. | 
|  | IndexReg.getReg() == 0 && | 
|  | // The SIB byte must be used if the base is ESP/RSP/R12, all of which | 
|  | // encode to an R/M value of 4, which indicates that a SIB byte is | 
|  | // present. | 
|  | BaseRegNo != N86::ESP && | 
|  | // If there is no base register and we're in 64-bit mode, we need a SIB | 
|  | // byte to emit an addr that is just 'disp32' (the non-RIP relative form). | 
|  | (!is64BitMode() || BaseReg != 0)) { | 
|  |  | 
|  | if (BaseReg == 0) {          // [disp32]     in X86-32 mode | 
|  | EmitByte(ModRMByte(0, RegOpcodeField, 5), CurByte, OS); | 
|  | EmitImmediate(Disp, 4, FK_Data_4, CurByte, OS, Fixups); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If the base is not EBP/ESP and there is no displacement, use simple | 
|  | // indirect register encoding, this handles addresses like [EAX].  The | 
|  | // encoding for [EBP] with no displacement means [disp32] so we handle it | 
|  | // by emitting a displacement of 0 below. | 
|  | if (Disp.isImm() && Disp.getImm() == 0 && BaseRegNo != N86::EBP) { | 
|  | EmitByte(ModRMByte(0, RegOpcodeField, BaseRegNo), CurByte, OS); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, if the displacement fits in a byte, encode as [REG+disp8]. | 
|  | if (Disp.isImm() && isDisp8(Disp.getImm())) { | 
|  | EmitByte(ModRMByte(1, RegOpcodeField, BaseRegNo), CurByte, OS); | 
|  | EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, emit the most general non-SIB encoding: [REG+disp32] | 
|  | EmitByte(ModRMByte(2, RegOpcodeField, BaseRegNo), CurByte, OS); | 
|  | EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS, | 
|  | Fixups); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // We need a SIB byte, so start by outputting the ModR/M byte first | 
|  | assert(IndexReg.getReg() != X86::ESP && | 
|  | IndexReg.getReg() != X86::RSP && "Cannot use ESP as index reg!"); | 
|  |  | 
|  | bool ForceDisp32 = false; | 
|  | bool ForceDisp8  = false; | 
|  | if (BaseReg == 0) { | 
|  | // If there is no base register, we emit the special case SIB byte with | 
|  | // MOD=0, BASE=5, to JUST get the index, scale, and displacement. | 
|  | EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS); | 
|  | ForceDisp32 = true; | 
|  | } else if (!Disp.isImm()) { | 
|  | // Emit the normal disp32 encoding. | 
|  | EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS); | 
|  | ForceDisp32 = true; | 
|  | } else if (Disp.getImm() == 0 && | 
|  | // Base reg can't be anything that ends up with '5' as the base | 
|  | // reg, it is the magic [*] nomenclature that indicates no base. | 
|  | BaseRegNo != N86::EBP) { | 
|  | // Emit no displacement ModR/M byte | 
|  | EmitByte(ModRMByte(0, RegOpcodeField, 4), CurByte, OS); | 
|  | } else if (isDisp8(Disp.getImm())) { | 
|  | // Emit the disp8 encoding. | 
|  | EmitByte(ModRMByte(1, RegOpcodeField, 4), CurByte, OS); | 
|  | ForceDisp8 = true;           // Make sure to force 8 bit disp if Base=EBP | 
|  | } else { | 
|  | // Emit the normal disp32 encoding. | 
|  | EmitByte(ModRMByte(2, RegOpcodeField, 4), CurByte, OS); | 
|  | } | 
|  |  | 
|  | // Calculate what the SS field value should be... | 
|  | static const unsigned SSTable[] = { ~0, 0, 1, ~0, 2, ~0, ~0, ~0, 3 }; | 
|  | unsigned SS = SSTable[Scale.getImm()]; | 
|  |  | 
|  | if (BaseReg == 0) { | 
|  | // Handle the SIB byte for the case where there is no base, see Intel | 
|  | // Manual 2A, table 2-7. The displacement has already been output. | 
|  | unsigned IndexRegNo; | 
|  | if (IndexReg.getReg()) | 
|  | IndexRegNo = GetX86RegNum(IndexReg); | 
|  | else // Examples: [ESP+1*<noreg>+4] or [scaled idx]+disp32 (MOD=0,BASE=5) | 
|  | IndexRegNo = 4; | 
|  | EmitSIBByte(SS, IndexRegNo, 5, CurByte, OS); | 
|  | } else { | 
|  | unsigned IndexRegNo; | 
|  | if (IndexReg.getReg()) | 
|  | IndexRegNo = GetX86RegNum(IndexReg); | 
|  | else | 
|  | IndexRegNo = 4;   // For example [ESP+1*<noreg>+4] | 
|  | EmitSIBByte(SS, IndexRegNo, GetX86RegNum(Base), CurByte, OS); | 
|  | } | 
|  |  | 
|  | // Do we need to output a displacement? | 
|  | if (ForceDisp8) | 
|  | EmitImmediate(Disp, 1, FK_Data_1, CurByte, OS, Fixups); | 
|  | else if (ForceDisp32 || Disp.getImm() != 0) | 
|  | EmitImmediate(Disp, 4, MCFixupKind(X86::reloc_signed_4byte), CurByte, OS, | 
|  | Fixups); | 
|  | } | 
|  |  | 
|  | /// EmitVEXOpcodePrefix - AVX instructions are encoded using a opcode prefix | 
|  | /// called VEX. | 
|  | void X86MCCodeEmitter::EmitVEXOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, | 
|  | int MemOperand, const MCInst &MI, | 
|  | const MCInstrDesc &Desc, | 
|  | raw_ostream &OS) const { | 
|  | bool HasVEX_4V = false; | 
|  | if ((TSFlags >> X86II::VEXShift) & X86II::VEX_4V) | 
|  | HasVEX_4V = true; | 
|  |  | 
|  | // VEX_R: opcode externsion equivalent to REX.R in | 
|  | // 1's complement (inverted) form | 
|  | // | 
|  | //  1: Same as REX_R=0 (must be 1 in 32-bit mode) | 
|  | //  0: Same as REX_R=1 (64 bit mode only) | 
|  | // | 
|  | unsigned char VEX_R = 0x1; | 
|  |  | 
|  | // VEX_X: equivalent to REX.X, only used when a | 
|  | // register is used for index in SIB Byte. | 
|  | // | 
|  | //  1: Same as REX.X=0 (must be 1 in 32-bit mode) | 
|  | //  0: Same as REX.X=1 (64-bit mode only) | 
|  | unsigned char VEX_X = 0x1; | 
|  |  | 
|  | // VEX_B: | 
|  | // | 
|  | //  1: Same as REX_B=0 (ignored in 32-bit mode) | 
|  | //  0: Same as REX_B=1 (64 bit mode only) | 
|  | // | 
|  | unsigned char VEX_B = 0x1; | 
|  |  | 
|  | // VEX_W: opcode specific (use like REX.W, or used for | 
|  | // opcode extension, or ignored, depending on the opcode byte) | 
|  | unsigned char VEX_W = 0; | 
|  |  | 
|  | // VEX_5M (VEX m-mmmmm field): | 
|  | // | 
|  | //  0b00000: Reserved for future use | 
|  | //  0b00001: implied 0F leading opcode | 
|  | //  0b00010: implied 0F 38 leading opcode bytes | 
|  | //  0b00011: implied 0F 3A leading opcode bytes | 
|  | //  0b00100-0b11111: Reserved for future use | 
|  | // | 
|  | unsigned char VEX_5M = 0x1; | 
|  |  | 
|  | // VEX_4V (VEX vvvv field): a register specifier | 
|  | // (in 1's complement form) or 1111 if unused. | 
|  | unsigned char VEX_4V = 0xf; | 
|  |  | 
|  | // VEX_L (Vector Length): | 
|  | // | 
|  | //  0: scalar or 128-bit vector | 
|  | //  1: 256-bit vector | 
|  | // | 
|  | unsigned char VEX_L = 0; | 
|  |  | 
|  | // VEX_PP: opcode extension providing equivalent | 
|  | // functionality of a SIMD prefix | 
|  | // | 
|  | //  0b00: None | 
|  | //  0b01: 66 | 
|  | //  0b10: F3 | 
|  | //  0b11: F2 | 
|  | // | 
|  | unsigned char VEX_PP = 0; | 
|  |  | 
|  | // Encode the operand size opcode prefix as needed. | 
|  | if (TSFlags & X86II::OpSize) | 
|  | VEX_PP = 0x01; | 
|  |  | 
|  | if ((TSFlags >> X86II::VEXShift) & X86II::VEX_W) | 
|  | VEX_W = 1; | 
|  |  | 
|  | if ((TSFlags >> X86II::VEXShift) & X86II::VEX_L) | 
|  | VEX_L = 1; | 
|  |  | 
|  | switch (TSFlags & X86II::Op0Mask) { | 
|  | default: assert(0 && "Invalid prefix!"); | 
|  | case X86II::T8:  // 0F 38 | 
|  | VEX_5M = 0x2; | 
|  | break; | 
|  | case X86II::TA:  // 0F 3A | 
|  | VEX_5M = 0x3; | 
|  | break; | 
|  | case X86II::TF:  // F2 0F 38 | 
|  | VEX_PP = 0x3; | 
|  | VEX_5M = 0x2; | 
|  | break; | 
|  | case X86II::XS:  // F3 0F | 
|  | VEX_PP = 0x2; | 
|  | break; | 
|  | case X86II::XD:  // F2 0F | 
|  | VEX_PP = 0x3; | 
|  | break; | 
|  | case X86II::A6:  // Bypass: Not used by VEX | 
|  | case X86II::A7:  // Bypass: Not used by VEX | 
|  | case X86II::TB:  // Bypass: Not used by VEX | 
|  | case 0: | 
|  | break;  // No prefix! | 
|  | } | 
|  |  | 
|  | // Set the vector length to 256-bit if YMM0-YMM15 is used | 
|  | for (unsigned i = 0; i != MI.getNumOperands(); ++i) { | 
|  | if (!MI.getOperand(i).isReg()) | 
|  | continue; | 
|  | unsigned SrcReg = MI.getOperand(i).getReg(); | 
|  | if (SrcReg >= X86::YMM0 && SrcReg <= X86::YMM15) | 
|  | VEX_L = 1; | 
|  | } | 
|  |  | 
|  | unsigned NumOps = MI.getNumOperands(); | 
|  | unsigned CurOp = 0; | 
|  | bool IsDestMem = false; | 
|  |  | 
|  | switch (TSFlags & X86II::FormMask) { | 
|  | case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!"); | 
|  | case X86II::MRMDestMem: | 
|  | IsDestMem = true; | 
|  | // The important info for the VEX prefix is never beyond the address | 
|  | // registers. Don't check beyond that. | 
|  | NumOps = CurOp = X86::AddrNumOperands; | 
|  | case X86II::MRM0m: case X86II::MRM1m: | 
|  | case X86II::MRM2m: case X86II::MRM3m: | 
|  | case X86II::MRM4m: case X86II::MRM5m: | 
|  | case X86II::MRM6m: case X86II::MRM7m: | 
|  | case X86II::MRMSrcMem: | 
|  | case X86II::MRMSrcReg: | 
|  | if (MI.getNumOperands() > CurOp && MI.getOperand(CurOp).isReg() && | 
|  | X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) | 
|  | VEX_R = 0x0; | 
|  | CurOp++; | 
|  |  | 
|  | if (HasVEX_4V) { | 
|  | VEX_4V = getVEXRegisterEncoding(MI, IsDestMem ? CurOp-1 : CurOp); | 
|  | CurOp++; | 
|  | } | 
|  |  | 
|  | // To only check operands before the memory address ones, start | 
|  | // the search from the beginning | 
|  | if (IsDestMem) | 
|  | CurOp = 0; | 
|  |  | 
|  | // If the last register should be encoded in the immediate field | 
|  | // do not use any bit from VEX prefix to this register, ignore it | 
|  | if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) | 
|  | NumOps--; | 
|  |  | 
|  | for (; CurOp != NumOps; ++CurOp) { | 
|  | const MCOperand &MO = MI.getOperand(CurOp); | 
|  | if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg())) | 
|  | VEX_B = 0x0; | 
|  | if (!VEX_B && MO.isReg() && | 
|  | ((TSFlags & X86II::FormMask) == X86II::MRMSrcMem) && | 
|  | X86II::isX86_64ExtendedReg(MO.getReg())) | 
|  | VEX_X = 0x0; | 
|  | } | 
|  | break; | 
|  | default: // MRMDestReg, MRM0r-MRM7r, RawFrm | 
|  | if (!MI.getNumOperands()) | 
|  | break; | 
|  |  | 
|  | if (MI.getOperand(CurOp).isReg() && | 
|  | X86II::isX86_64ExtendedReg(MI.getOperand(CurOp).getReg())) | 
|  | VEX_B = 0; | 
|  |  | 
|  | if (HasVEX_4V) | 
|  | VEX_4V = getVEXRegisterEncoding(MI, CurOp); | 
|  |  | 
|  | CurOp++; | 
|  | for (; CurOp != NumOps; ++CurOp) { | 
|  | const MCOperand &MO = MI.getOperand(CurOp); | 
|  | if (MO.isReg() && !HasVEX_4V && | 
|  | X86II::isX86_64ExtendedReg(MO.getReg())) | 
|  | VEX_R = 0x0; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Emit segment override opcode prefix as needed. | 
|  | EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS); | 
|  |  | 
|  | // VEX opcode prefix can have 2 or 3 bytes | 
|  | // | 
|  | //  3 bytes: | 
|  | //    +-----+ +--------------+ +-------------------+ | 
|  | //    | C4h | | RXB | m-mmmm | | W | vvvv | L | pp | | 
|  | //    +-----+ +--------------+ +-------------------+ | 
|  | //  2 bytes: | 
|  | //    +-----+ +-------------------+ | 
|  | //    | C5h | | R | vvvv | L | pp | | 
|  | //    +-----+ +-------------------+ | 
|  | // | 
|  | unsigned char LastByte = VEX_PP | (VEX_L << 2) | (VEX_4V << 3); | 
|  |  | 
|  | if (VEX_B && VEX_X && !VEX_W && (VEX_5M == 1)) { // 2 byte VEX prefix | 
|  | EmitByte(0xC5, CurByte, OS); | 
|  | EmitByte(LastByte | (VEX_R << 7), CurByte, OS); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // 3 byte VEX prefix | 
|  | EmitByte(0xC4, CurByte, OS); | 
|  | EmitByte(VEX_R << 7 | VEX_X << 6 | VEX_B << 5 | VEX_5M, CurByte, OS); | 
|  | EmitByte(LastByte | (VEX_W << 7), CurByte, OS); | 
|  | } | 
|  |  | 
|  | /// DetermineREXPrefix - Determine if the MCInst has to be encoded with a X86-64 | 
|  | /// REX prefix which specifies 1) 64-bit instructions, 2) non-default operand | 
|  | /// size, and 3) use of X86-64 extended registers. | 
|  | static unsigned DetermineREXPrefix(const MCInst &MI, uint64_t TSFlags, | 
|  | const MCInstrDesc &Desc) { | 
|  | unsigned REX = 0; | 
|  | if (TSFlags & X86II::REX_W) | 
|  | REX |= 1 << 3; // set REX.W | 
|  |  | 
|  | if (MI.getNumOperands() == 0) return REX; | 
|  |  | 
|  | unsigned NumOps = MI.getNumOperands(); | 
|  | // FIXME: MCInst should explicitize the two-addrness. | 
|  | bool isTwoAddr = NumOps > 1 && | 
|  | Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1; | 
|  |  | 
|  | // If it accesses SPL, BPL, SIL, or DIL, then it requires a 0x40 REX prefix. | 
|  | unsigned i = isTwoAddr ? 1 : 0; | 
|  | for (; i != NumOps; ++i) { | 
|  | const MCOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isReg()) continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (!X86II::isX86_64NonExtLowByteReg(Reg)) continue; | 
|  | // FIXME: The caller of DetermineREXPrefix slaps this prefix onto anything | 
|  | // that returns non-zero. | 
|  | REX |= 0x40; // REX fixed encoding prefix | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (TSFlags & X86II::FormMask) { | 
|  | case X86II::MRMInitReg: assert(0 && "FIXME: Remove this!"); | 
|  | case X86II::MRMSrcReg: | 
|  | if (MI.getOperand(0).isReg() && | 
|  | X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg())) | 
|  | REX |= 1 << 2; // set REX.R | 
|  | i = isTwoAddr ? 2 : 1; | 
|  | for (; i != NumOps; ++i) { | 
|  | const MCOperand &MO = MI.getOperand(i); | 
|  | if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg())) | 
|  | REX |= 1 << 0; // set REX.B | 
|  | } | 
|  | break; | 
|  | case X86II::MRMSrcMem: { | 
|  | if (MI.getOperand(0).isReg() && | 
|  | X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg())) | 
|  | REX |= 1 << 2; // set REX.R | 
|  | unsigned Bit = 0; | 
|  | i = isTwoAddr ? 2 : 1; | 
|  | for (; i != NumOps; ++i) { | 
|  | const MCOperand &MO = MI.getOperand(i); | 
|  | if (MO.isReg()) { | 
|  | if (X86II::isX86_64ExtendedReg(MO.getReg())) | 
|  | REX |= 1 << Bit; // set REX.B (Bit=0) and REX.X (Bit=1) | 
|  | Bit++; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case X86II::MRM0m: case X86II::MRM1m: | 
|  | case X86II::MRM2m: case X86II::MRM3m: | 
|  | case X86II::MRM4m: case X86II::MRM5m: | 
|  | case X86II::MRM6m: case X86II::MRM7m: | 
|  | case X86II::MRMDestMem: { | 
|  | unsigned e = (isTwoAddr ? X86::AddrNumOperands+1 : X86::AddrNumOperands); | 
|  | i = isTwoAddr ? 1 : 0; | 
|  | if (NumOps > e && MI.getOperand(e).isReg() && | 
|  | X86II::isX86_64ExtendedReg(MI.getOperand(e).getReg())) | 
|  | REX |= 1 << 2; // set REX.R | 
|  | unsigned Bit = 0; | 
|  | for (; i != e; ++i) { | 
|  | const MCOperand &MO = MI.getOperand(i); | 
|  | if (MO.isReg()) { | 
|  | if (X86II::isX86_64ExtendedReg(MO.getReg())) | 
|  | REX |= 1 << Bit; // REX.B (Bit=0) and REX.X (Bit=1) | 
|  | Bit++; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | if (MI.getOperand(0).isReg() && | 
|  | X86II::isX86_64ExtendedReg(MI.getOperand(0).getReg())) | 
|  | REX |= 1 << 0; // set REX.B | 
|  | i = isTwoAddr ? 2 : 1; | 
|  | for (unsigned e = NumOps; i != e; ++i) { | 
|  | const MCOperand &MO = MI.getOperand(i); | 
|  | if (MO.isReg() && X86II::isX86_64ExtendedReg(MO.getReg())) | 
|  | REX |= 1 << 2; // set REX.R | 
|  | } | 
|  | break; | 
|  | } | 
|  | return REX; | 
|  | } | 
|  |  | 
|  | /// EmitSegmentOverridePrefix - Emit segment override opcode prefix as needed | 
|  | void X86MCCodeEmitter::EmitSegmentOverridePrefix(uint64_t TSFlags, | 
|  | unsigned &CurByte, int MemOperand, | 
|  | const MCInst &MI, | 
|  | raw_ostream &OS) const { | 
|  | switch (TSFlags & X86II::SegOvrMask) { | 
|  | default: assert(0 && "Invalid segment!"); | 
|  | case 0: | 
|  | // No segment override, check for explicit one on memory operand. | 
|  | if (MemOperand != -1) {   // If the instruction has a memory operand. | 
|  | switch (MI.getOperand(MemOperand+X86::AddrSegmentReg).getReg()) { | 
|  | default: assert(0 && "Unknown segment register!"); | 
|  | case 0: break; | 
|  | case X86::CS: EmitByte(0x2E, CurByte, OS); break; | 
|  | case X86::SS: EmitByte(0x36, CurByte, OS); break; | 
|  | case X86::DS: EmitByte(0x3E, CurByte, OS); break; | 
|  | case X86::ES: EmitByte(0x26, CurByte, OS); break; | 
|  | case X86::FS: EmitByte(0x64, CurByte, OS); break; | 
|  | case X86::GS: EmitByte(0x65, CurByte, OS); break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case X86II::FS: | 
|  | EmitByte(0x64, CurByte, OS); | 
|  | break; | 
|  | case X86II::GS: | 
|  | EmitByte(0x65, CurByte, OS); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// EmitOpcodePrefix - Emit all instruction prefixes prior to the opcode. | 
|  | /// | 
|  | /// MemOperand is the operand # of the start of a memory operand if present.  If | 
|  | /// Not present, it is -1. | 
|  | void X86MCCodeEmitter::EmitOpcodePrefix(uint64_t TSFlags, unsigned &CurByte, | 
|  | int MemOperand, const MCInst &MI, | 
|  | const MCInstrDesc &Desc, | 
|  | raw_ostream &OS) const { | 
|  |  | 
|  | // Emit the lock opcode prefix as needed. | 
|  | if (TSFlags & X86II::LOCK) | 
|  | EmitByte(0xF0, CurByte, OS); | 
|  |  | 
|  | // Emit segment override opcode prefix as needed. | 
|  | EmitSegmentOverridePrefix(TSFlags, CurByte, MemOperand, MI, OS); | 
|  |  | 
|  | // Emit the repeat opcode prefix as needed. | 
|  | if ((TSFlags & X86II::Op0Mask) == X86II::REP) | 
|  | EmitByte(0xF3, CurByte, OS); | 
|  |  | 
|  | // Emit the address size opcode prefix as needed. | 
|  | if ((TSFlags & X86II::AdSize) || | 
|  | (MemOperand != -1 && is64BitMode() && Is32BitMemOperand(MI, MemOperand))) | 
|  | EmitByte(0x67, CurByte, OS); | 
|  |  | 
|  | // Emit the operand size opcode prefix as needed. | 
|  | if (TSFlags & X86II::OpSize) | 
|  | EmitByte(0x66, CurByte, OS); | 
|  |  | 
|  | bool Need0FPrefix = false; | 
|  | switch (TSFlags & X86II::Op0Mask) { | 
|  | default: assert(0 && "Invalid prefix!"); | 
|  | case 0: break;  // No prefix! | 
|  | case X86II::REP: break; // already handled. | 
|  | case X86II::TB:  // Two-byte opcode prefix | 
|  | case X86II::T8:  // 0F 38 | 
|  | case X86II::TA:  // 0F 3A | 
|  | case X86II::A6:  // 0F A6 | 
|  | case X86II::A7:  // 0F A7 | 
|  | Need0FPrefix = true; | 
|  | break; | 
|  | case X86II::TF: // F2 0F 38 | 
|  | EmitByte(0xF2, CurByte, OS); | 
|  | Need0FPrefix = true; | 
|  | break; | 
|  | case X86II::XS:   // F3 0F | 
|  | EmitByte(0xF3, CurByte, OS); | 
|  | Need0FPrefix = true; | 
|  | break; | 
|  | case X86II::XD:   // F2 0F | 
|  | EmitByte(0xF2, CurByte, OS); | 
|  | Need0FPrefix = true; | 
|  | break; | 
|  | case X86II::D8: EmitByte(0xD8, CurByte, OS); break; | 
|  | case X86II::D9: EmitByte(0xD9, CurByte, OS); break; | 
|  | case X86II::DA: EmitByte(0xDA, CurByte, OS); break; | 
|  | case X86II::DB: EmitByte(0xDB, CurByte, OS); break; | 
|  | case X86II::DC: EmitByte(0xDC, CurByte, OS); break; | 
|  | case X86II::DD: EmitByte(0xDD, CurByte, OS); break; | 
|  | case X86II::DE: EmitByte(0xDE, CurByte, OS); break; | 
|  | case X86II::DF: EmitByte(0xDF, CurByte, OS); break; | 
|  | } | 
|  |  | 
|  | // Handle REX prefix. | 
|  | // FIXME: Can this come before F2 etc to simplify emission? | 
|  | if (is64BitMode()) { | 
|  | if (unsigned REX = DetermineREXPrefix(MI, TSFlags, Desc)) | 
|  | EmitByte(0x40 | REX, CurByte, OS); | 
|  | } | 
|  |  | 
|  | // 0x0F escape code must be emitted just before the opcode. | 
|  | if (Need0FPrefix) | 
|  | EmitByte(0x0F, CurByte, OS); | 
|  |  | 
|  | // FIXME: Pull this up into previous switch if REX can be moved earlier. | 
|  | switch (TSFlags & X86II::Op0Mask) { | 
|  | case X86II::TF:    // F2 0F 38 | 
|  | case X86II::T8:    // 0F 38 | 
|  | EmitByte(0x38, CurByte, OS); | 
|  | break; | 
|  | case X86II::TA:    // 0F 3A | 
|  | EmitByte(0x3A, CurByte, OS); | 
|  | break; | 
|  | case X86II::A6:    // 0F A6 | 
|  | EmitByte(0xA6, CurByte, OS); | 
|  | break; | 
|  | case X86II::A7:    // 0F A7 | 
|  | EmitByte(0xA7, CurByte, OS); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void X86MCCodeEmitter:: | 
|  | EncodeInstruction(const MCInst &MI, raw_ostream &OS, | 
|  | SmallVectorImpl<MCFixup> &Fixups) const { | 
|  | unsigned Opcode = MI.getOpcode(); | 
|  | const MCInstrDesc &Desc = MCII.get(Opcode); | 
|  | uint64_t TSFlags = Desc.TSFlags; | 
|  |  | 
|  | // Pseudo instructions don't get encoded. | 
|  | if ((TSFlags & X86II::FormMask) == X86II::Pseudo) | 
|  | return; | 
|  |  | 
|  | // If this is a two-address instruction, skip one of the register operands. | 
|  | // FIXME: This should be handled during MCInst lowering. | 
|  | unsigned NumOps = Desc.getNumOperands(); | 
|  | unsigned CurOp = 0; | 
|  | if (NumOps > 1 && Desc.getOperandConstraint(1, MCOI::TIED_TO) != -1) | 
|  | ++CurOp; | 
|  | else if (NumOps > 2 && Desc.getOperandConstraint(NumOps-1, MCOI::TIED_TO)== 0) | 
|  | // Skip the last source operand that is tied_to the dest reg. e.g. LXADD32 | 
|  | --NumOps; | 
|  |  | 
|  | // Keep track of the current byte being emitted. | 
|  | unsigned CurByte = 0; | 
|  |  | 
|  | // Is this instruction encoded using the AVX VEX prefix? | 
|  | bool HasVEXPrefix = false; | 
|  |  | 
|  | // It uses the VEX.VVVV field? | 
|  | bool HasVEX_4V = false; | 
|  |  | 
|  | if ((TSFlags >> X86II::VEXShift) & X86II::VEX) | 
|  | HasVEXPrefix = true; | 
|  | if ((TSFlags >> X86II::VEXShift) & X86II::VEX_4V) | 
|  | HasVEX_4V = true; | 
|  |  | 
|  |  | 
|  | // Determine where the memory operand starts, if present. | 
|  | int MemoryOperand = X86II::getMemoryOperandNo(TSFlags); | 
|  | if (MemoryOperand != -1) MemoryOperand += CurOp; | 
|  |  | 
|  | if (!HasVEXPrefix) | 
|  | EmitOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS); | 
|  | else | 
|  | EmitVEXOpcodePrefix(TSFlags, CurByte, MemoryOperand, MI, Desc, OS); | 
|  |  | 
|  |  | 
|  | unsigned char BaseOpcode = X86II::getBaseOpcodeFor(TSFlags); | 
|  |  | 
|  | if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode) | 
|  | BaseOpcode = 0x0F;   // Weird 3DNow! encoding. | 
|  |  | 
|  | unsigned SrcRegNum = 0; | 
|  | switch (TSFlags & X86II::FormMask) { | 
|  | case X86II::MRMInitReg: | 
|  | assert(0 && "FIXME: Remove this form when the JIT moves to MCCodeEmitter!"); | 
|  | default: errs() << "FORM: " << (TSFlags & X86II::FormMask) << "\n"; | 
|  | assert(0 && "Unknown FormMask value in X86MCCodeEmitter!"); | 
|  | case X86II::Pseudo: | 
|  | assert(0 && "Pseudo instruction shouldn't be emitted"); | 
|  | case X86II::RawFrm: | 
|  | EmitByte(BaseOpcode, CurByte, OS); | 
|  | break; | 
|  |  | 
|  | case X86II::RawFrmImm8: | 
|  | EmitByte(BaseOpcode, CurByte, OS); | 
|  | EmitImmediate(MI.getOperand(CurOp++), | 
|  | X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), | 
|  | CurByte, OS, Fixups); | 
|  | EmitImmediate(MI.getOperand(CurOp++), 1, FK_Data_1, CurByte, OS, Fixups); | 
|  | break; | 
|  | case X86II::RawFrmImm16: | 
|  | EmitByte(BaseOpcode, CurByte, OS); | 
|  | EmitImmediate(MI.getOperand(CurOp++), | 
|  | X86II::getSizeOfImm(TSFlags), getImmFixupKind(TSFlags), | 
|  | CurByte, OS, Fixups); | 
|  | EmitImmediate(MI.getOperand(CurOp++), 2, FK_Data_2, CurByte, OS, Fixups); | 
|  | break; | 
|  |  | 
|  | case X86II::AddRegFrm: | 
|  | EmitByte(BaseOpcode + GetX86RegNum(MI.getOperand(CurOp++)), CurByte, OS); | 
|  | break; | 
|  |  | 
|  | case X86II::MRMDestReg: | 
|  | EmitByte(BaseOpcode, CurByte, OS); | 
|  | EmitRegModRMByte(MI.getOperand(CurOp), | 
|  | GetX86RegNum(MI.getOperand(CurOp+1)), CurByte, OS); | 
|  | CurOp += 2; | 
|  | break; | 
|  |  | 
|  | case X86II::MRMDestMem: | 
|  | EmitByte(BaseOpcode, CurByte, OS); | 
|  | SrcRegNum = CurOp + X86::AddrNumOperands; | 
|  |  | 
|  | if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) | 
|  | SrcRegNum++; | 
|  |  | 
|  | EmitMemModRMByte(MI, CurOp, | 
|  | GetX86RegNum(MI.getOperand(SrcRegNum)), | 
|  | TSFlags, CurByte, OS, Fixups); | 
|  | CurOp = SrcRegNum + 1; | 
|  | break; | 
|  |  | 
|  | case X86II::MRMSrcReg: | 
|  | EmitByte(BaseOpcode, CurByte, OS); | 
|  | SrcRegNum = CurOp + 1; | 
|  |  | 
|  | if (HasVEX_4V) // Skip 1st src (which is encoded in VEX_VVVV) | 
|  | SrcRegNum++; | 
|  |  | 
|  | EmitRegModRMByte(MI.getOperand(SrcRegNum), | 
|  | GetX86RegNum(MI.getOperand(CurOp)), CurByte, OS); | 
|  | CurOp = SrcRegNum + 1; | 
|  | break; | 
|  |  | 
|  | case X86II::MRMSrcMem: { | 
|  | int AddrOperands = X86::AddrNumOperands; | 
|  | unsigned FirstMemOp = CurOp+1; | 
|  | if (HasVEX_4V) { | 
|  | ++AddrOperands; | 
|  | ++FirstMemOp;  // Skip the register source (which is encoded in VEX_VVVV). | 
|  | } | 
|  |  | 
|  | EmitByte(BaseOpcode, CurByte, OS); | 
|  |  | 
|  | EmitMemModRMByte(MI, FirstMemOp, GetX86RegNum(MI.getOperand(CurOp)), | 
|  | TSFlags, CurByte, OS, Fixups); | 
|  | CurOp += AddrOperands + 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | case X86II::MRM0r: case X86II::MRM1r: | 
|  | case X86II::MRM2r: case X86II::MRM3r: | 
|  | case X86II::MRM4r: case X86II::MRM5r: | 
|  | case X86II::MRM6r: case X86II::MRM7r: | 
|  | if (HasVEX_4V) // Skip the register dst (which is encoded in VEX_VVVV). | 
|  | CurOp++; | 
|  | EmitByte(BaseOpcode, CurByte, OS); | 
|  | EmitRegModRMByte(MI.getOperand(CurOp++), | 
|  | (TSFlags & X86II::FormMask)-X86II::MRM0r, | 
|  | CurByte, OS); | 
|  | break; | 
|  | case X86II::MRM0m: case X86II::MRM1m: | 
|  | case X86II::MRM2m: case X86II::MRM3m: | 
|  | case X86II::MRM4m: case X86II::MRM5m: | 
|  | case X86II::MRM6m: case X86II::MRM7m: | 
|  | EmitByte(BaseOpcode, CurByte, OS); | 
|  | EmitMemModRMByte(MI, CurOp, (TSFlags & X86II::FormMask)-X86II::MRM0m, | 
|  | TSFlags, CurByte, OS, Fixups); | 
|  | CurOp += X86::AddrNumOperands; | 
|  | break; | 
|  | case X86II::MRM_C1: | 
|  | EmitByte(BaseOpcode, CurByte, OS); | 
|  | EmitByte(0xC1, CurByte, OS); | 
|  | break; | 
|  | case X86II::MRM_C2: | 
|  | EmitByte(BaseOpcode, CurByte, OS); | 
|  | EmitByte(0xC2, CurByte, OS); | 
|  | break; | 
|  | case X86II::MRM_C3: | 
|  | EmitByte(BaseOpcode, CurByte, OS); | 
|  | EmitByte(0xC3, CurByte, OS); | 
|  | break; | 
|  | case X86II::MRM_C4: | 
|  | EmitByte(BaseOpcode, CurByte, OS); | 
|  | EmitByte(0xC4, CurByte, OS); | 
|  | break; | 
|  | case X86II::MRM_C8: | 
|  | EmitByte(BaseOpcode, CurByte, OS); | 
|  | EmitByte(0xC8, CurByte, OS); | 
|  | break; | 
|  | case X86II::MRM_C9: | 
|  | EmitByte(BaseOpcode, CurByte, OS); | 
|  | EmitByte(0xC9, CurByte, OS); | 
|  | break; | 
|  | case X86II::MRM_E8: | 
|  | EmitByte(BaseOpcode, CurByte, OS); | 
|  | EmitByte(0xE8, CurByte, OS); | 
|  | break; | 
|  | case X86II::MRM_F0: | 
|  | EmitByte(BaseOpcode, CurByte, OS); | 
|  | EmitByte(0xF0, CurByte, OS); | 
|  | break; | 
|  | case X86II::MRM_F8: | 
|  | EmitByte(BaseOpcode, CurByte, OS); | 
|  | EmitByte(0xF8, CurByte, OS); | 
|  | break; | 
|  | case X86II::MRM_F9: | 
|  | EmitByte(BaseOpcode, CurByte, OS); | 
|  | EmitByte(0xF9, CurByte, OS); | 
|  | break; | 
|  | case X86II::MRM_D0: | 
|  | EmitByte(BaseOpcode, CurByte, OS); | 
|  | EmitByte(0xD0, CurByte, OS); | 
|  | break; | 
|  | case X86II::MRM_D1: | 
|  | EmitByte(BaseOpcode, CurByte, OS); | 
|  | EmitByte(0xD1, CurByte, OS); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If there is a remaining operand, it must be a trailing immediate.  Emit it | 
|  | // according to the right size for the instruction. | 
|  | if (CurOp != NumOps) { | 
|  | // The last source register of a 4 operand instruction in AVX is encoded | 
|  | // in bits[7:4] of a immediate byte, and bits[3:0] are ignored. | 
|  | if ((TSFlags >> X86II::VEXShift) & X86II::VEX_I8IMM) { | 
|  | const MCOperand &MO = MI.getOperand(CurOp++); | 
|  | bool IsExtReg = | 
|  | X86II::isX86_64ExtendedReg(MO.getReg()); | 
|  | unsigned RegNum = (IsExtReg ? (1 << 7) : 0); | 
|  | RegNum |= GetX86RegNum(MO) << 4; | 
|  | EmitImmediate(MCOperand::CreateImm(RegNum), 1, FK_Data_1, CurByte, OS, | 
|  | Fixups); | 
|  | } else { | 
|  | unsigned FixupKind; | 
|  | // FIXME: Is there a better way to know that we need a signed relocation? | 
|  | if (MI.getOpcode() == X86::ADD64ri32 || | 
|  | MI.getOpcode() == X86::MOV64ri32 || | 
|  | MI.getOpcode() == X86::MOV64mi32 || | 
|  | MI.getOpcode() == X86::PUSH64i32) | 
|  | FixupKind = X86::reloc_signed_4byte; | 
|  | else | 
|  | FixupKind = getImmFixupKind(TSFlags); | 
|  | EmitImmediate(MI.getOperand(CurOp++), | 
|  | X86II::getSizeOfImm(TSFlags), MCFixupKind(FixupKind), | 
|  | CurByte, OS, Fixups); | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((TSFlags >> X86II::VEXShift) & X86II::Has3DNow0F0FOpcode) | 
|  | EmitByte(X86II::getBaseOpcodeFor(TSFlags), CurByte, OS); | 
|  |  | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // FIXME: Verify. | 
|  | if (/*!Desc.isVariadic() &&*/ CurOp != NumOps) { | 
|  | errs() << "Cannot encode all operands of: "; | 
|  | MI.dump(); | 
|  | errs() << '\n'; | 
|  | abort(); | 
|  | } | 
|  | #endif | 
|  | } |