|  | #define MINIMAL_STDERR_OUTPUT | 
|  |  | 
|  | #include "llvm/Analysis/Passes.h" | 
|  | #include "llvm/ExecutionEngine/ExecutionEngine.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Verifier.h" | 
|  | #include "llvm/PassManager.h" | 
|  | #include "llvm/Support/TargetSelect.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include <cctype> | 
|  | #include <cstdio> | 
|  | #include <map> | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Lexer | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // The lexer returns tokens [0-255] if it is an unknown character, otherwise one | 
|  | // of these for known things. | 
|  | enum Token { | 
|  | tok_eof = -1, | 
|  |  | 
|  | // commands | 
|  | tok_def = -2, tok_extern = -3, | 
|  |  | 
|  | // primary | 
|  | tok_identifier = -4, tok_number = -5, | 
|  |  | 
|  | // control | 
|  | tok_if = -6, tok_then = -7, tok_else = -8, | 
|  | tok_for = -9, tok_in = -10, | 
|  |  | 
|  | // operators | 
|  | tok_binary = -11, tok_unary = -12, | 
|  |  | 
|  | // var definition | 
|  | tok_var = -13 | 
|  | }; | 
|  |  | 
|  | static std::string IdentifierStr;  // Filled in if tok_identifier | 
|  | static double NumVal;              // Filled in if tok_number | 
|  |  | 
|  | /// gettok - Return the next token from standard input. | 
|  | static int gettok() { | 
|  | static int LastChar = ' '; | 
|  |  | 
|  | // Skip any whitespace. | 
|  | while (isspace(LastChar)) | 
|  | LastChar = getchar(); | 
|  |  | 
|  | if (isalpha(LastChar)) { // identifier: [a-zA-Z][a-zA-Z0-9]* | 
|  | IdentifierStr = LastChar; | 
|  | while (isalnum((LastChar = getchar()))) | 
|  | IdentifierStr += LastChar; | 
|  |  | 
|  | if (IdentifierStr == "def") return tok_def; | 
|  | if (IdentifierStr == "extern") return tok_extern; | 
|  | if (IdentifierStr == "if") return tok_if; | 
|  | if (IdentifierStr == "then") return tok_then; | 
|  | if (IdentifierStr == "else") return tok_else; | 
|  | if (IdentifierStr == "for") return tok_for; | 
|  | if (IdentifierStr == "in") return tok_in; | 
|  | if (IdentifierStr == "binary") return tok_binary; | 
|  | if (IdentifierStr == "unary") return tok_unary; | 
|  | if (IdentifierStr == "var") return tok_var; | 
|  | return tok_identifier; | 
|  | } | 
|  |  | 
|  | if (isdigit(LastChar) || LastChar == '.') {   // Number: [0-9.]+ | 
|  | std::string NumStr; | 
|  | do { | 
|  | NumStr += LastChar; | 
|  | LastChar = getchar(); | 
|  | } while (isdigit(LastChar) || LastChar == '.'); | 
|  |  | 
|  | NumVal = strtod(NumStr.c_str(), 0); | 
|  | return tok_number; | 
|  | } | 
|  |  | 
|  | if (LastChar == '#') { | 
|  | // Comment until end of line. | 
|  | do LastChar = getchar(); | 
|  | while (LastChar != EOF && LastChar != '\n' && LastChar != '\r'); | 
|  |  | 
|  | if (LastChar != EOF) | 
|  | return gettok(); | 
|  | } | 
|  |  | 
|  | // Check for end of file.  Don't eat the EOF. | 
|  | if (LastChar == EOF) | 
|  | return tok_eof; | 
|  |  | 
|  | // Otherwise, just return the character as its ascii value. | 
|  | int ThisChar = LastChar; | 
|  | LastChar = getchar(); | 
|  | return ThisChar; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Abstract Syntax Tree (aka Parse Tree) | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// ExprAST - Base class for all expression nodes. | 
|  | class ExprAST { | 
|  | public: | 
|  | virtual ~ExprAST() {} | 
|  | virtual Value *Codegen() = 0; | 
|  | }; | 
|  |  | 
|  | /// NumberExprAST - Expression class for numeric literals like "1.0". | 
|  | class NumberExprAST : public ExprAST { | 
|  | double Val; | 
|  | public: | 
|  | NumberExprAST(double val) : Val(val) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// VariableExprAST - Expression class for referencing a variable, like "a". | 
|  | class VariableExprAST : public ExprAST { | 
|  | std::string Name; | 
|  | public: | 
|  | VariableExprAST(const std::string &name) : Name(name) {} | 
|  | const std::string &getName() const { return Name; } | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// UnaryExprAST - Expression class for a unary operator. | 
|  | class UnaryExprAST : public ExprAST { | 
|  | char Opcode; | 
|  | ExprAST *Operand; | 
|  | public: | 
|  | UnaryExprAST(char opcode, ExprAST *operand) | 
|  | : Opcode(opcode), Operand(operand) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// BinaryExprAST - Expression class for a binary operator. | 
|  | class BinaryExprAST : public ExprAST { | 
|  | char Op; | 
|  | ExprAST *LHS, *RHS; | 
|  | public: | 
|  | BinaryExprAST(char op, ExprAST *lhs, ExprAST *rhs) | 
|  | : Op(op), LHS(lhs), RHS(rhs) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// CallExprAST - Expression class for function calls. | 
|  | class CallExprAST : public ExprAST { | 
|  | std::string Callee; | 
|  | std::vector<ExprAST*> Args; | 
|  | public: | 
|  | CallExprAST(const std::string &callee, std::vector<ExprAST*> &args) | 
|  | : Callee(callee), Args(args) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// IfExprAST - Expression class for if/then/else. | 
|  | class IfExprAST : public ExprAST { | 
|  | ExprAST *Cond, *Then, *Else; | 
|  | public: | 
|  | IfExprAST(ExprAST *cond, ExprAST *then, ExprAST *_else) | 
|  | : Cond(cond), Then(then), Else(_else) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// ForExprAST - Expression class for for/in. | 
|  | class ForExprAST : public ExprAST { | 
|  | std::string VarName; | 
|  | ExprAST *Start, *End, *Step, *Body; | 
|  | public: | 
|  | ForExprAST(const std::string &varname, ExprAST *start, ExprAST *end, | 
|  | ExprAST *step, ExprAST *body) | 
|  | : VarName(varname), Start(start), End(end), Step(step), Body(body) {} | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// VarExprAST - Expression class for var/in | 
|  | class VarExprAST : public ExprAST { | 
|  | std::vector<std::pair<std::string, ExprAST*> > VarNames; | 
|  | ExprAST *Body; | 
|  | public: | 
|  | VarExprAST(const std::vector<std::pair<std::string, ExprAST*> > &varnames, | 
|  | ExprAST *body) | 
|  | : VarNames(varnames), Body(body) {} | 
|  |  | 
|  | virtual Value *Codegen(); | 
|  | }; | 
|  |  | 
|  | /// PrototypeAST - This class represents the "prototype" for a function, | 
|  | /// which captures its argument names as well as if it is an operator. | 
|  | class PrototypeAST { | 
|  | std::string Name; | 
|  | std::vector<std::string> Args; | 
|  | bool isOperator; | 
|  | unsigned Precedence;  // Precedence if a binary op. | 
|  | public: | 
|  | PrototypeAST(const std::string &name, const std::vector<std::string> &args, | 
|  | bool isoperator = false, unsigned prec = 0) | 
|  | : Name(name), Args(args), isOperator(isoperator), Precedence(prec) {} | 
|  |  | 
|  | bool isUnaryOp() const { return isOperator && Args.size() == 1; } | 
|  | bool isBinaryOp() const { return isOperator && Args.size() == 2; } | 
|  |  | 
|  | char getOperatorName() const { | 
|  | assert(isUnaryOp() || isBinaryOp()); | 
|  | return Name[Name.size()-1]; | 
|  | } | 
|  |  | 
|  | unsigned getBinaryPrecedence() const { return Precedence; } | 
|  |  | 
|  | Function *Codegen(); | 
|  |  | 
|  | void CreateArgumentAllocas(Function *F); | 
|  | }; | 
|  |  | 
|  | /// FunctionAST - This class represents a function definition itself. | 
|  | class FunctionAST { | 
|  | PrototypeAST *Proto; | 
|  | ExprAST *Body; | 
|  | public: | 
|  | FunctionAST(PrototypeAST *proto, ExprAST *body) | 
|  | : Proto(proto), Body(body) {} | 
|  |  | 
|  | Function *Codegen(); | 
|  | }; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Parser | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// CurTok/getNextToken - Provide a simple token buffer.  CurTok is the current | 
|  | /// token the parser is looking at.  getNextToken reads another token from the | 
|  | /// lexer and updates CurTok with its results. | 
|  | static int CurTok; | 
|  | static int getNextToken() { | 
|  | return CurTok = gettok(); | 
|  | } | 
|  |  | 
|  | /// BinopPrecedence - This holds the precedence for each binary operator that is | 
|  | /// defined. | 
|  | static std::map<char, int> BinopPrecedence; | 
|  |  | 
|  | /// GetTokPrecedence - Get the precedence of the pending binary operator token. | 
|  | static int GetTokPrecedence() { | 
|  | if (!isascii(CurTok)) | 
|  | return -1; | 
|  |  | 
|  | // Make sure it's a declared binop. | 
|  | int TokPrec = BinopPrecedence[CurTok]; | 
|  | if (TokPrec <= 0) return -1; | 
|  | return TokPrec; | 
|  | } | 
|  |  | 
|  | /// Error* - These are little helper functions for error handling. | 
|  | ExprAST *Error(const char *Str) { fprintf(stderr, "Error: %s\n", Str);return 0;} | 
|  | PrototypeAST *ErrorP(const char *Str) { Error(Str); return 0; } | 
|  | FunctionAST *ErrorF(const char *Str) { Error(Str); return 0; } | 
|  |  | 
|  | static ExprAST *ParseExpression(); | 
|  |  | 
|  | /// identifierexpr | 
|  | ///   ::= identifier | 
|  | ///   ::= identifier '(' expression* ')' | 
|  | static ExprAST *ParseIdentifierExpr() { | 
|  | std::string IdName = IdentifierStr; | 
|  |  | 
|  | getNextToken();  // eat identifier. | 
|  |  | 
|  | if (CurTok != '(') // Simple variable ref. | 
|  | return new VariableExprAST(IdName); | 
|  |  | 
|  | // Call. | 
|  | getNextToken();  // eat ( | 
|  | std::vector<ExprAST*> Args; | 
|  | if (CurTok != ')') { | 
|  | while (1) { | 
|  | ExprAST *Arg = ParseExpression(); | 
|  | if (!Arg) return 0; | 
|  | Args.push_back(Arg); | 
|  |  | 
|  | if (CurTok == ')') break; | 
|  |  | 
|  | if (CurTok != ',') | 
|  | return Error("Expected ')' or ',' in argument list"); | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Eat the ')'. | 
|  | getNextToken(); | 
|  |  | 
|  | return new CallExprAST(IdName, Args); | 
|  | } | 
|  |  | 
|  | /// numberexpr ::= number | 
|  | static ExprAST *ParseNumberExpr() { | 
|  | ExprAST *Result = new NumberExprAST(NumVal); | 
|  | getNextToken(); // consume the number | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// parenexpr ::= '(' expression ')' | 
|  | static ExprAST *ParseParenExpr() { | 
|  | getNextToken();  // eat (. | 
|  | ExprAST *V = ParseExpression(); | 
|  | if (!V) return 0; | 
|  |  | 
|  | if (CurTok != ')') | 
|  | return Error("expected ')'"); | 
|  | getNextToken();  // eat ). | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// ifexpr ::= 'if' expression 'then' expression 'else' expression | 
|  | static ExprAST *ParseIfExpr() { | 
|  | getNextToken();  // eat the if. | 
|  |  | 
|  | // condition. | 
|  | ExprAST *Cond = ParseExpression(); | 
|  | if (!Cond) return 0; | 
|  |  | 
|  | if (CurTok != tok_then) | 
|  | return Error("expected then"); | 
|  | getNextToken();  // eat the then | 
|  |  | 
|  | ExprAST *Then = ParseExpression(); | 
|  | if (Then == 0) return 0; | 
|  |  | 
|  | if (CurTok != tok_else) | 
|  | return Error("expected else"); | 
|  |  | 
|  | getNextToken(); | 
|  |  | 
|  | ExprAST *Else = ParseExpression(); | 
|  | if (!Else) return 0; | 
|  |  | 
|  | return new IfExprAST(Cond, Then, Else); | 
|  | } | 
|  |  | 
|  | /// forexpr ::= 'for' identifier '=' expr ',' expr (',' expr)? 'in' expression | 
|  | static ExprAST *ParseForExpr() { | 
|  | getNextToken();  // eat the for. | 
|  |  | 
|  | if (CurTok != tok_identifier) | 
|  | return Error("expected identifier after for"); | 
|  |  | 
|  | std::string IdName = IdentifierStr; | 
|  | getNextToken();  // eat identifier. | 
|  |  | 
|  | if (CurTok != '=') | 
|  | return Error("expected '=' after for"); | 
|  | getNextToken();  // eat '='. | 
|  |  | 
|  |  | 
|  | ExprAST *Start = ParseExpression(); | 
|  | if (Start == 0) return 0; | 
|  | if (CurTok != ',') | 
|  | return Error("expected ',' after for start value"); | 
|  | getNextToken(); | 
|  |  | 
|  | ExprAST *End = ParseExpression(); | 
|  | if (End == 0) return 0; | 
|  |  | 
|  | // The step value is optional. | 
|  | ExprAST *Step = 0; | 
|  | if (CurTok == ',') { | 
|  | getNextToken(); | 
|  | Step = ParseExpression(); | 
|  | if (Step == 0) return 0; | 
|  | } | 
|  |  | 
|  | if (CurTok != tok_in) | 
|  | return Error("expected 'in' after for"); | 
|  | getNextToken();  // eat 'in'. | 
|  |  | 
|  | ExprAST *Body = ParseExpression(); | 
|  | if (Body == 0) return 0; | 
|  |  | 
|  | return new ForExprAST(IdName, Start, End, Step, Body); | 
|  | } | 
|  |  | 
|  | /// varexpr ::= 'var' identifier ('=' expression)? | 
|  | //                    (',' identifier ('=' expression)?)* 'in' expression | 
|  | static ExprAST *ParseVarExpr() { | 
|  | getNextToken();  // eat the var. | 
|  |  | 
|  | std::vector<std::pair<std::string, ExprAST*> > VarNames; | 
|  |  | 
|  | // At least one variable name is required. | 
|  | if (CurTok != tok_identifier) | 
|  | return Error("expected identifier after var"); | 
|  |  | 
|  | while (1) { | 
|  | std::string Name = IdentifierStr; | 
|  | getNextToken();  // eat identifier. | 
|  |  | 
|  | // Read the optional initializer. | 
|  | ExprAST *Init = 0; | 
|  | if (CurTok == '=') { | 
|  | getNextToken(); // eat the '='. | 
|  |  | 
|  | Init = ParseExpression(); | 
|  | if (Init == 0) return 0; | 
|  | } | 
|  |  | 
|  | VarNames.push_back(std::make_pair(Name, Init)); | 
|  |  | 
|  | // End of var list, exit loop. | 
|  | if (CurTok != ',') break; | 
|  | getNextToken(); // eat the ','. | 
|  |  | 
|  | if (CurTok != tok_identifier) | 
|  | return Error("expected identifier list after var"); | 
|  | } | 
|  |  | 
|  | // At this point, we have to have 'in'. | 
|  | if (CurTok != tok_in) | 
|  | return Error("expected 'in' keyword after 'var'"); | 
|  | getNextToken();  // eat 'in'. | 
|  |  | 
|  | ExprAST *Body = ParseExpression(); | 
|  | if (Body == 0) return 0; | 
|  |  | 
|  | return new VarExprAST(VarNames, Body); | 
|  | } | 
|  |  | 
|  | /// primary | 
|  | ///   ::= identifierexpr | 
|  | ///   ::= numberexpr | 
|  | ///   ::= parenexpr | 
|  | ///   ::= ifexpr | 
|  | ///   ::= forexpr | 
|  | ///   ::= varexpr | 
|  | static ExprAST *ParsePrimary() { | 
|  | switch (CurTok) { | 
|  | default: return Error("unknown token when expecting an expression"); | 
|  | case tok_identifier: return ParseIdentifierExpr(); | 
|  | case tok_number:     return ParseNumberExpr(); | 
|  | case '(':            return ParseParenExpr(); | 
|  | case tok_if:         return ParseIfExpr(); | 
|  | case tok_for:        return ParseForExpr(); | 
|  | case tok_var:        return ParseVarExpr(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// unary | 
|  | ///   ::= primary | 
|  | ///   ::= '!' unary | 
|  | static ExprAST *ParseUnary() { | 
|  | // If the current token is not an operator, it must be a primary expr. | 
|  | if (!isascii(CurTok) || CurTok == '(' || CurTok == ',') | 
|  | return ParsePrimary(); | 
|  |  | 
|  | // If this is a unary operator, read it. | 
|  | int Opc = CurTok; | 
|  | getNextToken(); | 
|  | if (ExprAST *Operand = ParseUnary()) | 
|  | return new UnaryExprAST(Opc, Operand); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// binoprhs | 
|  | ///   ::= ('+' unary)* | 
|  | static ExprAST *ParseBinOpRHS(int ExprPrec, ExprAST *LHS) { | 
|  | // If this is a binop, find its precedence. | 
|  | while (1) { | 
|  | int TokPrec = GetTokPrecedence(); | 
|  |  | 
|  | // If this is a binop that binds at least as tightly as the current binop, | 
|  | // consume it, otherwise we are done. | 
|  | if (TokPrec < ExprPrec) | 
|  | return LHS; | 
|  |  | 
|  | // Okay, we know this is a binop. | 
|  | int BinOp = CurTok; | 
|  | getNextToken();  // eat binop | 
|  |  | 
|  | // Parse the unary expression after the binary operator. | 
|  | ExprAST *RHS = ParseUnary(); | 
|  | if (!RHS) return 0; | 
|  |  | 
|  | // If BinOp binds less tightly with RHS than the operator after RHS, let | 
|  | // the pending operator take RHS as its LHS. | 
|  | int NextPrec = GetTokPrecedence(); | 
|  | if (TokPrec < NextPrec) { | 
|  | RHS = ParseBinOpRHS(TokPrec+1, RHS); | 
|  | if (RHS == 0) return 0; | 
|  | } | 
|  |  | 
|  | // Merge LHS/RHS. | 
|  | LHS = new BinaryExprAST(BinOp, LHS, RHS); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// expression | 
|  | ///   ::= unary binoprhs | 
|  | /// | 
|  | static ExprAST *ParseExpression() { | 
|  | ExprAST *LHS = ParseUnary(); | 
|  | if (!LHS) return 0; | 
|  |  | 
|  | return ParseBinOpRHS(0, LHS); | 
|  | } | 
|  |  | 
|  | /// prototype | 
|  | ///   ::= id '(' id* ')' | 
|  | ///   ::= binary LETTER number? (id, id) | 
|  | ///   ::= unary LETTER (id) | 
|  | static PrototypeAST *ParsePrototype() { | 
|  | std::string FnName; | 
|  |  | 
|  | unsigned Kind = 0; // 0 = identifier, 1 = unary, 2 = binary. | 
|  | unsigned BinaryPrecedence = 30; | 
|  |  | 
|  | switch (CurTok) { | 
|  | default: | 
|  | return ErrorP("Expected function name in prototype"); | 
|  | case tok_identifier: | 
|  | FnName = IdentifierStr; | 
|  | Kind = 0; | 
|  | getNextToken(); | 
|  | break; | 
|  | case tok_unary: | 
|  | getNextToken(); | 
|  | if (!isascii(CurTok)) | 
|  | return ErrorP("Expected unary operator"); | 
|  | FnName = "unary"; | 
|  | FnName += (char)CurTok; | 
|  | Kind = 1; | 
|  | getNextToken(); | 
|  | break; | 
|  | case tok_binary: | 
|  | getNextToken(); | 
|  | if (!isascii(CurTok)) | 
|  | return ErrorP("Expected binary operator"); | 
|  | FnName = "binary"; | 
|  | FnName += (char)CurTok; | 
|  | Kind = 2; | 
|  | getNextToken(); | 
|  |  | 
|  | // Read the precedence if present. | 
|  | if (CurTok == tok_number) { | 
|  | if (NumVal < 1 || NumVal > 100) | 
|  | return ErrorP("Invalid precedecnce: must be 1..100"); | 
|  | BinaryPrecedence = (unsigned)NumVal; | 
|  | getNextToken(); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (CurTok != '(') | 
|  | return ErrorP("Expected '(' in prototype"); | 
|  |  | 
|  | std::vector<std::string> ArgNames; | 
|  | while (getNextToken() == tok_identifier) | 
|  | ArgNames.push_back(IdentifierStr); | 
|  | if (CurTok != ')') | 
|  | return ErrorP("Expected ')' in prototype"); | 
|  |  | 
|  | // success. | 
|  | getNextToken();  // eat ')'. | 
|  |  | 
|  | // Verify right number of names for operator. | 
|  | if (Kind && ArgNames.size() != Kind) | 
|  | return ErrorP("Invalid number of operands for operator"); | 
|  |  | 
|  | return new PrototypeAST(FnName, ArgNames, Kind != 0, BinaryPrecedence); | 
|  | } | 
|  |  | 
|  | /// definition ::= 'def' prototype expression | 
|  | static FunctionAST *ParseDefinition() { | 
|  | getNextToken();  // eat def. | 
|  | PrototypeAST *Proto = ParsePrototype(); | 
|  | if (Proto == 0) return 0; | 
|  |  | 
|  | if (ExprAST *E = ParseExpression()) | 
|  | return new FunctionAST(Proto, E); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// toplevelexpr ::= expression | 
|  | static FunctionAST *ParseTopLevelExpr() { | 
|  | if (ExprAST *E = ParseExpression()) { | 
|  | // Make an anonymous proto. | 
|  | PrototypeAST *Proto = new PrototypeAST("", std::vector<std::string>()); | 
|  | return new FunctionAST(Proto, E); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// external ::= 'extern' prototype | 
|  | static PrototypeAST *ParseExtern() { | 
|  | getNextToken();  // eat extern. | 
|  | return ParsePrototype(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Code Generation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static Module *TheModule; | 
|  | static FunctionPassManager *TheFPM; | 
|  | static IRBuilder<> Builder(getGlobalContext()); | 
|  | static std::map<std::string, AllocaInst*> NamedValues; | 
|  |  | 
|  | Value *ErrorV(const char *Str) { Error(Str); return 0; } | 
|  |  | 
|  | /// CreateEntryBlockAlloca - Create an alloca instruction in the entry block of | 
|  | /// the function.  This is used for mutable variables etc. | 
|  | static AllocaInst *CreateEntryBlockAlloca(Function *TheFunction, | 
|  | const std::string &VarName) { | 
|  | IRBuilder<> TmpB(&TheFunction->getEntryBlock(), | 
|  | TheFunction->getEntryBlock().begin()); | 
|  | return TmpB.CreateAlloca(Type::getDoubleTy(getGlobalContext()), 0, | 
|  | VarName.c_str()); | 
|  | } | 
|  |  | 
|  | Value *NumberExprAST::Codegen() { | 
|  | return ConstantFP::get(getGlobalContext(), APFloat(Val)); | 
|  | } | 
|  |  | 
|  | Value *VariableExprAST::Codegen() { | 
|  | // Look this variable up in the function. | 
|  | Value *V = NamedValues[Name]; | 
|  | if (V == 0) return ErrorV("Unknown variable name"); | 
|  |  | 
|  | // Load the value. | 
|  | return Builder.CreateLoad(V, Name.c_str()); | 
|  | } | 
|  |  | 
|  | Value *UnaryExprAST::Codegen() { | 
|  | Value *OperandV = Operand->Codegen(); | 
|  | if (OperandV == 0) return 0; | 
|  | #ifdef USE_MCJIT | 
|  | Function *F = TheHelper->getFunction(MakeLegalFunctionName(std::string("unary")+Opcode)); | 
|  | #else | 
|  | Function *F = TheModule->getFunction(std::string("unary")+Opcode); | 
|  | #endif | 
|  | if (F == 0) | 
|  | return ErrorV("Unknown unary operator"); | 
|  |  | 
|  | return Builder.CreateCall(F, OperandV, "unop"); | 
|  | } | 
|  |  | 
|  | Value *BinaryExprAST::Codegen() { | 
|  | // Special case '=' because we don't want to emit the LHS as an expression. | 
|  | if (Op == '=') { | 
|  | // Assignment requires the LHS to be an identifier. | 
|  | VariableExprAST *LHSE = dynamic_cast<VariableExprAST*>(LHS); | 
|  | if (!LHSE) | 
|  | return ErrorV("destination of '=' must be a variable"); | 
|  | // Codegen the RHS. | 
|  | Value *Val = RHS->Codegen(); | 
|  | if (Val == 0) return 0; | 
|  |  | 
|  | // Look up the name. | 
|  | Value *Variable = NamedValues[LHSE->getName()]; | 
|  | if (Variable == 0) return ErrorV("Unknown variable name"); | 
|  |  | 
|  | Builder.CreateStore(Val, Variable); | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | Value *L = LHS->Codegen(); | 
|  | Value *R = RHS->Codegen(); | 
|  | if (L == 0 || R == 0) return 0; | 
|  |  | 
|  | switch (Op) { | 
|  | case '+': return Builder.CreateFAdd(L, R, "addtmp"); | 
|  | case '-': return Builder.CreateFSub(L, R, "subtmp"); | 
|  | case '*': return Builder.CreateFMul(L, R, "multmp"); | 
|  | case '/': return Builder.CreateFDiv(L, R, "divtmp"); | 
|  | case '<': | 
|  | L = Builder.CreateFCmpULT(L, R, "cmptmp"); | 
|  | // Convert bool 0/1 to double 0.0 or 1.0 | 
|  | return Builder.CreateUIToFP(L, Type::getDoubleTy(getGlobalContext()), | 
|  | "booltmp"); | 
|  | default: break; | 
|  | } | 
|  |  | 
|  | // If it wasn't a builtin binary operator, it must be a user defined one. Emit | 
|  | // a call to it. | 
|  | Function *F = TheModule->getFunction(std::string("binary")+Op); | 
|  | assert(F && "binary operator not found!"); | 
|  |  | 
|  | Value *Ops[] = { L, R }; | 
|  | return Builder.CreateCall(F, Ops, "binop"); | 
|  | } | 
|  |  | 
|  | Value *CallExprAST::Codegen() { | 
|  | // Look up the name in the global module table. | 
|  | Function *CalleeF = TheModule->getFunction(Callee); | 
|  | if (CalleeF == 0) { | 
|  | char error_str[64]; | 
|  | sprintf(error_str, "Unknown function referenced %s", Callee.c_str()); | 
|  | return ErrorV(error_str); | 
|  | } | 
|  |  | 
|  | // If argument mismatch error. | 
|  | if (CalleeF->arg_size() != Args.size()) | 
|  | return ErrorV("Incorrect # arguments passed"); | 
|  |  | 
|  | std::vector<Value*> ArgsV; | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
|  | ArgsV.push_back(Args[i]->Codegen()); | 
|  | if (ArgsV.back() == 0) return 0; | 
|  | } | 
|  |  | 
|  | return Builder.CreateCall(CalleeF, ArgsV, "calltmp"); | 
|  | } | 
|  |  | 
|  | Value *IfExprAST::Codegen() { | 
|  | Value *CondV = Cond->Codegen(); | 
|  | if (CondV == 0) return 0; | 
|  |  | 
|  | // Convert condition to a bool by comparing equal to 0.0. | 
|  | CondV = Builder.CreateFCmpONE(CondV, | 
|  | ConstantFP::get(getGlobalContext(), APFloat(0.0)), | 
|  | "ifcond"); | 
|  |  | 
|  | Function *TheFunction = Builder.GetInsertBlock()->getParent(); | 
|  |  | 
|  | // Create blocks for the then and else cases.  Insert the 'then' block at the | 
|  | // end of the function. | 
|  | BasicBlock *ThenBB = BasicBlock::Create(getGlobalContext(), "then", TheFunction); | 
|  | BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(), "else"); | 
|  | BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(), "ifcont"); | 
|  |  | 
|  | Builder.CreateCondBr(CondV, ThenBB, ElseBB); | 
|  |  | 
|  | // Emit then value. | 
|  | Builder.SetInsertPoint(ThenBB); | 
|  |  | 
|  | Value *ThenV = Then->Codegen(); | 
|  | if (ThenV == 0) return 0; | 
|  |  | 
|  | Builder.CreateBr(MergeBB); | 
|  | // Codegen of 'Then' can change the current block, update ThenBB for the PHI. | 
|  | ThenBB = Builder.GetInsertBlock(); | 
|  |  | 
|  | // Emit else block. | 
|  | TheFunction->getBasicBlockList().push_back(ElseBB); | 
|  | Builder.SetInsertPoint(ElseBB); | 
|  |  | 
|  | Value *ElseV = Else->Codegen(); | 
|  | if (ElseV == 0) return 0; | 
|  |  | 
|  | Builder.CreateBr(MergeBB); | 
|  | // Codegen of 'Else' can change the current block, update ElseBB for the PHI. | 
|  | ElseBB = Builder.GetInsertBlock(); | 
|  |  | 
|  | // Emit merge block. | 
|  | TheFunction->getBasicBlockList().push_back(MergeBB); | 
|  | Builder.SetInsertPoint(MergeBB); | 
|  | PHINode *PN = Builder.CreatePHI(Type::getDoubleTy(getGlobalContext()), 2, | 
|  | "iftmp"); | 
|  |  | 
|  | PN->addIncoming(ThenV, ThenBB); | 
|  | PN->addIncoming(ElseV, ElseBB); | 
|  | return PN; | 
|  | } | 
|  |  | 
|  | Value *ForExprAST::Codegen() { | 
|  | // Output this as: | 
|  | //   var = alloca double | 
|  | //   ... | 
|  | //   start = startexpr | 
|  | //   store start -> var | 
|  | //   goto loop | 
|  | // loop: | 
|  | //   ... | 
|  | //   bodyexpr | 
|  | //   ... | 
|  | // loopend: | 
|  | //   step = stepexpr | 
|  | //   endcond = endexpr | 
|  | // | 
|  | //   curvar = load var | 
|  | //   nextvar = curvar + step | 
|  | //   store nextvar -> var | 
|  | //   br endcond, loop, endloop | 
|  | // outloop: | 
|  |  | 
|  | Function *TheFunction = Builder.GetInsertBlock()->getParent(); | 
|  |  | 
|  | // Create an alloca for the variable in the entry block. | 
|  | AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); | 
|  |  | 
|  | // Emit the start code first, without 'variable' in scope. | 
|  | Value *StartVal = Start->Codegen(); | 
|  | if (StartVal == 0) return 0; | 
|  |  | 
|  | // Store the value into the alloca. | 
|  | Builder.CreateStore(StartVal, Alloca); | 
|  |  | 
|  | // Make the new basic block for the loop header, inserting after current | 
|  | // block. | 
|  | BasicBlock *LoopBB = BasicBlock::Create(getGlobalContext(), "loop", TheFunction); | 
|  |  | 
|  | // Insert an explicit fall through from the current block to the LoopBB. | 
|  | Builder.CreateBr(LoopBB); | 
|  |  | 
|  | // Start insertion in LoopBB. | 
|  | Builder.SetInsertPoint(LoopBB); | 
|  |  | 
|  | // Within the loop, the variable is defined equal to the PHI node.  If it | 
|  | // shadows an existing variable, we have to restore it, so save it now. | 
|  | AllocaInst *OldVal = NamedValues[VarName]; | 
|  | NamedValues[VarName] = Alloca; | 
|  |  | 
|  | // Emit the body of the loop.  This, like any other expr, can change the | 
|  | // current BB.  Note that we ignore the value computed by the body, but don't | 
|  | // allow an error. | 
|  | if (Body->Codegen() == 0) | 
|  | return 0; | 
|  |  | 
|  | // Emit the step value. | 
|  | Value *StepVal; | 
|  | if (Step) { | 
|  | StepVal = Step->Codegen(); | 
|  | if (StepVal == 0) return 0; | 
|  | } else { | 
|  | // If not specified, use 1.0. | 
|  | StepVal = ConstantFP::get(getGlobalContext(), APFloat(1.0)); | 
|  | } | 
|  |  | 
|  | // Compute the end condition. | 
|  | Value *EndCond = End->Codegen(); | 
|  | if (EndCond == 0) return EndCond; | 
|  |  | 
|  | // Reload, increment, and restore the alloca.  This handles the case where | 
|  | // the body of the loop mutates the variable. | 
|  | Value *CurVar = Builder.CreateLoad(Alloca, VarName.c_str()); | 
|  | Value *NextVar = Builder.CreateFAdd(CurVar, StepVal, "nextvar"); | 
|  | Builder.CreateStore(NextVar, Alloca); | 
|  |  | 
|  | // Convert condition to a bool by comparing equal to 0.0. | 
|  | EndCond = Builder.CreateFCmpONE(EndCond, | 
|  | ConstantFP::get(getGlobalContext(), APFloat(0.0)), | 
|  | "loopcond"); | 
|  |  | 
|  | // Create the "after loop" block and insert it. | 
|  | BasicBlock *AfterBB = BasicBlock::Create(getGlobalContext(), "afterloop", TheFunction); | 
|  |  | 
|  | // Insert the conditional branch into the end of LoopEndBB. | 
|  | Builder.CreateCondBr(EndCond, LoopBB, AfterBB); | 
|  |  | 
|  | // Any new code will be inserted in AfterBB. | 
|  | Builder.SetInsertPoint(AfterBB); | 
|  |  | 
|  | // Restore the unshadowed variable. | 
|  | if (OldVal) | 
|  | NamedValues[VarName] = OldVal; | 
|  | else | 
|  | NamedValues.erase(VarName); | 
|  |  | 
|  |  | 
|  | // for expr always returns 0.0. | 
|  | return Constant::getNullValue(Type::getDoubleTy(getGlobalContext())); | 
|  | } | 
|  |  | 
|  | Value *VarExprAST::Codegen() { | 
|  | std::vector<AllocaInst *> OldBindings; | 
|  |  | 
|  | Function *TheFunction = Builder.GetInsertBlock()->getParent(); | 
|  |  | 
|  | // Register all variables and emit their initializer. | 
|  | for (unsigned i = 0, e = VarNames.size(); i != e; ++i) { | 
|  | const std::string &VarName = VarNames[i].first; | 
|  | ExprAST *Init = VarNames[i].second; | 
|  |  | 
|  | // Emit the initializer before adding the variable to scope, this prevents | 
|  | // the initializer from referencing the variable itself, and permits stuff | 
|  | // like this: | 
|  | //  var a = 1 in | 
|  | //    var a = a in ...   # refers to outer 'a'. | 
|  | Value *InitVal; | 
|  | if (Init) { | 
|  | InitVal = Init->Codegen(); | 
|  | if (InitVal == 0) return 0; | 
|  | } else { // If not specified, use 0.0. | 
|  | InitVal = ConstantFP::get(getGlobalContext(), APFloat(0.0)); | 
|  | } | 
|  |  | 
|  | AllocaInst *Alloca = CreateEntryBlockAlloca(TheFunction, VarName); | 
|  | Builder.CreateStore(InitVal, Alloca); | 
|  |  | 
|  | // Remember the old variable binding so that we can restore the binding when | 
|  | // we unrecurse. | 
|  | OldBindings.push_back(NamedValues[VarName]); | 
|  |  | 
|  | // Remember this binding. | 
|  | NamedValues[VarName] = Alloca; | 
|  | } | 
|  |  | 
|  | // Codegen the body, now that all vars are in scope. | 
|  | Value *BodyVal = Body->Codegen(); | 
|  | if (BodyVal == 0) return 0; | 
|  |  | 
|  | // Pop all our variables from scope. | 
|  | for (unsigned i = 0, e = VarNames.size(); i != e; ++i) | 
|  | NamedValues[VarNames[i].first] = OldBindings[i]; | 
|  |  | 
|  | // Return the body computation. | 
|  | return BodyVal; | 
|  | } | 
|  |  | 
|  | Function *PrototypeAST::Codegen() { | 
|  | // Make the function type:  double(double,double) etc. | 
|  | std::vector<Type*> Doubles(Args.size(), | 
|  | Type::getDoubleTy(getGlobalContext())); | 
|  | FunctionType *FT = FunctionType::get(Type::getDoubleTy(getGlobalContext()), | 
|  | Doubles, false); | 
|  |  | 
|  | Function *F = Function::Create(FT, Function::ExternalLinkage, Name, TheModule); | 
|  | // If F conflicted, there was already something named 'Name'.  If it has a | 
|  | // body, don't allow redefinition or reextern. | 
|  | if (F->getName() != Name) { | 
|  | // Delete the one we just made and get the existing one. | 
|  | F->eraseFromParent(); | 
|  | F = TheModule->getFunction(Name); | 
|  | // If F already has a body, reject this. | 
|  | if (!F->empty()) { | 
|  | ErrorF("redefinition of function"); | 
|  | return 0; | 
|  | } | 
|  | // If F took a different number of args, reject. | 
|  | if (F->arg_size() != Args.size()) { | 
|  | ErrorF("redefinition of function with different # args"); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set names for all arguments. | 
|  | unsigned Idx = 0; | 
|  | for (Function::arg_iterator AI = F->arg_begin(); Idx != Args.size(); | 
|  | ++AI, ++Idx) | 
|  | AI->setName(Args[Idx]); | 
|  |  | 
|  | return F; | 
|  | } | 
|  |  | 
|  | /// CreateArgumentAllocas - Create an alloca for each argument and register the | 
|  | /// argument in the symbol table so that references to it will succeed. | 
|  | void PrototypeAST::CreateArgumentAllocas(Function *F) { | 
|  | Function::arg_iterator AI = F->arg_begin(); | 
|  | for (unsigned Idx = 0, e = Args.size(); Idx != e; ++Idx, ++AI) { | 
|  | // Create an alloca for this variable. | 
|  | AllocaInst *Alloca = CreateEntryBlockAlloca(F, Args[Idx]); | 
|  |  | 
|  | // Store the initial value into the alloca. | 
|  | Builder.CreateStore(AI, Alloca); | 
|  |  | 
|  | // Add arguments to variable symbol table. | 
|  | NamedValues[Args[Idx]] = Alloca; | 
|  | } | 
|  | } | 
|  |  | 
|  | Function *FunctionAST::Codegen() { | 
|  | NamedValues.clear(); | 
|  |  | 
|  | Function *TheFunction = Proto->Codegen(); | 
|  | if (TheFunction == 0) | 
|  | return 0; | 
|  |  | 
|  | // If this is an operator, install it. | 
|  | if (Proto->isBinaryOp()) | 
|  | BinopPrecedence[Proto->getOperatorName()] = Proto->getBinaryPrecedence(); | 
|  |  | 
|  | // Create a new basic block to start insertion into. | 
|  | BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry", TheFunction); | 
|  | Builder.SetInsertPoint(BB); | 
|  |  | 
|  | // Add all arguments to the symbol table and create their allocas. | 
|  | Proto->CreateArgumentAllocas(TheFunction); | 
|  |  | 
|  | if (Value *RetVal = Body->Codegen()) { | 
|  | // Finish off the function. | 
|  | Builder.CreateRet(RetVal); | 
|  |  | 
|  | // Validate the generated code, checking for consistency. | 
|  | verifyFunction(*TheFunction); | 
|  |  | 
|  | // Optimize the function. | 
|  | TheFPM->run(*TheFunction); | 
|  |  | 
|  | return TheFunction; | 
|  | } | 
|  |  | 
|  | // Error reading body, remove function. | 
|  | TheFunction->eraseFromParent(); | 
|  |  | 
|  | if (Proto->isBinaryOp()) | 
|  | BinopPrecedence.erase(Proto->getOperatorName()); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Top-Level parsing and JIT Driver | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static ExecutionEngine *TheExecutionEngine; | 
|  |  | 
|  | static void HandleDefinition() { | 
|  | if (FunctionAST *F = ParseDefinition()) { | 
|  | if (Function *LF = F->Codegen()) { | 
|  | #ifndef MINIMAL_STDERR_OUTPUT | 
|  | fprintf(stderr, "Read function definition:"); | 
|  | LF->dump(); | 
|  | #endif | 
|  | } | 
|  | } else { | 
|  | // Skip token for error recovery. | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void HandleExtern() { | 
|  | if (PrototypeAST *P = ParseExtern()) { | 
|  | if (Function *F = P->Codegen()) { | 
|  | #ifndef MINIMAL_STDERR_OUTPUT | 
|  | fprintf(stderr, "Read extern: "); | 
|  | F->dump(); | 
|  | #endif | 
|  | } | 
|  | } else { | 
|  | // Skip token for error recovery. | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void HandleTopLevelExpression() { | 
|  | // Evaluate a top-level expression into an anonymous function. | 
|  | if (FunctionAST *F = ParseTopLevelExpr()) { | 
|  | if (Function *LF = F->Codegen()) { | 
|  | // JIT the function, returning a function pointer. | 
|  | void *FPtr = TheExecutionEngine->getPointerToFunction(LF); | 
|  | // Cast it to the right type (takes no arguments, returns a double) so we | 
|  | // can call it as a native function. | 
|  | double (*FP)() = (double (*)())(intptr_t)FPtr; | 
|  | #ifdef MINIMAL_STDERR_OUTPUT | 
|  | FP(); | 
|  | #else | 
|  | fprintf(stderr, "Evaluated to %f\n", FP()); | 
|  | #endif | 
|  | } | 
|  | } else { | 
|  | // Skip token for error recovery. | 
|  | getNextToken(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// top ::= definition | external | expression | ';' | 
|  | static void MainLoop() { | 
|  | while (1) { | 
|  | #ifndef MINIMAL_STDERR_OUTPUT | 
|  | fprintf(stderr, "ready> "); | 
|  | #endif | 
|  | switch (CurTok) { | 
|  | case tok_eof:    return; | 
|  | case ';':        getNextToken(); break;  // ignore top-level semicolons. | 
|  | case tok_def:    HandleDefinition(); break; | 
|  | case tok_extern: HandleExtern(); break; | 
|  | default:         HandleTopLevelExpression(); break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // "Library" functions that can be "extern'd" from user code. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// putchard - putchar that takes a double and returns 0. | 
|  | extern "C" | 
|  | double putchard(double X) { | 
|  | putchar((char)X); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// printd - printf that takes a double prints it as "%f\n", returning 0. | 
|  | extern "C" | 
|  | double printd(double X) { | 
|  | printf("%f", X); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | extern "C" | 
|  | double printlf() { | 
|  | printf("\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Main driver code. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | int main(int argc, char **argv) { | 
|  | InitializeNativeTarget(); | 
|  | LLVMContext &Context = getGlobalContext(); | 
|  |  | 
|  | // Install standard binary operators. | 
|  | // 1 is lowest precedence. | 
|  | BinopPrecedence['='] = 2; | 
|  | BinopPrecedence['<'] = 10; | 
|  | BinopPrecedence['+'] = 20; | 
|  | BinopPrecedence['-'] = 20; | 
|  | BinopPrecedence['/'] = 40; | 
|  | BinopPrecedence['*'] = 40;  // highest. | 
|  |  | 
|  | // Make the module, which holds all the code. | 
|  | TheModule = new Module("my cool jit", Context); | 
|  |  | 
|  | // Create the JIT.  This takes ownership of the module. | 
|  | std::string ErrStr; | 
|  | TheExecutionEngine = EngineBuilder(TheModule).setErrorStr(&ErrStr).create(); | 
|  | if (!TheExecutionEngine) { | 
|  | fprintf(stderr, "Could not create ExecutionEngine: %s\n", ErrStr.c_str()); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | FunctionPassManager OurFPM(TheModule); | 
|  |  | 
|  | // Set up the optimizer pipeline.  Start with registering info about how the | 
|  | // target lays out data structures. | 
|  | OurFPM.add(new DataLayout(*TheExecutionEngine->getDataLayout())); | 
|  | // Provide basic AliasAnalysis support for GVN. | 
|  | OurFPM.add(createBasicAliasAnalysisPass()); | 
|  | // Promote allocas to registers. | 
|  | OurFPM.add(createPromoteMemoryToRegisterPass()); | 
|  | // Do simple "peephole" optimizations and bit-twiddling optzns. | 
|  | OurFPM.add(createInstructionCombiningPass()); | 
|  | // Reassociate expressions. | 
|  | OurFPM.add(createReassociatePass()); | 
|  | // Eliminate Common SubExpressions. | 
|  | OurFPM.add(createGVNPass()); | 
|  | // Simplify the control flow graph (deleting unreachable blocks, etc). | 
|  | OurFPM.add(createCFGSimplificationPass()); | 
|  |  | 
|  | OurFPM.doInitialization(); | 
|  |  | 
|  | // Set the global so the code gen can use this. | 
|  | TheFPM = &OurFPM; | 
|  |  | 
|  | // Prime the first token. | 
|  | #ifndef MINIMAL_STDERR_OUTPUT | 
|  | fprintf(stderr, "ready> "); | 
|  | #endif | 
|  | getNextToken(); | 
|  |  | 
|  | // Run the main "interpreter loop" now. | 
|  | MainLoop(); | 
|  |  | 
|  | // Print out all of the generated code. | 
|  | TheFPM = 0; | 
|  | #ifndef MINIMAL_STDERR_OUTPUT | 
|  | TheModule->dump(); | 
|  | #endif | 
|  | return 0; | 
|  | } |