|  | //===- GVN.cpp - Eliminate redundant values and loads ---------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass performs global value numbering to eliminate fully redundant | 
|  | // instructions.  It also performs simple dead load elimination. | 
|  | // | 
|  | // Note that this pass does the value numbering itself; it does not use the | 
|  | // ValueNumbering analysis passes. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Scalar/GVN.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/Hashing.h" | 
|  | #include "llvm/ADT/MapVector.h" | 
|  | #include "llvm/ADT/PointerIntPair.h" | 
|  | #include "llvm/ADT/PostOrderIterator.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/CFG.h" | 
|  | #include "llvm/Analysis/DomTreeUpdater.h" | 
|  | #include "llvm/Analysis/GlobalsModRef.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/MemoryBuiltins.h" | 
|  | #include "llvm/Analysis/MemoryDependenceAnalysis.h" | 
|  | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | 
|  | #include "llvm/Analysis/PHITransAddr.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/Config/llvm-config.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constant.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DebugInfoMetadata.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/PassManager.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Use.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Utils.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Transforms/Utils/SSAUpdater.h" | 
|  | #include "llvm/Transforms/Utils/VNCoercion.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::gvn; | 
|  | using namespace llvm::VNCoercion; | 
|  | using namespace PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "gvn" | 
|  |  | 
|  | STATISTIC(NumGVNInstr,  "Number of instructions deleted"); | 
|  | STATISTIC(NumGVNLoad,   "Number of loads deleted"); | 
|  | STATISTIC(NumGVNPRE,    "Number of instructions PRE'd"); | 
|  | STATISTIC(NumGVNBlocks, "Number of blocks merged"); | 
|  | STATISTIC(NumGVNSimpl,  "Number of instructions simplified"); | 
|  | STATISTIC(NumGVNEqProp, "Number of equalities propagated"); | 
|  | STATISTIC(NumPRELoad,   "Number of loads PRE'd"); | 
|  |  | 
|  | static cl::opt<bool> EnablePRE("enable-pre", | 
|  | cl::init(true), cl::Hidden); | 
|  | static cl::opt<bool> EnableLoadPRE("enable-load-pre", cl::init(true)); | 
|  | static cl::opt<bool> EnableMemDep("enable-gvn-memdep", cl::init(true)); | 
|  |  | 
|  | // Maximum allowed recursion depth. | 
|  | static cl::opt<uint32_t> | 
|  | MaxRecurseDepth("gvn-max-recurse-depth", cl::Hidden, cl::init(1000), cl::ZeroOrMore, | 
|  | cl::desc("Max recurse depth in GVN (default = 1000)")); | 
|  |  | 
|  | static cl::opt<uint32_t> MaxNumDeps( | 
|  | "gvn-max-num-deps", cl::Hidden, cl::init(100), cl::ZeroOrMore, | 
|  | cl::desc("Max number of dependences to attempt Load PRE (default = 100)")); | 
|  |  | 
|  | struct llvm::GVN::Expression { | 
|  | uint32_t opcode; | 
|  | Type *type; | 
|  | bool commutative = false; | 
|  | SmallVector<uint32_t, 4> varargs; | 
|  |  | 
|  | Expression(uint32_t o = ~2U) : opcode(o) {} | 
|  |  | 
|  | bool operator==(const Expression &other) const { | 
|  | if (opcode != other.opcode) | 
|  | return false; | 
|  | if (opcode == ~0U || opcode == ~1U) | 
|  | return true; | 
|  | if (type != other.type) | 
|  | return false; | 
|  | if (varargs != other.varargs) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | friend hash_code hash_value(const Expression &Value) { | 
|  | return hash_combine( | 
|  | Value.opcode, Value.type, | 
|  | hash_combine_range(Value.varargs.begin(), Value.varargs.end())); | 
|  | } | 
|  | }; | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | template <> struct DenseMapInfo<GVN::Expression> { | 
|  | static inline GVN::Expression getEmptyKey() { return ~0U; } | 
|  | static inline GVN::Expression getTombstoneKey() { return ~1U; } | 
|  |  | 
|  | static unsigned getHashValue(const GVN::Expression &e) { | 
|  | using llvm::hash_value; | 
|  |  | 
|  | return static_cast<unsigned>(hash_value(e)); | 
|  | } | 
|  |  | 
|  | static bool isEqual(const GVN::Expression &LHS, const GVN::Expression &RHS) { | 
|  | return LHS == RHS; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | /// Represents a particular available value that we know how to materialize. | 
|  | /// Materialization of an AvailableValue never fails.  An AvailableValue is | 
|  | /// implicitly associated with a rematerialization point which is the | 
|  | /// location of the instruction from which it was formed. | 
|  | struct llvm::gvn::AvailableValue { | 
|  | enum ValType { | 
|  | SimpleVal, // A simple offsetted value that is accessed. | 
|  | LoadVal,   // A value produced by a load. | 
|  | MemIntrin, // A memory intrinsic which is loaded from. | 
|  | UndefVal   // A UndefValue representing a value from dead block (which | 
|  | // is not yet physically removed from the CFG). | 
|  | }; | 
|  |  | 
|  | /// V - The value that is live out of the block. | 
|  | PointerIntPair<Value *, 2, ValType> Val; | 
|  |  | 
|  | /// Offset - The byte offset in Val that is interesting for the load query. | 
|  | unsigned Offset; | 
|  |  | 
|  | static AvailableValue get(Value *V, unsigned Offset = 0) { | 
|  | AvailableValue Res; | 
|  | Res.Val.setPointer(V); | 
|  | Res.Val.setInt(SimpleVal); | 
|  | Res.Offset = Offset; | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | static AvailableValue getMI(MemIntrinsic *MI, unsigned Offset = 0) { | 
|  | AvailableValue Res; | 
|  | Res.Val.setPointer(MI); | 
|  | Res.Val.setInt(MemIntrin); | 
|  | Res.Offset = Offset; | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | static AvailableValue getLoad(LoadInst *LI, unsigned Offset = 0) { | 
|  | AvailableValue Res; | 
|  | Res.Val.setPointer(LI); | 
|  | Res.Val.setInt(LoadVal); | 
|  | Res.Offset = Offset; | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | static AvailableValue getUndef() { | 
|  | AvailableValue Res; | 
|  | Res.Val.setPointer(nullptr); | 
|  | Res.Val.setInt(UndefVal); | 
|  | Res.Offset = 0; | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | bool isSimpleValue() const { return Val.getInt() == SimpleVal; } | 
|  | bool isCoercedLoadValue() const { return Val.getInt() == LoadVal; } | 
|  | bool isMemIntrinValue() const { return Val.getInt() == MemIntrin; } | 
|  | bool isUndefValue() const { return Val.getInt() == UndefVal; } | 
|  |  | 
|  | Value *getSimpleValue() const { | 
|  | assert(isSimpleValue() && "Wrong accessor"); | 
|  | return Val.getPointer(); | 
|  | } | 
|  |  | 
|  | LoadInst *getCoercedLoadValue() const { | 
|  | assert(isCoercedLoadValue() && "Wrong accessor"); | 
|  | return cast<LoadInst>(Val.getPointer()); | 
|  | } | 
|  |  | 
|  | MemIntrinsic *getMemIntrinValue() const { | 
|  | assert(isMemIntrinValue() && "Wrong accessor"); | 
|  | return cast<MemIntrinsic>(Val.getPointer()); | 
|  | } | 
|  |  | 
|  | /// Emit code at the specified insertion point to adjust the value defined | 
|  | /// here to the specified type. This handles various coercion cases. | 
|  | Value *MaterializeAdjustedValue(LoadInst *LI, Instruction *InsertPt, | 
|  | GVN &gvn) const; | 
|  | }; | 
|  |  | 
|  | /// Represents an AvailableValue which can be rematerialized at the end of | 
|  | /// the associated BasicBlock. | 
|  | struct llvm::gvn::AvailableValueInBlock { | 
|  | /// BB - The basic block in question. | 
|  | BasicBlock *BB; | 
|  |  | 
|  | /// AV - The actual available value | 
|  | AvailableValue AV; | 
|  |  | 
|  | static AvailableValueInBlock get(BasicBlock *BB, AvailableValue &&AV) { | 
|  | AvailableValueInBlock Res; | 
|  | Res.BB = BB; | 
|  | Res.AV = std::move(AV); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | static AvailableValueInBlock get(BasicBlock *BB, Value *V, | 
|  | unsigned Offset = 0) { | 
|  | return get(BB, AvailableValue::get(V, Offset)); | 
|  | } | 
|  |  | 
|  | static AvailableValueInBlock getUndef(BasicBlock *BB) { | 
|  | return get(BB, AvailableValue::getUndef()); | 
|  | } | 
|  |  | 
|  | /// Emit code at the end of this block to adjust the value defined here to | 
|  | /// the specified type. This handles various coercion cases. | 
|  | Value *MaterializeAdjustedValue(LoadInst *LI, GVN &gvn) const { | 
|  | return AV.MaterializeAdjustedValue(LI, BB->getTerminator(), gvn); | 
|  | } | 
|  | }; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                     ValueTable Internal Functions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | GVN::Expression GVN::ValueTable::createExpr(Instruction *I) { | 
|  | Expression e; | 
|  | e.type = I->getType(); | 
|  | e.opcode = I->getOpcode(); | 
|  | for (Instruction::op_iterator OI = I->op_begin(), OE = I->op_end(); | 
|  | OI != OE; ++OI) | 
|  | e.varargs.push_back(lookupOrAdd(*OI)); | 
|  | if (I->isCommutative()) { | 
|  | // Ensure that commutative instructions that only differ by a permutation | 
|  | // of their operands get the same value number by sorting the operand value | 
|  | // numbers.  Since all commutative instructions have two operands it is more | 
|  | // efficient to sort by hand rather than using, say, std::sort. | 
|  | assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!"); | 
|  | if (e.varargs[0] > e.varargs[1]) | 
|  | std::swap(e.varargs[0], e.varargs[1]); | 
|  | e.commutative = true; | 
|  | } | 
|  |  | 
|  | if (CmpInst *C = dyn_cast<CmpInst>(I)) { | 
|  | // Sort the operand value numbers so x<y and y>x get the same value number. | 
|  | CmpInst::Predicate Predicate = C->getPredicate(); | 
|  | if (e.varargs[0] > e.varargs[1]) { | 
|  | std::swap(e.varargs[0], e.varargs[1]); | 
|  | Predicate = CmpInst::getSwappedPredicate(Predicate); | 
|  | } | 
|  | e.opcode = (C->getOpcode() << 8) | Predicate; | 
|  | e.commutative = true; | 
|  | } else if (InsertValueInst *E = dyn_cast<InsertValueInst>(I)) { | 
|  | for (InsertValueInst::idx_iterator II = E->idx_begin(), IE = E->idx_end(); | 
|  | II != IE; ++II) | 
|  | e.varargs.push_back(*II); | 
|  | } | 
|  |  | 
|  | return e; | 
|  | } | 
|  |  | 
|  | GVN::Expression GVN::ValueTable::createCmpExpr(unsigned Opcode, | 
|  | CmpInst::Predicate Predicate, | 
|  | Value *LHS, Value *RHS) { | 
|  | assert((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) && | 
|  | "Not a comparison!"); | 
|  | Expression e; | 
|  | e.type = CmpInst::makeCmpResultType(LHS->getType()); | 
|  | e.varargs.push_back(lookupOrAdd(LHS)); | 
|  | e.varargs.push_back(lookupOrAdd(RHS)); | 
|  |  | 
|  | // Sort the operand value numbers so x<y and y>x get the same value number. | 
|  | if (e.varargs[0] > e.varargs[1]) { | 
|  | std::swap(e.varargs[0], e.varargs[1]); | 
|  | Predicate = CmpInst::getSwappedPredicate(Predicate); | 
|  | } | 
|  | e.opcode = (Opcode << 8) | Predicate; | 
|  | e.commutative = true; | 
|  | return e; | 
|  | } | 
|  |  | 
|  | GVN::Expression GVN::ValueTable::createExtractvalueExpr(ExtractValueInst *EI) { | 
|  | assert(EI && "Not an ExtractValueInst?"); | 
|  | Expression e; | 
|  | e.type = EI->getType(); | 
|  | e.opcode = 0; | 
|  |  | 
|  | WithOverflowInst *WO = dyn_cast<WithOverflowInst>(EI->getAggregateOperand()); | 
|  | if (WO != nullptr && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) { | 
|  | // EI is an extract from one of our with.overflow intrinsics. Synthesize | 
|  | // a semantically equivalent expression instead of an extract value | 
|  | // expression. | 
|  | e.opcode = WO->getBinaryOp(); | 
|  | e.varargs.push_back(lookupOrAdd(WO->getLHS())); | 
|  | e.varargs.push_back(lookupOrAdd(WO->getRHS())); | 
|  | return e; | 
|  | } | 
|  |  | 
|  | // Not a recognised intrinsic. Fall back to producing an extract value | 
|  | // expression. | 
|  | e.opcode = EI->getOpcode(); | 
|  | for (Instruction::op_iterator OI = EI->op_begin(), OE = EI->op_end(); | 
|  | OI != OE; ++OI) | 
|  | e.varargs.push_back(lookupOrAdd(*OI)); | 
|  |  | 
|  | for (ExtractValueInst::idx_iterator II = EI->idx_begin(), IE = EI->idx_end(); | 
|  | II != IE; ++II) | 
|  | e.varargs.push_back(*II); | 
|  |  | 
|  | return e; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                     ValueTable External Functions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | GVN::ValueTable::ValueTable() = default; | 
|  | GVN::ValueTable::ValueTable(const ValueTable &) = default; | 
|  | GVN::ValueTable::ValueTable(ValueTable &&) = default; | 
|  | GVN::ValueTable::~ValueTable() = default; | 
|  |  | 
|  | /// add - Insert a value into the table with a specified value number. | 
|  | void GVN::ValueTable::add(Value *V, uint32_t num) { | 
|  | valueNumbering.insert(std::make_pair(V, num)); | 
|  | if (PHINode *PN = dyn_cast<PHINode>(V)) | 
|  | NumberingPhi[num] = PN; | 
|  | } | 
|  |  | 
|  | uint32_t GVN::ValueTable::lookupOrAddCall(CallInst *C) { | 
|  | if (AA->doesNotAccessMemory(C)) { | 
|  | Expression exp = createExpr(C); | 
|  | uint32_t e = assignExpNewValueNum(exp).first; | 
|  | valueNumbering[C] = e; | 
|  | return e; | 
|  | } else if (MD && AA->onlyReadsMemory(C)) { | 
|  | Expression exp = createExpr(C); | 
|  | auto ValNum = assignExpNewValueNum(exp); | 
|  | if (ValNum.second) { | 
|  | valueNumbering[C] = ValNum.first; | 
|  | return ValNum.first; | 
|  | } | 
|  |  | 
|  | MemDepResult local_dep = MD->getDependency(C); | 
|  |  | 
|  | if (!local_dep.isDef() && !local_dep.isNonLocal()) { | 
|  | valueNumbering[C] =  nextValueNumber; | 
|  | return nextValueNumber++; | 
|  | } | 
|  |  | 
|  | if (local_dep.isDef()) { | 
|  | CallInst* local_cdep = cast<CallInst>(local_dep.getInst()); | 
|  |  | 
|  | if (local_cdep->getNumArgOperands() != C->getNumArgOperands()) { | 
|  | valueNumbering[C] = nextValueNumber; | 
|  | return nextValueNumber++; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { | 
|  | uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); | 
|  | uint32_t cd_vn = lookupOrAdd(local_cdep->getArgOperand(i)); | 
|  | if (c_vn != cd_vn) { | 
|  | valueNumbering[C] = nextValueNumber; | 
|  | return nextValueNumber++; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t v = lookupOrAdd(local_cdep); | 
|  | valueNumbering[C] = v; | 
|  | return v; | 
|  | } | 
|  |  | 
|  | // Non-local case. | 
|  | const MemoryDependenceResults::NonLocalDepInfo &deps = | 
|  | MD->getNonLocalCallDependency(C); | 
|  | // FIXME: Move the checking logic to MemDep! | 
|  | CallInst* cdep = nullptr; | 
|  |  | 
|  | // Check to see if we have a single dominating call instruction that is | 
|  | // identical to C. | 
|  | for (unsigned i = 0, e = deps.size(); i != e; ++i) { | 
|  | const NonLocalDepEntry *I = &deps[i]; | 
|  | if (I->getResult().isNonLocal()) | 
|  | continue; | 
|  |  | 
|  | // We don't handle non-definitions.  If we already have a call, reject | 
|  | // instruction dependencies. | 
|  | if (!I->getResult().isDef() || cdep != nullptr) { | 
|  | cdep = nullptr; | 
|  | break; | 
|  | } | 
|  |  | 
|  | CallInst *NonLocalDepCall = dyn_cast<CallInst>(I->getResult().getInst()); | 
|  | // FIXME: All duplicated with non-local case. | 
|  | if (NonLocalDepCall && DT->properlyDominates(I->getBB(), C->getParent())){ | 
|  | cdep = NonLocalDepCall; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | cdep = nullptr; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!cdep) { | 
|  | valueNumbering[C] = nextValueNumber; | 
|  | return nextValueNumber++; | 
|  | } | 
|  |  | 
|  | if (cdep->getNumArgOperands() != C->getNumArgOperands()) { | 
|  | valueNumbering[C] = nextValueNumber; | 
|  | return nextValueNumber++; | 
|  | } | 
|  | for (unsigned i = 0, e = C->getNumArgOperands(); i < e; ++i) { | 
|  | uint32_t c_vn = lookupOrAdd(C->getArgOperand(i)); | 
|  | uint32_t cd_vn = lookupOrAdd(cdep->getArgOperand(i)); | 
|  | if (c_vn != cd_vn) { | 
|  | valueNumbering[C] = nextValueNumber; | 
|  | return nextValueNumber++; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint32_t v = lookupOrAdd(cdep); | 
|  | valueNumbering[C] = v; | 
|  | return v; | 
|  | } else { | 
|  | valueNumbering[C] = nextValueNumber; | 
|  | return nextValueNumber++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Returns true if a value number exists for the specified value. | 
|  | bool GVN::ValueTable::exists(Value *V) const { return valueNumbering.count(V) != 0; } | 
|  |  | 
|  | /// lookup_or_add - Returns the value number for the specified value, assigning | 
|  | /// it a new number if it did not have one before. | 
|  | uint32_t GVN::ValueTable::lookupOrAdd(Value *V) { | 
|  | DenseMap<Value*, uint32_t>::iterator VI = valueNumbering.find(V); | 
|  | if (VI != valueNumbering.end()) | 
|  | return VI->second; | 
|  |  | 
|  | if (!isa<Instruction>(V)) { | 
|  | valueNumbering[V] = nextValueNumber; | 
|  | return nextValueNumber++; | 
|  | } | 
|  |  | 
|  | Instruction* I = cast<Instruction>(V); | 
|  | Expression exp; | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::Call: | 
|  | return lookupOrAddCall(cast<CallInst>(I)); | 
|  | case Instruction::FNeg: | 
|  | case Instruction::Add: | 
|  | case Instruction::FAdd: | 
|  | case Instruction::Sub: | 
|  | case Instruction::FSub: | 
|  | case Instruction::Mul: | 
|  | case Instruction::FMul: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SDiv: | 
|  | case Instruction::FDiv: | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | case Instruction::FRem: | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | case Instruction::And: | 
|  | case Instruction::Or: | 
|  | case Instruction::Xor: | 
|  | case Instruction::ICmp: | 
|  | case Instruction::FCmp: | 
|  | case Instruction::Trunc: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::PtrToInt: | 
|  | case Instruction::IntToPtr: | 
|  | case Instruction::AddrSpaceCast: | 
|  | case Instruction::BitCast: | 
|  | case Instruction::Select: | 
|  | case Instruction::ExtractElement: | 
|  | case Instruction::InsertElement: | 
|  | case Instruction::ShuffleVector: | 
|  | case Instruction::InsertValue: | 
|  | case Instruction::GetElementPtr: | 
|  | exp = createExpr(I); | 
|  | break; | 
|  | case Instruction::ExtractValue: | 
|  | exp = createExtractvalueExpr(cast<ExtractValueInst>(I)); | 
|  | break; | 
|  | case Instruction::PHI: | 
|  | valueNumbering[V] = nextValueNumber; | 
|  | NumberingPhi[nextValueNumber] = cast<PHINode>(V); | 
|  | return nextValueNumber++; | 
|  | default: | 
|  | valueNumbering[V] = nextValueNumber; | 
|  | return nextValueNumber++; | 
|  | } | 
|  |  | 
|  | uint32_t e = assignExpNewValueNum(exp).first; | 
|  | valueNumbering[V] = e; | 
|  | return e; | 
|  | } | 
|  |  | 
|  | /// Returns the value number of the specified value. Fails if | 
|  | /// the value has not yet been numbered. | 
|  | uint32_t GVN::ValueTable::lookup(Value *V, bool Verify) const { | 
|  | DenseMap<Value*, uint32_t>::const_iterator VI = valueNumbering.find(V); | 
|  | if (Verify) { | 
|  | assert(VI != valueNumbering.end() && "Value not numbered?"); | 
|  | return VI->second; | 
|  | } | 
|  | return (VI != valueNumbering.end()) ? VI->second : 0; | 
|  | } | 
|  |  | 
|  | /// Returns the value number of the given comparison, | 
|  | /// assigning it a new number if it did not have one before.  Useful when | 
|  | /// we deduced the result of a comparison, but don't immediately have an | 
|  | /// instruction realizing that comparison to hand. | 
|  | uint32_t GVN::ValueTable::lookupOrAddCmp(unsigned Opcode, | 
|  | CmpInst::Predicate Predicate, | 
|  | Value *LHS, Value *RHS) { | 
|  | Expression exp = createCmpExpr(Opcode, Predicate, LHS, RHS); | 
|  | return assignExpNewValueNum(exp).first; | 
|  | } | 
|  |  | 
|  | /// Remove all entries from the ValueTable. | 
|  | void GVN::ValueTable::clear() { | 
|  | valueNumbering.clear(); | 
|  | expressionNumbering.clear(); | 
|  | NumberingPhi.clear(); | 
|  | PhiTranslateTable.clear(); | 
|  | nextValueNumber = 1; | 
|  | Expressions.clear(); | 
|  | ExprIdx.clear(); | 
|  | nextExprNumber = 0; | 
|  | } | 
|  |  | 
|  | /// Remove a value from the value numbering. | 
|  | void GVN::ValueTable::erase(Value *V) { | 
|  | uint32_t Num = valueNumbering.lookup(V); | 
|  | valueNumbering.erase(V); | 
|  | // If V is PHINode, V <--> value number is an one-to-one mapping. | 
|  | if (isa<PHINode>(V)) | 
|  | NumberingPhi.erase(Num); | 
|  | } | 
|  |  | 
|  | /// verifyRemoved - Verify that the value is removed from all internal data | 
|  | /// structures. | 
|  | void GVN::ValueTable::verifyRemoved(const Value *V) const { | 
|  | for (DenseMap<Value*, uint32_t>::const_iterator | 
|  | I = valueNumbering.begin(), E = valueNumbering.end(); I != E; ++I) { | 
|  | assert(I->first != V && "Inst still occurs in value numbering map!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                                GVN Pass | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | PreservedAnalyses GVN::run(Function &F, FunctionAnalysisManager &AM) { | 
|  | // FIXME: The order of evaluation of these 'getResult' calls is very | 
|  | // significant! Re-ordering these variables will cause GVN when run alone to | 
|  | // be less effective! We should fix memdep and basic-aa to not exhibit this | 
|  | // behavior, but until then don't change the order here. | 
|  | auto &AC = AM.getResult<AssumptionAnalysis>(F); | 
|  | auto &DT = AM.getResult<DominatorTreeAnalysis>(F); | 
|  | auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); | 
|  | auto &AA = AM.getResult<AAManager>(F); | 
|  | auto &MemDep = AM.getResult<MemoryDependenceAnalysis>(F); | 
|  | auto *LI = AM.getCachedResult<LoopAnalysis>(F); | 
|  | auto &ORE = AM.getResult<OptimizationRemarkEmitterAnalysis>(F); | 
|  | bool Changed = runImpl(F, AC, DT, TLI, AA, &MemDep, LI, &ORE); | 
|  | if (!Changed) | 
|  | return PreservedAnalyses::all(); | 
|  | PreservedAnalyses PA; | 
|  | PA.preserve<DominatorTreeAnalysis>(); | 
|  | PA.preserve<GlobalsAA>(); | 
|  | PA.preserve<TargetLibraryAnalysis>(); | 
|  | if (LI) | 
|  | PA.preserve<LoopAnalysis>(); | 
|  | return PA; | 
|  | } | 
|  |  | 
|  | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) | 
|  | LLVM_DUMP_METHOD void GVN::dump(DenseMap<uint32_t, Value*>& d) const { | 
|  | errs() << "{\n"; | 
|  | for (DenseMap<uint32_t, Value*>::iterator I = d.begin(), | 
|  | E = d.end(); I != E; ++I) { | 
|  | errs() << I->first << "\n"; | 
|  | I->second->dump(); | 
|  | } | 
|  | errs() << "}\n"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /// Return true if we can prove that the value | 
|  | /// we're analyzing is fully available in the specified block.  As we go, keep | 
|  | /// track of which blocks we know are fully alive in FullyAvailableBlocks.  This | 
|  | /// map is actually a tri-state map with the following values: | 
|  | ///   0) we know the block *is not* fully available. | 
|  | ///   1) we know the block *is* fully available. | 
|  | ///   2) we do not know whether the block is fully available or not, but we are | 
|  | ///      currently speculating that it will be. | 
|  | ///   3) we are speculating for this block and have used that to speculate for | 
|  | ///      other blocks. | 
|  | static bool IsValueFullyAvailableInBlock(BasicBlock *BB, | 
|  | DenseMap<BasicBlock*, char> &FullyAvailableBlocks, | 
|  | uint32_t RecurseDepth) { | 
|  | if (RecurseDepth > MaxRecurseDepth) | 
|  | return false; | 
|  |  | 
|  | // Optimistically assume that the block is fully available and check to see | 
|  | // if we already know about this block in one lookup. | 
|  | std::pair<DenseMap<BasicBlock*, char>::iterator, bool> IV = | 
|  | FullyAvailableBlocks.insert(std::make_pair(BB, 2)); | 
|  |  | 
|  | // If the entry already existed for this block, return the precomputed value. | 
|  | if (!IV.second) { | 
|  | // If this is a speculative "available" value, mark it as being used for | 
|  | // speculation of other blocks. | 
|  | if (IV.first->second == 2) | 
|  | IV.first->second = 3; | 
|  | return IV.first->second != 0; | 
|  | } | 
|  |  | 
|  | // Otherwise, see if it is fully available in all predecessors. | 
|  | pred_iterator PI = pred_begin(BB), PE = pred_end(BB); | 
|  |  | 
|  | // If this block has no predecessors, it isn't live-in here. | 
|  | if (PI == PE) | 
|  | goto SpeculationFailure; | 
|  |  | 
|  | for (; PI != PE; ++PI) | 
|  | // If the value isn't fully available in one of our predecessors, then it | 
|  | // isn't fully available in this block either.  Undo our previous | 
|  | // optimistic assumption and bail out. | 
|  | if (!IsValueFullyAvailableInBlock(*PI, FullyAvailableBlocks,RecurseDepth+1)) | 
|  | goto SpeculationFailure; | 
|  |  | 
|  | return true; | 
|  |  | 
|  | // If we get here, we found out that this is not, after | 
|  | // all, a fully-available block.  We have a problem if we speculated on this and | 
|  | // used the speculation to mark other blocks as available. | 
|  | SpeculationFailure: | 
|  | char &BBVal = FullyAvailableBlocks[BB]; | 
|  |  | 
|  | // If we didn't speculate on this, just return with it set to false. | 
|  | if (BBVal == 2) { | 
|  | BBVal = 0; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If we did speculate on this value, we could have blocks set to 1 that are | 
|  | // incorrect.  Walk the (transitive) successors of this block and mark them as | 
|  | // 0 if set to one. | 
|  | SmallVector<BasicBlock*, 32> BBWorklist; | 
|  | BBWorklist.push_back(BB); | 
|  |  | 
|  | do { | 
|  | BasicBlock *Entry = BBWorklist.pop_back_val(); | 
|  | // Note that this sets blocks to 0 (unavailable) if they happen to not | 
|  | // already be in FullyAvailableBlocks.  This is safe. | 
|  | char &EntryVal = FullyAvailableBlocks[Entry]; | 
|  | if (EntryVal == 0) continue;  // Already unavailable. | 
|  |  | 
|  | // Mark as unavailable. | 
|  | EntryVal = 0; | 
|  |  | 
|  | BBWorklist.append(succ_begin(Entry), succ_end(Entry)); | 
|  | } while (!BBWorklist.empty()); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Given a set of loads specified by ValuesPerBlock, | 
|  | /// construct SSA form, allowing us to eliminate LI.  This returns the value | 
|  | /// that should be used at LI's definition site. | 
|  | static Value *ConstructSSAForLoadSet(LoadInst *LI, | 
|  | SmallVectorImpl<AvailableValueInBlock> &ValuesPerBlock, | 
|  | GVN &gvn) { | 
|  | // Check for the fully redundant, dominating load case.  In this case, we can | 
|  | // just use the dominating value directly. | 
|  | if (ValuesPerBlock.size() == 1 && | 
|  | gvn.getDominatorTree().properlyDominates(ValuesPerBlock[0].BB, | 
|  | LI->getParent())) { | 
|  | assert(!ValuesPerBlock[0].AV.isUndefValue() && | 
|  | "Dead BB dominate this block"); | 
|  | return ValuesPerBlock[0].MaterializeAdjustedValue(LI, gvn); | 
|  | } | 
|  |  | 
|  | // Otherwise, we have to construct SSA form. | 
|  | SmallVector<PHINode*, 8> NewPHIs; | 
|  | SSAUpdater SSAUpdate(&NewPHIs); | 
|  | SSAUpdate.Initialize(LI->getType(), LI->getName()); | 
|  |  | 
|  | for (const AvailableValueInBlock &AV : ValuesPerBlock) { | 
|  | BasicBlock *BB = AV.BB; | 
|  |  | 
|  | if (SSAUpdate.HasValueForBlock(BB)) | 
|  | continue; | 
|  |  | 
|  | // If the value is the load that we will be eliminating, and the block it's | 
|  | // available in is the block that the load is in, then don't add it as | 
|  | // SSAUpdater will resolve the value to the relevant phi which may let it | 
|  | // avoid phi construction entirely if there's actually only one value. | 
|  | if (BB == LI->getParent() && | 
|  | ((AV.AV.isSimpleValue() && AV.AV.getSimpleValue() == LI) || | 
|  | (AV.AV.isCoercedLoadValue() && AV.AV.getCoercedLoadValue() == LI))) | 
|  | continue; | 
|  |  | 
|  | SSAUpdate.AddAvailableValue(BB, AV.MaterializeAdjustedValue(LI, gvn)); | 
|  | } | 
|  |  | 
|  | // Perform PHI construction. | 
|  | return SSAUpdate.GetValueInMiddleOfBlock(LI->getParent()); | 
|  | } | 
|  |  | 
|  | Value *AvailableValue::MaterializeAdjustedValue(LoadInst *LI, | 
|  | Instruction *InsertPt, | 
|  | GVN &gvn) const { | 
|  | Value *Res; | 
|  | Type *LoadTy = LI->getType(); | 
|  | const DataLayout &DL = LI->getModule()->getDataLayout(); | 
|  | if (isSimpleValue()) { | 
|  | Res = getSimpleValue(); | 
|  | if (Res->getType() != LoadTy) { | 
|  | Res = getStoreValueForLoad(Res, Offset, LoadTy, InsertPt, DL); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL VAL:\nOffset: " << Offset | 
|  | << "  " << *getSimpleValue() << '\n' | 
|  | << *Res << '\n' | 
|  | << "\n\n\n"); | 
|  | } | 
|  | } else if (isCoercedLoadValue()) { | 
|  | LoadInst *Load = getCoercedLoadValue(); | 
|  | if (Load->getType() == LoadTy && Offset == 0) { | 
|  | Res = Load; | 
|  | } else { | 
|  | Res = getLoadValueForLoad(Load, Offset, LoadTy, InsertPt, DL); | 
|  | // We would like to use gvn.markInstructionForDeletion here, but we can't | 
|  | // because the load is already memoized into the leader map table that GVN | 
|  | // tracks.  It is potentially possible to remove the load from the table, | 
|  | // but then there all of the operations based on it would need to be | 
|  | // rehashed.  Just leave the dead load around. | 
|  | gvn.getMemDep().removeInstruction(Load); | 
|  | LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL LOAD:\nOffset: " << Offset | 
|  | << "  " << *getCoercedLoadValue() << '\n' | 
|  | << *Res << '\n' | 
|  | << "\n\n\n"); | 
|  | } | 
|  | } else if (isMemIntrinValue()) { | 
|  | Res = getMemInstValueForLoad(getMemIntrinValue(), Offset, LoadTy, | 
|  | InsertPt, DL); | 
|  | LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL MEM INTRIN:\nOffset: " << Offset | 
|  | << "  " << *getMemIntrinValue() << '\n' | 
|  | << *Res << '\n' | 
|  | << "\n\n\n"); | 
|  | } else { | 
|  | assert(isUndefValue() && "Should be UndefVal"); | 
|  | LLVM_DEBUG(dbgs() << "GVN COERCED NONLOCAL Undef:\n";); | 
|  | return UndefValue::get(LoadTy); | 
|  | } | 
|  | assert(Res && "failed to materialize?"); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | static bool isLifetimeStart(const Instruction *Inst) { | 
|  | if (const IntrinsicInst* II = dyn_cast<IntrinsicInst>(Inst)) | 
|  | return II->getIntrinsicID() == Intrinsic::lifetime_start; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Try to locate the three instruction involved in a missed | 
|  | /// load-elimination case that is due to an intervening store. | 
|  | static void reportMayClobberedLoad(LoadInst *LI, MemDepResult DepInfo, | 
|  | DominatorTree *DT, | 
|  | OptimizationRemarkEmitter *ORE) { | 
|  | using namespace ore; | 
|  |  | 
|  | User *OtherAccess = nullptr; | 
|  |  | 
|  | OptimizationRemarkMissed R(DEBUG_TYPE, "LoadClobbered", LI); | 
|  | R << "load of type " << NV("Type", LI->getType()) << " not eliminated" | 
|  | << setExtraArgs(); | 
|  |  | 
|  | for (auto *U : LI->getPointerOperand()->users()) | 
|  | if (U != LI && (isa<LoadInst>(U) || isa<StoreInst>(U)) && | 
|  | DT->dominates(cast<Instruction>(U), LI)) { | 
|  | // FIXME: for now give up if there are multiple memory accesses that | 
|  | // dominate the load.  We need further analysis to decide which one is | 
|  | // that we're forwarding from. | 
|  | if (OtherAccess) | 
|  | OtherAccess = nullptr; | 
|  | else | 
|  | OtherAccess = U; | 
|  | } | 
|  |  | 
|  | if (OtherAccess) | 
|  | R << " in favor of " << NV("OtherAccess", OtherAccess); | 
|  |  | 
|  | R << " because it is clobbered by " << NV("ClobberedBy", DepInfo.getInst()); | 
|  |  | 
|  | ORE->emit(R); | 
|  | } | 
|  |  | 
|  | bool GVN::AnalyzeLoadAvailability(LoadInst *LI, MemDepResult DepInfo, | 
|  | Value *Address, AvailableValue &Res) { | 
|  | assert((DepInfo.isDef() || DepInfo.isClobber()) && | 
|  | "expected a local dependence"); | 
|  | assert(LI->isUnordered() && "rules below are incorrect for ordered access"); | 
|  |  | 
|  | const DataLayout &DL = LI->getModule()->getDataLayout(); | 
|  |  | 
|  | Instruction *DepInst = DepInfo.getInst(); | 
|  | if (DepInfo.isClobber()) { | 
|  | // If the dependence is to a store that writes to a superset of the bits | 
|  | // read by the load, we can extract the bits we need for the load from the | 
|  | // stored value. | 
|  | if (StoreInst *DepSI = dyn_cast<StoreInst>(DepInst)) { | 
|  | // Can't forward from non-atomic to atomic without violating memory model. | 
|  | if (Address && LI->isAtomic() <= DepSI->isAtomic()) { | 
|  | int Offset = | 
|  | analyzeLoadFromClobberingStore(LI->getType(), Address, DepSI, DL); | 
|  | if (Offset != -1) { | 
|  | Res = AvailableValue::get(DepSI->getValueOperand(), Offset); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check to see if we have something like this: | 
|  | //    load i32* P | 
|  | //    load i8* (P+1) | 
|  | // if we have this, replace the later with an extraction from the former. | 
|  | if (LoadInst *DepLI = dyn_cast<LoadInst>(DepInst)) { | 
|  | // If this is a clobber and L is the first instruction in its block, then | 
|  | // we have the first instruction in the entry block. | 
|  | // Can't forward from non-atomic to atomic without violating memory model. | 
|  | if (DepLI != LI && Address && LI->isAtomic() <= DepLI->isAtomic()) { | 
|  | int Offset = | 
|  | analyzeLoadFromClobberingLoad(LI->getType(), Address, DepLI, DL); | 
|  |  | 
|  | if (Offset != -1) { | 
|  | Res = AvailableValue::getLoad(DepLI, Offset); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the clobbering value is a memset/memcpy/memmove, see if we can | 
|  | // forward a value on from it. | 
|  | if (MemIntrinsic *DepMI = dyn_cast<MemIntrinsic>(DepInst)) { | 
|  | if (Address && !LI->isAtomic()) { | 
|  | int Offset = analyzeLoadFromClobberingMemInst(LI->getType(), Address, | 
|  | DepMI, DL); | 
|  | if (Offset != -1) { | 
|  | Res = AvailableValue::getMI(DepMI, Offset); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | // Nothing known about this clobber, have to be conservative | 
|  | LLVM_DEBUG( | 
|  | // fast print dep, using operator<< on instruction is too slow. | 
|  | dbgs() << "GVN: load "; LI->printAsOperand(dbgs()); | 
|  | dbgs() << " is clobbered by " << *DepInst << '\n';); | 
|  | if (ORE->allowExtraAnalysis(DEBUG_TYPE)) | 
|  | reportMayClobberedLoad(LI, DepInfo, DT, ORE); | 
|  |  | 
|  | return false; | 
|  | } | 
|  | assert(DepInfo.isDef() && "follows from above"); | 
|  |  | 
|  | // Loading the allocation -> undef. | 
|  | if (isa<AllocaInst>(DepInst) || isMallocLikeFn(DepInst, TLI) || | 
|  | // Loading immediately after lifetime begin -> undef. | 
|  | isLifetimeStart(DepInst)) { | 
|  | Res = AvailableValue::get(UndefValue::get(LI->getType())); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Loading from calloc (which zero initializes memory) -> zero | 
|  | if (isCallocLikeFn(DepInst, TLI)) { | 
|  | Res = AvailableValue::get(Constant::getNullValue(LI->getType())); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (StoreInst *S = dyn_cast<StoreInst>(DepInst)) { | 
|  | // Reject loads and stores that are to the same address but are of | 
|  | // different types if we have to. If the stored value is larger or equal to | 
|  | // the loaded value, we can reuse it. | 
|  | if (!canCoerceMustAliasedValueToLoad(S->getValueOperand(), LI->getType(), | 
|  | DL)) | 
|  | return false; | 
|  |  | 
|  | // Can't forward from non-atomic to atomic without violating memory model. | 
|  | if (S->isAtomic() < LI->isAtomic()) | 
|  | return false; | 
|  |  | 
|  | Res = AvailableValue::get(S->getValueOperand()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (LoadInst *LD = dyn_cast<LoadInst>(DepInst)) { | 
|  | // If the types mismatch and we can't handle it, reject reuse of the load. | 
|  | // If the stored value is larger or equal to the loaded value, we can reuse | 
|  | // it. | 
|  | if (!canCoerceMustAliasedValueToLoad(LD, LI->getType(), DL)) | 
|  | return false; | 
|  |  | 
|  | // Can't forward from non-atomic to atomic without violating memory model. | 
|  | if (LD->isAtomic() < LI->isAtomic()) | 
|  | return false; | 
|  |  | 
|  | Res = AvailableValue::getLoad(LD); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Unknown def - must be conservative | 
|  | LLVM_DEBUG( | 
|  | // fast print dep, using operator<< on instruction is too slow. | 
|  | dbgs() << "GVN: load "; LI->printAsOperand(dbgs()); | 
|  | dbgs() << " has unknown def " << *DepInst << '\n';); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void GVN::AnalyzeLoadAvailability(LoadInst *LI, LoadDepVect &Deps, | 
|  | AvailValInBlkVect &ValuesPerBlock, | 
|  | UnavailBlkVect &UnavailableBlocks) { | 
|  | // Filter out useless results (non-locals, etc).  Keep track of the blocks | 
|  | // where we have a value available in repl, also keep track of whether we see | 
|  | // dependencies that produce an unknown value for the load (such as a call | 
|  | // that could potentially clobber the load). | 
|  | unsigned NumDeps = Deps.size(); | 
|  | for (unsigned i = 0, e = NumDeps; i != e; ++i) { | 
|  | BasicBlock *DepBB = Deps[i].getBB(); | 
|  | MemDepResult DepInfo = Deps[i].getResult(); | 
|  |  | 
|  | if (DeadBlocks.count(DepBB)) { | 
|  | // Dead dependent mem-op disguise as a load evaluating the same value | 
|  | // as the load in question. | 
|  | ValuesPerBlock.push_back(AvailableValueInBlock::getUndef(DepBB)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!DepInfo.isDef() && !DepInfo.isClobber()) { | 
|  | UnavailableBlocks.push_back(DepBB); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // The address being loaded in this non-local block may not be the same as | 
|  | // the pointer operand of the load if PHI translation occurs.  Make sure | 
|  | // to consider the right address. | 
|  | Value *Address = Deps[i].getAddress(); | 
|  |  | 
|  | AvailableValue AV; | 
|  | if (AnalyzeLoadAvailability(LI, DepInfo, Address, AV)) { | 
|  | // subtlety: because we know this was a non-local dependency, we know | 
|  | // it's safe to materialize anywhere between the instruction within | 
|  | // DepInfo and the end of it's block. | 
|  | ValuesPerBlock.push_back(AvailableValueInBlock::get(DepBB, | 
|  | std::move(AV))); | 
|  | } else { | 
|  | UnavailableBlocks.push_back(DepBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(NumDeps == ValuesPerBlock.size() + UnavailableBlocks.size() && | 
|  | "post condition violation"); | 
|  | } | 
|  |  | 
|  | bool GVN::PerformLoadPRE(LoadInst *LI, AvailValInBlkVect &ValuesPerBlock, | 
|  | UnavailBlkVect &UnavailableBlocks) { | 
|  | // Okay, we have *some* definitions of the value.  This means that the value | 
|  | // is available in some of our (transitive) predecessors.  Lets think about | 
|  | // doing PRE of this load.  This will involve inserting a new load into the | 
|  | // predecessor when it's not available.  We could do this in general, but | 
|  | // prefer to not increase code size.  As such, we only do this when we know | 
|  | // that we only have to insert *one* load (which means we're basically moving | 
|  | // the load, not inserting a new one). | 
|  |  | 
|  | SmallPtrSet<BasicBlock *, 4> Blockers(UnavailableBlocks.begin(), | 
|  | UnavailableBlocks.end()); | 
|  |  | 
|  | // Let's find the first basic block with more than one predecessor.  Walk | 
|  | // backwards through predecessors if needed. | 
|  | BasicBlock *LoadBB = LI->getParent(); | 
|  | BasicBlock *TmpBB = LoadBB; | 
|  | bool IsSafeToSpeculativelyExecute = isSafeToSpeculativelyExecute(LI); | 
|  |  | 
|  | // Check that there is no implicit control flow instructions above our load in | 
|  | // its block. If there is an instruction that doesn't always pass the | 
|  | // execution to the following instruction, then moving through it may become | 
|  | // invalid. For example: | 
|  | // | 
|  | // int arr[LEN]; | 
|  | // int index = ???; | 
|  | // ... | 
|  | // guard(0 <= index && index < LEN); | 
|  | // use(arr[index]); | 
|  | // | 
|  | // It is illegal to move the array access to any point above the guard, | 
|  | // because if the index is out of bounds we should deoptimize rather than | 
|  | // access the array. | 
|  | // Check that there is no guard in this block above our instruction. | 
|  | if (!IsSafeToSpeculativelyExecute && ICF->isDominatedByICFIFromSameBlock(LI)) | 
|  | return false; | 
|  | while (TmpBB->getSinglePredecessor()) { | 
|  | TmpBB = TmpBB->getSinglePredecessor(); | 
|  | if (TmpBB == LoadBB) // Infinite (unreachable) loop. | 
|  | return false; | 
|  | if (Blockers.count(TmpBB)) | 
|  | return false; | 
|  |  | 
|  | // If any of these blocks has more than one successor (i.e. if the edge we | 
|  | // just traversed was critical), then there are other paths through this | 
|  | // block along which the load may not be anticipated.  Hoisting the load | 
|  | // above this block would be adding the load to execution paths along | 
|  | // which it was not previously executed. | 
|  | if (TmpBB->getTerminator()->getNumSuccessors() != 1) | 
|  | return false; | 
|  |  | 
|  | // Check that there is no implicit control flow in a block above. | 
|  | if (!IsSafeToSpeculativelyExecute && ICF->hasICF(TmpBB)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | assert(TmpBB); | 
|  | LoadBB = TmpBB; | 
|  |  | 
|  | // Check to see how many predecessors have the loaded value fully | 
|  | // available. | 
|  | MapVector<BasicBlock *, Value *> PredLoads; | 
|  | DenseMap<BasicBlock*, char> FullyAvailableBlocks; | 
|  | for (const AvailableValueInBlock &AV : ValuesPerBlock) | 
|  | FullyAvailableBlocks[AV.BB] = true; | 
|  | for (BasicBlock *UnavailableBB : UnavailableBlocks) | 
|  | FullyAvailableBlocks[UnavailableBB] = false; | 
|  |  | 
|  | SmallVector<BasicBlock *, 4> CriticalEdgePred; | 
|  | for (BasicBlock *Pred : predecessors(LoadBB)) { | 
|  | // If any predecessor block is an EH pad that does not allow non-PHI | 
|  | // instructions before the terminator, we can't PRE the load. | 
|  | if (Pred->getTerminator()->isEHPad()) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD PREDECESSOR '" | 
|  | << Pred->getName() << "': " << *LI << '\n'); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (IsValueFullyAvailableInBlock(Pred, FullyAvailableBlocks, 0)) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (Pred->getTerminator()->getNumSuccessors() != 1) { | 
|  | if (isa<IndirectBrInst>(Pred->getTerminator())) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "COULD NOT PRE LOAD BECAUSE OF INDBR CRITICAL EDGE '" | 
|  | << Pred->getName() << "': " << *LI << '\n'); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // FIXME: Can we support the fallthrough edge? | 
|  | if (isa<CallBrInst>(Pred->getTerminator())) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "COULD NOT PRE LOAD BECAUSE OF CALLBR CRITICAL EDGE '" | 
|  | << Pred->getName() << "': " << *LI << '\n'); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (LoadBB->isEHPad()) { | 
|  | LLVM_DEBUG( | 
|  | dbgs() << "COULD NOT PRE LOAD BECAUSE OF AN EH PAD CRITICAL EDGE '" | 
|  | << Pred->getName() << "': " << *LI << '\n'); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | CriticalEdgePred.push_back(Pred); | 
|  | } else { | 
|  | // Only add the predecessors that will not be split for now. | 
|  | PredLoads[Pred] = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Decide whether PRE is profitable for this load. | 
|  | unsigned NumUnavailablePreds = PredLoads.size() + CriticalEdgePred.size(); | 
|  | assert(NumUnavailablePreds != 0 && | 
|  | "Fully available value should already be eliminated!"); | 
|  |  | 
|  | // If this load is unavailable in multiple predecessors, reject it. | 
|  | // FIXME: If we could restructure the CFG, we could make a common pred with | 
|  | // all the preds that don't have an available LI and insert a new load into | 
|  | // that one block. | 
|  | if (NumUnavailablePreds != 1) | 
|  | return false; | 
|  |  | 
|  | // Split critical edges, and update the unavailable predecessors accordingly. | 
|  | for (BasicBlock *OrigPred : CriticalEdgePred) { | 
|  | BasicBlock *NewPred = splitCriticalEdges(OrigPred, LoadBB); | 
|  | assert(!PredLoads.count(OrigPred) && "Split edges shouldn't be in map!"); | 
|  | PredLoads[NewPred] = nullptr; | 
|  | LLVM_DEBUG(dbgs() << "Split critical edge " << OrigPred->getName() << "->" | 
|  | << LoadBB->getName() << '\n'); | 
|  | } | 
|  |  | 
|  | // Check if the load can safely be moved to all the unavailable predecessors. | 
|  | bool CanDoPRE = true; | 
|  | const DataLayout &DL = LI->getModule()->getDataLayout(); | 
|  | SmallVector<Instruction*, 8> NewInsts; | 
|  | for (auto &PredLoad : PredLoads) { | 
|  | BasicBlock *UnavailablePred = PredLoad.first; | 
|  |  | 
|  | // Do PHI translation to get its value in the predecessor if necessary.  The | 
|  | // returned pointer (if non-null) is guaranteed to dominate UnavailablePred. | 
|  | // We do the translation for each edge we skipped by going from LI's block | 
|  | // to LoadBB, otherwise we might miss pieces needing translation. | 
|  |  | 
|  | // If all preds have a single successor, then we know it is safe to insert | 
|  | // the load on the pred (?!?), so we can insert code to materialize the | 
|  | // pointer if it is not available. | 
|  | Value *LoadPtr = LI->getPointerOperand(); | 
|  | BasicBlock *Cur = LI->getParent(); | 
|  | while (Cur != LoadBB) { | 
|  | PHITransAddr Address(LoadPtr, DL, AC); | 
|  | LoadPtr = Address.PHITranslateWithInsertion( | 
|  | Cur, Cur->getSinglePredecessor(), *DT, NewInsts); | 
|  | if (!LoadPtr) { | 
|  | CanDoPRE = false; | 
|  | break; | 
|  | } | 
|  | Cur = Cur->getSinglePredecessor(); | 
|  | } | 
|  |  | 
|  | if (LoadPtr) { | 
|  | PHITransAddr Address(LoadPtr, DL, AC); | 
|  | LoadPtr = Address.PHITranslateWithInsertion(LoadBB, UnavailablePred, *DT, | 
|  | NewInsts); | 
|  | } | 
|  | // If we couldn't find or insert a computation of this phi translated value, | 
|  | // we fail PRE. | 
|  | if (!LoadPtr) { | 
|  | LLVM_DEBUG(dbgs() << "COULDN'T INSERT PHI TRANSLATED VALUE OF: " | 
|  | << *LI->getPointerOperand() << "\n"); | 
|  | CanDoPRE = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | PredLoad.second = LoadPtr; | 
|  | } | 
|  |  | 
|  | if (!CanDoPRE) { | 
|  | while (!NewInsts.empty()) { | 
|  | // Erase instructions generated by the failed PHI translation before | 
|  | // trying to number them. PHI translation might insert instructions | 
|  | // in basic blocks other than the current one, and we delete them | 
|  | // directly, as markInstructionForDeletion only allows removing from the | 
|  | // current basic block. | 
|  | NewInsts.pop_back_val()->eraseFromParent(); | 
|  | } | 
|  | // HINT: Don't revert the edge-splitting as following transformation may | 
|  | // also need to split these critical edges. | 
|  | return !CriticalEdgePred.empty(); | 
|  | } | 
|  |  | 
|  | // Okay, we can eliminate this load by inserting a reload in the predecessor | 
|  | // and using PHI construction to get the value in the other predecessors, do | 
|  | // it. | 
|  | LLVM_DEBUG(dbgs() << "GVN REMOVING PRE LOAD: " << *LI << '\n'); | 
|  | LLVM_DEBUG(if (!NewInsts.empty()) dbgs() | 
|  | << "INSERTED " << NewInsts.size() << " INSTS: " << *NewInsts.back() | 
|  | << '\n'); | 
|  |  | 
|  | // Assign value numbers to the new instructions. | 
|  | for (Instruction *I : NewInsts) { | 
|  | // Instructions that have been inserted in predecessor(s) to materialize | 
|  | // the load address do not retain their original debug locations. Doing | 
|  | // so could lead to confusing (but correct) source attributions. | 
|  | if (const DebugLoc &DL = I->getDebugLoc()) | 
|  | I->setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt())); | 
|  |  | 
|  | // FIXME: We really _ought_ to insert these value numbers into their | 
|  | // parent's availability map.  However, in doing so, we risk getting into | 
|  | // ordering issues.  If a block hasn't been processed yet, we would be | 
|  | // marking a value as AVAIL-IN, which isn't what we intend. | 
|  | VN.lookupOrAdd(I); | 
|  | } | 
|  |  | 
|  | for (const auto &PredLoad : PredLoads) { | 
|  | BasicBlock *UnavailablePred = PredLoad.first; | 
|  | Value *LoadPtr = PredLoad.second; | 
|  |  | 
|  | auto *NewLoad = | 
|  | new LoadInst(LI->getType(), LoadPtr, LI->getName() + ".pre", | 
|  | LI->isVolatile(), LI->getAlignment(), LI->getOrdering(), | 
|  | LI->getSyncScopeID(), UnavailablePred->getTerminator()); | 
|  | NewLoad->setDebugLoc(LI->getDebugLoc()); | 
|  |  | 
|  | // Transfer the old load's AA tags to the new load. | 
|  | AAMDNodes Tags; | 
|  | LI->getAAMetadata(Tags); | 
|  | if (Tags) | 
|  | NewLoad->setAAMetadata(Tags); | 
|  |  | 
|  | if (auto *MD = LI->getMetadata(LLVMContext::MD_invariant_load)) | 
|  | NewLoad->setMetadata(LLVMContext::MD_invariant_load, MD); | 
|  | if (auto *InvGroupMD = LI->getMetadata(LLVMContext::MD_invariant_group)) | 
|  | NewLoad->setMetadata(LLVMContext::MD_invariant_group, InvGroupMD); | 
|  | if (auto *RangeMD = LI->getMetadata(LLVMContext::MD_range)) | 
|  | NewLoad->setMetadata(LLVMContext::MD_range, RangeMD); | 
|  |  | 
|  | // We do not propagate the old load's debug location, because the new | 
|  | // load now lives in a different BB, and we want to avoid a jumpy line | 
|  | // table. | 
|  | // FIXME: How do we retain source locations without causing poor debugging | 
|  | // behavior? | 
|  |  | 
|  | // Add the newly created load. | 
|  | ValuesPerBlock.push_back(AvailableValueInBlock::get(UnavailablePred, | 
|  | NewLoad)); | 
|  | MD->invalidateCachedPointerInfo(LoadPtr); | 
|  | LLVM_DEBUG(dbgs() << "GVN INSERTED " << *NewLoad << '\n'); | 
|  | } | 
|  |  | 
|  | // Perform PHI construction. | 
|  | Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this); | 
|  | LI->replaceAllUsesWith(V); | 
|  | if (isa<PHINode>(V)) | 
|  | V->takeName(LI); | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | I->setDebugLoc(LI->getDebugLoc()); | 
|  | if (V->getType()->isPtrOrPtrVectorTy()) | 
|  | MD->invalidateCachedPointerInfo(V); | 
|  | markInstructionForDeletion(LI); | 
|  | ORE->emit([&]() { | 
|  | return OptimizationRemark(DEBUG_TYPE, "LoadPRE", LI) | 
|  | << "load eliminated by PRE"; | 
|  | }); | 
|  | ++NumPRELoad; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void reportLoadElim(LoadInst *LI, Value *AvailableValue, | 
|  | OptimizationRemarkEmitter *ORE) { | 
|  | using namespace ore; | 
|  |  | 
|  | ORE->emit([&]() { | 
|  | return OptimizationRemark(DEBUG_TYPE, "LoadElim", LI) | 
|  | << "load of type " << NV("Type", LI->getType()) << " eliminated" | 
|  | << setExtraArgs() << " in favor of " | 
|  | << NV("InfavorOfValue", AvailableValue); | 
|  | }); | 
|  | } | 
|  |  | 
|  | /// Attempt to eliminate a load whose dependencies are | 
|  | /// non-local by performing PHI construction. | 
|  | bool GVN::processNonLocalLoad(LoadInst *LI) { | 
|  | // non-local speculations are not allowed under asan. | 
|  | if (LI->getParent()->getParent()->hasFnAttribute( | 
|  | Attribute::SanitizeAddress) || | 
|  | LI->getParent()->getParent()->hasFnAttribute( | 
|  | Attribute::SanitizeHWAddress)) | 
|  | return false; | 
|  |  | 
|  | // Step 1: Find the non-local dependencies of the load. | 
|  | LoadDepVect Deps; | 
|  | MD->getNonLocalPointerDependency(LI, Deps); | 
|  |  | 
|  | // If we had to process more than one hundred blocks to find the | 
|  | // dependencies, this load isn't worth worrying about.  Optimizing | 
|  | // it will be too expensive. | 
|  | unsigned NumDeps = Deps.size(); | 
|  | if (NumDeps > MaxNumDeps) | 
|  | return false; | 
|  |  | 
|  | // If we had a phi translation failure, we'll have a single entry which is a | 
|  | // clobber in the current block.  Reject this early. | 
|  | if (NumDeps == 1 && | 
|  | !Deps[0].getResult().isDef() && !Deps[0].getResult().isClobber()) { | 
|  | LLVM_DEBUG(dbgs() << "GVN: non-local load "; LI->printAsOperand(dbgs()); | 
|  | dbgs() << " has unknown dependencies\n";); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If this load follows a GEP, see if we can PRE the indices before analyzing. | 
|  | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0))) { | 
|  | for (GetElementPtrInst::op_iterator OI = GEP->idx_begin(), | 
|  | OE = GEP->idx_end(); | 
|  | OI != OE; ++OI) | 
|  | if (Instruction *I = dyn_cast<Instruction>(OI->get())) | 
|  | performScalarPRE(I); | 
|  | } | 
|  |  | 
|  | // Step 2: Analyze the availability of the load | 
|  | AvailValInBlkVect ValuesPerBlock; | 
|  | UnavailBlkVect UnavailableBlocks; | 
|  | AnalyzeLoadAvailability(LI, Deps, ValuesPerBlock, UnavailableBlocks); | 
|  |  | 
|  | // If we have no predecessors that produce a known value for this load, exit | 
|  | // early. | 
|  | if (ValuesPerBlock.empty()) | 
|  | return false; | 
|  |  | 
|  | // Step 3: Eliminate fully redundancy. | 
|  | // | 
|  | // If all of the instructions we depend on produce a known value for this | 
|  | // load, then it is fully redundant and we can use PHI insertion to compute | 
|  | // its value.  Insert PHIs and remove the fully redundant value now. | 
|  | if (UnavailableBlocks.empty()) { | 
|  | LLVM_DEBUG(dbgs() << "GVN REMOVING NONLOCAL LOAD: " << *LI << '\n'); | 
|  |  | 
|  | // Perform PHI construction. | 
|  | Value *V = ConstructSSAForLoadSet(LI, ValuesPerBlock, *this); | 
|  | LI->replaceAllUsesWith(V); | 
|  |  | 
|  | if (isa<PHINode>(V)) | 
|  | V->takeName(LI); | 
|  | if (Instruction *I = dyn_cast<Instruction>(V)) | 
|  | // If instruction I has debug info, then we should not update it. | 
|  | // Also, if I has a null DebugLoc, then it is still potentially incorrect | 
|  | // to propagate LI's DebugLoc because LI may not post-dominate I. | 
|  | if (LI->getDebugLoc() && LI->getParent() == I->getParent()) | 
|  | I->setDebugLoc(LI->getDebugLoc()); | 
|  | if (V->getType()->isPtrOrPtrVectorTy()) | 
|  | MD->invalidateCachedPointerInfo(V); | 
|  | markInstructionForDeletion(LI); | 
|  | ++NumGVNLoad; | 
|  | reportLoadElim(LI, V, ORE); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Step 4: Eliminate partial redundancy. | 
|  | if (!EnablePRE || !EnableLoadPRE) | 
|  | return false; | 
|  |  | 
|  | return PerformLoadPRE(LI, ValuesPerBlock, UnavailableBlocks); | 
|  | } | 
|  |  | 
|  | bool GVN::processAssumeIntrinsic(IntrinsicInst *IntrinsicI) { | 
|  | assert(IntrinsicI->getIntrinsicID() == Intrinsic::assume && | 
|  | "This function can only be called with llvm.assume intrinsic"); | 
|  | Value *V = IntrinsicI->getArgOperand(0); | 
|  |  | 
|  | if (ConstantInt *Cond = dyn_cast<ConstantInt>(V)) { | 
|  | if (Cond->isZero()) { | 
|  | Type *Int8Ty = Type::getInt8Ty(V->getContext()); | 
|  | // Insert a new store to null instruction before the load to indicate that | 
|  | // this code is not reachable.  FIXME: We could insert unreachable | 
|  | // instruction directly because we can modify the CFG. | 
|  | new StoreInst(UndefValue::get(Int8Ty), | 
|  | Constant::getNullValue(Int8Ty->getPointerTo()), | 
|  | IntrinsicI); | 
|  | } | 
|  | markInstructionForDeletion(IntrinsicI); | 
|  | return false; | 
|  | } else if (isa<Constant>(V)) { | 
|  | // If it's not false, and constant, it must evaluate to true. This means our | 
|  | // assume is assume(true), and thus, pointless, and we don't want to do | 
|  | // anything more here. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Constant *True = ConstantInt::getTrue(V->getContext()); | 
|  | bool Changed = false; | 
|  |  | 
|  | for (BasicBlock *Successor : successors(IntrinsicI->getParent())) { | 
|  | BasicBlockEdge Edge(IntrinsicI->getParent(), Successor); | 
|  |  | 
|  | // This property is only true in dominated successors, propagateEquality | 
|  | // will check dominance for us. | 
|  | Changed |= propagateEquality(V, True, Edge, false); | 
|  | } | 
|  |  | 
|  | // We can replace assume value with true, which covers cases like this: | 
|  | // call void @llvm.assume(i1 %cmp) | 
|  | // br i1 %cmp, label %bb1, label %bb2 ; will change %cmp to true | 
|  | ReplaceWithConstMap[V] = True; | 
|  |  | 
|  | // If one of *cmp *eq operand is const, adding it to map will cover this: | 
|  | // %cmp = fcmp oeq float 3.000000e+00, %0 ; const on lhs could happen | 
|  | // call void @llvm.assume(i1 %cmp) | 
|  | // ret float %0 ; will change it to ret float 3.000000e+00 | 
|  | if (auto *CmpI = dyn_cast<CmpInst>(V)) { | 
|  | if (CmpI->getPredicate() == CmpInst::Predicate::ICMP_EQ || | 
|  | CmpI->getPredicate() == CmpInst::Predicate::FCMP_OEQ || | 
|  | (CmpI->getPredicate() == CmpInst::Predicate::FCMP_UEQ && | 
|  | CmpI->getFastMathFlags().noNaNs())) { | 
|  | Value *CmpLHS = CmpI->getOperand(0); | 
|  | Value *CmpRHS = CmpI->getOperand(1); | 
|  | if (isa<Constant>(CmpLHS)) | 
|  | std::swap(CmpLHS, CmpRHS); | 
|  | auto *RHSConst = dyn_cast<Constant>(CmpRHS); | 
|  |  | 
|  | // If only one operand is constant. | 
|  | if (RHSConst != nullptr && !isa<Constant>(CmpLHS)) | 
|  | ReplaceWithConstMap[CmpLHS] = RHSConst; | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { | 
|  | patchReplacementInstruction(I, Repl); | 
|  | I->replaceAllUsesWith(Repl); | 
|  | } | 
|  |  | 
|  | /// Attempt to eliminate a load, first by eliminating it | 
|  | /// locally, and then attempting non-local elimination if that fails. | 
|  | bool GVN::processLoad(LoadInst *L) { | 
|  | if (!MD) | 
|  | return false; | 
|  |  | 
|  | // This code hasn't been audited for ordered or volatile memory access | 
|  | if (!L->isUnordered()) | 
|  | return false; | 
|  |  | 
|  | if (L->use_empty()) { | 
|  | markInstructionForDeletion(L); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // ... to a pointer that has been loaded from before... | 
|  | MemDepResult Dep = MD->getDependency(L); | 
|  |  | 
|  | // If it is defined in another block, try harder. | 
|  | if (Dep.isNonLocal()) | 
|  | return processNonLocalLoad(L); | 
|  |  | 
|  | // Only handle the local case below | 
|  | if (!Dep.isDef() && !Dep.isClobber()) { | 
|  | // This might be a NonFuncLocal or an Unknown | 
|  | LLVM_DEBUG( | 
|  | // fast print dep, using operator<< on instruction is too slow. | 
|  | dbgs() << "GVN: load "; L->printAsOperand(dbgs()); | 
|  | dbgs() << " has unknown dependence\n";); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | AvailableValue AV; | 
|  | if (AnalyzeLoadAvailability(L, Dep, L->getPointerOperand(), AV)) { | 
|  | Value *AvailableValue = AV.MaterializeAdjustedValue(L, L, *this); | 
|  |  | 
|  | // Replace the load! | 
|  | patchAndReplaceAllUsesWith(L, AvailableValue); | 
|  | markInstructionForDeletion(L); | 
|  | ++NumGVNLoad; | 
|  | reportLoadElim(L, AvailableValue, ORE); | 
|  | // Tell MDA to rexamine the reused pointer since we might have more | 
|  | // information after forwarding it. | 
|  | if (MD && AvailableValue->getType()->isPtrOrPtrVectorTy()) | 
|  | MD->invalidateCachedPointerInfo(AvailableValue); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return a pair the first field showing the value number of \p Exp and the | 
|  | /// second field showing whether it is a value number newly created. | 
|  | std::pair<uint32_t, bool> | 
|  | GVN::ValueTable::assignExpNewValueNum(Expression &Exp) { | 
|  | uint32_t &e = expressionNumbering[Exp]; | 
|  | bool CreateNewValNum = !e; | 
|  | if (CreateNewValNum) { | 
|  | Expressions.push_back(Exp); | 
|  | if (ExprIdx.size() < nextValueNumber + 1) | 
|  | ExprIdx.resize(nextValueNumber * 2); | 
|  | e = nextValueNumber; | 
|  | ExprIdx[nextValueNumber++] = nextExprNumber++; | 
|  | } | 
|  | return {e, CreateNewValNum}; | 
|  | } | 
|  |  | 
|  | /// Return whether all the values related with the same \p num are | 
|  | /// defined in \p BB. | 
|  | bool GVN::ValueTable::areAllValsInBB(uint32_t Num, const BasicBlock *BB, | 
|  | GVN &Gvn) { | 
|  | LeaderTableEntry *Vals = &Gvn.LeaderTable[Num]; | 
|  | while (Vals && Vals->BB == BB) | 
|  | Vals = Vals->Next; | 
|  | return !Vals; | 
|  | } | 
|  |  | 
|  | /// Wrap phiTranslateImpl to provide caching functionality. | 
|  | uint32_t GVN::ValueTable::phiTranslate(const BasicBlock *Pred, | 
|  | const BasicBlock *PhiBlock, uint32_t Num, | 
|  | GVN &Gvn) { | 
|  | auto FindRes = PhiTranslateTable.find({Num, Pred}); | 
|  | if (FindRes != PhiTranslateTable.end()) | 
|  | return FindRes->second; | 
|  | uint32_t NewNum = phiTranslateImpl(Pred, PhiBlock, Num, Gvn); | 
|  | PhiTranslateTable.insert({{Num, Pred}, NewNum}); | 
|  | return NewNum; | 
|  | } | 
|  |  | 
|  | /// Translate value number \p Num using phis, so that it has the values of | 
|  | /// the phis in BB. | 
|  | uint32_t GVN::ValueTable::phiTranslateImpl(const BasicBlock *Pred, | 
|  | const BasicBlock *PhiBlock, | 
|  | uint32_t Num, GVN &Gvn) { | 
|  | if (PHINode *PN = NumberingPhi[Num]) { | 
|  | for (unsigned i = 0; i != PN->getNumIncomingValues(); ++i) { | 
|  | if (PN->getParent() == PhiBlock && PN->getIncomingBlock(i) == Pred) | 
|  | if (uint32_t TransVal = lookup(PN->getIncomingValue(i), false)) | 
|  | return TransVal; | 
|  | } | 
|  | return Num; | 
|  | } | 
|  |  | 
|  | // If there is any value related with Num is defined in a BB other than | 
|  | // PhiBlock, it cannot depend on a phi in PhiBlock without going through | 
|  | // a backedge. We can do an early exit in that case to save compile time. | 
|  | if (!areAllValsInBB(Num, PhiBlock, Gvn)) | 
|  | return Num; | 
|  |  | 
|  | if (Num >= ExprIdx.size() || ExprIdx[Num] == 0) | 
|  | return Num; | 
|  | Expression Exp = Expressions[ExprIdx[Num]]; | 
|  |  | 
|  | for (unsigned i = 0; i < Exp.varargs.size(); i++) { | 
|  | // For InsertValue and ExtractValue, some varargs are index numbers | 
|  | // instead of value numbers. Those index numbers should not be | 
|  | // translated. | 
|  | if ((i > 1 && Exp.opcode == Instruction::InsertValue) || | 
|  | (i > 0 && Exp.opcode == Instruction::ExtractValue)) | 
|  | continue; | 
|  | Exp.varargs[i] = phiTranslate(Pred, PhiBlock, Exp.varargs[i], Gvn); | 
|  | } | 
|  |  | 
|  | if (Exp.commutative) { | 
|  | assert(Exp.varargs.size() == 2 && "Unsupported commutative expression!"); | 
|  | if (Exp.varargs[0] > Exp.varargs[1]) { | 
|  | std::swap(Exp.varargs[0], Exp.varargs[1]); | 
|  | uint32_t Opcode = Exp.opcode >> 8; | 
|  | if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) | 
|  | Exp.opcode = (Opcode << 8) | | 
|  | CmpInst::getSwappedPredicate( | 
|  | static_cast<CmpInst::Predicate>(Exp.opcode & 255)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (uint32_t NewNum = expressionNumbering[Exp]) | 
|  | return NewNum; | 
|  | return Num; | 
|  | } | 
|  |  | 
|  | /// Erase stale entry from phiTranslate cache so phiTranslate can be computed | 
|  | /// again. | 
|  | void GVN::ValueTable::eraseTranslateCacheEntry(uint32_t Num, | 
|  | const BasicBlock &CurrBlock) { | 
|  | for (const BasicBlock *Pred : predecessors(&CurrBlock)) { | 
|  | auto FindRes = PhiTranslateTable.find({Num, Pred}); | 
|  | if (FindRes != PhiTranslateTable.end()) | 
|  | PhiTranslateTable.erase(FindRes); | 
|  | } | 
|  | } | 
|  |  | 
|  | // In order to find a leader for a given value number at a | 
|  | // specific basic block, we first obtain the list of all Values for that number, | 
|  | // and then scan the list to find one whose block dominates the block in | 
|  | // question.  This is fast because dominator tree queries consist of only | 
|  | // a few comparisons of DFS numbers. | 
|  | Value *GVN::findLeader(const BasicBlock *BB, uint32_t num) { | 
|  | LeaderTableEntry Vals = LeaderTable[num]; | 
|  | if (!Vals.Val) return nullptr; | 
|  |  | 
|  | Value *Val = nullptr; | 
|  | if (DT->dominates(Vals.BB, BB)) { | 
|  | Val = Vals.Val; | 
|  | if (isa<Constant>(Val)) return Val; | 
|  | } | 
|  |  | 
|  | LeaderTableEntry* Next = Vals.Next; | 
|  | while (Next) { | 
|  | if (DT->dominates(Next->BB, BB)) { | 
|  | if (isa<Constant>(Next->Val)) return Next->Val; | 
|  | if (!Val) Val = Next->Val; | 
|  | } | 
|  |  | 
|  | Next = Next->Next; | 
|  | } | 
|  |  | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | /// There is an edge from 'Src' to 'Dst'.  Return | 
|  | /// true if every path from the entry block to 'Dst' passes via this edge.  In | 
|  | /// particular 'Dst' must not be reachable via another edge from 'Src'. | 
|  | static bool isOnlyReachableViaThisEdge(const BasicBlockEdge &E, | 
|  | DominatorTree *DT) { | 
|  | // While in theory it is interesting to consider the case in which Dst has | 
|  | // more than one predecessor, because Dst might be part of a loop which is | 
|  | // only reachable from Src, in practice it is pointless since at the time | 
|  | // GVN runs all such loops have preheaders, which means that Dst will have | 
|  | // been changed to have only one predecessor, namely Src. | 
|  | const BasicBlock *Pred = E.getEnd()->getSinglePredecessor(); | 
|  | assert((!Pred || Pred == E.getStart()) && | 
|  | "No edge between these basic blocks!"); | 
|  | return Pred != nullptr; | 
|  | } | 
|  |  | 
|  | void GVN::assignBlockRPONumber(Function &F) { | 
|  | BlockRPONumber.clear(); | 
|  | uint32_t NextBlockNumber = 1; | 
|  | ReversePostOrderTraversal<Function *> RPOT(&F); | 
|  | for (BasicBlock *BB : RPOT) | 
|  | BlockRPONumber[BB] = NextBlockNumber++; | 
|  | InvalidBlockRPONumbers = false; | 
|  | } | 
|  |  | 
|  | // Tries to replace instruction with const, using information from | 
|  | // ReplaceWithConstMap. | 
|  | bool GVN::replaceOperandsWithConsts(Instruction *Instr) const { | 
|  | bool Changed = false; | 
|  | for (unsigned OpNum = 0; OpNum < Instr->getNumOperands(); ++OpNum) { | 
|  | Value *Operand = Instr->getOperand(OpNum); | 
|  | auto it = ReplaceWithConstMap.find(Operand); | 
|  | if (it != ReplaceWithConstMap.end()) { | 
|  | assert(!isa<Constant>(Operand) && | 
|  | "Replacing constants with constants is invalid"); | 
|  | LLVM_DEBUG(dbgs() << "GVN replacing: " << *Operand << " with " | 
|  | << *it->second << " in instruction " << *Instr << '\n'); | 
|  | Instr->setOperand(OpNum, it->second); | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// The given values are known to be equal in every block | 
|  | /// dominated by 'Root'.  Exploit this, for example by replacing 'LHS' with | 
|  | /// 'RHS' everywhere in the scope.  Returns whether a change was made. | 
|  | /// If DominatesByEdge is false, then it means that we will propagate the RHS | 
|  | /// value starting from the end of Root.Start. | 
|  | bool GVN::propagateEquality(Value *LHS, Value *RHS, const BasicBlockEdge &Root, | 
|  | bool DominatesByEdge) { | 
|  | SmallVector<std::pair<Value*, Value*>, 4> Worklist; | 
|  | Worklist.push_back(std::make_pair(LHS, RHS)); | 
|  | bool Changed = false; | 
|  | // For speed, compute a conservative fast approximation to | 
|  | // DT->dominates(Root, Root.getEnd()); | 
|  | const bool RootDominatesEnd = isOnlyReachableViaThisEdge(Root, DT); | 
|  |  | 
|  | while (!Worklist.empty()) { | 
|  | std::pair<Value*, Value*> Item = Worklist.pop_back_val(); | 
|  | LHS = Item.first; RHS = Item.second; | 
|  |  | 
|  | if (LHS == RHS) | 
|  | continue; | 
|  | assert(LHS->getType() == RHS->getType() && "Equality but unequal types!"); | 
|  |  | 
|  | // Don't try to propagate equalities between constants. | 
|  | if (isa<Constant>(LHS) && isa<Constant>(RHS)) | 
|  | continue; | 
|  |  | 
|  | // Prefer a constant on the right-hand side, or an Argument if no constants. | 
|  | if (isa<Constant>(LHS) || (isa<Argument>(LHS) && !isa<Constant>(RHS))) | 
|  | std::swap(LHS, RHS); | 
|  | assert((isa<Argument>(LHS) || isa<Instruction>(LHS)) && "Unexpected value!"); | 
|  |  | 
|  | // If there is no obvious reason to prefer the left-hand side over the | 
|  | // right-hand side, ensure the longest lived term is on the right-hand side, | 
|  | // so the shortest lived term will be replaced by the longest lived. | 
|  | // This tends to expose more simplifications. | 
|  | uint32_t LVN = VN.lookupOrAdd(LHS); | 
|  | if ((isa<Argument>(LHS) && isa<Argument>(RHS)) || | 
|  | (isa<Instruction>(LHS) && isa<Instruction>(RHS))) { | 
|  | // Move the 'oldest' value to the right-hand side, using the value number | 
|  | // as a proxy for age. | 
|  | uint32_t RVN = VN.lookupOrAdd(RHS); | 
|  | if (LVN < RVN) { | 
|  | std::swap(LHS, RHS); | 
|  | LVN = RVN; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If value numbering later sees that an instruction in the scope is equal | 
|  | // to 'LHS' then ensure it will be turned into 'RHS'.  In order to preserve | 
|  | // the invariant that instructions only occur in the leader table for their | 
|  | // own value number (this is used by removeFromLeaderTable), do not do this | 
|  | // if RHS is an instruction (if an instruction in the scope is morphed into | 
|  | // LHS then it will be turned into RHS by the next GVN iteration anyway, so | 
|  | // using the leader table is about compiling faster, not optimizing better). | 
|  | // The leader table only tracks basic blocks, not edges. Only add to if we | 
|  | // have the simple case where the edge dominates the end. | 
|  | if (RootDominatesEnd && !isa<Instruction>(RHS)) | 
|  | addToLeaderTable(LVN, RHS, Root.getEnd()); | 
|  |  | 
|  | // Replace all occurrences of 'LHS' with 'RHS' everywhere in the scope.  As | 
|  | // LHS always has at least one use that is not dominated by Root, this will | 
|  | // never do anything if LHS has only one use. | 
|  | if (!LHS->hasOneUse()) { | 
|  | unsigned NumReplacements = | 
|  | DominatesByEdge | 
|  | ? replaceDominatedUsesWith(LHS, RHS, *DT, Root) | 
|  | : replaceDominatedUsesWith(LHS, RHS, *DT, Root.getStart()); | 
|  |  | 
|  | Changed |= NumReplacements > 0; | 
|  | NumGVNEqProp += NumReplacements; | 
|  | // Cached information for anything that uses LHS will be invalid. | 
|  | if (MD) | 
|  | MD->invalidateCachedPointerInfo(LHS); | 
|  | } | 
|  |  | 
|  | // Now try to deduce additional equalities from this one. For example, if | 
|  | // the known equality was "(A != B)" == "false" then it follows that A and B | 
|  | // are equal in the scope. Only boolean equalities with an explicit true or | 
|  | // false RHS are currently supported. | 
|  | if (!RHS->getType()->isIntegerTy(1)) | 
|  | // Not a boolean equality - bail out. | 
|  | continue; | 
|  | ConstantInt *CI = dyn_cast<ConstantInt>(RHS); | 
|  | if (!CI) | 
|  | // RHS neither 'true' nor 'false' - bail out. | 
|  | continue; | 
|  | // Whether RHS equals 'true'.  Otherwise it equals 'false'. | 
|  | bool isKnownTrue = CI->isMinusOne(); | 
|  | bool isKnownFalse = !isKnownTrue; | 
|  |  | 
|  | // If "A && B" is known true then both A and B are known true.  If "A || B" | 
|  | // is known false then both A and B are known false. | 
|  | Value *A, *B; | 
|  | if ((isKnownTrue && match(LHS, m_And(m_Value(A), m_Value(B)))) || | 
|  | (isKnownFalse && match(LHS, m_Or(m_Value(A), m_Value(B))))) { | 
|  | Worklist.push_back(std::make_pair(A, RHS)); | 
|  | Worklist.push_back(std::make_pair(B, RHS)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we are propagating an equality like "(A == B)" == "true" then also | 
|  | // propagate the equality A == B.  When propagating a comparison such as | 
|  | // "(A >= B)" == "true", replace all instances of "A < B" with "false". | 
|  | if (CmpInst *Cmp = dyn_cast<CmpInst>(LHS)) { | 
|  | Value *Op0 = Cmp->getOperand(0), *Op1 = Cmp->getOperand(1); | 
|  |  | 
|  | // If "A == B" is known true, or "A != B" is known false, then replace | 
|  | // A with B everywhere in the scope. | 
|  | if ((isKnownTrue && Cmp->getPredicate() == CmpInst::ICMP_EQ) || | 
|  | (isKnownFalse && Cmp->getPredicate() == CmpInst::ICMP_NE)) | 
|  | Worklist.push_back(std::make_pair(Op0, Op1)); | 
|  |  | 
|  | // Handle the floating point versions of equality comparisons too. | 
|  | if ((isKnownTrue && Cmp->getPredicate() == CmpInst::FCMP_OEQ) || | 
|  | (isKnownFalse && Cmp->getPredicate() == CmpInst::FCMP_UNE)) { | 
|  |  | 
|  | // Floating point -0.0 and 0.0 compare equal, so we can only | 
|  | // propagate values if we know that we have a constant and that | 
|  | // its value is non-zero. | 
|  |  | 
|  | // FIXME: We should do this optimization if 'no signed zeros' is | 
|  | // applicable via an instruction-level fast-math-flag or some other | 
|  | // indicator that relaxed FP semantics are being used. | 
|  |  | 
|  | if (isa<ConstantFP>(Op1) && !cast<ConstantFP>(Op1)->isZero()) | 
|  | Worklist.push_back(std::make_pair(Op0, Op1)); | 
|  | } | 
|  |  | 
|  | // If "A >= B" is known true, replace "A < B" with false everywhere. | 
|  | CmpInst::Predicate NotPred = Cmp->getInversePredicate(); | 
|  | Constant *NotVal = ConstantInt::get(Cmp->getType(), isKnownFalse); | 
|  | // Since we don't have the instruction "A < B" immediately to hand, work | 
|  | // out the value number that it would have and use that to find an | 
|  | // appropriate instruction (if any). | 
|  | uint32_t NextNum = VN.getNextUnusedValueNumber(); | 
|  | uint32_t Num = VN.lookupOrAddCmp(Cmp->getOpcode(), NotPred, Op0, Op1); | 
|  | // If the number we were assigned was brand new then there is no point in | 
|  | // looking for an instruction realizing it: there cannot be one! | 
|  | if (Num < NextNum) { | 
|  | Value *NotCmp = findLeader(Root.getEnd(), Num); | 
|  | if (NotCmp && isa<Instruction>(NotCmp)) { | 
|  | unsigned NumReplacements = | 
|  | DominatesByEdge | 
|  | ? replaceDominatedUsesWith(NotCmp, NotVal, *DT, Root) | 
|  | : replaceDominatedUsesWith(NotCmp, NotVal, *DT, | 
|  | Root.getStart()); | 
|  | Changed |= NumReplacements > 0; | 
|  | NumGVNEqProp += NumReplacements; | 
|  | // Cached information for anything that uses NotCmp will be invalid. | 
|  | if (MD) | 
|  | MD->invalidateCachedPointerInfo(NotCmp); | 
|  | } | 
|  | } | 
|  | // Ensure that any instruction in scope that gets the "A < B" value number | 
|  | // is replaced with false. | 
|  | // The leader table only tracks basic blocks, not edges. Only add to if we | 
|  | // have the simple case where the edge dominates the end. | 
|  | if (RootDominatesEnd) | 
|  | addToLeaderTable(Num, NotVal, Root.getEnd()); | 
|  |  | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// When calculating availability, handle an instruction | 
|  | /// by inserting it into the appropriate sets | 
|  | bool GVN::processInstruction(Instruction *I) { | 
|  | // Ignore dbg info intrinsics. | 
|  | if (isa<DbgInfoIntrinsic>(I)) | 
|  | return false; | 
|  |  | 
|  | // If the instruction can be easily simplified then do so now in preference | 
|  | // to value numbering it.  Value numbering often exposes redundancies, for | 
|  | // example if it determines that %y is equal to %x then the instruction | 
|  | // "%z = and i32 %x, %y" becomes "%z = and i32 %x, %x" which we now simplify. | 
|  | const DataLayout &DL = I->getModule()->getDataLayout(); | 
|  | if (Value *V = SimplifyInstruction(I, {DL, TLI, DT, AC})) { | 
|  | bool Changed = false; | 
|  | if (!I->use_empty()) { | 
|  | I->replaceAllUsesWith(V); | 
|  | Changed = true; | 
|  | } | 
|  | if (isInstructionTriviallyDead(I, TLI)) { | 
|  | markInstructionForDeletion(I); | 
|  | Changed = true; | 
|  | } | 
|  | if (Changed) { | 
|  | if (MD && V->getType()->isPtrOrPtrVectorTy()) | 
|  | MD->invalidateCachedPointerInfo(V); | 
|  | ++NumGVNSimpl; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IntrinsicInst *IntrinsicI = dyn_cast<IntrinsicInst>(I)) | 
|  | if (IntrinsicI->getIntrinsicID() == Intrinsic::assume) | 
|  | return processAssumeIntrinsic(IntrinsicI); | 
|  |  | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(I)) { | 
|  | if (processLoad(LI)) | 
|  | return true; | 
|  |  | 
|  | unsigned Num = VN.lookupOrAdd(LI); | 
|  | addToLeaderTable(Num, LI, LI->getParent()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // For conditional branches, we can perform simple conditional propagation on | 
|  | // the condition value itself. | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(I)) { | 
|  | if (!BI->isConditional()) | 
|  | return false; | 
|  |  | 
|  | if (isa<Constant>(BI->getCondition())) | 
|  | return processFoldableCondBr(BI); | 
|  |  | 
|  | Value *BranchCond = BI->getCondition(); | 
|  | BasicBlock *TrueSucc = BI->getSuccessor(0); | 
|  | BasicBlock *FalseSucc = BI->getSuccessor(1); | 
|  | // Avoid multiple edges early. | 
|  | if (TrueSucc == FalseSucc) | 
|  | return false; | 
|  |  | 
|  | BasicBlock *Parent = BI->getParent(); | 
|  | bool Changed = false; | 
|  |  | 
|  | Value *TrueVal = ConstantInt::getTrue(TrueSucc->getContext()); | 
|  | BasicBlockEdge TrueE(Parent, TrueSucc); | 
|  | Changed |= propagateEquality(BranchCond, TrueVal, TrueE, true); | 
|  |  | 
|  | Value *FalseVal = ConstantInt::getFalse(FalseSucc->getContext()); | 
|  | BasicBlockEdge FalseE(Parent, FalseSucc); | 
|  | Changed |= propagateEquality(BranchCond, FalseVal, FalseE, true); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | // For switches, propagate the case values into the case destinations. | 
|  | if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { | 
|  | Value *SwitchCond = SI->getCondition(); | 
|  | BasicBlock *Parent = SI->getParent(); | 
|  | bool Changed = false; | 
|  |  | 
|  | // Remember how many outgoing edges there are to every successor. | 
|  | SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; | 
|  | for (unsigned i = 0, n = SI->getNumSuccessors(); i != n; ++i) | 
|  | ++SwitchEdges[SI->getSuccessor(i)]; | 
|  |  | 
|  | for (SwitchInst::CaseIt i = SI->case_begin(), e = SI->case_end(); | 
|  | i != e; ++i) { | 
|  | BasicBlock *Dst = i->getCaseSuccessor(); | 
|  | // If there is only a single edge, propagate the case value into it. | 
|  | if (SwitchEdges.lookup(Dst) == 1) { | 
|  | BasicBlockEdge E(Parent, Dst); | 
|  | Changed |= propagateEquality(SwitchCond, i->getCaseValue(), E, true); | 
|  | } | 
|  | } | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | // Instructions with void type don't return a value, so there's | 
|  | // no point in trying to find redundancies in them. | 
|  | if (I->getType()->isVoidTy()) | 
|  | return false; | 
|  |  | 
|  | uint32_t NextNum = VN.getNextUnusedValueNumber(); | 
|  | unsigned Num = VN.lookupOrAdd(I); | 
|  |  | 
|  | // Allocations are always uniquely numbered, so we can save time and memory | 
|  | // by fast failing them. | 
|  | if (isa<AllocaInst>(I) || I->isTerminator() || isa<PHINode>(I)) { | 
|  | addToLeaderTable(Num, I, I->getParent()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the number we were assigned was a brand new VN, then we don't | 
|  | // need to do a lookup to see if the number already exists | 
|  | // somewhere in the domtree: it can't! | 
|  | if (Num >= NextNum) { | 
|  | addToLeaderTable(Num, I, I->getParent()); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Perform fast-path value-number based elimination of values inherited from | 
|  | // dominators. | 
|  | Value *Repl = findLeader(I->getParent(), Num); | 
|  | if (!Repl) { | 
|  | // Failure, just remember this instance for future use. | 
|  | addToLeaderTable(Num, I, I->getParent()); | 
|  | return false; | 
|  | } else if (Repl == I) { | 
|  | // If I was the result of a shortcut PRE, it might already be in the table | 
|  | // and the best replacement for itself. Nothing to do. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Remove it! | 
|  | patchAndReplaceAllUsesWith(I, Repl); | 
|  | if (MD && Repl->getType()->isPtrOrPtrVectorTy()) | 
|  | MD->invalidateCachedPointerInfo(Repl); | 
|  | markInstructionForDeletion(I); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// runOnFunction - This is the main transformation entry point for a function. | 
|  | bool GVN::runImpl(Function &F, AssumptionCache &RunAC, DominatorTree &RunDT, | 
|  | const TargetLibraryInfo &RunTLI, AAResults &RunAA, | 
|  | MemoryDependenceResults *RunMD, LoopInfo *LI, | 
|  | OptimizationRemarkEmitter *RunORE) { | 
|  | AC = &RunAC; | 
|  | DT = &RunDT; | 
|  | VN.setDomTree(DT); | 
|  | TLI = &RunTLI; | 
|  | VN.setAliasAnalysis(&RunAA); | 
|  | MD = RunMD; | 
|  | ImplicitControlFlowTracking ImplicitCFT(DT); | 
|  | ICF = &ImplicitCFT; | 
|  | this->LI = LI; | 
|  | VN.setMemDep(MD); | 
|  | ORE = RunORE; | 
|  | InvalidBlockRPONumbers = true; | 
|  |  | 
|  | bool Changed = false; | 
|  | bool ShouldContinue = true; | 
|  |  | 
|  | DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); | 
|  | // Merge unconditional branches, allowing PRE to catch more | 
|  | // optimization opportunities. | 
|  | for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ) { | 
|  | BasicBlock *BB = &*FI++; | 
|  |  | 
|  | bool removedBlock = MergeBlockIntoPredecessor(BB, &DTU, LI, nullptr, MD); | 
|  | if (removedBlock) | 
|  | ++NumGVNBlocks; | 
|  |  | 
|  | Changed |= removedBlock; | 
|  | } | 
|  |  | 
|  | unsigned Iteration = 0; | 
|  | while (ShouldContinue) { | 
|  | LLVM_DEBUG(dbgs() << "GVN iteration: " << Iteration << "\n"); | 
|  | ShouldContinue = iterateOnFunction(F); | 
|  | Changed |= ShouldContinue; | 
|  | ++Iteration; | 
|  | } | 
|  |  | 
|  | if (EnablePRE) { | 
|  | // Fabricate val-num for dead-code in order to suppress assertion in | 
|  | // performPRE(). | 
|  | assignValNumForDeadCode(); | 
|  | bool PREChanged = true; | 
|  | while (PREChanged) { | 
|  | PREChanged = performPRE(F); | 
|  | Changed |= PREChanged; | 
|  | } | 
|  | } | 
|  |  | 
|  | // FIXME: Should perform GVN again after PRE does something.  PRE can move | 
|  | // computations into blocks where they become fully redundant.  Note that | 
|  | // we can't do this until PRE's critical edge splitting updates memdep. | 
|  | // Actually, when this happens, we should just fully integrate PRE into GVN. | 
|  |  | 
|  | cleanupGlobalSets(); | 
|  | // Do not cleanup DeadBlocks in cleanupGlobalSets() as it's called for each | 
|  | // iteration. | 
|  | DeadBlocks.clear(); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool GVN::processBlock(BasicBlock *BB) { | 
|  | // FIXME: Kill off InstrsToErase by doing erasing eagerly in a helper function | 
|  | // (and incrementing BI before processing an instruction). | 
|  | assert(InstrsToErase.empty() && | 
|  | "We expect InstrsToErase to be empty across iterations"); | 
|  | if (DeadBlocks.count(BB)) | 
|  | return false; | 
|  |  | 
|  | // Clearing map before every BB because it can be used only for single BB. | 
|  | ReplaceWithConstMap.clear(); | 
|  | bool ChangedFunction = false; | 
|  |  | 
|  | for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); | 
|  | BI != BE;) { | 
|  | if (!ReplaceWithConstMap.empty()) | 
|  | ChangedFunction |= replaceOperandsWithConsts(&*BI); | 
|  | ChangedFunction |= processInstruction(&*BI); | 
|  |  | 
|  | if (InstrsToErase.empty()) { | 
|  | ++BI; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we need some instructions deleted, do it now. | 
|  | NumGVNInstr += InstrsToErase.size(); | 
|  |  | 
|  | // Avoid iterator invalidation. | 
|  | bool AtStart = BI == BB->begin(); | 
|  | if (!AtStart) | 
|  | --BI; | 
|  |  | 
|  | for (auto *I : InstrsToErase) { | 
|  | assert(I->getParent() == BB && "Removing instruction from wrong block?"); | 
|  | LLVM_DEBUG(dbgs() << "GVN removed: " << *I << '\n'); | 
|  | salvageDebugInfo(*I); | 
|  | if (MD) MD->removeInstruction(I); | 
|  | LLVM_DEBUG(verifyRemoved(I)); | 
|  | ICF->removeInstruction(I); | 
|  | I->eraseFromParent(); | 
|  | } | 
|  | InstrsToErase.clear(); | 
|  |  | 
|  | if (AtStart) | 
|  | BI = BB->begin(); | 
|  | else | 
|  | ++BI; | 
|  | } | 
|  |  | 
|  | return ChangedFunction; | 
|  | } | 
|  |  | 
|  | // Instantiate an expression in a predecessor that lacked it. | 
|  | bool GVN::performScalarPREInsertion(Instruction *Instr, BasicBlock *Pred, | 
|  | BasicBlock *Curr, unsigned int ValNo) { | 
|  | // Because we are going top-down through the block, all value numbers | 
|  | // will be available in the predecessor by the time we need them.  Any | 
|  | // that weren't originally present will have been instantiated earlier | 
|  | // in this loop. | 
|  | bool success = true; | 
|  | for (unsigned i = 0, e = Instr->getNumOperands(); i != e; ++i) { | 
|  | Value *Op = Instr->getOperand(i); | 
|  | if (isa<Argument>(Op) || isa<Constant>(Op) || isa<GlobalValue>(Op)) | 
|  | continue; | 
|  | // This could be a newly inserted instruction, in which case, we won't | 
|  | // find a value number, and should give up before we hurt ourselves. | 
|  | // FIXME: Rewrite the infrastructure to let it easier to value number | 
|  | // and process newly inserted instructions. | 
|  | if (!VN.exists(Op)) { | 
|  | success = false; | 
|  | break; | 
|  | } | 
|  | uint32_t TValNo = | 
|  | VN.phiTranslate(Pred, Curr, VN.lookup(Op), *this); | 
|  | if (Value *V = findLeader(Pred, TValNo)) { | 
|  | Instr->setOperand(i, V); | 
|  | } else { | 
|  | success = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fail out if we encounter an operand that is not available in | 
|  | // the PRE predecessor.  This is typically because of loads which | 
|  | // are not value numbered precisely. | 
|  | if (!success) | 
|  | return false; | 
|  |  | 
|  | Instr->insertBefore(Pred->getTerminator()); | 
|  | Instr->setName(Instr->getName() + ".pre"); | 
|  | Instr->setDebugLoc(Instr->getDebugLoc()); | 
|  |  | 
|  | unsigned Num = VN.lookupOrAdd(Instr); | 
|  | VN.add(Instr, Num); | 
|  |  | 
|  | // Update the availability map to include the new instruction. | 
|  | addToLeaderTable(Num, Instr, Pred); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool GVN::performScalarPRE(Instruction *CurInst) { | 
|  | if (isa<AllocaInst>(CurInst) || CurInst->isTerminator() || | 
|  | isa<PHINode>(CurInst) || CurInst->getType()->isVoidTy() || | 
|  | CurInst->mayReadFromMemory() || CurInst->mayHaveSideEffects() || | 
|  | isa<DbgInfoIntrinsic>(CurInst)) | 
|  | return false; | 
|  |  | 
|  | // Don't do PRE on compares. The PHI would prevent CodeGenPrepare from | 
|  | // sinking the compare again, and it would force the code generator to | 
|  | // move the i1 from processor flags or predicate registers into a general | 
|  | // purpose register. | 
|  | if (isa<CmpInst>(CurInst)) | 
|  | return false; | 
|  |  | 
|  | // Don't do PRE on GEPs. The inserted PHI would prevent CodeGenPrepare from | 
|  | // sinking the addressing mode computation back to its uses. Extending the | 
|  | // GEP's live range increases the register pressure, and therefore it can | 
|  | // introduce unnecessary spills. | 
|  | // | 
|  | // This doesn't prevent Load PRE. PHI translation will make the GEP available | 
|  | // to the load by moving it to the predecessor block if necessary. | 
|  | if (isa<GetElementPtrInst>(CurInst)) | 
|  | return false; | 
|  |  | 
|  | // We don't currently value number ANY inline asm calls. | 
|  | if (auto *CallB = dyn_cast<CallBase>(CurInst)) | 
|  | if (CallB->isInlineAsm()) | 
|  | return false; | 
|  |  | 
|  | uint32_t ValNo = VN.lookup(CurInst); | 
|  |  | 
|  | // Look for the predecessors for PRE opportunities.  We're | 
|  | // only trying to solve the basic diamond case, where | 
|  | // a value is computed in the successor and one predecessor, | 
|  | // but not the other.  We also explicitly disallow cases | 
|  | // where the successor is its own predecessor, because they're | 
|  | // more complicated to get right. | 
|  | unsigned NumWith = 0; | 
|  | unsigned NumWithout = 0; | 
|  | BasicBlock *PREPred = nullptr; | 
|  | BasicBlock *CurrentBlock = CurInst->getParent(); | 
|  |  | 
|  | // Update the RPO numbers for this function. | 
|  | if (InvalidBlockRPONumbers) | 
|  | assignBlockRPONumber(*CurrentBlock->getParent()); | 
|  |  | 
|  | SmallVector<std::pair<Value *, BasicBlock *>, 8> predMap; | 
|  | for (BasicBlock *P : predecessors(CurrentBlock)) { | 
|  | // We're not interested in PRE where blocks with predecessors that are | 
|  | // not reachable. | 
|  | if (!DT->isReachableFromEntry(P)) { | 
|  | NumWithout = 2; | 
|  | break; | 
|  | } | 
|  | // It is not safe to do PRE when P->CurrentBlock is a loop backedge, and | 
|  | // when CurInst has operand defined in CurrentBlock (so it may be defined | 
|  | // by phi in the loop header). | 
|  | assert(BlockRPONumber.count(P) && BlockRPONumber.count(CurrentBlock) && | 
|  | "Invalid BlockRPONumber map."); | 
|  | if (BlockRPONumber[P] >= BlockRPONumber[CurrentBlock] && | 
|  | llvm::any_of(CurInst->operands(), [&](const Use &U) { | 
|  | if (auto *Inst = dyn_cast<Instruction>(U.get())) | 
|  | return Inst->getParent() == CurrentBlock; | 
|  | return false; | 
|  | })) { | 
|  | NumWithout = 2; | 
|  | break; | 
|  | } | 
|  |  | 
|  | uint32_t TValNo = VN.phiTranslate(P, CurrentBlock, ValNo, *this); | 
|  | Value *predV = findLeader(P, TValNo); | 
|  | if (!predV) { | 
|  | predMap.push_back(std::make_pair(static_cast<Value *>(nullptr), P)); | 
|  | PREPred = P; | 
|  | ++NumWithout; | 
|  | } else if (predV == CurInst) { | 
|  | /* CurInst dominates this predecessor. */ | 
|  | NumWithout = 2; | 
|  | break; | 
|  | } else { | 
|  | predMap.push_back(std::make_pair(predV, P)); | 
|  | ++NumWith; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Don't do PRE when it might increase code size, i.e. when | 
|  | // we would need to insert instructions in more than one pred. | 
|  | if (NumWithout > 1 || NumWith == 0) | 
|  | return false; | 
|  |  | 
|  | // We may have a case where all predecessors have the instruction, | 
|  | // and we just need to insert a phi node. Otherwise, perform | 
|  | // insertion. | 
|  | Instruction *PREInstr = nullptr; | 
|  |  | 
|  | if (NumWithout != 0) { | 
|  | if (!isSafeToSpeculativelyExecute(CurInst)) { | 
|  | // It is only valid to insert a new instruction if the current instruction | 
|  | // is always executed. An instruction with implicit control flow could | 
|  | // prevent us from doing it. If we cannot speculate the execution, then | 
|  | // PRE should be prohibited. | 
|  | if (ICF->isDominatedByICFIFromSameBlock(CurInst)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Don't do PRE across indirect branch. | 
|  | if (isa<IndirectBrInst>(PREPred->getTerminator())) | 
|  | return false; | 
|  |  | 
|  | // Don't do PRE across callbr. | 
|  | // FIXME: Can we do this across the fallthrough edge? | 
|  | if (isa<CallBrInst>(PREPred->getTerminator())) | 
|  | return false; | 
|  |  | 
|  | // We can't do PRE safely on a critical edge, so instead we schedule | 
|  | // the edge to be split and perform the PRE the next time we iterate | 
|  | // on the function. | 
|  | unsigned SuccNum = GetSuccessorNumber(PREPred, CurrentBlock); | 
|  | if (isCriticalEdge(PREPred->getTerminator(), SuccNum)) { | 
|  | toSplit.push_back(std::make_pair(PREPred->getTerminator(), SuccNum)); | 
|  | return false; | 
|  | } | 
|  | // We need to insert somewhere, so let's give it a shot | 
|  | PREInstr = CurInst->clone(); | 
|  | if (!performScalarPREInsertion(PREInstr, PREPred, CurrentBlock, ValNo)) { | 
|  | // If we failed insertion, make sure we remove the instruction. | 
|  | LLVM_DEBUG(verifyRemoved(PREInstr)); | 
|  | PREInstr->deleteValue(); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Either we should have filled in the PRE instruction, or we should | 
|  | // not have needed insertions. | 
|  | assert(PREInstr != nullptr || NumWithout == 0); | 
|  |  | 
|  | ++NumGVNPRE; | 
|  |  | 
|  | // Create a PHI to make the value available in this block. | 
|  | PHINode *Phi = | 
|  | PHINode::Create(CurInst->getType(), predMap.size(), | 
|  | CurInst->getName() + ".pre-phi", &CurrentBlock->front()); | 
|  | for (unsigned i = 0, e = predMap.size(); i != e; ++i) { | 
|  | if (Value *V = predMap[i].first) { | 
|  | // If we use an existing value in this phi, we have to patch the original | 
|  | // value because the phi will be used to replace a later value. | 
|  | patchReplacementInstruction(CurInst, V); | 
|  | Phi->addIncoming(V, predMap[i].second); | 
|  | } else | 
|  | Phi->addIncoming(PREInstr, PREPred); | 
|  | } | 
|  |  | 
|  | VN.add(Phi, ValNo); | 
|  | // After creating a new PHI for ValNo, the phi translate result for ValNo will | 
|  | // be changed, so erase the related stale entries in phi translate cache. | 
|  | VN.eraseTranslateCacheEntry(ValNo, *CurrentBlock); | 
|  | addToLeaderTable(ValNo, Phi, CurrentBlock); | 
|  | Phi->setDebugLoc(CurInst->getDebugLoc()); | 
|  | CurInst->replaceAllUsesWith(Phi); | 
|  | if (MD && Phi->getType()->isPtrOrPtrVectorTy()) | 
|  | MD->invalidateCachedPointerInfo(Phi); | 
|  | VN.erase(CurInst); | 
|  | removeFromLeaderTable(ValNo, CurInst, CurrentBlock); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "GVN PRE removed: " << *CurInst << '\n'); | 
|  | if (MD) | 
|  | MD->removeInstruction(CurInst); | 
|  | LLVM_DEBUG(verifyRemoved(CurInst)); | 
|  | // FIXME: Intended to be markInstructionForDeletion(CurInst), but it causes | 
|  | // some assertion failures. | 
|  | ICF->removeInstruction(CurInst); | 
|  | CurInst->eraseFromParent(); | 
|  | ++NumGVNInstr; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Perform a purely local form of PRE that looks for diamond | 
|  | /// control flow patterns and attempts to perform simple PRE at the join point. | 
|  | bool GVN::performPRE(Function &F) { | 
|  | bool Changed = false; | 
|  | for (BasicBlock *CurrentBlock : depth_first(&F.getEntryBlock())) { | 
|  | // Nothing to PRE in the entry block. | 
|  | if (CurrentBlock == &F.getEntryBlock()) | 
|  | continue; | 
|  |  | 
|  | // Don't perform PRE on an EH pad. | 
|  | if (CurrentBlock->isEHPad()) | 
|  | continue; | 
|  |  | 
|  | for (BasicBlock::iterator BI = CurrentBlock->begin(), | 
|  | BE = CurrentBlock->end(); | 
|  | BI != BE;) { | 
|  | Instruction *CurInst = &*BI++; | 
|  | Changed |= performScalarPRE(CurInst); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (splitCriticalEdges()) | 
|  | Changed = true; | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// Split the critical edge connecting the given two blocks, and return | 
|  | /// the block inserted to the critical edge. | 
|  | BasicBlock *GVN::splitCriticalEdges(BasicBlock *Pred, BasicBlock *Succ) { | 
|  | BasicBlock *BB = | 
|  | SplitCriticalEdge(Pred, Succ, CriticalEdgeSplittingOptions(DT, LI)); | 
|  | if (MD) | 
|  | MD->invalidateCachedPredecessors(); | 
|  | InvalidBlockRPONumbers = true; | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | /// Split critical edges found during the previous | 
|  | /// iteration that may enable further optimization. | 
|  | bool GVN::splitCriticalEdges() { | 
|  | if (toSplit.empty()) | 
|  | return false; | 
|  | do { | 
|  | std::pair<Instruction *, unsigned> Edge = toSplit.pop_back_val(); | 
|  | SplitCriticalEdge(Edge.first, Edge.second, | 
|  | CriticalEdgeSplittingOptions(DT, LI)); | 
|  | } while (!toSplit.empty()); | 
|  | if (MD) MD->invalidateCachedPredecessors(); | 
|  | InvalidBlockRPONumbers = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Executes one iteration of GVN | 
|  | bool GVN::iterateOnFunction(Function &F) { | 
|  | cleanupGlobalSets(); | 
|  |  | 
|  | // Top-down walk of the dominator tree | 
|  | bool Changed = false; | 
|  | // Needed for value numbering with phi construction to work. | 
|  | // RPOT walks the graph in its constructor and will not be invalidated during | 
|  | // processBlock. | 
|  | ReversePostOrderTraversal<Function *> RPOT(&F); | 
|  |  | 
|  | for (BasicBlock *BB : RPOT) | 
|  | Changed |= processBlock(BB); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | void GVN::cleanupGlobalSets() { | 
|  | VN.clear(); | 
|  | LeaderTable.clear(); | 
|  | BlockRPONumber.clear(); | 
|  | TableAllocator.Reset(); | 
|  | ICF->clear(); | 
|  | InvalidBlockRPONumbers = true; | 
|  | } | 
|  |  | 
|  | /// Verify that the specified instruction does not occur in our | 
|  | /// internal data structures. | 
|  | void GVN::verifyRemoved(const Instruction *Inst) const { | 
|  | VN.verifyRemoved(Inst); | 
|  |  | 
|  | // Walk through the value number scope to make sure the instruction isn't | 
|  | // ferreted away in it. | 
|  | for (DenseMap<uint32_t, LeaderTableEntry>::const_iterator | 
|  | I = LeaderTable.begin(), E = LeaderTable.end(); I != E; ++I) { | 
|  | const LeaderTableEntry *Node = &I->second; | 
|  | assert(Node->Val != Inst && "Inst still in value numbering scope!"); | 
|  |  | 
|  | while (Node->Next) { | 
|  | Node = Node->Next; | 
|  | assert(Node->Val != Inst && "Inst still in value numbering scope!"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// BB is declared dead, which implied other blocks become dead as well. This | 
|  | /// function is to add all these blocks to "DeadBlocks". For the dead blocks' | 
|  | /// live successors, update their phi nodes by replacing the operands | 
|  | /// corresponding to dead blocks with UndefVal. | 
|  | void GVN::addDeadBlock(BasicBlock *BB) { | 
|  | SmallVector<BasicBlock *, 4> NewDead; | 
|  | SmallSetVector<BasicBlock *, 4> DF; | 
|  |  | 
|  | NewDead.push_back(BB); | 
|  | while (!NewDead.empty()) { | 
|  | BasicBlock *D = NewDead.pop_back_val(); | 
|  | if (DeadBlocks.count(D)) | 
|  | continue; | 
|  |  | 
|  | // All blocks dominated by D are dead. | 
|  | SmallVector<BasicBlock *, 8> Dom; | 
|  | DT->getDescendants(D, Dom); | 
|  | DeadBlocks.insert(Dom.begin(), Dom.end()); | 
|  |  | 
|  | // Figure out the dominance-frontier(D). | 
|  | for (BasicBlock *B : Dom) { | 
|  | for (BasicBlock *S : successors(B)) { | 
|  | if (DeadBlocks.count(S)) | 
|  | continue; | 
|  |  | 
|  | bool AllPredDead = true; | 
|  | for (BasicBlock *P : predecessors(S)) | 
|  | if (!DeadBlocks.count(P)) { | 
|  | AllPredDead = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!AllPredDead) { | 
|  | // S could be proved dead later on. That is why we don't update phi | 
|  | // operands at this moment. | 
|  | DF.insert(S); | 
|  | } else { | 
|  | // While S is not dominated by D, it is dead by now. This could take | 
|  | // place if S already have a dead predecessor before D is declared | 
|  | // dead. | 
|  | NewDead.push_back(S); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // For the dead blocks' live successors, update their phi nodes by replacing | 
|  | // the operands corresponding to dead blocks with UndefVal. | 
|  | for(SmallSetVector<BasicBlock *, 4>::iterator I = DF.begin(), E = DF.end(); | 
|  | I != E; I++) { | 
|  | BasicBlock *B = *I; | 
|  | if (DeadBlocks.count(B)) | 
|  | continue; | 
|  |  | 
|  | // First, split the critical edges. This might also create additional blocks | 
|  | // to preserve LoopSimplify form and adjust edges accordingly. | 
|  | SmallVector<BasicBlock *, 4> Preds(pred_begin(B), pred_end(B)); | 
|  | for (BasicBlock *P : Preds) { | 
|  | if (!DeadBlocks.count(P)) | 
|  | continue; | 
|  |  | 
|  | if (llvm::any_of(successors(P), | 
|  | [B](BasicBlock *Succ) { return Succ == B; }) && | 
|  | isCriticalEdge(P->getTerminator(), B)) { | 
|  | if (BasicBlock *S = splitCriticalEdges(P, B)) | 
|  | DeadBlocks.insert(P = S); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now undef the incoming values from the dead predecessors. | 
|  | for (BasicBlock *P : predecessors(B)) { | 
|  | if (!DeadBlocks.count(P)) | 
|  | continue; | 
|  | for (PHINode &Phi : B->phis()) { | 
|  | Phi.setIncomingValueForBlock(P, UndefValue::get(Phi.getType())); | 
|  | if (MD) | 
|  | MD->invalidateCachedPointerInfo(&Phi); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the given branch is recognized as a foldable branch (i.e. conditional | 
|  | // branch with constant condition), it will perform following analyses and | 
|  | // transformation. | 
|  | //  1) If the dead out-coming edge is a critical-edge, split it. Let | 
|  | //     R be the target of the dead out-coming edge. | 
|  | //  1) Identify the set of dead blocks implied by the branch's dead outcoming | 
|  | //     edge. The result of this step will be {X| X is dominated by R} | 
|  | //  2) Identify those blocks which haves at least one dead predecessor. The | 
|  | //     result of this step will be dominance-frontier(R). | 
|  | //  3) Update the PHIs in DF(R) by replacing the operands corresponding to | 
|  | //     dead blocks with "UndefVal" in an hope these PHIs will optimized away. | 
|  | // | 
|  | // Return true iff *NEW* dead code are found. | 
|  | bool GVN::processFoldableCondBr(BranchInst *BI) { | 
|  | if (!BI || BI->isUnconditional()) | 
|  | return false; | 
|  |  | 
|  | // If a branch has two identical successors, we cannot declare either dead. | 
|  | if (BI->getSuccessor(0) == BI->getSuccessor(1)) | 
|  | return false; | 
|  |  | 
|  | ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); | 
|  | if (!Cond) | 
|  | return false; | 
|  |  | 
|  | BasicBlock *DeadRoot = | 
|  | Cond->getZExtValue() ? BI->getSuccessor(1) : BI->getSuccessor(0); | 
|  | if (DeadBlocks.count(DeadRoot)) | 
|  | return false; | 
|  |  | 
|  | if (!DeadRoot->getSinglePredecessor()) | 
|  | DeadRoot = splitCriticalEdges(BI->getParent(), DeadRoot); | 
|  |  | 
|  | addDeadBlock(DeadRoot); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // performPRE() will trigger assert if it comes across an instruction without | 
|  | // associated val-num. As it normally has far more live instructions than dead | 
|  | // instructions, it makes more sense just to "fabricate" a val-number for the | 
|  | // dead code than checking if instruction involved is dead or not. | 
|  | void GVN::assignValNumForDeadCode() { | 
|  | for (BasicBlock *BB : DeadBlocks) { | 
|  | for (Instruction &Inst : *BB) { | 
|  | unsigned ValNum = VN.lookupOrAdd(&Inst); | 
|  | addToLeaderTable(ValNum, &Inst, BB); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | class llvm::gvn::GVNLegacyPass : public FunctionPass { | 
|  | public: | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  |  | 
|  | explicit GVNLegacyPass(bool NoMemDepAnalysis = !EnableMemDep) | 
|  | : FunctionPass(ID), NoMemDepAnalysis(NoMemDepAnalysis) { | 
|  | initializeGVNLegacyPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override { | 
|  | if (skipFunction(F)) | 
|  | return false; | 
|  |  | 
|  | auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>(); | 
|  |  | 
|  | return Impl.runImpl( | 
|  | F, getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), | 
|  | getAnalysis<DominatorTreeWrapperPass>().getDomTree(), | 
|  | getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), | 
|  | getAnalysis<AAResultsWrapperPass>().getAAResults(), | 
|  | NoMemDepAnalysis ? nullptr | 
|  | : &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(), | 
|  | LIWP ? &LIWP->getLoopInfo() : nullptr, | 
|  | &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE()); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | AU.addRequired<LoopInfoWrapperPass>(); | 
|  | if (!NoMemDepAnalysis) | 
|  | AU.addRequired<MemoryDependenceWrapperPass>(); | 
|  | AU.addRequired<AAResultsWrapperPass>(); | 
|  |  | 
|  | AU.addPreserved<DominatorTreeWrapperPass>(); | 
|  | AU.addPreserved<GlobalsAAWrapperPass>(); | 
|  | AU.addPreserved<TargetLibraryInfoWrapperPass>(); | 
|  | AU.addPreserved<LoopInfoWrapperPass>(); | 
|  | AU.addPreservedID(LoopSimplifyID); | 
|  | AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool NoMemDepAnalysis; | 
|  | GVN Impl; | 
|  | }; | 
|  |  | 
|  | char GVNLegacyPass::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
|  | INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) | 
|  | INITIALIZE_PASS_END(GVNLegacyPass, "gvn", "Global Value Numbering", false, false) | 
|  |  | 
|  | // The public interface to this file... | 
|  | FunctionPass *llvm::createGVNPass(bool NoMemDepAnalysis) { | 
|  | return new GVNLegacyPass(NoMemDepAnalysis); | 
|  | } |