|  | //===-- SIInstrInfo.cpp - SI Instruction Information  ---------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file | 
|  | /// \brief SI Implementation of TargetInstrInfo. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  |  | 
|  | #include "SIInstrInfo.h" | 
|  | #include "AMDGPUTargetMachine.h" | 
|  | #include "GCNHazardRecognizer.h" | 
|  | #include "SIDefines.h" | 
|  | #include "SIMachineFunctionInfo.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/ScheduleDAG.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/CodeGen/RegisterScavenging.h" | 
|  | #include "llvm/MC/MCInstrDesc.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | SIInstrInfo::SIInstrInfo(const AMDGPUSubtarget &st) | 
|  | : AMDGPUInstrInfo(st), RI() {} | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // TargetInstrInfo callbacks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static unsigned getNumOperandsNoGlue(SDNode *Node) { | 
|  | unsigned N = Node->getNumOperands(); | 
|  | while (N && Node->getOperand(N - 1).getValueType() == MVT::Glue) | 
|  | --N; | 
|  | return N; | 
|  | } | 
|  |  | 
|  | static SDValue findChainOperand(SDNode *Load) { | 
|  | SDValue LastOp = Load->getOperand(getNumOperandsNoGlue(Load) - 1); | 
|  | assert(LastOp.getValueType() == MVT::Other && "Chain missing from load node"); | 
|  | return LastOp; | 
|  | } | 
|  |  | 
|  | /// \brief Returns true if both nodes have the same value for the given | 
|  | ///        operand \p Op, or if both nodes do not have this operand. | 
|  | static bool nodesHaveSameOperandValue(SDNode *N0, SDNode* N1, unsigned OpName) { | 
|  | unsigned Opc0 = N0->getMachineOpcode(); | 
|  | unsigned Opc1 = N1->getMachineOpcode(); | 
|  |  | 
|  | int Op0Idx = AMDGPU::getNamedOperandIdx(Opc0, OpName); | 
|  | int Op1Idx = AMDGPU::getNamedOperandIdx(Opc1, OpName); | 
|  |  | 
|  | if (Op0Idx == -1 && Op1Idx == -1) | 
|  | return true; | 
|  |  | 
|  |  | 
|  | if ((Op0Idx == -1 && Op1Idx != -1) || | 
|  | (Op1Idx == -1 && Op0Idx != -1)) | 
|  | return false; | 
|  |  | 
|  | // getNamedOperandIdx returns the index for the MachineInstr's operands, | 
|  | // which includes the result as the first operand. We are indexing into the | 
|  | // MachineSDNode's operands, so we need to skip the result operand to get | 
|  | // the real index. | 
|  | --Op0Idx; | 
|  | --Op1Idx; | 
|  |  | 
|  | return N0->getOperand(Op0Idx) == N1->getOperand(Op1Idx); | 
|  | } | 
|  |  | 
|  | bool SIInstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI, | 
|  | AliasAnalysis *AA) const { | 
|  | // TODO: The generic check fails for VALU instructions that should be | 
|  | // rematerializable due to implicit reads of exec. We really want all of the | 
|  | // generic logic for this except for this. | 
|  | switch (MI->getOpcode()) { | 
|  | case AMDGPU::V_MOV_B32_e32: | 
|  | case AMDGPU::V_MOV_B32_e64: | 
|  | case AMDGPU::V_MOV_B64_PSEUDO: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SIInstrInfo::areLoadsFromSameBasePtr(SDNode *Load0, SDNode *Load1, | 
|  | int64_t &Offset0, | 
|  | int64_t &Offset1) const { | 
|  | if (!Load0->isMachineOpcode() || !Load1->isMachineOpcode()) | 
|  | return false; | 
|  |  | 
|  | unsigned Opc0 = Load0->getMachineOpcode(); | 
|  | unsigned Opc1 = Load1->getMachineOpcode(); | 
|  |  | 
|  | // Make sure both are actually loads. | 
|  | if (!get(Opc0).mayLoad() || !get(Opc1).mayLoad()) | 
|  | return false; | 
|  |  | 
|  | if (isDS(Opc0) && isDS(Opc1)) { | 
|  |  | 
|  | // FIXME: Handle this case: | 
|  | if (getNumOperandsNoGlue(Load0) != getNumOperandsNoGlue(Load1)) | 
|  | return false; | 
|  |  | 
|  | // Check base reg. | 
|  | if (Load0->getOperand(1) != Load1->getOperand(1)) | 
|  | return false; | 
|  |  | 
|  | // Check chain. | 
|  | if (findChainOperand(Load0) != findChainOperand(Load1)) | 
|  | return false; | 
|  |  | 
|  | // Skip read2 / write2 variants for simplicity. | 
|  | // TODO: We should report true if the used offsets are adjacent (excluded | 
|  | // st64 versions). | 
|  | if (AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::data1) != -1 || | 
|  | AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::data1) != -1) | 
|  | return false; | 
|  |  | 
|  | Offset0 = cast<ConstantSDNode>(Load0->getOperand(2))->getZExtValue(); | 
|  | Offset1 = cast<ConstantSDNode>(Load1->getOperand(2))->getZExtValue(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (isSMRD(Opc0) && isSMRD(Opc1)) { | 
|  | assert(getNumOperandsNoGlue(Load0) == getNumOperandsNoGlue(Load1)); | 
|  |  | 
|  | // Check base reg. | 
|  | if (Load0->getOperand(0) != Load1->getOperand(0)) | 
|  | return false; | 
|  |  | 
|  | const ConstantSDNode *Load0Offset = | 
|  | dyn_cast<ConstantSDNode>(Load0->getOperand(1)); | 
|  | const ConstantSDNode *Load1Offset = | 
|  | dyn_cast<ConstantSDNode>(Load1->getOperand(1)); | 
|  |  | 
|  | if (!Load0Offset || !Load1Offset) | 
|  | return false; | 
|  |  | 
|  | // Check chain. | 
|  | if (findChainOperand(Load0) != findChainOperand(Load1)) | 
|  | return false; | 
|  |  | 
|  | Offset0 = Load0Offset->getZExtValue(); | 
|  | Offset1 = Load1Offset->getZExtValue(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // MUBUF and MTBUF can access the same addresses. | 
|  | if ((isMUBUF(Opc0) || isMTBUF(Opc0)) && (isMUBUF(Opc1) || isMTBUF(Opc1))) { | 
|  |  | 
|  | // MUBUF and MTBUF have vaddr at different indices. | 
|  | if (!nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::soffset) || | 
|  | findChainOperand(Load0) != findChainOperand(Load1) || | 
|  | !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::vaddr) || | 
|  | !nodesHaveSameOperandValue(Load0, Load1, AMDGPU::OpName::srsrc)) | 
|  | return false; | 
|  |  | 
|  | int OffIdx0 = AMDGPU::getNamedOperandIdx(Opc0, AMDGPU::OpName::offset); | 
|  | int OffIdx1 = AMDGPU::getNamedOperandIdx(Opc1, AMDGPU::OpName::offset); | 
|  |  | 
|  | if (OffIdx0 == -1 || OffIdx1 == -1) | 
|  | return false; | 
|  |  | 
|  | // getNamedOperandIdx returns the index for MachineInstrs.  Since they | 
|  | // inlcude the output in the operand list, but SDNodes don't, we need to | 
|  | // subtract the index by one. | 
|  | --OffIdx0; | 
|  | --OffIdx1; | 
|  |  | 
|  | SDValue Off0 = Load0->getOperand(OffIdx0); | 
|  | SDValue Off1 = Load1->getOperand(OffIdx1); | 
|  |  | 
|  | // The offset might be a FrameIndexSDNode. | 
|  | if (!isa<ConstantSDNode>(Off0) || !isa<ConstantSDNode>(Off1)) | 
|  | return false; | 
|  |  | 
|  | Offset0 = cast<ConstantSDNode>(Off0)->getZExtValue(); | 
|  | Offset1 = cast<ConstantSDNode>(Off1)->getZExtValue(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isStride64(unsigned Opc) { | 
|  | switch (Opc) { | 
|  | case AMDGPU::DS_READ2ST64_B32: | 
|  | case AMDGPU::DS_READ2ST64_B64: | 
|  | case AMDGPU::DS_WRITE2ST64_B32: | 
|  | case AMDGPU::DS_WRITE2ST64_B64: | 
|  | return true; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SIInstrInfo::getMemOpBaseRegImmOfs(MachineInstr *LdSt, unsigned &BaseReg, | 
|  | int64_t &Offset, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | unsigned Opc = LdSt->getOpcode(); | 
|  |  | 
|  | if (isDS(*LdSt)) { | 
|  | const MachineOperand *OffsetImm = getNamedOperand(*LdSt, | 
|  | AMDGPU::OpName::offset); | 
|  | if (OffsetImm) { | 
|  | // Normal, single offset LDS instruction. | 
|  | const MachineOperand *AddrReg = getNamedOperand(*LdSt, | 
|  | AMDGPU::OpName::addr); | 
|  |  | 
|  | BaseReg = AddrReg->getReg(); | 
|  | Offset = OffsetImm->getImm(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // The 2 offset instructions use offset0 and offset1 instead. We can treat | 
|  | // these as a load with a single offset if the 2 offsets are consecutive. We | 
|  | // will use this for some partially aligned loads. | 
|  | const MachineOperand *Offset0Imm = getNamedOperand(*LdSt, | 
|  | AMDGPU::OpName::offset0); | 
|  | const MachineOperand *Offset1Imm = getNamedOperand(*LdSt, | 
|  | AMDGPU::OpName::offset1); | 
|  |  | 
|  | uint8_t Offset0 = Offset0Imm->getImm(); | 
|  | uint8_t Offset1 = Offset1Imm->getImm(); | 
|  |  | 
|  | if (Offset1 > Offset0 && Offset1 - Offset0 == 1) { | 
|  | // Each of these offsets is in element sized units, so we need to convert | 
|  | // to bytes of the individual reads. | 
|  |  | 
|  | unsigned EltSize; | 
|  | if (LdSt->mayLoad()) | 
|  | EltSize = getOpRegClass(*LdSt, 0)->getSize() / 2; | 
|  | else { | 
|  | assert(LdSt->mayStore()); | 
|  | int Data0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::data0); | 
|  | EltSize = getOpRegClass(*LdSt, Data0Idx)->getSize(); | 
|  | } | 
|  |  | 
|  | if (isStride64(Opc)) | 
|  | EltSize *= 64; | 
|  |  | 
|  | const MachineOperand *AddrReg = getNamedOperand(*LdSt, | 
|  | AMDGPU::OpName::addr); | 
|  | BaseReg = AddrReg->getReg(); | 
|  | Offset = EltSize * Offset0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (isMUBUF(*LdSt) || isMTBUF(*LdSt)) { | 
|  | if (AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::soffset) != -1) | 
|  | return false; | 
|  |  | 
|  | const MachineOperand *AddrReg = getNamedOperand(*LdSt, | 
|  | AMDGPU::OpName::vaddr); | 
|  | if (!AddrReg) | 
|  | return false; | 
|  |  | 
|  | const MachineOperand *OffsetImm = getNamedOperand(*LdSt, | 
|  | AMDGPU::OpName::offset); | 
|  | BaseReg = AddrReg->getReg(); | 
|  | Offset = OffsetImm->getImm(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (isSMRD(*LdSt)) { | 
|  | const MachineOperand *OffsetImm = getNamedOperand(*LdSt, | 
|  | AMDGPU::OpName::offset); | 
|  | if (!OffsetImm) | 
|  | return false; | 
|  |  | 
|  | const MachineOperand *SBaseReg = getNamedOperand(*LdSt, | 
|  | AMDGPU::OpName::sbase); | 
|  | BaseReg = SBaseReg->getReg(); | 
|  | Offset = OffsetImm->getImm(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SIInstrInfo::shouldClusterMemOps(MachineInstr *FirstLdSt, | 
|  | MachineInstr *SecondLdSt, | 
|  | unsigned NumLoads) const { | 
|  | const MachineOperand *FirstDst = nullptr; | 
|  | const MachineOperand *SecondDst = nullptr; | 
|  |  | 
|  | if (isDS(*FirstLdSt) && isDS(*SecondLdSt)) { | 
|  | FirstDst = getNamedOperand(*FirstLdSt, AMDGPU::OpName::vdst); | 
|  | SecondDst = getNamedOperand(*SecondLdSt, AMDGPU::OpName::vdst); | 
|  | } | 
|  |  | 
|  | if (isSMRD(*FirstLdSt) && isSMRD(*SecondLdSt)) { | 
|  | FirstDst = getNamedOperand(*FirstLdSt, AMDGPU::OpName::sdst); | 
|  | SecondDst = getNamedOperand(*SecondLdSt, AMDGPU::OpName::sdst); | 
|  | } | 
|  |  | 
|  | if ((isMUBUF(*FirstLdSt) && isMUBUF(*SecondLdSt)) || | 
|  | (isMTBUF(*FirstLdSt) && isMTBUF(*SecondLdSt))) { | 
|  | FirstDst = getNamedOperand(*FirstLdSt, AMDGPU::OpName::vdata); | 
|  | SecondDst = getNamedOperand(*SecondLdSt, AMDGPU::OpName::vdata); | 
|  | } | 
|  |  | 
|  | if (!FirstDst || !SecondDst) | 
|  | return false; | 
|  |  | 
|  | // Try to limit clustering based on the total number of bytes loaded | 
|  | // rather than the number of instructions.  This is done to help reduce | 
|  | // register pressure.  The method used is somewhat inexact, though, | 
|  | // because it assumes that all loads in the cluster will load the | 
|  | // same number of bytes as FirstLdSt. | 
|  |  | 
|  | // The unit of this value is bytes. | 
|  | // FIXME: This needs finer tuning. | 
|  | unsigned LoadClusterThreshold = 16; | 
|  |  | 
|  | const MachineRegisterInfo &MRI = | 
|  | FirstLdSt->getParent()->getParent()->getRegInfo(); | 
|  | const TargetRegisterClass *DstRC = MRI.getRegClass(FirstDst->getReg()); | 
|  |  | 
|  | return (NumLoads * DstRC->getSize()) <= LoadClusterThreshold; | 
|  | } | 
|  |  | 
|  | void | 
|  | SIInstrInfo::copyPhysReg(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, DebugLoc DL, | 
|  | unsigned DestReg, unsigned SrcReg, | 
|  | bool KillSrc) const { | 
|  |  | 
|  | // If we are trying to copy to or from SCC, there is a bug somewhere else in | 
|  | // the backend.  While it may be theoretically possible to do this, it should | 
|  | // never be necessary. | 
|  | assert(DestReg != AMDGPU::SCC && SrcReg != AMDGPU::SCC); | 
|  |  | 
|  | static const int16_t Sub0_15[] = { | 
|  | AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, | 
|  | AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7, | 
|  | AMDGPU::sub8, AMDGPU::sub9, AMDGPU::sub10, AMDGPU::sub11, | 
|  | AMDGPU::sub12, AMDGPU::sub13, AMDGPU::sub14, AMDGPU::sub15, | 
|  | }; | 
|  |  | 
|  | static const int16_t Sub0_15_64[] = { | 
|  | AMDGPU::sub0_sub1, AMDGPU::sub2_sub3, | 
|  | AMDGPU::sub4_sub5, AMDGPU::sub6_sub7, | 
|  | AMDGPU::sub8_sub9, AMDGPU::sub10_sub11, | 
|  | AMDGPU::sub12_sub13, AMDGPU::sub14_sub15, | 
|  | }; | 
|  |  | 
|  | static const int16_t Sub0_7[] = { | 
|  | AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, | 
|  | AMDGPU::sub4, AMDGPU::sub5, AMDGPU::sub6, AMDGPU::sub7, | 
|  | }; | 
|  |  | 
|  | static const int16_t Sub0_7_64[] = { | 
|  | AMDGPU::sub0_sub1, AMDGPU::sub2_sub3, | 
|  | AMDGPU::sub4_sub5, AMDGPU::sub6_sub7, | 
|  | }; | 
|  |  | 
|  | static const int16_t Sub0_3[] = { | 
|  | AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, AMDGPU::sub3, | 
|  | }; | 
|  |  | 
|  | static const int16_t Sub0_3_64[] = { | 
|  | AMDGPU::sub0_sub1, AMDGPU::sub2_sub3, | 
|  | }; | 
|  |  | 
|  | static const int16_t Sub0_2[] = { | 
|  | AMDGPU::sub0, AMDGPU::sub1, AMDGPU::sub2, | 
|  | }; | 
|  |  | 
|  | static const int16_t Sub0_1[] = { | 
|  | AMDGPU::sub0, AMDGPU::sub1, | 
|  | }; | 
|  |  | 
|  | unsigned Opcode; | 
|  | ArrayRef<int16_t> SubIndices; | 
|  | bool Forward; | 
|  |  | 
|  | if (AMDGPU::SReg_32RegClass.contains(DestReg)) { | 
|  | assert(AMDGPU::SReg_32RegClass.contains(SrcReg)); | 
|  | BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B32), DestReg) | 
|  | .addReg(SrcReg, getKillRegState(KillSrc)); | 
|  | return; | 
|  |  | 
|  | } else if (AMDGPU::SReg_64RegClass.contains(DestReg)) { | 
|  | if (DestReg == AMDGPU::VCC) { | 
|  | if (AMDGPU::SReg_64RegClass.contains(SrcReg)) { | 
|  | BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), AMDGPU::VCC) | 
|  | .addReg(SrcReg, getKillRegState(KillSrc)); | 
|  | } else { | 
|  | // FIXME: Hack until VReg_1 removed. | 
|  | assert(AMDGPU::VGPR_32RegClass.contains(SrcReg)); | 
|  | BuildMI(MBB, MI, DL, get(AMDGPU::V_CMP_NE_I32_e32)) | 
|  | .addImm(0) | 
|  | .addReg(SrcReg, getKillRegState(KillSrc)); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(AMDGPU::SReg_64RegClass.contains(SrcReg)); | 
|  | BuildMI(MBB, MI, DL, get(AMDGPU::S_MOV_B64), DestReg) | 
|  | .addReg(SrcReg, getKillRegState(KillSrc)); | 
|  | return; | 
|  |  | 
|  | } else if (AMDGPU::SReg_128RegClass.contains(DestReg)) { | 
|  | assert(AMDGPU::SReg_128RegClass.contains(SrcReg)); | 
|  | Opcode = AMDGPU::S_MOV_B64; | 
|  | SubIndices = Sub0_3_64; | 
|  |  | 
|  | } else if (AMDGPU::SReg_256RegClass.contains(DestReg)) { | 
|  | assert(AMDGPU::SReg_256RegClass.contains(SrcReg)); | 
|  | Opcode = AMDGPU::S_MOV_B64; | 
|  | SubIndices = Sub0_7_64; | 
|  |  | 
|  | } else if (AMDGPU::SReg_512RegClass.contains(DestReg)) { | 
|  | assert(AMDGPU::SReg_512RegClass.contains(SrcReg)); | 
|  | Opcode = AMDGPU::S_MOV_B64; | 
|  | SubIndices = Sub0_15_64; | 
|  |  | 
|  | } else if (AMDGPU::VGPR_32RegClass.contains(DestReg)) { | 
|  | assert(AMDGPU::VGPR_32RegClass.contains(SrcReg) || | 
|  | AMDGPU::SReg_32RegClass.contains(SrcReg)); | 
|  | BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DestReg) | 
|  | .addReg(SrcReg, getKillRegState(KillSrc)); | 
|  | return; | 
|  |  | 
|  | } else if (AMDGPU::VReg_64RegClass.contains(DestReg)) { | 
|  | assert(AMDGPU::VReg_64RegClass.contains(SrcReg) || | 
|  | AMDGPU::SReg_64RegClass.contains(SrcReg)); | 
|  | Opcode = AMDGPU::V_MOV_B32_e32; | 
|  | SubIndices = Sub0_1; | 
|  |  | 
|  | } else if (AMDGPU::VReg_96RegClass.contains(DestReg)) { | 
|  | assert(AMDGPU::VReg_96RegClass.contains(SrcReg)); | 
|  | Opcode = AMDGPU::V_MOV_B32_e32; | 
|  | SubIndices = Sub0_2; | 
|  |  | 
|  | } else if (AMDGPU::VReg_128RegClass.contains(DestReg)) { | 
|  | assert(AMDGPU::VReg_128RegClass.contains(SrcReg) || | 
|  | AMDGPU::SReg_128RegClass.contains(SrcReg)); | 
|  | Opcode = AMDGPU::V_MOV_B32_e32; | 
|  | SubIndices = Sub0_3; | 
|  |  | 
|  | } else if (AMDGPU::VReg_256RegClass.contains(DestReg)) { | 
|  | assert(AMDGPU::VReg_256RegClass.contains(SrcReg) || | 
|  | AMDGPU::SReg_256RegClass.contains(SrcReg)); | 
|  | Opcode = AMDGPU::V_MOV_B32_e32; | 
|  | SubIndices = Sub0_7; | 
|  |  | 
|  | } else if (AMDGPU::VReg_512RegClass.contains(DestReg)) { | 
|  | assert(AMDGPU::VReg_512RegClass.contains(SrcReg) || | 
|  | AMDGPU::SReg_512RegClass.contains(SrcReg)); | 
|  | Opcode = AMDGPU::V_MOV_B32_e32; | 
|  | SubIndices = Sub0_15; | 
|  |  | 
|  | } else { | 
|  | llvm_unreachable("Can't copy register!"); | 
|  | } | 
|  |  | 
|  | if (RI.getHWRegIndex(DestReg) <= RI.getHWRegIndex(SrcReg)) | 
|  | Forward = true; | 
|  | else | 
|  | Forward = false; | 
|  |  | 
|  | for (unsigned Idx = 0; Idx < SubIndices.size(); ++Idx) { | 
|  | unsigned SubIdx; | 
|  | if (Forward) | 
|  | SubIdx = SubIndices[Idx]; | 
|  | else | 
|  | SubIdx = SubIndices[SubIndices.size() - Idx - 1]; | 
|  |  | 
|  | MachineInstrBuilder Builder = BuildMI(MBB, MI, DL, | 
|  | get(Opcode), RI.getSubReg(DestReg, SubIdx)); | 
|  |  | 
|  | Builder.addReg(RI.getSubReg(SrcReg, SubIdx)); | 
|  |  | 
|  | if (Idx == SubIndices.size() - 1) | 
|  | Builder.addReg(SrcReg, RegState::Kill | RegState::Implicit); | 
|  |  | 
|  | if (Idx == 0) | 
|  | Builder.addReg(DestReg, RegState::Define | RegState::Implicit); | 
|  | } | 
|  | } | 
|  |  | 
|  | int SIInstrInfo::commuteOpcode(const MachineInstr &MI) const { | 
|  | const unsigned Opcode = MI.getOpcode(); | 
|  |  | 
|  | int NewOpc; | 
|  |  | 
|  | // Try to map original to commuted opcode | 
|  | NewOpc = AMDGPU::getCommuteRev(Opcode); | 
|  | if (NewOpc != -1) | 
|  | // Check if the commuted (REV) opcode exists on the target. | 
|  | return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1; | 
|  |  | 
|  | // Try to map commuted to original opcode | 
|  | NewOpc = AMDGPU::getCommuteOrig(Opcode); | 
|  | if (NewOpc != -1) | 
|  | // Check if the original (non-REV) opcode exists on the target. | 
|  | return pseudoToMCOpcode(NewOpc) != -1 ? NewOpc : -1; | 
|  |  | 
|  | return Opcode; | 
|  | } | 
|  |  | 
|  | unsigned SIInstrInfo::getMovOpcode(const TargetRegisterClass *DstRC) const { | 
|  |  | 
|  | if (DstRC->getSize() == 4) { | 
|  | return RI.isSGPRClass(DstRC) ? AMDGPU::S_MOV_B32 : AMDGPU::V_MOV_B32_e32; | 
|  | } else if (DstRC->getSize() == 8 && RI.isSGPRClass(DstRC)) { | 
|  | return AMDGPU::S_MOV_B64; | 
|  | } else if (DstRC->getSize() == 8 && !RI.isSGPRClass(DstRC)) { | 
|  | return  AMDGPU::V_MOV_B64_PSEUDO; | 
|  | } | 
|  | return AMDGPU::COPY; | 
|  | } | 
|  |  | 
|  | static unsigned getSGPRSpillSaveOpcode(unsigned Size) { | 
|  | switch (Size) { | 
|  | case 4: | 
|  | return AMDGPU::SI_SPILL_S32_SAVE; | 
|  | case 8: | 
|  | return AMDGPU::SI_SPILL_S64_SAVE; | 
|  | case 16: | 
|  | return AMDGPU::SI_SPILL_S128_SAVE; | 
|  | case 32: | 
|  | return AMDGPU::SI_SPILL_S256_SAVE; | 
|  | case 64: | 
|  | return AMDGPU::SI_SPILL_S512_SAVE; | 
|  | default: | 
|  | llvm_unreachable("unknown register size"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned getVGPRSpillSaveOpcode(unsigned Size) { | 
|  | switch (Size) { | 
|  | case 4: | 
|  | return AMDGPU::SI_SPILL_V32_SAVE; | 
|  | case 8: | 
|  | return AMDGPU::SI_SPILL_V64_SAVE; | 
|  | case 12: | 
|  | return AMDGPU::SI_SPILL_V96_SAVE; | 
|  | case 16: | 
|  | return AMDGPU::SI_SPILL_V128_SAVE; | 
|  | case 32: | 
|  | return AMDGPU::SI_SPILL_V256_SAVE; | 
|  | case 64: | 
|  | return AMDGPU::SI_SPILL_V512_SAVE; | 
|  | default: | 
|  | llvm_unreachable("unknown register size"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SIInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | unsigned SrcReg, bool isKill, | 
|  | int FrameIndex, | 
|  | const TargetRegisterClass *RC, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | MachineFunction *MF = MBB.getParent(); | 
|  | SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); | 
|  | MachineFrameInfo *FrameInfo = MF->getFrameInfo(); | 
|  | DebugLoc DL = MBB.findDebugLoc(MI); | 
|  |  | 
|  | unsigned Size = FrameInfo->getObjectSize(FrameIndex); | 
|  | unsigned Align = FrameInfo->getObjectAlignment(FrameIndex); | 
|  | MachinePointerInfo PtrInfo | 
|  | = MachinePointerInfo::getFixedStack(*MF, FrameIndex); | 
|  | MachineMemOperand *MMO | 
|  | = MF->getMachineMemOperand(PtrInfo, MachineMemOperand::MOStore, | 
|  | Size, Align); | 
|  |  | 
|  | if (RI.isSGPRClass(RC)) { | 
|  | MFI->setHasSpilledSGPRs(); | 
|  |  | 
|  | // We are only allowed to create one new instruction when spilling | 
|  | // registers, so we need to use pseudo instruction for spilling | 
|  | // SGPRs. | 
|  | unsigned Opcode = getSGPRSpillSaveOpcode(RC->getSize()); | 
|  | BuildMI(MBB, MI, DL, get(Opcode)) | 
|  | .addReg(SrcReg)            // src | 
|  | .addFrameIndex(FrameIndex) // frame_idx | 
|  | .addMemOperand(MMO); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!ST.isVGPRSpillingEnabled(*MF->getFunction())) { | 
|  | LLVMContext &Ctx = MF->getFunction()->getContext(); | 
|  | Ctx.emitError("SIInstrInfo::storeRegToStackSlot - Do not know how to" | 
|  | " spill register"); | 
|  | BuildMI(MBB, MI, DL, get(AMDGPU::KILL)) | 
|  | .addReg(SrcReg); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(RI.hasVGPRs(RC) && "Only VGPR spilling expected"); | 
|  |  | 
|  | unsigned Opcode = getVGPRSpillSaveOpcode(RC->getSize()); | 
|  | MFI->setHasSpilledVGPRs(); | 
|  | BuildMI(MBB, MI, DL, get(Opcode)) | 
|  | .addReg(SrcReg)                   // src | 
|  | .addFrameIndex(FrameIndex)        // frame_idx | 
|  | .addReg(MFI->getScratchRSrcReg())       // scratch_rsrc | 
|  | .addReg(MFI->getScratchWaveOffsetReg()) // scratch_offset | 
|  | .addImm(0)                              // offset | 
|  | .addMemOperand(MMO); | 
|  | } | 
|  |  | 
|  | static unsigned getSGPRSpillRestoreOpcode(unsigned Size) { | 
|  | switch (Size) { | 
|  | case 4: | 
|  | return AMDGPU::SI_SPILL_S32_RESTORE; | 
|  | case 8: | 
|  | return AMDGPU::SI_SPILL_S64_RESTORE; | 
|  | case 16: | 
|  | return AMDGPU::SI_SPILL_S128_RESTORE; | 
|  | case 32: | 
|  | return AMDGPU::SI_SPILL_S256_RESTORE; | 
|  | case 64: | 
|  | return AMDGPU::SI_SPILL_S512_RESTORE; | 
|  | default: | 
|  | llvm_unreachable("unknown register size"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned getVGPRSpillRestoreOpcode(unsigned Size) { | 
|  | switch (Size) { | 
|  | case 4: | 
|  | return AMDGPU::SI_SPILL_V32_RESTORE; | 
|  | case 8: | 
|  | return AMDGPU::SI_SPILL_V64_RESTORE; | 
|  | case 12: | 
|  | return AMDGPU::SI_SPILL_V96_RESTORE; | 
|  | case 16: | 
|  | return AMDGPU::SI_SPILL_V128_RESTORE; | 
|  | case 32: | 
|  | return AMDGPU::SI_SPILL_V256_RESTORE; | 
|  | case 64: | 
|  | return AMDGPU::SI_SPILL_V512_RESTORE; | 
|  | default: | 
|  | llvm_unreachable("unknown register size"); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SIInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | unsigned DestReg, int FrameIndex, | 
|  | const TargetRegisterClass *RC, | 
|  | const TargetRegisterInfo *TRI) const { | 
|  | MachineFunction *MF = MBB.getParent(); | 
|  | const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); | 
|  | MachineFrameInfo *FrameInfo = MF->getFrameInfo(); | 
|  | DebugLoc DL = MBB.findDebugLoc(MI); | 
|  | unsigned Align = FrameInfo->getObjectAlignment(FrameIndex); | 
|  | unsigned Size = FrameInfo->getObjectSize(FrameIndex); | 
|  |  | 
|  | MachinePointerInfo PtrInfo | 
|  | = MachinePointerInfo::getFixedStack(*MF, FrameIndex); | 
|  |  | 
|  | MachineMemOperand *MMO = MF->getMachineMemOperand( | 
|  | PtrInfo, MachineMemOperand::MOLoad, Size, Align); | 
|  |  | 
|  | if (RI.isSGPRClass(RC)) { | 
|  | // FIXME: Maybe this should not include a memoperand because it will be | 
|  | // lowered to non-memory instructions. | 
|  | unsigned Opcode = getSGPRSpillRestoreOpcode(RC->getSize()); | 
|  | BuildMI(MBB, MI, DL, get(Opcode), DestReg) | 
|  | .addFrameIndex(FrameIndex) // frame_idx | 
|  | .addMemOperand(MMO); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!ST.isVGPRSpillingEnabled(*MF->getFunction())) { | 
|  | LLVMContext &Ctx = MF->getFunction()->getContext(); | 
|  | Ctx.emitError("SIInstrInfo::loadRegFromStackSlot - Do not know how to" | 
|  | " restore register"); | 
|  | BuildMI(MBB, MI, DL, get(AMDGPU::IMPLICIT_DEF), DestReg); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(RI.hasVGPRs(RC) && "Only VGPR spilling expected"); | 
|  |  | 
|  | unsigned Opcode = getVGPRSpillRestoreOpcode(RC->getSize()); | 
|  | BuildMI(MBB, MI, DL, get(Opcode), DestReg) | 
|  | .addFrameIndex(FrameIndex)        // frame_idx | 
|  | .addReg(MFI->getScratchRSrcReg())       // scratch_rsrc | 
|  | .addReg(MFI->getScratchWaveOffsetReg()) // scratch_offset | 
|  | .addImm(0)                              // offset | 
|  | .addMemOperand(MMO); | 
|  | } | 
|  |  | 
|  | /// \param @Offset Offset in bytes of the FrameIndex being spilled | 
|  | unsigned SIInstrInfo::calculateLDSSpillAddress(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | RegScavenger *RS, unsigned TmpReg, | 
|  | unsigned FrameOffset, | 
|  | unsigned Size) const { | 
|  | MachineFunction *MF = MBB.getParent(); | 
|  | SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>(); | 
|  | const AMDGPUSubtarget &ST = MF->getSubtarget<AMDGPUSubtarget>(); | 
|  | const SIRegisterInfo *TRI = | 
|  | static_cast<const SIRegisterInfo*>(ST.getRegisterInfo()); | 
|  | DebugLoc DL = MBB.findDebugLoc(MI); | 
|  | unsigned WorkGroupSize = MFI->getMaximumWorkGroupSize(*MF); | 
|  | unsigned WavefrontSize = ST.getWavefrontSize(); | 
|  |  | 
|  | unsigned TIDReg = MFI->getTIDReg(); | 
|  | if (!MFI->hasCalculatedTID()) { | 
|  | MachineBasicBlock &Entry = MBB.getParent()->front(); | 
|  | MachineBasicBlock::iterator Insert = Entry.front(); | 
|  | DebugLoc DL = Insert->getDebugLoc(); | 
|  |  | 
|  | TIDReg = RI.findUnusedRegister(MF->getRegInfo(), &AMDGPU::VGPR_32RegClass); | 
|  | if (TIDReg == AMDGPU::NoRegister) | 
|  | return TIDReg; | 
|  |  | 
|  |  | 
|  | if (!AMDGPU::isShader(MF->getFunction()->getCallingConv()) && | 
|  | WorkGroupSize > WavefrontSize) { | 
|  |  | 
|  | unsigned TIDIGXReg | 
|  | = TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_X); | 
|  | unsigned TIDIGYReg | 
|  | = TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_Y); | 
|  | unsigned TIDIGZReg | 
|  | = TRI->getPreloadedValue(*MF, SIRegisterInfo::WORKGROUP_ID_Z); | 
|  | unsigned InputPtrReg = | 
|  | TRI->getPreloadedValue(*MF, SIRegisterInfo::KERNARG_SEGMENT_PTR); | 
|  | for (unsigned Reg : {TIDIGXReg, TIDIGYReg, TIDIGZReg}) { | 
|  | if (!Entry.isLiveIn(Reg)) | 
|  | Entry.addLiveIn(Reg); | 
|  | } | 
|  |  | 
|  | RS->enterBasicBlock(Entry); | 
|  | // FIXME: Can we scavenge an SReg_64 and access the subregs? | 
|  | unsigned STmp0 = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, 0); | 
|  | unsigned STmp1 = RS->scavengeRegister(&AMDGPU::SGPR_32RegClass, 0); | 
|  | BuildMI(Entry, Insert, DL, get(AMDGPU::S_LOAD_DWORD_IMM), STmp0) | 
|  | .addReg(InputPtrReg) | 
|  | .addImm(SI::KernelInputOffsets::NGROUPS_Z); | 
|  | BuildMI(Entry, Insert, DL, get(AMDGPU::S_LOAD_DWORD_IMM), STmp1) | 
|  | .addReg(InputPtrReg) | 
|  | .addImm(SI::KernelInputOffsets::NGROUPS_Y); | 
|  |  | 
|  | // NGROUPS.X * NGROUPS.Y | 
|  | BuildMI(Entry, Insert, DL, get(AMDGPU::S_MUL_I32), STmp1) | 
|  | .addReg(STmp1) | 
|  | .addReg(STmp0); | 
|  | // (NGROUPS.X * NGROUPS.Y) * TIDIG.X | 
|  | BuildMI(Entry, Insert, DL, get(AMDGPU::V_MUL_U32_U24_e32), TIDReg) | 
|  | .addReg(STmp1) | 
|  | .addReg(TIDIGXReg); | 
|  | // NGROUPS.Z * TIDIG.Y + (NGROUPS.X * NGROPUS.Y * TIDIG.X) | 
|  | BuildMI(Entry, Insert, DL, get(AMDGPU::V_MAD_U32_U24), TIDReg) | 
|  | .addReg(STmp0) | 
|  | .addReg(TIDIGYReg) | 
|  | .addReg(TIDReg); | 
|  | // (NGROUPS.Z * TIDIG.Y + (NGROUPS.X * NGROPUS.Y * TIDIG.X)) + TIDIG.Z | 
|  | BuildMI(Entry, Insert, DL, get(AMDGPU::V_ADD_I32_e32), TIDReg) | 
|  | .addReg(TIDReg) | 
|  | .addReg(TIDIGZReg); | 
|  | } else { | 
|  | // Get the wave id | 
|  | BuildMI(Entry, Insert, DL, get(AMDGPU::V_MBCNT_LO_U32_B32_e64), | 
|  | TIDReg) | 
|  | .addImm(-1) | 
|  | .addImm(0); | 
|  |  | 
|  | BuildMI(Entry, Insert, DL, get(AMDGPU::V_MBCNT_HI_U32_B32_e64), | 
|  | TIDReg) | 
|  | .addImm(-1) | 
|  | .addReg(TIDReg); | 
|  | } | 
|  |  | 
|  | BuildMI(Entry, Insert, DL, get(AMDGPU::V_LSHLREV_B32_e32), | 
|  | TIDReg) | 
|  | .addImm(2) | 
|  | .addReg(TIDReg); | 
|  | MFI->setTIDReg(TIDReg); | 
|  | } | 
|  |  | 
|  | // Add FrameIndex to LDS offset | 
|  | unsigned LDSOffset = MFI->LDSSize + (FrameOffset * WorkGroupSize); | 
|  | BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_I32_e32), TmpReg) | 
|  | .addImm(LDSOffset) | 
|  | .addReg(TIDReg); | 
|  |  | 
|  | return TmpReg; | 
|  | } | 
|  |  | 
|  | void SIInstrInfo::insertWaitStates(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI, | 
|  | int Count) const { | 
|  | DebugLoc DL = MBB.findDebugLoc(MI); | 
|  | while (Count > 0) { | 
|  | int Arg; | 
|  | if (Count >= 8) | 
|  | Arg = 7; | 
|  | else | 
|  | Arg = Count - 1; | 
|  | Count -= 8; | 
|  | BuildMI(MBB, MI, DL, get(AMDGPU::S_NOP)) | 
|  | .addImm(Arg); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SIInstrInfo::insertNoop(MachineBasicBlock &MBB, | 
|  | MachineBasicBlock::iterator MI) const { | 
|  | insertWaitStates(MBB, MI, 1); | 
|  | } | 
|  |  | 
|  | unsigned SIInstrInfo::getNumWaitStates(const MachineInstr &MI) const { | 
|  | switch (MI.getOpcode()) { | 
|  | default: return 1; // FIXME: Do wait states equal cycles? | 
|  |  | 
|  | case AMDGPU::S_NOP: | 
|  | return MI.getOperand(0).getImm() + 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SIInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const { | 
|  | MachineBasicBlock &MBB = *MI->getParent(); | 
|  | DebugLoc DL = MBB.findDebugLoc(MI); | 
|  | switch (MI->getOpcode()) { | 
|  | default: return AMDGPUInstrInfo::expandPostRAPseudo(MI); | 
|  |  | 
|  | case AMDGPU::SGPR_USE: | 
|  | // This is just a placeholder for register allocation. | 
|  | MI->eraseFromParent(); | 
|  | break; | 
|  |  | 
|  | case AMDGPU::V_MOV_B64_PSEUDO: { | 
|  | unsigned Dst = MI->getOperand(0).getReg(); | 
|  | unsigned DstLo = RI.getSubReg(Dst, AMDGPU::sub0); | 
|  | unsigned DstHi = RI.getSubReg(Dst, AMDGPU::sub1); | 
|  |  | 
|  | const MachineOperand &SrcOp = MI->getOperand(1); | 
|  | // FIXME: Will this work for 64-bit floating point immediates? | 
|  | assert(!SrcOp.isFPImm()); | 
|  | if (SrcOp.isImm()) { | 
|  | APInt Imm(64, SrcOp.getImm()); | 
|  | BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo) | 
|  | .addImm(Imm.getLoBits(32).getZExtValue()) | 
|  | .addReg(Dst, RegState::Implicit); | 
|  | BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi) | 
|  | .addImm(Imm.getHiBits(32).getZExtValue()) | 
|  | .addReg(Dst, RegState::Implicit); | 
|  | } else { | 
|  | assert(SrcOp.isReg()); | 
|  | BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstLo) | 
|  | .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub0)) | 
|  | .addReg(Dst, RegState::Implicit); | 
|  | BuildMI(MBB, MI, DL, get(AMDGPU::V_MOV_B32_e32), DstHi) | 
|  | .addReg(RI.getSubReg(SrcOp.getReg(), AMDGPU::sub1)) | 
|  | .addReg(Dst, RegState::Implicit); | 
|  | } | 
|  | MI->eraseFromParent(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case AMDGPU::V_CNDMASK_B64_PSEUDO: { | 
|  | unsigned Dst = MI->getOperand(0).getReg(); | 
|  | unsigned DstLo = RI.getSubReg(Dst, AMDGPU::sub0); | 
|  | unsigned DstHi = RI.getSubReg(Dst, AMDGPU::sub1); | 
|  | unsigned Src0 = MI->getOperand(1).getReg(); | 
|  | unsigned Src1 = MI->getOperand(2).getReg(); | 
|  | const MachineOperand &SrcCond = MI->getOperand(3); | 
|  |  | 
|  | BuildMI(MBB, MI, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstLo) | 
|  | .addReg(RI.getSubReg(Src0, AMDGPU::sub0)) | 
|  | .addReg(RI.getSubReg(Src1, AMDGPU::sub0)) | 
|  | .addOperand(SrcCond); | 
|  | BuildMI(MBB, MI, DL, get(AMDGPU::V_CNDMASK_B32_e64), DstHi) | 
|  | .addReg(RI.getSubReg(Src0, AMDGPU::sub1)) | 
|  | .addReg(RI.getSubReg(Src1, AMDGPU::sub1)) | 
|  | .addOperand(SrcCond); | 
|  | MI->eraseFromParent(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case AMDGPU::SI_CONSTDATA_PTR: { | 
|  | const SIRegisterInfo *TRI = | 
|  | static_cast<const SIRegisterInfo *>(ST.getRegisterInfo()); | 
|  | MachineFunction &MF = *MBB.getParent(); | 
|  | unsigned Reg = MI->getOperand(0).getReg(); | 
|  | unsigned RegLo = TRI->getSubReg(Reg, AMDGPU::sub0); | 
|  | unsigned RegHi = TRI->getSubReg(Reg, AMDGPU::sub1); | 
|  |  | 
|  | // Create a bundle so these instructions won't be re-ordered by the | 
|  | // post-RA scheduler. | 
|  | MIBundleBuilder Bundler(MBB, MI); | 
|  | Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_GETPC_B64), Reg)); | 
|  |  | 
|  | // Add 32-bit offset from this instruction to the start of the | 
|  | // constant data. | 
|  | Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADD_U32), RegLo) | 
|  | .addReg(RegLo) | 
|  | .addOperand(MI->getOperand(1))); | 
|  | Bundler.append(BuildMI(MF, DL, get(AMDGPU::S_ADDC_U32), RegHi) | 
|  | .addReg(RegHi) | 
|  | .addImm(0)); | 
|  |  | 
|  | llvm::finalizeBundle(MBB, Bundler.begin()); | 
|  |  | 
|  | MI->eraseFromParent(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Commutes the operands in the given instruction. | 
|  | /// The commutable operands are specified by their indices OpIdx0 and OpIdx1. | 
|  | /// | 
|  | /// Do not call this method for a non-commutable instruction or for | 
|  | /// non-commutable pair of operand indices OpIdx0 and OpIdx1. | 
|  | /// Even though the instruction is commutable, the method may still | 
|  | /// fail to commute the operands, null pointer is returned in such cases. | 
|  | MachineInstr *SIInstrInfo::commuteInstructionImpl(MachineInstr *MI, | 
|  | bool NewMI, | 
|  | unsigned OpIdx0, | 
|  | unsigned OpIdx1) const { | 
|  | int CommutedOpcode = commuteOpcode(*MI); | 
|  | if (CommutedOpcode == -1) | 
|  | return nullptr; | 
|  |  | 
|  | int Src0Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(), | 
|  | AMDGPU::OpName::src0); | 
|  | MachineOperand &Src0 = MI->getOperand(Src0Idx); | 
|  | if (!Src0.isReg()) | 
|  | return nullptr; | 
|  |  | 
|  | int Src1Idx = AMDGPU::getNamedOperandIdx(MI->getOpcode(), | 
|  | AMDGPU::OpName::src1); | 
|  |  | 
|  | if ((OpIdx0 != static_cast<unsigned>(Src0Idx) || | 
|  | OpIdx1 != static_cast<unsigned>(Src1Idx)) && | 
|  | (OpIdx0 != static_cast<unsigned>(Src1Idx) || | 
|  | OpIdx1 != static_cast<unsigned>(Src0Idx))) | 
|  | return nullptr; | 
|  |  | 
|  | MachineOperand &Src1 = MI->getOperand(Src1Idx); | 
|  |  | 
|  |  | 
|  | if (isVOP2(*MI) || isVOPC(*MI)) { | 
|  | const MCInstrDesc &InstrDesc = MI->getDesc(); | 
|  | // For VOP2 and VOPC instructions, any operand type is valid to use for | 
|  | // src0.  Make sure we can use the src0 as src1. | 
|  | // | 
|  | // We could be stricter here and only allow commuting if there is a reason | 
|  | // to do so. i.e. if both operands are VGPRs there is no real benefit, | 
|  | // although MachineCSE attempts to find matches by commuting. | 
|  | const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); | 
|  | if (!isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src0)) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | if (!Src1.isReg()) { | 
|  | // Allow commuting instructions with Imm operands. | 
|  | if (NewMI || !Src1.isImm() || | 
|  | (!isVOP2(*MI) && !isVOP3(*MI))) { | 
|  | return nullptr; | 
|  | } | 
|  | // Be sure to copy the source modifiers to the right place. | 
|  | if (MachineOperand *Src0Mods | 
|  | = getNamedOperand(*MI, AMDGPU::OpName::src0_modifiers)) { | 
|  | MachineOperand *Src1Mods | 
|  | = getNamedOperand(*MI, AMDGPU::OpName::src1_modifiers); | 
|  |  | 
|  | int Src0ModsVal = Src0Mods->getImm(); | 
|  | if (!Src1Mods && Src0ModsVal != 0) | 
|  | return nullptr; | 
|  |  | 
|  | // XXX - This assert might be a lie. It might be useful to have a neg | 
|  | // modifier with 0.0. | 
|  | int Src1ModsVal = Src1Mods->getImm(); | 
|  | assert((Src1ModsVal == 0) && "Not expecting modifiers with immediates"); | 
|  |  | 
|  | Src1Mods->setImm(Src0ModsVal); | 
|  | Src0Mods->setImm(Src1ModsVal); | 
|  | } | 
|  |  | 
|  | unsigned Reg = Src0.getReg(); | 
|  | unsigned SubReg = Src0.getSubReg(); | 
|  | if (Src1.isImm()) | 
|  | Src0.ChangeToImmediate(Src1.getImm()); | 
|  | else | 
|  | llvm_unreachable("Should only have immediates"); | 
|  |  | 
|  | Src1.ChangeToRegister(Reg, false); | 
|  | Src1.setSubReg(SubReg); | 
|  | } else { | 
|  | MI = TargetInstrInfo::commuteInstructionImpl(MI, NewMI, OpIdx0, OpIdx1); | 
|  | } | 
|  |  | 
|  | if (MI) | 
|  | MI->setDesc(get(CommutedOpcode)); | 
|  |  | 
|  | return MI; | 
|  | } | 
|  |  | 
|  | // This needs to be implemented because the source modifiers may be inserted | 
|  | // between the true commutable operands, and the base | 
|  | // TargetInstrInfo::commuteInstruction uses it. | 
|  | bool SIInstrInfo::findCommutedOpIndices(MachineInstr *MI, | 
|  | unsigned &SrcOpIdx0, | 
|  | unsigned &SrcOpIdx1) const { | 
|  | const MCInstrDesc &MCID = MI->getDesc(); | 
|  | if (!MCID.isCommutable()) | 
|  | return false; | 
|  |  | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); | 
|  | if (Src0Idx == -1) | 
|  | return false; | 
|  |  | 
|  | // FIXME: Workaround TargetInstrInfo::commuteInstruction asserting on | 
|  | // immediate. Also, immediate src0 operand is not handled in | 
|  | // SIInstrInfo::commuteInstruction(); | 
|  | if (!MI->getOperand(Src0Idx).isReg()) | 
|  | return false; | 
|  |  | 
|  | int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); | 
|  | if (Src1Idx == -1) | 
|  | return false; | 
|  |  | 
|  | MachineOperand &Src1 = MI->getOperand(Src1Idx); | 
|  | if (Src1.isImm()) { | 
|  | // SIInstrInfo::commuteInstruction() does support commuting the immediate | 
|  | // operand src1 in 2 and 3 operand instructions. | 
|  | if (!isVOP2(MI->getOpcode()) && !isVOP3(MI->getOpcode())) | 
|  | return false; | 
|  | } else if (Src1.isReg()) { | 
|  | // If any source modifiers are set, the generic instruction commuting won't | 
|  | // understand how to copy the source modifiers. | 
|  | if (hasModifiersSet(*MI, AMDGPU::OpName::src0_modifiers) || | 
|  | hasModifiersSet(*MI, AMDGPU::OpName::src1_modifiers)) | 
|  | return false; | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | return fixCommutedOpIndices(SrcOpIdx0, SrcOpIdx1, Src0Idx, Src1Idx); | 
|  | } | 
|  |  | 
|  | static void removeModOperands(MachineInstr &MI) { | 
|  | unsigned Opc = MI.getOpcode(); | 
|  | int Src0ModIdx = AMDGPU::getNamedOperandIdx(Opc, | 
|  | AMDGPU::OpName::src0_modifiers); | 
|  | int Src1ModIdx = AMDGPU::getNamedOperandIdx(Opc, | 
|  | AMDGPU::OpName::src1_modifiers); | 
|  | int Src2ModIdx = AMDGPU::getNamedOperandIdx(Opc, | 
|  | AMDGPU::OpName::src2_modifiers); | 
|  |  | 
|  | MI.RemoveOperand(Src2ModIdx); | 
|  | MI.RemoveOperand(Src1ModIdx); | 
|  | MI.RemoveOperand(Src0ModIdx); | 
|  | } | 
|  |  | 
|  | // TODO: Maybe this should be removed this and custom fold everything in | 
|  | // SIFoldOperands? | 
|  | bool SIInstrInfo::FoldImmediate(MachineInstr *UseMI, MachineInstr *DefMI, | 
|  | unsigned Reg, MachineRegisterInfo *MRI) const { | 
|  | if (!MRI->hasOneNonDBGUse(Reg)) | 
|  | return false; | 
|  |  | 
|  | unsigned Opc = UseMI->getOpcode(); | 
|  | if (Opc == AMDGPU::V_MAD_F32 || Opc == AMDGPU::V_MAC_F32_e64) { | 
|  | // Don't fold if we are using source modifiers. The new VOP2 instructions | 
|  | // don't have them. | 
|  | if (hasModifiersSet(*UseMI, AMDGPU::OpName::src0_modifiers) || | 
|  | hasModifiersSet(*UseMI, AMDGPU::OpName::src1_modifiers) || | 
|  | hasModifiersSet(*UseMI, AMDGPU::OpName::src2_modifiers)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | const MachineOperand &ImmOp = DefMI->getOperand(1); | 
|  |  | 
|  | // If this is a free constant, there's no reason to do this. | 
|  | // TODO: We could fold this here instead of letting SIFoldOperands do it | 
|  | // later. | 
|  | if (isInlineConstant(ImmOp, 4)) | 
|  | return false; | 
|  |  | 
|  | MachineOperand *Src0 = getNamedOperand(*UseMI, AMDGPU::OpName::src0); | 
|  | MachineOperand *Src1 = getNamedOperand(*UseMI, AMDGPU::OpName::src1); | 
|  | MachineOperand *Src2 = getNamedOperand(*UseMI, AMDGPU::OpName::src2); | 
|  |  | 
|  | // Multiplied part is the constant: Use v_madmk_f32 | 
|  | // We should only expect these to be on src0 due to canonicalizations. | 
|  | if (Src0->isReg() && Src0->getReg() == Reg) { | 
|  | if (!Src1->isReg() || RI.isSGPRClass(MRI->getRegClass(Src1->getReg()))) | 
|  | return false; | 
|  |  | 
|  | if (!Src2->isReg() || RI.isSGPRClass(MRI->getRegClass(Src2->getReg()))) | 
|  | return false; | 
|  |  | 
|  | // We need to swap operands 0 and 1 since madmk constant is at operand 1. | 
|  |  | 
|  | const int64_t Imm = DefMI->getOperand(1).getImm(); | 
|  |  | 
|  | // FIXME: This would be a lot easier if we could return a new instruction | 
|  | // instead of having to modify in place. | 
|  |  | 
|  | // Remove these first since they are at the end. | 
|  | UseMI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, | 
|  | AMDGPU::OpName::omod)); | 
|  | UseMI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, | 
|  | AMDGPU::OpName::clamp)); | 
|  |  | 
|  | unsigned Src1Reg = Src1->getReg(); | 
|  | unsigned Src1SubReg = Src1->getSubReg(); | 
|  | Src0->setReg(Src1Reg); | 
|  | Src0->setSubReg(Src1SubReg); | 
|  | Src0->setIsKill(Src1->isKill()); | 
|  |  | 
|  | if (Opc == AMDGPU::V_MAC_F32_e64) { | 
|  | UseMI->untieRegOperand( | 
|  | AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)); | 
|  | } | 
|  |  | 
|  | Src1->ChangeToImmediate(Imm); | 
|  |  | 
|  | removeModOperands(*UseMI); | 
|  | UseMI->setDesc(get(AMDGPU::V_MADMK_F32)); | 
|  |  | 
|  | bool DeleteDef = MRI->hasOneNonDBGUse(Reg); | 
|  | if (DeleteDef) | 
|  | DefMI->eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Added part is the constant: Use v_madak_f32 | 
|  | if (Src2->isReg() && Src2->getReg() == Reg) { | 
|  | // Not allowed to use constant bus for another operand. | 
|  | // We can however allow an inline immediate as src0. | 
|  | if (!Src0->isImm() && | 
|  | (Src0->isReg() && RI.isSGPRClass(MRI->getRegClass(Src0->getReg())))) | 
|  | return false; | 
|  |  | 
|  | if (!Src1->isReg() || RI.isSGPRClass(MRI->getRegClass(Src1->getReg()))) | 
|  | return false; | 
|  |  | 
|  | const int64_t Imm = DefMI->getOperand(1).getImm(); | 
|  |  | 
|  | // FIXME: This would be a lot easier if we could return a new instruction | 
|  | // instead of having to modify in place. | 
|  |  | 
|  | // Remove these first since they are at the end. | 
|  | UseMI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, | 
|  | AMDGPU::OpName::omod)); | 
|  | UseMI->RemoveOperand(AMDGPU::getNamedOperandIdx(Opc, | 
|  | AMDGPU::OpName::clamp)); | 
|  |  | 
|  | if (Opc == AMDGPU::V_MAC_F32_e64) { | 
|  | UseMI->untieRegOperand( | 
|  | AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2)); | 
|  | } | 
|  |  | 
|  | // ChangingToImmediate adds Src2 back to the instruction. | 
|  | Src2->ChangeToImmediate(Imm); | 
|  |  | 
|  | // These come before src2. | 
|  | removeModOperands(*UseMI); | 
|  | UseMI->setDesc(get(AMDGPU::V_MADAK_F32)); | 
|  |  | 
|  | bool DeleteDef = MRI->hasOneNonDBGUse(Reg); | 
|  | if (DeleteDef) | 
|  | DefMI->eraseFromParent(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool offsetsDoNotOverlap(int WidthA, int OffsetA, | 
|  | int WidthB, int OffsetB) { | 
|  | int LowOffset = OffsetA < OffsetB ? OffsetA : OffsetB; | 
|  | int HighOffset = OffsetA < OffsetB ? OffsetB : OffsetA; | 
|  | int LowWidth = (LowOffset == OffsetA) ? WidthA : WidthB; | 
|  | return LowOffset + LowWidth <= HighOffset; | 
|  | } | 
|  |  | 
|  | bool SIInstrInfo::checkInstOffsetsDoNotOverlap(MachineInstr *MIa, | 
|  | MachineInstr *MIb) const { | 
|  | unsigned BaseReg0, BaseReg1; | 
|  | int64_t Offset0, Offset1; | 
|  |  | 
|  | if (getMemOpBaseRegImmOfs(MIa, BaseReg0, Offset0, &RI) && | 
|  | getMemOpBaseRegImmOfs(MIb, BaseReg1, Offset1, &RI)) { | 
|  |  | 
|  | if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand()) { | 
|  | // FIXME: Handle ds_read2 / ds_write2. | 
|  | return false; | 
|  | } | 
|  | unsigned Width0 = (*MIa->memoperands_begin())->getSize(); | 
|  | unsigned Width1 = (*MIb->memoperands_begin())->getSize(); | 
|  | if (BaseReg0 == BaseReg1 && | 
|  | offsetsDoNotOverlap(Width0, Offset0, Width1, Offset1)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SIInstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr *MIa, | 
|  | MachineInstr *MIb, | 
|  | AliasAnalysis *AA) const { | 
|  | assert(MIa && (MIa->mayLoad() || MIa->mayStore()) && | 
|  | "MIa must load from or modify a memory location"); | 
|  | assert(MIb && (MIb->mayLoad() || MIb->mayStore()) && | 
|  | "MIb must load from or modify a memory location"); | 
|  |  | 
|  | if (MIa->hasUnmodeledSideEffects() || MIb->hasUnmodeledSideEffects()) | 
|  | return false; | 
|  |  | 
|  | // XXX - Can we relax this between address spaces? | 
|  | if (MIa->hasOrderedMemoryRef() || MIb->hasOrderedMemoryRef()) | 
|  | return false; | 
|  |  | 
|  | // TODO: Should we check the address space from the MachineMemOperand? That | 
|  | // would allow us to distinguish objects we know don't alias based on the | 
|  | // underlying address space, even if it was lowered to a different one, | 
|  | // e.g. private accesses lowered to use MUBUF instructions on a scratch | 
|  | // buffer. | 
|  | if (isDS(*MIa)) { | 
|  | if (isDS(*MIb)) | 
|  | return checkInstOffsetsDoNotOverlap(MIa, MIb); | 
|  |  | 
|  | return !isFLAT(*MIb); | 
|  | } | 
|  |  | 
|  | if (isMUBUF(*MIa) || isMTBUF(*MIa)) { | 
|  | if (isMUBUF(*MIb) || isMTBUF(*MIb)) | 
|  | return checkInstOffsetsDoNotOverlap(MIa, MIb); | 
|  |  | 
|  | return !isFLAT(*MIb) && !isSMRD(*MIb); | 
|  | } | 
|  |  | 
|  | if (isSMRD(*MIa)) { | 
|  | if (isSMRD(*MIb)) | 
|  | return checkInstOffsetsDoNotOverlap(MIa, MIb); | 
|  |  | 
|  | return !isFLAT(*MIb) && !isMUBUF(*MIa) && !isMTBUF(*MIa); | 
|  | } | 
|  |  | 
|  | if (isFLAT(*MIa)) { | 
|  | if (isFLAT(*MIb)) | 
|  | return checkInstOffsetsDoNotOverlap(MIa, MIb); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | MachineInstr *SIInstrInfo::convertToThreeAddress(MachineFunction::iterator &MBB, | 
|  | MachineBasicBlock::iterator &MI, | 
|  | LiveVariables *LV) const { | 
|  |  | 
|  | switch (MI->getOpcode()) { | 
|  | default: return nullptr; | 
|  | case AMDGPU::V_MAC_F32_e64: break; | 
|  | case AMDGPU::V_MAC_F32_e32: { | 
|  | const MachineOperand *Src0 = getNamedOperand(*MI, AMDGPU::OpName::src0); | 
|  | if (Src0->isImm() && !isInlineConstant(*Src0, 4)) | 
|  | return nullptr; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | const MachineOperand *Dst = getNamedOperand(*MI, AMDGPU::OpName::vdst); | 
|  | const MachineOperand *Src0 = getNamedOperand(*MI, AMDGPU::OpName::src0); | 
|  | const MachineOperand *Src1 = getNamedOperand(*MI, AMDGPU::OpName::src1); | 
|  | const MachineOperand *Src2 = getNamedOperand(*MI, AMDGPU::OpName::src2); | 
|  |  | 
|  | return BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::V_MAD_F32)) | 
|  | .addOperand(*Dst) | 
|  | .addImm(0) // Src0 mods | 
|  | .addOperand(*Src0) | 
|  | .addImm(0) // Src1 mods | 
|  | .addOperand(*Src1) | 
|  | .addImm(0) // Src mods | 
|  | .addOperand(*Src2) | 
|  | .addImm(0)  // clamp | 
|  | .addImm(0); // omod | 
|  | } | 
|  |  | 
|  | bool SIInstrInfo::isSchedulingBoundary(const MachineInstr *MI, | 
|  | const MachineBasicBlock *MBB, | 
|  | const MachineFunction &MF) const { | 
|  | // Target-independent instructions do not have an implicit-use of EXEC, even | 
|  | // when they operate on VGPRs. Treating EXEC modifications as scheduling | 
|  | // boundaries prevents incorrect movements of such instructions. | 
|  | const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | if (MI->modifiesRegister(AMDGPU::EXEC, TRI)) | 
|  | return true; | 
|  |  | 
|  | return AMDGPUInstrInfo::isSchedulingBoundary(MI, MBB, MF); | 
|  | } | 
|  |  | 
|  | bool SIInstrInfo::isInlineConstant(const APInt &Imm) const { | 
|  | int64_t SVal = Imm.getSExtValue(); | 
|  | if (SVal >= -16 && SVal <= 64) | 
|  | return true; | 
|  |  | 
|  | if (Imm.getBitWidth() == 64) { | 
|  | uint64_t Val = Imm.getZExtValue(); | 
|  | return (DoubleToBits(0.0) == Val) || | 
|  | (DoubleToBits(1.0) == Val) || | 
|  | (DoubleToBits(-1.0) == Val) || | 
|  | (DoubleToBits(0.5) == Val) || | 
|  | (DoubleToBits(-0.5) == Val) || | 
|  | (DoubleToBits(2.0) == Val) || | 
|  | (DoubleToBits(-2.0) == Val) || | 
|  | (DoubleToBits(4.0) == Val) || | 
|  | (DoubleToBits(-4.0) == Val); | 
|  | } | 
|  |  | 
|  | // The actual type of the operand does not seem to matter as long | 
|  | // as the bits match one of the inline immediate values.  For example: | 
|  | // | 
|  | // -nan has the hexadecimal encoding of 0xfffffffe which is -2 in decimal, | 
|  | // so it is a legal inline immediate. | 
|  | // | 
|  | // 1065353216 has the hexadecimal encoding 0x3f800000 which is 1.0f in | 
|  | // floating-point, so it is a legal inline immediate. | 
|  | uint32_t Val = Imm.getZExtValue(); | 
|  |  | 
|  | return (FloatToBits(0.0f) == Val) || | 
|  | (FloatToBits(1.0f) == Val) || | 
|  | (FloatToBits(-1.0f) == Val) || | 
|  | (FloatToBits(0.5f) == Val) || | 
|  | (FloatToBits(-0.5f) == Val) || | 
|  | (FloatToBits(2.0f) == Val) || | 
|  | (FloatToBits(-2.0f) == Val) || | 
|  | (FloatToBits(4.0f) == Val) || | 
|  | (FloatToBits(-4.0f) == Val); | 
|  | } | 
|  |  | 
|  | bool SIInstrInfo::isInlineConstant(const MachineOperand &MO, | 
|  | unsigned OpSize) const { | 
|  | if (MO.isImm()) { | 
|  | // MachineOperand provides no way to tell the true operand size, since it | 
|  | // only records a 64-bit value. We need to know the size to determine if a | 
|  | // 32-bit floating point immediate bit pattern is legal for an integer | 
|  | // immediate. It would be for any 32-bit integer operand, but would not be | 
|  | // for a 64-bit one. | 
|  |  | 
|  | unsigned BitSize = 8 * OpSize; | 
|  | return isInlineConstant(APInt(BitSize, MO.getImm(), true)); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SIInstrInfo::isLiteralConstant(const MachineOperand &MO, | 
|  | unsigned OpSize) const { | 
|  | return MO.isImm() && !isInlineConstant(MO, OpSize); | 
|  | } | 
|  |  | 
|  | static bool compareMachineOp(const MachineOperand &Op0, | 
|  | const MachineOperand &Op1) { | 
|  | if (Op0.getType() != Op1.getType()) | 
|  | return false; | 
|  |  | 
|  | switch (Op0.getType()) { | 
|  | case MachineOperand::MO_Register: | 
|  | return Op0.getReg() == Op1.getReg(); | 
|  | case MachineOperand::MO_Immediate: | 
|  | return Op0.getImm() == Op1.getImm(); | 
|  | default: | 
|  | llvm_unreachable("Didn't expect to be comparing these operand types"); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SIInstrInfo::isImmOperandLegal(const MachineInstr *MI, unsigned OpNo, | 
|  | const MachineOperand &MO) const { | 
|  | const MCOperandInfo &OpInfo = get(MI->getOpcode()).OpInfo[OpNo]; | 
|  |  | 
|  | assert(MO.isImm() || MO.isTargetIndex() || MO.isFI()); | 
|  |  | 
|  | if (OpInfo.OperandType == MCOI::OPERAND_IMMEDIATE) | 
|  | return true; | 
|  |  | 
|  | if (OpInfo.RegClass < 0) | 
|  | return false; | 
|  |  | 
|  | unsigned OpSize = RI.getRegClass(OpInfo.RegClass)->getSize(); | 
|  | if (isLiteralConstant(MO, OpSize)) | 
|  | return RI.opCanUseLiteralConstant(OpInfo.OperandType); | 
|  |  | 
|  | return RI.opCanUseInlineConstant(OpInfo.OperandType); | 
|  | } | 
|  |  | 
|  | bool SIInstrInfo::hasVALU32BitEncoding(unsigned Opcode) const { | 
|  | int Op32 = AMDGPU::getVOPe32(Opcode); | 
|  | if (Op32 == -1) | 
|  | return false; | 
|  |  | 
|  | return pseudoToMCOpcode(Op32) != -1; | 
|  | } | 
|  |  | 
|  | bool SIInstrInfo::hasModifiers(unsigned Opcode) const { | 
|  | // The src0_modifier operand is present on all instructions | 
|  | // that have modifiers. | 
|  |  | 
|  | return AMDGPU::getNamedOperandIdx(Opcode, | 
|  | AMDGPU::OpName::src0_modifiers) != -1; | 
|  | } | 
|  |  | 
|  | bool SIInstrInfo::hasModifiersSet(const MachineInstr &MI, | 
|  | unsigned OpName) const { | 
|  | const MachineOperand *Mods = getNamedOperand(MI, OpName); | 
|  | return Mods && Mods->getImm(); | 
|  | } | 
|  |  | 
|  | bool SIInstrInfo::usesConstantBus(const MachineRegisterInfo &MRI, | 
|  | const MachineOperand &MO, | 
|  | unsigned OpSize) const { | 
|  | // Literal constants use the constant bus. | 
|  | if (isLiteralConstant(MO, OpSize)) | 
|  | return true; | 
|  |  | 
|  | if (!MO.isReg() || !MO.isUse()) | 
|  | return false; | 
|  |  | 
|  | if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) | 
|  | return RI.isSGPRClass(MRI.getRegClass(MO.getReg())); | 
|  |  | 
|  | // FLAT_SCR is just an SGPR pair. | 
|  | if (!MO.isImplicit() && (MO.getReg() == AMDGPU::FLAT_SCR)) | 
|  | return true; | 
|  |  | 
|  | // EXEC register uses the constant bus. | 
|  | if (!MO.isImplicit() && MO.getReg() == AMDGPU::EXEC) | 
|  | return true; | 
|  |  | 
|  | // SGPRs use the constant bus | 
|  | return (MO.getReg() == AMDGPU::VCC || MO.getReg() == AMDGPU::M0 || | 
|  | (!MO.isImplicit() && | 
|  | (AMDGPU::SGPR_32RegClass.contains(MO.getReg()) || | 
|  | AMDGPU::SGPR_64RegClass.contains(MO.getReg())))); | 
|  | } | 
|  |  | 
|  | static unsigned findImplicitSGPRRead(const MachineInstr &MI) { | 
|  | for (const MachineOperand &MO : MI.implicit_operands()) { | 
|  | // We only care about reads. | 
|  | if (MO.isDef()) | 
|  | continue; | 
|  |  | 
|  | switch (MO.getReg()) { | 
|  | case AMDGPU::VCC: | 
|  | case AMDGPU::M0: | 
|  | case AMDGPU::FLAT_SCR: | 
|  | return MO.getReg(); | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return AMDGPU::NoRegister; | 
|  | } | 
|  |  | 
|  | bool SIInstrInfo::verifyInstruction(const MachineInstr *MI, | 
|  | StringRef &ErrInfo) const { | 
|  | uint16_t Opcode = MI->getOpcode(); | 
|  | const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); | 
|  | int Src0Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src0); | 
|  | int Src1Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src1); | 
|  | int Src2Idx = AMDGPU::getNamedOperandIdx(Opcode, AMDGPU::OpName::src2); | 
|  |  | 
|  | // Make sure the number of operands is correct. | 
|  | const MCInstrDesc &Desc = get(Opcode); | 
|  | if (!Desc.isVariadic() && | 
|  | Desc.getNumOperands() != MI->getNumExplicitOperands()) { | 
|  | ErrInfo = "Instruction has wrong number of operands."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Make sure the register classes are correct. | 
|  | for (int i = 0, e = Desc.getNumOperands(); i != e; ++i) { | 
|  | if (MI->getOperand(i).isFPImm()) { | 
|  | ErrInfo = "FPImm Machine Operands are not supported. ISel should bitcast " | 
|  | "all fp values to integers."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int RegClass = Desc.OpInfo[i].RegClass; | 
|  |  | 
|  | switch (Desc.OpInfo[i].OperandType) { | 
|  | case MCOI::OPERAND_REGISTER: | 
|  | if (MI->getOperand(i).isImm()) { | 
|  | ErrInfo = "Illegal immediate value for operand."; | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | case AMDGPU::OPERAND_REG_IMM32: | 
|  | break; | 
|  | case AMDGPU::OPERAND_REG_INLINE_C: | 
|  | if (isLiteralConstant(MI->getOperand(i), | 
|  | RI.getRegClass(RegClass)->getSize())) { | 
|  | ErrInfo = "Illegal immediate value for operand."; | 
|  | return false; | 
|  | } | 
|  | break; | 
|  | case MCOI::OPERAND_IMMEDIATE: | 
|  | // Check if this operand is an immediate. | 
|  | // FrameIndex operands will be replaced by immediates, so they are | 
|  | // allowed. | 
|  | if (!MI->getOperand(i).isImm() && !MI->getOperand(i).isFI()) { | 
|  | ErrInfo = "Expected immediate, but got non-immediate"; | 
|  | return false; | 
|  | } | 
|  | // Fall-through | 
|  | default: | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (!MI->getOperand(i).isReg()) | 
|  | continue; | 
|  |  | 
|  | if (RegClass != -1) { | 
|  | unsigned Reg = MI->getOperand(i).getReg(); | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | continue; | 
|  |  | 
|  | const TargetRegisterClass *RC = RI.getRegClass(RegClass); | 
|  | if (!RC->contains(Reg)) { | 
|  | ErrInfo = "Operand has incorrect register class."; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Verify VOP* | 
|  | if (isVOP1(*MI) || isVOP2(*MI) || isVOP3(*MI) || isVOPC(*MI)) { | 
|  | // Only look at the true operands. Only a real operand can use the constant | 
|  | // bus, and we don't want to check pseudo-operands like the source modifier | 
|  | // flags. | 
|  | const int OpIndices[] = { Src0Idx, Src1Idx, Src2Idx }; | 
|  |  | 
|  | unsigned ConstantBusCount = 0; | 
|  | unsigned SGPRUsed = findImplicitSGPRRead(*MI); | 
|  | if (SGPRUsed != AMDGPU::NoRegister) | 
|  | ++ConstantBusCount; | 
|  |  | 
|  | for (int OpIdx : OpIndices) { | 
|  | if (OpIdx == -1) | 
|  | break; | 
|  | const MachineOperand &MO = MI->getOperand(OpIdx); | 
|  | if (usesConstantBus(MRI, MO, getOpSize(Opcode, OpIdx))) { | 
|  | if (MO.isReg()) { | 
|  | if (MO.getReg() != SGPRUsed) | 
|  | ++ConstantBusCount; | 
|  | SGPRUsed = MO.getReg(); | 
|  | } else { | 
|  | ++ConstantBusCount; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (ConstantBusCount > 1) { | 
|  | ErrInfo = "VOP* instruction uses the constant bus more than once"; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Verify misc. restrictions on specific instructions. | 
|  | if (Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F32 || | 
|  | Desc.getOpcode() == AMDGPU::V_DIV_SCALE_F64) { | 
|  | const MachineOperand &Src0 = MI->getOperand(Src0Idx); | 
|  | const MachineOperand &Src1 = MI->getOperand(Src1Idx); | 
|  | const MachineOperand &Src2 = MI->getOperand(Src2Idx); | 
|  | if (Src0.isReg() && Src1.isReg() && Src2.isReg()) { | 
|  | if (!compareMachineOp(Src0, Src1) && | 
|  | !compareMachineOp(Src0, Src2)) { | 
|  | ErrInfo = "v_div_scale_{f32|f64} require src0 = src1 or src2"; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure we aren't losing exec uses in the td files. This mostly requires | 
|  | // being careful when using let Uses to try to add other use registers. | 
|  | if (!isGenericOpcode(Opcode) && !isSALU(Opcode) && !isSMRD(Opcode)) { | 
|  | if (!MI->hasRegisterImplicitUseOperand(AMDGPU::EXEC)) { | 
|  | ErrInfo = "VALU instruction does not implicitly read exec mask"; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned SIInstrInfo::getVALUOp(const MachineInstr &MI) { | 
|  | switch (MI.getOpcode()) { | 
|  | default: return AMDGPU::INSTRUCTION_LIST_END; | 
|  | case AMDGPU::REG_SEQUENCE: return AMDGPU::REG_SEQUENCE; | 
|  | case AMDGPU::COPY: return AMDGPU::COPY; | 
|  | case AMDGPU::PHI: return AMDGPU::PHI; | 
|  | case AMDGPU::INSERT_SUBREG: return AMDGPU::INSERT_SUBREG; | 
|  | case AMDGPU::S_MOV_B32: | 
|  | return MI.getOperand(1).isReg() ? | 
|  | AMDGPU::COPY : AMDGPU::V_MOV_B32_e32; | 
|  | case AMDGPU::S_ADD_I32: | 
|  | case AMDGPU::S_ADD_U32: return AMDGPU::V_ADD_I32_e32; | 
|  | case AMDGPU::S_ADDC_U32: return AMDGPU::V_ADDC_U32_e32; | 
|  | case AMDGPU::S_SUB_I32: | 
|  | case AMDGPU::S_SUB_U32: return AMDGPU::V_SUB_I32_e32; | 
|  | case AMDGPU::S_SUBB_U32: return AMDGPU::V_SUBB_U32_e32; | 
|  | case AMDGPU::S_MUL_I32: return AMDGPU::V_MUL_LO_I32; | 
|  | case AMDGPU::S_AND_B32: return AMDGPU::V_AND_B32_e32; | 
|  | case AMDGPU::S_OR_B32: return AMDGPU::V_OR_B32_e32; | 
|  | case AMDGPU::S_XOR_B32: return AMDGPU::V_XOR_B32_e32; | 
|  | case AMDGPU::S_MIN_I32: return AMDGPU::V_MIN_I32_e32; | 
|  | case AMDGPU::S_MIN_U32: return AMDGPU::V_MIN_U32_e32; | 
|  | case AMDGPU::S_MAX_I32: return AMDGPU::V_MAX_I32_e32; | 
|  | case AMDGPU::S_MAX_U32: return AMDGPU::V_MAX_U32_e32; | 
|  | case AMDGPU::S_ASHR_I32: return AMDGPU::V_ASHR_I32_e32; | 
|  | case AMDGPU::S_ASHR_I64: return AMDGPU::V_ASHR_I64; | 
|  | case AMDGPU::S_LSHL_B32: return AMDGPU::V_LSHL_B32_e32; | 
|  | case AMDGPU::S_LSHL_B64: return AMDGPU::V_LSHL_B64; | 
|  | case AMDGPU::S_LSHR_B32: return AMDGPU::V_LSHR_B32_e32; | 
|  | case AMDGPU::S_LSHR_B64: return AMDGPU::V_LSHR_B64; | 
|  | case AMDGPU::S_SEXT_I32_I8: return AMDGPU::V_BFE_I32; | 
|  | case AMDGPU::S_SEXT_I32_I16: return AMDGPU::V_BFE_I32; | 
|  | case AMDGPU::S_BFE_U32: return AMDGPU::V_BFE_U32; | 
|  | case AMDGPU::S_BFE_I32: return AMDGPU::V_BFE_I32; | 
|  | case AMDGPU::S_BFM_B32: return AMDGPU::V_BFM_B32_e64; | 
|  | case AMDGPU::S_BREV_B32: return AMDGPU::V_BFREV_B32_e32; | 
|  | case AMDGPU::S_NOT_B32: return AMDGPU::V_NOT_B32_e32; | 
|  | case AMDGPU::S_NOT_B64: return AMDGPU::V_NOT_B32_e32; | 
|  | case AMDGPU::S_CMP_EQ_I32: return AMDGPU::V_CMP_EQ_I32_e32; | 
|  | case AMDGPU::S_CMP_LG_I32: return AMDGPU::V_CMP_NE_I32_e32; | 
|  | case AMDGPU::S_CMP_GT_I32: return AMDGPU::V_CMP_GT_I32_e32; | 
|  | case AMDGPU::S_CMP_GE_I32: return AMDGPU::V_CMP_GE_I32_e32; | 
|  | case AMDGPU::S_CMP_LT_I32: return AMDGPU::V_CMP_LT_I32_e32; | 
|  | case AMDGPU::S_CMP_LE_I32: return AMDGPU::V_CMP_LE_I32_e32; | 
|  | case AMDGPU::S_CMP_EQ_U32: return AMDGPU::V_CMP_EQ_U32_e32; | 
|  | case AMDGPU::S_CMP_LG_U32: return AMDGPU::V_CMP_NE_U32_e32; | 
|  | case AMDGPU::S_CMP_GT_U32: return AMDGPU::V_CMP_GT_U32_e32; | 
|  | case AMDGPU::S_CMP_GE_U32: return AMDGPU::V_CMP_GE_U32_e32; | 
|  | case AMDGPU::S_CMP_LT_U32: return AMDGPU::V_CMP_LT_U32_e32; | 
|  | case AMDGPU::S_CMP_LE_U32: return AMDGPU::V_CMP_LE_U32_e32; | 
|  | case AMDGPU::S_BCNT1_I32_B32: return AMDGPU::V_BCNT_U32_B32_e64; | 
|  | case AMDGPU::S_FF1_I32_B32: return AMDGPU::V_FFBL_B32_e32; | 
|  | case AMDGPU::S_FLBIT_I32_B32: return AMDGPU::V_FFBH_U32_e32; | 
|  | case AMDGPU::S_FLBIT_I32: return AMDGPU::V_FFBH_I32_e64; | 
|  | case AMDGPU::S_CBRANCH_SCC0: return AMDGPU::S_CBRANCH_VCCZ; | 
|  | case AMDGPU::S_CBRANCH_SCC1: return AMDGPU::S_CBRANCH_VCCNZ; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SIInstrInfo::isSALUOpSupportedOnVALU(const MachineInstr &MI) const { | 
|  | return getVALUOp(MI) != AMDGPU::INSTRUCTION_LIST_END; | 
|  | } | 
|  |  | 
|  | const TargetRegisterClass *SIInstrInfo::getOpRegClass(const MachineInstr &MI, | 
|  | unsigned OpNo) const { | 
|  | const MachineRegisterInfo &MRI = MI.getParent()->getParent()->getRegInfo(); | 
|  | const MCInstrDesc &Desc = get(MI.getOpcode()); | 
|  | if (MI.isVariadic() || OpNo >= Desc.getNumOperands() || | 
|  | Desc.OpInfo[OpNo].RegClass == -1) { | 
|  | unsigned Reg = MI.getOperand(OpNo).getReg(); | 
|  |  | 
|  | if (TargetRegisterInfo::isVirtualRegister(Reg)) | 
|  | return MRI.getRegClass(Reg); | 
|  | return RI.getPhysRegClass(Reg); | 
|  | } | 
|  |  | 
|  | unsigned RCID = Desc.OpInfo[OpNo].RegClass; | 
|  | return RI.getRegClass(RCID); | 
|  | } | 
|  |  | 
|  | bool SIInstrInfo::canReadVGPR(const MachineInstr &MI, unsigned OpNo) const { | 
|  | switch (MI.getOpcode()) { | 
|  | case AMDGPU::COPY: | 
|  | case AMDGPU::REG_SEQUENCE: | 
|  | case AMDGPU::PHI: | 
|  | case AMDGPU::INSERT_SUBREG: | 
|  | return RI.hasVGPRs(getOpRegClass(MI, 0)); | 
|  | default: | 
|  | return RI.hasVGPRs(getOpRegClass(MI, OpNo)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SIInstrInfo::legalizeOpWithMove(MachineInstr *MI, unsigned OpIdx) const { | 
|  | MachineBasicBlock::iterator I = MI; | 
|  | MachineBasicBlock *MBB = MI->getParent(); | 
|  | MachineOperand &MO = MI->getOperand(OpIdx); | 
|  | MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); | 
|  | unsigned RCID = get(MI->getOpcode()).OpInfo[OpIdx].RegClass; | 
|  | const TargetRegisterClass *RC = RI.getRegClass(RCID); | 
|  | unsigned Opcode = AMDGPU::V_MOV_B32_e32; | 
|  | if (MO.isReg()) | 
|  | Opcode = AMDGPU::COPY; | 
|  | else if (RI.isSGPRClass(RC)) | 
|  | Opcode = AMDGPU::S_MOV_B32; | 
|  |  | 
|  |  | 
|  | const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(RC); | 
|  | if (RI.getCommonSubClass(&AMDGPU::VReg_64RegClass, VRC)) | 
|  | VRC = &AMDGPU::VReg_64RegClass; | 
|  | else | 
|  | VRC = &AMDGPU::VGPR_32RegClass; | 
|  |  | 
|  | unsigned Reg = MRI.createVirtualRegister(VRC); | 
|  | DebugLoc DL = MBB->findDebugLoc(I); | 
|  | BuildMI(*MI->getParent(), I, DL, get(Opcode), Reg) | 
|  | .addOperand(MO); | 
|  | MO.ChangeToRegister(Reg, false); | 
|  | } | 
|  |  | 
|  | unsigned SIInstrInfo::buildExtractSubReg(MachineBasicBlock::iterator MI, | 
|  | MachineRegisterInfo &MRI, | 
|  | MachineOperand &SuperReg, | 
|  | const TargetRegisterClass *SuperRC, | 
|  | unsigned SubIdx, | 
|  | const TargetRegisterClass *SubRC) | 
|  | const { | 
|  | MachineBasicBlock *MBB = MI->getParent(); | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | unsigned SubReg = MRI.createVirtualRegister(SubRC); | 
|  |  | 
|  | if (SuperReg.getSubReg() == AMDGPU::NoSubRegister) { | 
|  | BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg) | 
|  | .addReg(SuperReg.getReg(), 0, SubIdx); | 
|  | return SubReg; | 
|  | } | 
|  |  | 
|  | // Just in case the super register is itself a sub-register, copy it to a new | 
|  | // value so we don't need to worry about merging its subreg index with the | 
|  | // SubIdx passed to this function. The register coalescer should be able to | 
|  | // eliminate this extra copy. | 
|  | unsigned NewSuperReg = MRI.createVirtualRegister(SuperRC); | 
|  |  | 
|  | BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), NewSuperReg) | 
|  | .addReg(SuperReg.getReg(), 0, SuperReg.getSubReg()); | 
|  |  | 
|  | BuildMI(*MBB, MI, DL, get(TargetOpcode::COPY), SubReg) | 
|  | .addReg(NewSuperReg, 0, SubIdx); | 
|  |  | 
|  | return SubReg; | 
|  | } | 
|  |  | 
|  | MachineOperand SIInstrInfo::buildExtractSubRegOrImm( | 
|  | MachineBasicBlock::iterator MII, | 
|  | MachineRegisterInfo &MRI, | 
|  | MachineOperand &Op, | 
|  | const TargetRegisterClass *SuperRC, | 
|  | unsigned SubIdx, | 
|  | const TargetRegisterClass *SubRC) const { | 
|  | if (Op.isImm()) { | 
|  | // XXX - Is there a better way to do this? | 
|  | if (SubIdx == AMDGPU::sub0) | 
|  | return MachineOperand::CreateImm(Op.getImm() & 0xFFFFFFFF); | 
|  | if (SubIdx == AMDGPU::sub1) | 
|  | return MachineOperand::CreateImm(Op.getImm() >> 32); | 
|  |  | 
|  | llvm_unreachable("Unhandled register index for immediate"); | 
|  | } | 
|  |  | 
|  | unsigned SubReg = buildExtractSubReg(MII, MRI, Op, SuperRC, | 
|  | SubIdx, SubRC); | 
|  | return MachineOperand::CreateReg(SubReg, false); | 
|  | } | 
|  |  | 
|  | // Change the order of operands from (0, 1, 2) to (0, 2, 1) | 
|  | void SIInstrInfo::swapOperands(MachineBasicBlock::iterator Inst) const { | 
|  | assert(Inst->getNumExplicitOperands() == 3); | 
|  | MachineOperand Op1 = Inst->getOperand(1); | 
|  | Inst->RemoveOperand(1); | 
|  | Inst->addOperand(Op1); | 
|  | } | 
|  |  | 
|  | bool SIInstrInfo::isLegalRegOperand(const MachineRegisterInfo &MRI, | 
|  | const MCOperandInfo &OpInfo, | 
|  | const MachineOperand &MO) const { | 
|  | if (!MO.isReg()) | 
|  | return false; | 
|  |  | 
|  | unsigned Reg = MO.getReg(); | 
|  | const TargetRegisterClass *RC = | 
|  | TargetRegisterInfo::isVirtualRegister(Reg) ? | 
|  | MRI.getRegClass(Reg) : | 
|  | RI.getPhysRegClass(Reg); | 
|  |  | 
|  | const SIRegisterInfo *TRI = | 
|  | static_cast<const SIRegisterInfo*>(MRI.getTargetRegisterInfo()); | 
|  | RC = TRI->getSubRegClass(RC, MO.getSubReg()); | 
|  |  | 
|  | // In order to be legal, the common sub-class must be equal to the | 
|  | // class of the current operand.  For example: | 
|  | // | 
|  | // v_mov_b32 s0 ; Operand defined as vsrc_32 | 
|  | //              ; RI.getCommonSubClass(s0,vsrc_32) = sgpr ; LEGAL | 
|  | // | 
|  | // s_sendmsg 0, s0 ; Operand defined as m0reg | 
|  | //                 ; RI.getCommonSubClass(s0,m0reg) = m0reg ; NOT LEGAL | 
|  |  | 
|  | return RI.getCommonSubClass(RC, RI.getRegClass(OpInfo.RegClass)) == RC; | 
|  | } | 
|  |  | 
|  | bool SIInstrInfo::isLegalVSrcOperand(const MachineRegisterInfo &MRI, | 
|  | const MCOperandInfo &OpInfo, | 
|  | const MachineOperand &MO) const { | 
|  | if (MO.isReg()) | 
|  | return isLegalRegOperand(MRI, OpInfo, MO); | 
|  |  | 
|  | // Handle non-register types that are treated like immediates. | 
|  | assert(MO.isImm() || MO.isTargetIndex() || MO.isFI()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool SIInstrInfo::isOperandLegal(const MachineInstr *MI, unsigned OpIdx, | 
|  | const MachineOperand *MO) const { | 
|  | const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); | 
|  | const MCInstrDesc &InstDesc = MI->getDesc(); | 
|  | const MCOperandInfo &OpInfo = InstDesc.OpInfo[OpIdx]; | 
|  | const TargetRegisterClass *DefinedRC = | 
|  | OpInfo.RegClass != -1 ? RI.getRegClass(OpInfo.RegClass) : nullptr; | 
|  | if (!MO) | 
|  | MO = &MI->getOperand(OpIdx); | 
|  |  | 
|  | if (isVALU(*MI) && | 
|  | usesConstantBus(MRI, *MO, DefinedRC->getSize())) { | 
|  |  | 
|  | RegSubRegPair SGPRUsed; | 
|  | if (MO->isReg()) | 
|  | SGPRUsed = RegSubRegPair(MO->getReg(), MO->getSubReg()); | 
|  |  | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | if (i == OpIdx) | 
|  | continue; | 
|  | const MachineOperand &Op = MI->getOperand(i); | 
|  | if (Op.isReg() && | 
|  | (Op.getReg() != SGPRUsed.Reg || Op.getSubReg() != SGPRUsed.SubReg) && | 
|  | usesConstantBus(MRI, Op, getOpSize(*MI, i))) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MO->isReg()) { | 
|  | assert(DefinedRC); | 
|  | return isLegalRegOperand(MRI, OpInfo, *MO); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Handle non-register types that are treated like immediates. | 
|  | assert(MO->isImm() || MO->isTargetIndex() || MO->isFI()); | 
|  |  | 
|  | if (!DefinedRC) { | 
|  | // This operand expects an immediate. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return isImmOperandLegal(MI, OpIdx, *MO); | 
|  | } | 
|  |  | 
|  | void SIInstrInfo::legalizeOperandsVOP2(MachineRegisterInfo &MRI, | 
|  | MachineInstr *MI) const { | 
|  | unsigned Opc = MI->getOpcode(); | 
|  | const MCInstrDesc &InstrDesc = get(Opc); | 
|  |  | 
|  | int Src1Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1); | 
|  | MachineOperand &Src1 = MI->getOperand(Src1Idx); | 
|  |  | 
|  | // If there is an implicit SGPR use such as VCC use for v_addc_u32/v_subb_u32 | 
|  | // we need to only have one constant bus use. | 
|  | // | 
|  | // Note we do not need to worry about literal constants here. They are | 
|  | // disabled for the operand type for instructions because they will always | 
|  | // violate the one constant bus use rule. | 
|  | bool HasImplicitSGPR = findImplicitSGPRRead(*MI) != AMDGPU::NoRegister; | 
|  | if (HasImplicitSGPR) { | 
|  | int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); | 
|  | MachineOperand &Src0 = MI->getOperand(Src0Idx); | 
|  |  | 
|  | if (Src0.isReg() && RI.isSGPRReg(MRI, Src0.getReg())) | 
|  | legalizeOpWithMove(MI, Src0Idx); | 
|  | } | 
|  |  | 
|  | // VOP2 src0 instructions support all operand types, so we don't need to check | 
|  | // their legality. If src1 is already legal, we don't need to do anything. | 
|  | if (isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src1)) | 
|  | return; | 
|  |  | 
|  | // We do not use commuteInstruction here because it is too aggressive and will | 
|  | // commute if it is possible. We only want to commute here if it improves | 
|  | // legality. This can be called a fairly large number of times so don't waste | 
|  | // compile time pointlessly swapping and checking legality again. | 
|  | if (HasImplicitSGPR || !MI->isCommutable()) { | 
|  | legalizeOpWithMove(MI, Src1Idx); | 
|  | return; | 
|  | } | 
|  |  | 
|  | int Src0Idx = AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0); | 
|  | MachineOperand &Src0 = MI->getOperand(Src0Idx); | 
|  |  | 
|  | // If src0 can be used as src1, commuting will make the operands legal. | 
|  | // Otherwise we have to give up and insert a move. | 
|  | // | 
|  | // TODO: Other immediate-like operand kinds could be commuted if there was a | 
|  | // MachineOperand::ChangeTo* for them. | 
|  | if ((!Src1.isImm() && !Src1.isReg()) || | 
|  | !isLegalRegOperand(MRI, InstrDesc.OpInfo[Src1Idx], Src0)) { | 
|  | legalizeOpWithMove(MI, Src1Idx); | 
|  | return; | 
|  | } | 
|  |  | 
|  | int CommutedOpc = commuteOpcode(*MI); | 
|  | if (CommutedOpc == -1) { | 
|  | legalizeOpWithMove(MI, Src1Idx); | 
|  | return; | 
|  | } | 
|  |  | 
|  | MI->setDesc(get(CommutedOpc)); | 
|  |  | 
|  | unsigned Src0Reg = Src0.getReg(); | 
|  | unsigned Src0SubReg = Src0.getSubReg(); | 
|  | bool Src0Kill = Src0.isKill(); | 
|  |  | 
|  | if (Src1.isImm()) | 
|  | Src0.ChangeToImmediate(Src1.getImm()); | 
|  | else if (Src1.isReg()) { | 
|  | Src0.ChangeToRegister(Src1.getReg(), false, false, Src1.isKill()); | 
|  | Src0.setSubReg(Src1.getSubReg()); | 
|  | } else | 
|  | llvm_unreachable("Should only have register or immediate operands"); | 
|  |  | 
|  | Src1.ChangeToRegister(Src0Reg, false, false, Src0Kill); | 
|  | Src1.setSubReg(Src0SubReg); | 
|  | } | 
|  |  | 
|  | // Legalize VOP3 operands. Because all operand types are supported for any | 
|  | // operand, and since literal constants are not allowed and should never be | 
|  | // seen, we only need to worry about inserting copies if we use multiple SGPR | 
|  | // operands. | 
|  | void SIInstrInfo::legalizeOperandsVOP3( | 
|  | MachineRegisterInfo &MRI, | 
|  | MachineInstr *MI) const { | 
|  | unsigned Opc = MI->getOpcode(); | 
|  |  | 
|  | int VOP3Idx[3] = { | 
|  | AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src0), | 
|  | AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src1), | 
|  | AMDGPU::getNamedOperandIdx(Opc, AMDGPU::OpName::src2) | 
|  | }; | 
|  |  | 
|  | // Find the one SGPR operand we are allowed to use. | 
|  | unsigned SGPRReg = findUsedSGPR(MI, VOP3Idx); | 
|  |  | 
|  | for (unsigned i = 0; i < 3; ++i) { | 
|  | int Idx = VOP3Idx[i]; | 
|  | if (Idx == -1) | 
|  | break; | 
|  | MachineOperand &MO = MI->getOperand(Idx); | 
|  |  | 
|  | // We should never see a VOP3 instruction with an illegal immediate operand. | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  |  | 
|  | if (!RI.isSGPRClass(MRI.getRegClass(MO.getReg()))) | 
|  | continue; // VGPRs are legal | 
|  |  | 
|  | if (SGPRReg == AMDGPU::NoRegister || SGPRReg == MO.getReg()) { | 
|  | SGPRReg = MO.getReg(); | 
|  | // We can use one SGPR in each VOP3 instruction. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we make it this far, then the operand is not legal and we must | 
|  | // legalize it. | 
|  | legalizeOpWithMove(MI, Idx); | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned SIInstrInfo::readlaneVGPRToSGPR(unsigned SrcReg, MachineInstr *UseMI, | 
|  | MachineRegisterInfo &MRI) const { | 
|  | const TargetRegisterClass *VRC = MRI.getRegClass(SrcReg); | 
|  | const TargetRegisterClass *SRC = RI.getEquivalentSGPRClass(VRC); | 
|  | unsigned DstReg = MRI.createVirtualRegister(SRC); | 
|  | unsigned SubRegs = VRC->getSize() / 4; | 
|  |  | 
|  | SmallVector<unsigned, 8> SRegs; | 
|  | for (unsigned i = 0; i < SubRegs; ++i) { | 
|  | unsigned SGPR = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); | 
|  | BuildMI(*UseMI->getParent(), UseMI, UseMI->getDebugLoc(), | 
|  | get(AMDGPU::V_READFIRSTLANE_B32), SGPR) | 
|  | .addReg(SrcReg, 0, RI.getSubRegFromChannel(i)); | 
|  | SRegs.push_back(SGPR); | 
|  | } | 
|  |  | 
|  | MachineInstrBuilder MIB = BuildMI(*UseMI->getParent(), UseMI, | 
|  | UseMI->getDebugLoc(), | 
|  | get(AMDGPU::REG_SEQUENCE), DstReg); | 
|  | for (unsigned i = 0; i < SubRegs; ++i) { | 
|  | MIB.addReg(SRegs[i]); | 
|  | MIB.addImm(RI.getSubRegFromChannel(i)); | 
|  | } | 
|  | return DstReg; | 
|  | } | 
|  |  | 
|  | void SIInstrInfo::legalizeOperandsSMRD(MachineRegisterInfo &MRI, | 
|  | MachineInstr *MI) const { | 
|  |  | 
|  | // If the pointer is store in VGPRs, then we need to move them to | 
|  | // SGPRs using v_readfirstlane.  This is safe because we only select | 
|  | // loads with uniform pointers to SMRD instruction so we know the | 
|  | // pointer value is uniform. | 
|  | MachineOperand *SBase = getNamedOperand(*MI, AMDGPU::OpName::sbase); | 
|  | if (SBase && !RI.isSGPRClass(MRI.getRegClass(SBase->getReg()))) { | 
|  | unsigned SGPR = readlaneVGPRToSGPR(SBase->getReg(), MI, MRI); | 
|  | SBase->setReg(SGPR); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SIInstrInfo::legalizeOperands(MachineInstr *MI) const { | 
|  | MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); | 
|  |  | 
|  | // Legalize VOP2 | 
|  | if (isVOP2(*MI) || isVOPC(*MI)) { | 
|  | legalizeOperandsVOP2(MRI, MI); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Legalize VOP3 | 
|  | if (isVOP3(*MI)) { | 
|  | legalizeOperandsVOP3(MRI, MI); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Legalize SMRD | 
|  | if (isSMRD(*MI)) { | 
|  | legalizeOperandsSMRD(MRI, MI); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Legalize REG_SEQUENCE and PHI | 
|  | // The register class of the operands much be the same type as the register | 
|  | // class of the output. | 
|  | if (MI->getOpcode() == AMDGPU::PHI) { | 
|  | const TargetRegisterClass *RC = nullptr, *SRC = nullptr, *VRC = nullptr; | 
|  | for (unsigned i = 1, e = MI->getNumOperands(); i != e; i+=2) { | 
|  | if (!MI->getOperand(i).isReg() || | 
|  | !TargetRegisterInfo::isVirtualRegister(MI->getOperand(i).getReg())) | 
|  | continue; | 
|  | const TargetRegisterClass *OpRC = | 
|  | MRI.getRegClass(MI->getOperand(i).getReg()); | 
|  | if (RI.hasVGPRs(OpRC)) { | 
|  | VRC = OpRC; | 
|  | } else { | 
|  | SRC = OpRC; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If any of the operands are VGPR registers, then they all most be | 
|  | // otherwise we will create illegal VGPR->SGPR copies when legalizing | 
|  | // them. | 
|  | if (VRC || !RI.isSGPRClass(getOpRegClass(*MI, 0))) { | 
|  | if (!VRC) { | 
|  | assert(SRC); | 
|  | VRC = RI.getEquivalentVGPRClass(SRC); | 
|  | } | 
|  | RC = VRC; | 
|  | } else { | 
|  | RC = SRC; | 
|  | } | 
|  |  | 
|  | // Update all the operands so they have the same type. | 
|  | for (unsigned I = 1, E = MI->getNumOperands(); I != E; I += 2) { | 
|  | MachineOperand &Op = MI->getOperand(I); | 
|  | if (!Op.isReg() || !TargetRegisterInfo::isVirtualRegister(Op.getReg())) | 
|  | continue; | 
|  | unsigned DstReg = MRI.createVirtualRegister(RC); | 
|  |  | 
|  | // MI is a PHI instruction. | 
|  | MachineBasicBlock *InsertBB = MI->getOperand(I + 1).getMBB(); | 
|  | MachineBasicBlock::iterator Insert = InsertBB->getFirstTerminator(); | 
|  |  | 
|  | BuildMI(*InsertBB, Insert, MI->getDebugLoc(), get(AMDGPU::COPY), DstReg) | 
|  | .addOperand(Op); | 
|  | Op.setReg(DstReg); | 
|  | } | 
|  | } | 
|  |  | 
|  | // REG_SEQUENCE doesn't really require operand legalization, but if one has a | 
|  | // VGPR dest type and SGPR sources, insert copies so all operands are | 
|  | // VGPRs. This seems to help operand folding / the register coalescer. | 
|  | if (MI->getOpcode() == AMDGPU::REG_SEQUENCE) { | 
|  | MachineBasicBlock *MBB = MI->getParent(); | 
|  | const TargetRegisterClass *DstRC = getOpRegClass(*MI, 0); | 
|  | if (RI.hasVGPRs(DstRC)) { | 
|  | // Update all the operands so they are VGPR register classes. These may | 
|  | // not be the same register class because REG_SEQUENCE supports mixing | 
|  | // subregister index types e.g. sub0_sub1 + sub2 + sub3 | 
|  | for (unsigned I = 1, E = MI->getNumOperands(); I != E; I += 2) { | 
|  | MachineOperand &Op = MI->getOperand(I); | 
|  | if (!Op.isReg() || !TargetRegisterInfo::isVirtualRegister(Op.getReg())) | 
|  | continue; | 
|  |  | 
|  | const TargetRegisterClass *OpRC = MRI.getRegClass(Op.getReg()); | 
|  | const TargetRegisterClass *VRC = RI.getEquivalentVGPRClass(OpRC); | 
|  | if (VRC == OpRC) | 
|  | continue; | 
|  |  | 
|  | unsigned DstReg = MRI.createVirtualRegister(VRC); | 
|  |  | 
|  | BuildMI(*MBB, MI, MI->getDebugLoc(), get(AMDGPU::COPY), DstReg) | 
|  | .addOperand(Op); | 
|  |  | 
|  | Op.setReg(DstReg); | 
|  | Op.setIsKill(); | 
|  | } | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Legalize INSERT_SUBREG | 
|  | // src0 must have the same register class as dst | 
|  | if (MI->getOpcode() == AMDGPU::INSERT_SUBREG) { | 
|  | unsigned Dst = MI->getOperand(0).getReg(); | 
|  | unsigned Src0 = MI->getOperand(1).getReg(); | 
|  | const TargetRegisterClass *DstRC = MRI.getRegClass(Dst); | 
|  | const TargetRegisterClass *Src0RC = MRI.getRegClass(Src0); | 
|  | if (DstRC != Src0RC) { | 
|  | MachineBasicBlock &MBB = *MI->getParent(); | 
|  | unsigned NewSrc0 = MRI.createVirtualRegister(DstRC); | 
|  | BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::COPY), NewSrc0) | 
|  | .addReg(Src0); | 
|  | MI->getOperand(1).setReg(NewSrc0); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Legalize MIMG | 
|  | if (isMIMG(*MI)) { | 
|  | MachineOperand *SRsrc = getNamedOperand(*MI, AMDGPU::OpName::srsrc); | 
|  | if (SRsrc && !RI.isSGPRClass(MRI.getRegClass(SRsrc->getReg()))) { | 
|  | unsigned SGPR = readlaneVGPRToSGPR(SRsrc->getReg(), MI, MRI); | 
|  | SRsrc->setReg(SGPR); | 
|  | } | 
|  |  | 
|  | MachineOperand *SSamp = getNamedOperand(*MI, AMDGPU::OpName::ssamp); | 
|  | if (SSamp && !RI.isSGPRClass(MRI.getRegClass(SSamp->getReg()))) { | 
|  | unsigned SGPR = readlaneVGPRToSGPR(SSamp->getReg(), MI, MRI); | 
|  | SSamp->setReg(SGPR); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Legalize MUBUF* instructions | 
|  | // FIXME: If we start using the non-addr64 instructions for compute, we | 
|  | // may need to legalize them here. | 
|  | int SRsrcIdx = | 
|  | AMDGPU::getNamedOperandIdx(MI->getOpcode(), AMDGPU::OpName::srsrc); | 
|  | if (SRsrcIdx != -1) { | 
|  | // We have an MUBUF instruction | 
|  | MachineOperand *SRsrc = &MI->getOperand(SRsrcIdx); | 
|  | unsigned SRsrcRC = get(MI->getOpcode()).OpInfo[SRsrcIdx].RegClass; | 
|  | if (RI.getCommonSubClass(MRI.getRegClass(SRsrc->getReg()), | 
|  | RI.getRegClass(SRsrcRC))) { | 
|  | // The operands are legal. | 
|  | // FIXME: We may need to legalize operands besided srsrc. | 
|  | return; | 
|  | } | 
|  |  | 
|  | MachineBasicBlock &MBB = *MI->getParent(); | 
|  |  | 
|  | // Extract the ptr from the resource descriptor. | 
|  | unsigned SRsrcPtr = buildExtractSubReg(MI, MRI, *SRsrc, | 
|  | &AMDGPU::VReg_128RegClass, AMDGPU::sub0_sub1, &AMDGPU::VReg_64RegClass); | 
|  |  | 
|  | // Create an empty resource descriptor | 
|  | unsigned Zero64 = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); | 
|  | unsigned SRsrcFormatLo = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); | 
|  | unsigned SRsrcFormatHi = MRI.createVirtualRegister(&AMDGPU::SGPR_32RegClass); | 
|  | unsigned NewSRsrc = MRI.createVirtualRegister(&AMDGPU::SReg_128RegClass); | 
|  | uint64_t RsrcDataFormat = getDefaultRsrcDataFormat(); | 
|  |  | 
|  | // Zero64 = 0 | 
|  | BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B64), | 
|  | Zero64) | 
|  | .addImm(0); | 
|  |  | 
|  | // SRsrcFormatLo = RSRC_DATA_FORMAT{31-0} | 
|  | BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32), | 
|  | SRsrcFormatLo) | 
|  | .addImm(RsrcDataFormat & 0xFFFFFFFF); | 
|  |  | 
|  | // SRsrcFormatHi = RSRC_DATA_FORMAT{63-32} | 
|  | BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::S_MOV_B32), | 
|  | SRsrcFormatHi) | 
|  | .addImm(RsrcDataFormat >> 32); | 
|  |  | 
|  | // NewSRsrc = {Zero64, SRsrcFormat} | 
|  | BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewSRsrc) | 
|  | .addReg(Zero64) | 
|  | .addImm(AMDGPU::sub0_sub1) | 
|  | .addReg(SRsrcFormatLo) | 
|  | .addImm(AMDGPU::sub2) | 
|  | .addReg(SRsrcFormatHi) | 
|  | .addImm(AMDGPU::sub3); | 
|  |  | 
|  | MachineOperand *VAddr = getNamedOperand(*MI, AMDGPU::OpName::vaddr); | 
|  | unsigned NewVAddr = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); | 
|  | if (VAddr) { | 
|  | // This is already an ADDR64 instruction so we need to add the pointer | 
|  | // extracted from the resource descriptor to the current value of VAddr. | 
|  | unsigned NewVAddrLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | 
|  | unsigned NewVAddrHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | 
|  |  | 
|  | // NewVaddrLo = SRsrcPtr:sub0 + VAddr:sub0 | 
|  | DebugLoc DL = MI->getDebugLoc(); | 
|  | BuildMI(MBB, MI, DL, get(AMDGPU::V_ADD_I32_e32), NewVAddrLo) | 
|  | .addReg(SRsrcPtr, 0, AMDGPU::sub0) | 
|  | .addReg(VAddr->getReg(), 0, AMDGPU::sub0); | 
|  |  | 
|  | // NewVaddrHi = SRsrcPtr:sub1 + VAddr:sub1 | 
|  | BuildMI(MBB, MI, DL, get(AMDGPU::V_ADDC_U32_e32), NewVAddrHi) | 
|  | .addReg(SRsrcPtr, 0, AMDGPU::sub1) | 
|  | .addReg(VAddr->getReg(), 0, AMDGPU::sub1); | 
|  |  | 
|  | // NewVaddr = {NewVaddrHi, NewVaddrLo} | 
|  | BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr) | 
|  | .addReg(NewVAddrLo) | 
|  | .addImm(AMDGPU::sub0) | 
|  | .addReg(NewVAddrHi) | 
|  | .addImm(AMDGPU::sub1); | 
|  | } else { | 
|  | // This instructions is the _OFFSET variant, so we need to convert it to | 
|  | // ADDR64. | 
|  | assert(MBB.getParent()->getSubtarget<AMDGPUSubtarget>().getGeneration() | 
|  | < AMDGPUSubtarget::VOLCANIC_ISLANDS && | 
|  | "FIXME: Need to emit flat atomics here"); | 
|  |  | 
|  | MachineOperand *VData = getNamedOperand(*MI, AMDGPU::OpName::vdata); | 
|  | MachineOperand *Offset = getNamedOperand(*MI, AMDGPU::OpName::offset); | 
|  | MachineOperand *SOffset = getNamedOperand(*MI, AMDGPU::OpName::soffset); | 
|  | unsigned Addr64Opcode = AMDGPU::getAddr64Inst(MI->getOpcode()); | 
|  |  | 
|  | // Atomics rith return have have an additional tied operand and are | 
|  | // missing some of the special bits. | 
|  | MachineOperand *VDataIn = getNamedOperand(*MI, AMDGPU::OpName::vdata_in); | 
|  | MachineInstr *Addr64; | 
|  |  | 
|  | if (!VDataIn) { | 
|  | // Regular buffer load / store. | 
|  | MachineInstrBuilder MIB | 
|  | = BuildMI(MBB, MI, MI->getDebugLoc(), get(Addr64Opcode)) | 
|  | .addOperand(*VData) | 
|  | .addReg(AMDGPU::NoRegister) // Dummy value for vaddr. | 
|  | // This will be replaced later | 
|  | // with the new value of vaddr. | 
|  | .addOperand(*SRsrc) | 
|  | .addOperand(*SOffset) | 
|  | .addOperand(*Offset); | 
|  |  | 
|  | // Atomics do not have this operand. | 
|  | if (const MachineOperand *GLC | 
|  | = getNamedOperand(*MI, AMDGPU::OpName::glc)) { | 
|  | MIB.addImm(GLC->getImm()); | 
|  | } | 
|  |  | 
|  | MIB.addImm(getNamedImmOperand(*MI, AMDGPU::OpName::slc)); | 
|  |  | 
|  | if (const MachineOperand *TFE | 
|  | = getNamedOperand(*MI, AMDGPU::OpName::tfe)) { | 
|  | MIB.addImm(TFE->getImm()); | 
|  | } | 
|  |  | 
|  | MIB.setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); | 
|  | Addr64 = MIB; | 
|  | } else { | 
|  | // Atomics with return. | 
|  | Addr64 = BuildMI(MBB, MI, MI->getDebugLoc(), get(Addr64Opcode)) | 
|  | .addOperand(*VData) | 
|  | .addOperand(*VDataIn) | 
|  | .addReg(AMDGPU::NoRegister) // Dummy value for vaddr. | 
|  | // This will be replaced later | 
|  | // with the new value of vaddr. | 
|  | .addOperand(*SRsrc) | 
|  | .addOperand(*SOffset) | 
|  | .addOperand(*Offset) | 
|  | .addImm(getNamedImmOperand(*MI, AMDGPU::OpName::slc)) | 
|  | .setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); | 
|  | } | 
|  |  | 
|  | MI->removeFromParent(); | 
|  | MI = Addr64; | 
|  |  | 
|  | // NewVaddr = {NewVaddrHi, NewVaddrLo} | 
|  | BuildMI(MBB, MI, MI->getDebugLoc(), get(AMDGPU::REG_SEQUENCE), NewVAddr) | 
|  | .addReg(SRsrcPtr, 0, AMDGPU::sub0) | 
|  | .addImm(AMDGPU::sub0) | 
|  | .addReg(SRsrcPtr, 0, AMDGPU::sub1) | 
|  | .addImm(AMDGPU::sub1); | 
|  |  | 
|  | VAddr = getNamedOperand(*MI, AMDGPU::OpName::vaddr); | 
|  | SRsrc = getNamedOperand(*MI, AMDGPU::OpName::srsrc); | 
|  | } | 
|  |  | 
|  | // Update the instruction to use NewVaddr | 
|  | VAddr->setReg(NewVAddr); | 
|  | // Update the instruction to use NewSRsrc | 
|  | SRsrc->setReg(NewSRsrc); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SIInstrInfo::moveToVALU(MachineInstr &TopInst) const { | 
|  | SmallVector<MachineInstr *, 128> Worklist; | 
|  | Worklist.push_back(&TopInst); | 
|  |  | 
|  | while (!Worklist.empty()) { | 
|  | MachineInstr *Inst = Worklist.pop_back_val(); | 
|  | MachineBasicBlock *MBB = Inst->getParent(); | 
|  | MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo(); | 
|  |  | 
|  | unsigned Opcode = Inst->getOpcode(); | 
|  | unsigned NewOpcode = getVALUOp(*Inst); | 
|  |  | 
|  | // Handle some special cases | 
|  | switch (Opcode) { | 
|  | default: | 
|  | break; | 
|  | case AMDGPU::S_AND_B64: | 
|  | splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_AND_B32_e64); | 
|  | Inst->eraseFromParent(); | 
|  | continue; | 
|  |  | 
|  | case AMDGPU::S_OR_B64: | 
|  | splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_OR_B32_e64); | 
|  | Inst->eraseFromParent(); | 
|  | continue; | 
|  |  | 
|  | case AMDGPU::S_XOR_B64: | 
|  | splitScalar64BitBinaryOp(Worklist, Inst, AMDGPU::V_XOR_B32_e64); | 
|  | Inst->eraseFromParent(); | 
|  | continue; | 
|  |  | 
|  | case AMDGPU::S_NOT_B64: | 
|  | splitScalar64BitUnaryOp(Worklist, Inst, AMDGPU::V_NOT_B32_e32); | 
|  | Inst->eraseFromParent(); | 
|  | continue; | 
|  |  | 
|  | case AMDGPU::S_BCNT1_I32_B64: | 
|  | splitScalar64BitBCNT(Worklist, Inst); | 
|  | Inst->eraseFromParent(); | 
|  | continue; | 
|  |  | 
|  | case AMDGPU::S_BFE_I64: { | 
|  | splitScalar64BitBFE(Worklist, Inst); | 
|  | Inst->eraseFromParent(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case AMDGPU::S_LSHL_B32: | 
|  | if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { | 
|  | NewOpcode = AMDGPU::V_LSHLREV_B32_e64; | 
|  | swapOperands(Inst); | 
|  | } | 
|  | break; | 
|  | case AMDGPU::S_ASHR_I32: | 
|  | if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { | 
|  | NewOpcode = AMDGPU::V_ASHRREV_I32_e64; | 
|  | swapOperands(Inst); | 
|  | } | 
|  | break; | 
|  | case AMDGPU::S_LSHR_B32: | 
|  | if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { | 
|  | NewOpcode = AMDGPU::V_LSHRREV_B32_e64; | 
|  | swapOperands(Inst); | 
|  | } | 
|  | break; | 
|  | case AMDGPU::S_LSHL_B64: | 
|  | if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { | 
|  | NewOpcode = AMDGPU::V_LSHLREV_B64; | 
|  | swapOperands(Inst); | 
|  | } | 
|  | break; | 
|  | case AMDGPU::S_ASHR_I64: | 
|  | if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { | 
|  | NewOpcode = AMDGPU::V_ASHRREV_I64; | 
|  | swapOperands(Inst); | 
|  | } | 
|  | break; | 
|  | case AMDGPU::S_LSHR_B64: | 
|  | if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { | 
|  | NewOpcode = AMDGPU::V_LSHRREV_B64; | 
|  | swapOperands(Inst); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case AMDGPU::S_ABS_I32: | 
|  | lowerScalarAbs(Worklist, Inst); | 
|  | Inst->eraseFromParent(); | 
|  | continue; | 
|  |  | 
|  | case AMDGPU::S_CBRANCH_SCC0: | 
|  | case AMDGPU::S_CBRANCH_SCC1: | 
|  | // Clear unused bits of vcc | 
|  | BuildMI(*MBB, Inst, Inst->getDebugLoc(), get(AMDGPU::S_AND_B64), AMDGPU::VCC) | 
|  | .addReg(AMDGPU::EXEC) | 
|  | .addReg(AMDGPU::VCC); | 
|  | break; | 
|  |  | 
|  | case AMDGPU::S_BFE_U64: | 
|  | case AMDGPU::S_BFM_B64: | 
|  | llvm_unreachable("Moving this op to VALU not implemented"); | 
|  | } | 
|  |  | 
|  | if (NewOpcode == AMDGPU::INSTRUCTION_LIST_END) { | 
|  | // We cannot move this instruction to the VALU, so we should try to | 
|  | // legalize its operands instead. | 
|  | legalizeOperands(Inst); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Use the new VALU Opcode. | 
|  | const MCInstrDesc &NewDesc = get(NewOpcode); | 
|  | Inst->setDesc(NewDesc); | 
|  |  | 
|  | // Remove any references to SCC. Vector instructions can't read from it, and | 
|  | // We're just about to add the implicit use / defs of VCC, and we don't want | 
|  | // both. | 
|  | for (unsigned i = Inst->getNumOperands() - 1; i > 0; --i) { | 
|  | MachineOperand &Op = Inst->getOperand(i); | 
|  | if (Op.isReg() && Op.getReg() == AMDGPU::SCC) { | 
|  | Inst->RemoveOperand(i); | 
|  | addSCCDefUsersToVALUWorklist(Inst, Worklist); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Opcode == AMDGPU::S_SEXT_I32_I8 || Opcode == AMDGPU::S_SEXT_I32_I16) { | 
|  | // We are converting these to a BFE, so we need to add the missing | 
|  | // operands for the size and offset. | 
|  | unsigned Size = (Opcode == AMDGPU::S_SEXT_I32_I8) ? 8 : 16; | 
|  | Inst->addOperand(MachineOperand::CreateImm(0)); | 
|  | Inst->addOperand(MachineOperand::CreateImm(Size)); | 
|  |  | 
|  | } else if (Opcode == AMDGPU::S_BCNT1_I32_B32) { | 
|  | // The VALU version adds the second operand to the result, so insert an | 
|  | // extra 0 operand. | 
|  | Inst->addOperand(MachineOperand::CreateImm(0)); | 
|  | } | 
|  |  | 
|  | Inst->addImplicitDefUseOperands(*Inst->getParent()->getParent()); | 
|  |  | 
|  | if (Opcode == AMDGPU::S_BFE_I32 || Opcode == AMDGPU::S_BFE_U32) { | 
|  | const MachineOperand &OffsetWidthOp = Inst->getOperand(2); | 
|  | // If we need to move this to VGPRs, we need to unpack the second operand | 
|  | // back into the 2 separate ones for bit offset and width. | 
|  | assert(OffsetWidthOp.isImm() && | 
|  | "Scalar BFE is only implemented for constant width and offset"); | 
|  | uint32_t Imm = OffsetWidthOp.getImm(); | 
|  |  | 
|  | uint32_t Offset = Imm & 0x3f; // Extract bits [5:0]. | 
|  | uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16]. | 
|  | Inst->RemoveOperand(2); // Remove old immediate. | 
|  | Inst->addOperand(MachineOperand::CreateImm(Offset)); | 
|  | Inst->addOperand(MachineOperand::CreateImm(BitWidth)); | 
|  | } | 
|  |  | 
|  | bool HasDst = Inst->getOperand(0).isReg() && Inst->getOperand(0).isDef(); | 
|  | unsigned NewDstReg = AMDGPU::NoRegister; | 
|  | if (HasDst) { | 
|  | // Update the destination register class. | 
|  | const TargetRegisterClass *NewDstRC = getDestEquivalentVGPRClass(*Inst); | 
|  | if (!NewDstRC) | 
|  | continue; | 
|  |  | 
|  | unsigned DstReg = Inst->getOperand(0).getReg(); | 
|  | NewDstReg = MRI.createVirtualRegister(NewDstRC); | 
|  | MRI.replaceRegWith(DstReg, NewDstReg); | 
|  | } | 
|  |  | 
|  | // Legalize the operands | 
|  | legalizeOperands(Inst); | 
|  |  | 
|  | if (HasDst) | 
|  | addUsersToMoveToVALUWorklist(NewDstReg, MRI, Worklist); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Indirect addressing callbacks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | const TargetRegisterClass *SIInstrInfo::getIndirectAddrRegClass() const { | 
|  | return &AMDGPU::VGPR_32RegClass; | 
|  | } | 
|  |  | 
|  | void SIInstrInfo::lowerScalarAbs(SmallVectorImpl<MachineInstr *> &Worklist, | 
|  | MachineInstr *Inst) const { | 
|  | MachineBasicBlock &MBB = *Inst->getParent(); | 
|  | MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); | 
|  | MachineBasicBlock::iterator MII = Inst; | 
|  | DebugLoc DL = Inst->getDebugLoc(); | 
|  |  | 
|  | MachineOperand &Dest = Inst->getOperand(0); | 
|  | MachineOperand &Src = Inst->getOperand(1); | 
|  | unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | 
|  | unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | 
|  |  | 
|  | BuildMI(MBB, MII, DL, get(AMDGPU::V_SUB_I32_e32), TmpReg) | 
|  | .addImm(0) | 
|  | .addReg(Src.getReg()); | 
|  |  | 
|  | BuildMI(MBB, MII, DL, get(AMDGPU::V_MAX_I32_e64), ResultReg) | 
|  | .addReg(Src.getReg()) | 
|  | .addReg(TmpReg); | 
|  |  | 
|  | MRI.replaceRegWith(Dest.getReg(), ResultReg); | 
|  | addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); | 
|  | } | 
|  |  | 
|  | void SIInstrInfo::splitScalar64BitUnaryOp( | 
|  | SmallVectorImpl<MachineInstr *> &Worklist, | 
|  | MachineInstr *Inst, | 
|  | unsigned Opcode) const { | 
|  | MachineBasicBlock &MBB = *Inst->getParent(); | 
|  | MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); | 
|  |  | 
|  | MachineOperand &Dest = Inst->getOperand(0); | 
|  | MachineOperand &Src0 = Inst->getOperand(1); | 
|  | DebugLoc DL = Inst->getDebugLoc(); | 
|  |  | 
|  | MachineBasicBlock::iterator MII = Inst; | 
|  |  | 
|  | const MCInstrDesc &InstDesc = get(Opcode); | 
|  | const TargetRegisterClass *Src0RC = Src0.isReg() ? | 
|  | MRI.getRegClass(Src0.getReg()) : | 
|  | &AMDGPU::SGPR_32RegClass; | 
|  |  | 
|  | const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0); | 
|  |  | 
|  | MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, | 
|  | AMDGPU::sub0, Src0SubRC); | 
|  |  | 
|  | const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); | 
|  | const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC); | 
|  | const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0); | 
|  |  | 
|  | unsigned DestSub0 = MRI.createVirtualRegister(NewDestSubRC); | 
|  | BuildMI(MBB, MII, DL, InstDesc, DestSub0) | 
|  | .addOperand(SrcReg0Sub0); | 
|  |  | 
|  | MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, | 
|  | AMDGPU::sub1, Src0SubRC); | 
|  |  | 
|  | unsigned DestSub1 = MRI.createVirtualRegister(NewDestSubRC); | 
|  | BuildMI(MBB, MII, DL, InstDesc, DestSub1) | 
|  | .addOperand(SrcReg0Sub1); | 
|  |  | 
|  | unsigned FullDestReg = MRI.createVirtualRegister(NewDestRC); | 
|  | BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) | 
|  | .addReg(DestSub0) | 
|  | .addImm(AMDGPU::sub0) | 
|  | .addReg(DestSub1) | 
|  | .addImm(AMDGPU::sub1); | 
|  |  | 
|  | MRI.replaceRegWith(Dest.getReg(), FullDestReg); | 
|  |  | 
|  | // We don't need to legalizeOperands here because for a single operand, src0 | 
|  | // will support any kind of input. | 
|  |  | 
|  | // Move all users of this moved value. | 
|  | addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); | 
|  | } | 
|  |  | 
|  | void SIInstrInfo::splitScalar64BitBinaryOp( | 
|  | SmallVectorImpl<MachineInstr *> &Worklist, | 
|  | MachineInstr *Inst, | 
|  | unsigned Opcode) const { | 
|  | MachineBasicBlock &MBB = *Inst->getParent(); | 
|  | MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); | 
|  |  | 
|  | MachineOperand &Dest = Inst->getOperand(0); | 
|  | MachineOperand &Src0 = Inst->getOperand(1); | 
|  | MachineOperand &Src1 = Inst->getOperand(2); | 
|  | DebugLoc DL = Inst->getDebugLoc(); | 
|  |  | 
|  | MachineBasicBlock::iterator MII = Inst; | 
|  |  | 
|  | const MCInstrDesc &InstDesc = get(Opcode); | 
|  | const TargetRegisterClass *Src0RC = Src0.isReg() ? | 
|  | MRI.getRegClass(Src0.getReg()) : | 
|  | &AMDGPU::SGPR_32RegClass; | 
|  |  | 
|  | const TargetRegisterClass *Src0SubRC = RI.getSubRegClass(Src0RC, AMDGPU::sub0); | 
|  | const TargetRegisterClass *Src1RC = Src1.isReg() ? | 
|  | MRI.getRegClass(Src1.getReg()) : | 
|  | &AMDGPU::SGPR_32RegClass; | 
|  |  | 
|  | const TargetRegisterClass *Src1SubRC = RI.getSubRegClass(Src1RC, AMDGPU::sub0); | 
|  |  | 
|  | MachineOperand SrcReg0Sub0 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, | 
|  | AMDGPU::sub0, Src0SubRC); | 
|  | MachineOperand SrcReg1Sub0 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, | 
|  | AMDGPU::sub0, Src1SubRC); | 
|  |  | 
|  | const TargetRegisterClass *DestRC = MRI.getRegClass(Dest.getReg()); | 
|  | const TargetRegisterClass *NewDestRC = RI.getEquivalentVGPRClass(DestRC); | 
|  | const TargetRegisterClass *NewDestSubRC = RI.getSubRegClass(NewDestRC, AMDGPU::sub0); | 
|  |  | 
|  | unsigned DestSub0 = MRI.createVirtualRegister(NewDestSubRC); | 
|  | MachineInstr *LoHalf = BuildMI(MBB, MII, DL, InstDesc, DestSub0) | 
|  | .addOperand(SrcReg0Sub0) | 
|  | .addOperand(SrcReg1Sub0); | 
|  |  | 
|  | MachineOperand SrcReg0Sub1 = buildExtractSubRegOrImm(MII, MRI, Src0, Src0RC, | 
|  | AMDGPU::sub1, Src0SubRC); | 
|  | MachineOperand SrcReg1Sub1 = buildExtractSubRegOrImm(MII, MRI, Src1, Src1RC, | 
|  | AMDGPU::sub1, Src1SubRC); | 
|  |  | 
|  | unsigned DestSub1 = MRI.createVirtualRegister(NewDestSubRC); | 
|  | MachineInstr *HiHalf = BuildMI(MBB, MII, DL, InstDesc, DestSub1) | 
|  | .addOperand(SrcReg0Sub1) | 
|  | .addOperand(SrcReg1Sub1); | 
|  |  | 
|  | unsigned FullDestReg = MRI.createVirtualRegister(NewDestRC); | 
|  | BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), FullDestReg) | 
|  | .addReg(DestSub0) | 
|  | .addImm(AMDGPU::sub0) | 
|  | .addReg(DestSub1) | 
|  | .addImm(AMDGPU::sub1); | 
|  |  | 
|  | MRI.replaceRegWith(Dest.getReg(), FullDestReg); | 
|  |  | 
|  | // Try to legalize the operands in case we need to swap the order to keep it | 
|  | // valid. | 
|  | legalizeOperands(LoHalf); | 
|  | legalizeOperands(HiHalf); | 
|  |  | 
|  | // Move all users of this moved vlaue. | 
|  | addUsersToMoveToVALUWorklist(FullDestReg, MRI, Worklist); | 
|  | } | 
|  |  | 
|  | void SIInstrInfo::splitScalar64BitBCNT(SmallVectorImpl<MachineInstr *> &Worklist, | 
|  | MachineInstr *Inst) const { | 
|  | MachineBasicBlock &MBB = *Inst->getParent(); | 
|  | MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); | 
|  |  | 
|  | MachineBasicBlock::iterator MII = Inst; | 
|  | DebugLoc DL = Inst->getDebugLoc(); | 
|  |  | 
|  | MachineOperand &Dest = Inst->getOperand(0); | 
|  | MachineOperand &Src = Inst->getOperand(1); | 
|  |  | 
|  | const MCInstrDesc &InstDesc = get(AMDGPU::V_BCNT_U32_B32_e64); | 
|  | const TargetRegisterClass *SrcRC = Src.isReg() ? | 
|  | MRI.getRegClass(Src.getReg()) : | 
|  | &AMDGPU::SGPR_32RegClass; | 
|  |  | 
|  | unsigned MidReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | 
|  | unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | 
|  |  | 
|  | const TargetRegisterClass *SrcSubRC = RI.getSubRegClass(SrcRC, AMDGPU::sub0); | 
|  |  | 
|  | MachineOperand SrcRegSub0 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, | 
|  | AMDGPU::sub0, SrcSubRC); | 
|  | MachineOperand SrcRegSub1 = buildExtractSubRegOrImm(MII, MRI, Src, SrcRC, | 
|  | AMDGPU::sub1, SrcSubRC); | 
|  |  | 
|  | BuildMI(MBB, MII, DL, InstDesc, MidReg) | 
|  | .addOperand(SrcRegSub0) | 
|  | .addImm(0); | 
|  |  | 
|  | BuildMI(MBB, MII, DL, InstDesc, ResultReg) | 
|  | .addOperand(SrcRegSub1) | 
|  | .addReg(MidReg); | 
|  |  | 
|  | MRI.replaceRegWith(Dest.getReg(), ResultReg); | 
|  |  | 
|  | // We don't need to legalize operands here. src0 for etiher instruction can be | 
|  | // an SGPR, and the second input is unused or determined here. | 
|  | addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); | 
|  | } | 
|  |  | 
|  | void SIInstrInfo::splitScalar64BitBFE(SmallVectorImpl<MachineInstr *> &Worklist, | 
|  | MachineInstr *Inst) const { | 
|  | MachineBasicBlock &MBB = *Inst->getParent(); | 
|  | MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); | 
|  | MachineBasicBlock::iterator MII = Inst; | 
|  | DebugLoc DL = Inst->getDebugLoc(); | 
|  |  | 
|  | MachineOperand &Dest = Inst->getOperand(0); | 
|  | uint32_t Imm = Inst->getOperand(2).getImm(); | 
|  | uint32_t Offset = Imm & 0x3f; // Extract bits [5:0]. | 
|  | uint32_t BitWidth = (Imm & 0x7f0000) >> 16; // Extract bits [22:16]. | 
|  |  | 
|  | (void) Offset; | 
|  |  | 
|  | // Only sext_inreg cases handled. | 
|  | assert(Inst->getOpcode() == AMDGPU::S_BFE_I64 && | 
|  | BitWidth <= 32 && | 
|  | Offset == 0 && | 
|  | "Not implemented"); | 
|  |  | 
|  | if (BitWidth < 32) { | 
|  | unsigned MidRegLo = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | 
|  | unsigned MidRegHi = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | 
|  | unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); | 
|  |  | 
|  | BuildMI(MBB, MII, DL, get(AMDGPU::V_BFE_I32), MidRegLo) | 
|  | .addReg(Inst->getOperand(1).getReg(), 0, AMDGPU::sub0) | 
|  | .addImm(0) | 
|  | .addImm(BitWidth); | 
|  |  | 
|  | BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e32), MidRegHi) | 
|  | .addImm(31) | 
|  | .addReg(MidRegLo); | 
|  |  | 
|  | BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg) | 
|  | .addReg(MidRegLo) | 
|  | .addImm(AMDGPU::sub0) | 
|  | .addReg(MidRegHi) | 
|  | .addImm(AMDGPU::sub1); | 
|  |  | 
|  | MRI.replaceRegWith(Dest.getReg(), ResultReg); | 
|  | addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); | 
|  | return; | 
|  | } | 
|  |  | 
|  | MachineOperand &Src = Inst->getOperand(1); | 
|  | unsigned TmpReg = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass); | 
|  | unsigned ResultReg = MRI.createVirtualRegister(&AMDGPU::VReg_64RegClass); | 
|  |  | 
|  | BuildMI(MBB, MII, DL, get(AMDGPU::V_ASHRREV_I32_e64), TmpReg) | 
|  | .addImm(31) | 
|  | .addReg(Src.getReg(), 0, AMDGPU::sub0); | 
|  |  | 
|  | BuildMI(MBB, MII, DL, get(TargetOpcode::REG_SEQUENCE), ResultReg) | 
|  | .addReg(Src.getReg(), 0, AMDGPU::sub0) | 
|  | .addImm(AMDGPU::sub0) | 
|  | .addReg(TmpReg) | 
|  | .addImm(AMDGPU::sub1); | 
|  |  | 
|  | MRI.replaceRegWith(Dest.getReg(), ResultReg); | 
|  | addUsersToMoveToVALUWorklist(ResultReg, MRI, Worklist); | 
|  | } | 
|  |  | 
|  | void SIInstrInfo::addUsersToMoveToVALUWorklist( | 
|  | unsigned DstReg, | 
|  | MachineRegisterInfo &MRI, | 
|  | SmallVectorImpl<MachineInstr *> &Worklist) const { | 
|  | for (MachineRegisterInfo::use_iterator I = MRI.use_begin(DstReg), | 
|  | E = MRI.use_end(); I != E; ++I) { | 
|  | MachineInstr &UseMI = *I->getParent(); | 
|  | if (!canReadVGPR(UseMI, I.getOperandNo())) { | 
|  | Worklist.push_back(&UseMI); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SIInstrInfo::addSCCDefUsersToVALUWorklist(MachineInstr *SCCDefInst, | 
|  | SmallVectorImpl<MachineInstr *> &Worklist) const { | 
|  | // This assumes that all the users of SCC are in the same block | 
|  | // as the SCC def. | 
|  | for (MachineBasicBlock::iterator I = SCCDefInst, | 
|  | E = SCCDefInst->getParent()->end(); I != E; ++I) { | 
|  |  | 
|  | // Exit if we find another SCC def. | 
|  | if (I->findRegisterDefOperandIdx(AMDGPU::SCC) != -1) | 
|  | return; | 
|  |  | 
|  | if (I->findRegisterUseOperandIdx(AMDGPU::SCC) != -1) | 
|  | Worklist.push_back(I); | 
|  | } | 
|  | } | 
|  |  | 
|  | const TargetRegisterClass *SIInstrInfo::getDestEquivalentVGPRClass( | 
|  | const MachineInstr &Inst) const { | 
|  | const TargetRegisterClass *NewDstRC = getOpRegClass(Inst, 0); | 
|  |  | 
|  | switch (Inst.getOpcode()) { | 
|  | // For target instructions, getOpRegClass just returns the virtual register | 
|  | // class associated with the operand, so we need to find an equivalent VGPR | 
|  | // register class in order to move the instruction to the VALU. | 
|  | case AMDGPU::COPY: | 
|  | case AMDGPU::PHI: | 
|  | case AMDGPU::REG_SEQUENCE: | 
|  | case AMDGPU::INSERT_SUBREG: | 
|  | if (RI.hasVGPRs(NewDstRC)) | 
|  | return nullptr; | 
|  |  | 
|  | NewDstRC = RI.getEquivalentVGPRClass(NewDstRC); | 
|  | if (!NewDstRC) | 
|  | return nullptr; | 
|  | return NewDstRC; | 
|  | default: | 
|  | return NewDstRC; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Find the one SGPR operand we are allowed to use. | 
|  | unsigned SIInstrInfo::findUsedSGPR(const MachineInstr *MI, | 
|  | int OpIndices[3]) const { | 
|  | const MCInstrDesc &Desc = MI->getDesc(); | 
|  |  | 
|  | // Find the one SGPR operand we are allowed to use. | 
|  | // | 
|  | // First we need to consider the instruction's operand requirements before | 
|  | // legalizing. Some operands are required to be SGPRs, such as implicit uses | 
|  | // of VCC, but we are still bound by the constant bus requirement to only use | 
|  | // one. | 
|  | // | 
|  | // If the operand's class is an SGPR, we can never move it. | 
|  |  | 
|  | unsigned SGPRReg = findImplicitSGPRRead(*MI); | 
|  | if (SGPRReg != AMDGPU::NoRegister) | 
|  | return SGPRReg; | 
|  |  | 
|  | unsigned UsedSGPRs[3] = { AMDGPU::NoRegister }; | 
|  | const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); | 
|  |  | 
|  | for (unsigned i = 0; i < 3; ++i) { | 
|  | int Idx = OpIndices[i]; | 
|  | if (Idx == -1) | 
|  | break; | 
|  |  | 
|  | const MachineOperand &MO = MI->getOperand(Idx); | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  |  | 
|  | // Is this operand statically required to be an SGPR based on the operand | 
|  | // constraints? | 
|  | const TargetRegisterClass *OpRC = RI.getRegClass(Desc.OpInfo[Idx].RegClass); | 
|  | bool IsRequiredSGPR = RI.isSGPRClass(OpRC); | 
|  | if (IsRequiredSGPR) | 
|  | return MO.getReg(); | 
|  |  | 
|  | // If this could be a VGPR or an SGPR, Check the dynamic register class. | 
|  | unsigned Reg = MO.getReg(); | 
|  | const TargetRegisterClass *RegRC = MRI.getRegClass(Reg); | 
|  | if (RI.isSGPRClass(RegRC)) | 
|  | UsedSGPRs[i] = Reg; | 
|  | } | 
|  |  | 
|  | // We don't have a required SGPR operand, so we have a bit more freedom in | 
|  | // selecting operands to move. | 
|  |  | 
|  | // Try to select the most used SGPR. If an SGPR is equal to one of the | 
|  | // others, we choose that. | 
|  | // | 
|  | // e.g. | 
|  | // V_FMA_F32 v0, s0, s0, s0 -> No moves | 
|  | // V_FMA_F32 v0, s0, s1, s0 -> Move s1 | 
|  |  | 
|  | // TODO: If some of the operands are 64-bit SGPRs and some 32, we should | 
|  | // prefer those. | 
|  |  | 
|  | if (UsedSGPRs[0] != AMDGPU::NoRegister) { | 
|  | if (UsedSGPRs[0] == UsedSGPRs[1] || UsedSGPRs[0] == UsedSGPRs[2]) | 
|  | SGPRReg = UsedSGPRs[0]; | 
|  | } | 
|  |  | 
|  | if (SGPRReg == AMDGPU::NoRegister && UsedSGPRs[1] != AMDGPU::NoRegister) { | 
|  | if (UsedSGPRs[1] == UsedSGPRs[2]) | 
|  | SGPRReg = UsedSGPRs[1]; | 
|  | } | 
|  |  | 
|  | return SGPRReg; | 
|  | } | 
|  |  | 
|  | void SIInstrInfo::reserveIndirectRegisters(BitVector &Reserved, | 
|  | const MachineFunction &MF) const { | 
|  | int End = getIndirectIndexEnd(MF); | 
|  | int Begin = getIndirectIndexBegin(MF); | 
|  |  | 
|  | if (End == -1) | 
|  | return; | 
|  |  | 
|  |  | 
|  | for (int Index = Begin; Index <= End; ++Index) | 
|  | Reserved.set(AMDGPU::VGPR_32RegClass.getRegister(Index)); | 
|  |  | 
|  | for (int Index = std::max(0, Begin - 1); Index <= End; ++Index) | 
|  | Reserved.set(AMDGPU::VReg_64RegClass.getRegister(Index)); | 
|  |  | 
|  | for (int Index = std::max(0, Begin - 2); Index <= End; ++Index) | 
|  | Reserved.set(AMDGPU::VReg_96RegClass.getRegister(Index)); | 
|  |  | 
|  | for (int Index = std::max(0, Begin - 3); Index <= End; ++Index) | 
|  | Reserved.set(AMDGPU::VReg_128RegClass.getRegister(Index)); | 
|  |  | 
|  | for (int Index = std::max(0, Begin - 7); Index <= End; ++Index) | 
|  | Reserved.set(AMDGPU::VReg_256RegClass.getRegister(Index)); | 
|  |  | 
|  | for (int Index = std::max(0, Begin - 15); Index <= End; ++Index) | 
|  | Reserved.set(AMDGPU::VReg_512RegClass.getRegister(Index)); | 
|  | } | 
|  |  | 
|  | MachineOperand *SIInstrInfo::getNamedOperand(MachineInstr &MI, | 
|  | unsigned OperandName) const { | 
|  | int Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), OperandName); | 
|  | if (Idx == -1) | 
|  | return nullptr; | 
|  |  | 
|  | return &MI.getOperand(Idx); | 
|  | } | 
|  |  | 
|  | uint64_t SIInstrInfo::getDefaultRsrcDataFormat() const { | 
|  | uint64_t RsrcDataFormat = AMDGPU::RSRC_DATA_FORMAT; | 
|  | if (ST.isAmdHsaOS()) { | 
|  | RsrcDataFormat |= (1ULL << 56); | 
|  |  | 
|  | if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) | 
|  | // Set MTYPE = 2 | 
|  | RsrcDataFormat |= (2ULL << 59); | 
|  | } | 
|  |  | 
|  | return RsrcDataFormat; | 
|  | } | 
|  |  | 
|  | uint64_t SIInstrInfo::getScratchRsrcWords23() const { | 
|  | uint64_t Rsrc23 = getDefaultRsrcDataFormat() | | 
|  | AMDGPU::RSRC_TID_ENABLE | | 
|  | 0xffffffff; // Size; | 
|  |  | 
|  | uint64_t EltSizeValue = Log2_32(ST.getMaxPrivateElementSize()) - 1; | 
|  |  | 
|  | Rsrc23 |= (EltSizeValue << AMDGPU::RSRC_ELEMENT_SIZE_SHIFT); | 
|  |  | 
|  | // If TID_ENABLE is set, DATA_FORMAT specifies stride bits [14:17]. | 
|  | // Clear them unless we want a huge stride. | 
|  | if (ST.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) | 
|  | Rsrc23 &= ~AMDGPU::RSRC_DATA_FORMAT; | 
|  |  | 
|  | return Rsrc23; | 
|  | } | 
|  |  | 
|  | bool SIInstrInfo::isLowLatencyInstruction(const MachineInstr *MI) const { | 
|  | unsigned Opc = MI->getOpcode(); | 
|  |  | 
|  | return isSMRD(Opc); | 
|  | } | 
|  |  | 
|  | bool SIInstrInfo::isHighLatencyInstruction(const MachineInstr *MI) const { | 
|  | unsigned Opc = MI->getOpcode(); | 
|  |  | 
|  | return isMUBUF(Opc) || isMTBUF(Opc) || isMIMG(Opc); | 
|  | } | 
|  |  | 
|  | ArrayRef<std::pair<int, const char *>> | 
|  | SIInstrInfo::getSerializableTargetIndices() const { | 
|  | static const std::pair<int, const char *> TargetIndices[] = { | 
|  | {AMDGPU::TI_CONSTDATA_START, "amdgpu-constdata-start"}, | 
|  | {AMDGPU::TI_SCRATCH_RSRC_DWORD0, "amdgpu-scratch-rsrc-dword0"}, | 
|  | {AMDGPU::TI_SCRATCH_RSRC_DWORD1, "amdgpu-scratch-rsrc-dword1"}, | 
|  | {AMDGPU::TI_SCRATCH_RSRC_DWORD2, "amdgpu-scratch-rsrc-dword2"}, | 
|  | {AMDGPU::TI_SCRATCH_RSRC_DWORD3, "amdgpu-scratch-rsrc-dword3"}}; | 
|  | return makeArrayRef(TargetIndices); | 
|  | } | 
|  |  | 
|  | /// This is used by the post-RA scheduler (SchedulePostRAList.cpp).  The | 
|  | /// post-RA version of misched uses CreateTargetMIHazardRecognizer. | 
|  | ScheduleHazardRecognizer * | 
|  | SIInstrInfo::CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II, | 
|  | const ScheduleDAG *DAG) const { | 
|  | return new GCNHazardRecognizer(DAG->MF); | 
|  | } | 
|  |  | 
|  | /// This is the hazard recognizer used at -O0 by the PostRAHazardRecognizer | 
|  | /// pass. | 
|  | ScheduleHazardRecognizer * | 
|  | SIInstrInfo::CreateTargetPostRAHazardRecognizer(const MachineFunction &MF) const { | 
|  | return new GCNHazardRecognizer(MF); | 
|  | } |