|  | //===- InputFiles.cpp -----------------------------------------------------===// | 
|  | // | 
|  | //                             The LLVM Linker | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "InputFiles.h" | 
|  | #include "InputSection.h" | 
|  | #include "LinkerScript.h" | 
|  | #include "Memory.h" | 
|  | #include "SymbolTable.h" | 
|  | #include "Symbols.h" | 
|  | #include "SyntheticSections.h" | 
|  | #include "lld/Common/ErrorHandler.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/CodeGen/Analysis.h" | 
|  | #include "llvm/DebugInfo/DWARF/DWARFContext.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/LTO/LTO.h" | 
|  | #include "llvm/MC/StringTableBuilder.h" | 
|  | #include "llvm/Object/ELFObjectFile.h" | 
|  | #include "llvm/Support/Path.h" | 
|  | #include "llvm/Support/TarWriter.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::ELF; | 
|  | using namespace llvm::object; | 
|  | using namespace llvm::sys::fs; | 
|  |  | 
|  | using namespace lld; | 
|  | using namespace lld::elf; | 
|  |  | 
|  | std::vector<BinaryFile *> elf::BinaryFiles; | 
|  | std::vector<BitcodeFile *> elf::BitcodeFiles; | 
|  | std::vector<InputFile *> elf::ObjectFiles; | 
|  | std::vector<InputFile *> elf::SharedFiles; | 
|  |  | 
|  | TarWriter *elf::Tar; | 
|  |  | 
|  | InputFile::InputFile(Kind K, MemoryBufferRef M) : MB(M), FileKind(K) {} | 
|  |  | 
|  | Optional<MemoryBufferRef> elf::readFile(StringRef Path) { | 
|  | // The --chroot option changes our virtual root directory. | 
|  | // This is useful when you are dealing with files created by --reproduce. | 
|  | if (!Config->Chroot.empty() && Path.startswith("/")) | 
|  | Path = Saver.save(Config->Chroot + Path); | 
|  |  | 
|  | log(Path); | 
|  |  | 
|  | auto MBOrErr = MemoryBuffer::getFile(Path); | 
|  | if (auto EC = MBOrErr.getError()) { | 
|  | error("cannot open " + Path + ": " + EC.message()); | 
|  | return None; | 
|  | } | 
|  |  | 
|  | std::unique_ptr<MemoryBuffer> &MB = *MBOrErr; | 
|  | MemoryBufferRef MBRef = MB->getMemBufferRef(); | 
|  | make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership | 
|  |  | 
|  | if (Tar) | 
|  | Tar->append(relativeToRoot(Path), MBRef.getBuffer()); | 
|  | return MBRef; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void ObjFile<ELFT>::initializeDwarfLine() { | 
|  | DWARFContext Dwarf(make_unique<LLDDwarfObj<ELFT>>(this)); | 
|  | const DWARFObject &Obj = Dwarf.getDWARFObj(); | 
|  | DwarfLine.reset(new DWARFDebugLine); | 
|  | DWARFDataExtractor LineData(Obj, Obj.getLineSection(), Config->IsLE, | 
|  | Config->Wordsize); | 
|  |  | 
|  | // The second parameter is offset in .debug_line section | 
|  | // for compilation unit (CU) of interest. We have only one | 
|  | // CU (object file), so offset is always 0. | 
|  | DwarfLine->getOrParseLineTable(LineData, 0); | 
|  | } | 
|  |  | 
|  | // Returns source line information for a given offset | 
|  | // using DWARF debug info. | 
|  | template <class ELFT> | 
|  | Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S, | 
|  | uint64_t Offset) { | 
|  | llvm::call_once(InitDwarfLine, [this]() { initializeDwarfLine(); }); | 
|  |  | 
|  | // The offset to CU is 0. | 
|  | const DWARFDebugLine::LineTable *Tbl = DwarfLine->getLineTable(0); | 
|  | if (!Tbl) | 
|  | return None; | 
|  |  | 
|  | // Use fake address calcuated by adding section file offset and offset in | 
|  | // section. See comments for ObjectInfo class. | 
|  | DILineInfo Info; | 
|  | Tbl->getFileLineInfoForAddress( | 
|  | S->getOffsetInFile() + Offset, nullptr, | 
|  | DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info); | 
|  | if (Info.Line == 0) | 
|  | return None; | 
|  | return Info; | 
|  | } | 
|  |  | 
|  | // Returns source line information for a given offset | 
|  | // using DWARF debug info. | 
|  | template <class ELFT> | 
|  | std::string ObjFile<ELFT>::getLineInfo(InputSectionBase *S, uint64_t Offset) { | 
|  | if (Optional<DILineInfo> Info = getDILineInfo(S, Offset)) | 
|  | return Info->FileName + ":" + std::to_string(Info->Line); | 
|  | return ""; | 
|  | } | 
|  |  | 
|  | // Returns "<internal>", "foo.a(bar.o)" or "baz.o". | 
|  | std::string lld::toString(const InputFile *F) { | 
|  | if (!F) | 
|  | return "<internal>"; | 
|  |  | 
|  | if (F->ToStringCache.empty()) { | 
|  | if (F->ArchiveName.empty()) | 
|  | F->ToStringCache = F->getName(); | 
|  | else | 
|  | F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str(); | 
|  | } | 
|  | return F->ToStringCache; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) { | 
|  | if (ELFT::TargetEndianness == support::little) | 
|  | EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; | 
|  | else | 
|  | EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; | 
|  |  | 
|  | EMachine = getObj().getHeader()->e_machine; | 
|  | OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI]; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalELFSyms() { | 
|  | return makeArrayRef(ELFSyms.begin() + FirstNonLocal, ELFSyms.end()); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { | 
|  | return check(getObj().getSectionIndex(&Sym, ELFSyms, SymtabSHNDX), | 
|  | toString(this)); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections, | 
|  | const Elf_Shdr *Symtab) { | 
|  | FirstNonLocal = Symtab->sh_info; | 
|  | ELFSyms = check(getObj().symbols(Symtab), toString(this)); | 
|  | if (FirstNonLocal == 0 || FirstNonLocal > ELFSyms.size()) | 
|  | fatal(toString(this) + ": invalid sh_info in symbol table"); | 
|  |  | 
|  | StringTable = check(getObj().getStringTableForSymtab(*Symtab, Sections), | 
|  | toString(this)); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | ObjFile<ELFT>::ObjFile(MemoryBufferRef M, StringRef ArchiveName) | 
|  | : ELFFileBase<ELFT>(Base::ObjKind, M) { | 
|  | this->ArchiveName = ArchiveName; | 
|  | } | 
|  |  | 
|  | template <class ELFT> ArrayRef<SymbolBody *> ObjFile<ELFT>::getLocalSymbols() { | 
|  | if (this->Symbols.empty()) | 
|  | return {}; | 
|  | return makeArrayRef(this->Symbols).slice(1, this->FirstNonLocal - 1); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void ObjFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { | 
|  | // Read section and symbol tables. | 
|  | initializeSections(ComdatGroups); | 
|  | initializeSymbols(); | 
|  | } | 
|  |  | 
|  | // Sections with SHT_GROUP and comdat bits define comdat section groups. | 
|  | // They are identified and deduplicated by group name. This function | 
|  | // returns a group name. | 
|  | template <class ELFT> | 
|  | StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections, | 
|  | const Elf_Shdr &Sec) { | 
|  | // Group signatures are stored as symbol names in object files. | 
|  | // sh_info contains a symbol index, so we fetch a symbol and read its name. | 
|  | if (this->ELFSyms.empty()) | 
|  | this->initSymtab( | 
|  | Sections, | 
|  | check(object::getSection<ELFT>(Sections, Sec.sh_link), toString(this))); | 
|  |  | 
|  | const Elf_Sym *Sym = check( | 
|  | object::getSymbol<ELFT>(this->ELFSyms, Sec.sh_info), toString(this)); | 
|  | StringRef Signature = check(Sym->getName(this->StringTable), toString(this)); | 
|  |  | 
|  | // As a special case, if a symbol is a section symbol and has no name, | 
|  | // we use a section name as a signature. | 
|  | // | 
|  | // Such SHT_GROUP sections are invalid from the perspective of the ELF | 
|  | // standard, but GNU gold 1.14 (the neweset version as of July 2017) or | 
|  | // older produce such sections as outputs for the -r option, so we need | 
|  | // a bug-compatibility. | 
|  | if (Signature.empty() && Sym->getType() == STT_SECTION) | 
|  | return getSectionName(Sec); | 
|  | return Signature; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | ArrayRef<typename ObjFile<ELFT>::Elf_Word> | 
|  | ObjFile<ELFT>::getShtGroupEntries(const Elf_Shdr &Sec) { | 
|  | const ELFFile<ELFT> &Obj = this->getObj(); | 
|  | ArrayRef<Elf_Word> Entries = check( | 
|  | Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), toString(this)); | 
|  | if (Entries.empty() || Entries[0] != GRP_COMDAT) | 
|  | fatal(toString(this) + ": unsupported SHT_GROUP format"); | 
|  | return Entries.slice(1); | 
|  | } | 
|  |  | 
|  | template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { | 
|  | // We don't merge sections if -O0 (default is -O1). This makes sometimes | 
|  | // the linker significantly faster, although the output will be bigger. | 
|  | if (Config->Optimize == 0) | 
|  | return false; | 
|  |  | 
|  | // Do not merge sections if generating a relocatable object. It makes | 
|  | // the code simpler because we do not need to update relocation addends | 
|  | // to reflect changes introduced by merging. Instead of that we write | 
|  | // such "merge" sections into separate OutputSections and keep SHF_MERGE | 
|  | // / SHF_STRINGS flags and sh_entsize value to be able to perform merging | 
|  | // later during a final linking. | 
|  | if (Config->Relocatable) | 
|  | return false; | 
|  |  | 
|  | // A mergeable section with size 0 is useless because they don't have | 
|  | // any data to merge. A mergeable string section with size 0 can be | 
|  | // argued as invalid because it doesn't end with a null character. | 
|  | // We'll avoid a mess by handling them as if they were non-mergeable. | 
|  | if (Sec.sh_size == 0) | 
|  | return false; | 
|  |  | 
|  | // Check for sh_entsize. The ELF spec is not clear about the zero | 
|  | // sh_entsize. It says that "the member [sh_entsize] contains 0 if | 
|  | // the section does not hold a table of fixed-size entries". We know | 
|  | // that Rust 1.13 produces a string mergeable section with a zero | 
|  | // sh_entsize. Here we just accept it rather than being picky about it. | 
|  | uint64_t EntSize = Sec.sh_entsize; | 
|  | if (EntSize == 0) | 
|  | return false; | 
|  | if (Sec.sh_size % EntSize) | 
|  | fatal(toString(this) + | 
|  | ": SHF_MERGE section size must be a multiple of sh_entsize"); | 
|  |  | 
|  | uint64_t Flags = Sec.sh_flags; | 
|  | if (!(Flags & SHF_MERGE)) | 
|  | return false; | 
|  | if (Flags & SHF_WRITE) | 
|  | fatal(toString(this) + ": writable SHF_MERGE section is not supported"); | 
|  |  | 
|  | // Don't try to merge if the alignment is larger than the sh_entsize and this | 
|  | // is not SHF_STRINGS. | 
|  | // | 
|  | // Since this is not a SHF_STRINGS, we would need to pad after every entity. | 
|  | // It would be equivalent for the producer of the .o to just set a larger | 
|  | // sh_entsize. | 
|  | if (Flags & SHF_STRINGS) | 
|  | return true; | 
|  |  | 
|  | return Sec.sh_addralign <= EntSize; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void ObjFile<ELFT>::initializeSections( | 
|  | DenseSet<CachedHashStringRef> &ComdatGroups) { | 
|  | const ELFFile<ELFT> &Obj = this->getObj(); | 
|  |  | 
|  | ArrayRef<Elf_Shdr> ObjSections = | 
|  | check(this->getObj().sections(), toString(this)); | 
|  | uint64_t Size = ObjSections.size(); | 
|  | this->Sections.resize(Size); | 
|  | this->SectionStringTable = | 
|  | check(Obj.getSectionStringTable(ObjSections), toString(this)); | 
|  |  | 
|  | for (size_t I = 0, E = ObjSections.size(); I < E; I++) { | 
|  | if (this->Sections[I] == &InputSection::Discarded) | 
|  | continue; | 
|  | const Elf_Shdr &Sec = ObjSections[I]; | 
|  |  | 
|  | // SHF_EXCLUDE'ed sections are discarded by the linker. However, | 
|  | // if -r is given, we'll let the final link discard such sections. | 
|  | // This is compatible with GNU. | 
|  | if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { | 
|  | this->Sections[I] = &InputSection::Discarded; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | switch (Sec.sh_type) { | 
|  | case SHT_GROUP: { | 
|  | // De-duplicate section groups by their signatures. | 
|  | StringRef Signature = getShtGroupSignature(ObjSections, Sec); | 
|  | bool IsNew = ComdatGroups.insert(CachedHashStringRef(Signature)).second; | 
|  | this->Sections[I] = &InputSection::Discarded; | 
|  |  | 
|  | // If it is a new section group, we want to keep group members. | 
|  | // Group leader sections, which contain indices of group members, are | 
|  | // discarded because they are useless beyond this point. The only | 
|  | // exception is the -r option because in order to produce re-linkable | 
|  | // object files, we want to pass through basically everything. | 
|  | if (IsNew) { | 
|  | if (Config->Relocatable) | 
|  | this->Sections[I] = createInputSection(Sec); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, discard group members. | 
|  | for (uint32_t SecIndex : getShtGroupEntries(Sec)) { | 
|  | if (SecIndex >= Size) | 
|  | fatal(toString(this) + | 
|  | ": invalid section index in group: " + Twine(SecIndex)); | 
|  | this->Sections[SecIndex] = &InputSection::Discarded; | 
|  | } | 
|  | break; | 
|  | } | 
|  | case SHT_SYMTAB: | 
|  | this->initSymtab(ObjSections, &Sec); | 
|  | break; | 
|  | case SHT_SYMTAB_SHNDX: | 
|  | this->SymtabSHNDX = | 
|  | check(Obj.getSHNDXTable(Sec, ObjSections), toString(this)); | 
|  | break; | 
|  | case SHT_STRTAB: | 
|  | case SHT_NULL: | 
|  | break; | 
|  | default: | 
|  | this->Sections[I] = createInputSection(Sec); | 
|  | } | 
|  |  | 
|  | // .ARM.exidx sections have a reverse dependency on the InputSection they | 
|  | // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. | 
|  | if (Sec.sh_flags & SHF_LINK_ORDER) { | 
|  | if (Sec.sh_link >= this->Sections.size()) | 
|  | fatal(toString(this) + ": invalid sh_link index: " + | 
|  | Twine(Sec.sh_link)); | 
|  | this->Sections[Sec.sh_link]->DependentSections.push_back( | 
|  | cast<InputSection>(this->Sections[I])); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { | 
|  | uint32_t Idx = Sec.sh_info; | 
|  | if (Idx >= this->Sections.size()) | 
|  | fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx)); | 
|  | InputSectionBase *Target = this->Sections[Idx]; | 
|  |  | 
|  | // Strictly speaking, a relocation section must be included in the | 
|  | // group of the section it relocates. However, LLVM 3.3 and earlier | 
|  | // would fail to do so, so we gracefully handle that case. | 
|  | if (Target == &InputSection::Discarded) | 
|  | return nullptr; | 
|  |  | 
|  | if (!Target) | 
|  | fatal(toString(this) + ": unsupported relocation reference"); | 
|  | return Target; | 
|  | } | 
|  |  | 
|  | // Create a regular InputSection class that has the same contents | 
|  | // as a given section. | 
|  | InputSectionBase *toRegularSection(MergeInputSection *Sec) { | 
|  | auto *Ret = make<InputSection>(Sec->Flags, Sec->Type, Sec->Alignment, | 
|  | Sec->Data, Sec->Name); | 
|  | Ret->File = Sec->File; | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { | 
|  | StringRef Name = getSectionName(Sec); | 
|  |  | 
|  | switch (Sec.sh_type) { | 
|  | case SHT_ARM_ATTRIBUTES: | 
|  | // FIXME: ARM meta-data section. Retain the first attribute section | 
|  | // we see. The eglibc ARM dynamic loaders require the presence of an | 
|  | // attribute section for dlopen to work. | 
|  | // In a full implementation we would merge all attribute sections. | 
|  | if (InX::ARMAttributes == nullptr) { | 
|  | InX::ARMAttributes = make<InputSection>(this, &Sec, Name); | 
|  | return InX::ARMAttributes; | 
|  | } | 
|  | return &InputSection::Discarded; | 
|  | case SHT_RELA: | 
|  | case SHT_REL: { | 
|  | // Find the relocation target section and associate this | 
|  | // section with it. Target can be discarded, for example | 
|  | // if it is a duplicated member of SHT_GROUP section, we | 
|  | // do not create or proccess relocatable sections then. | 
|  | InputSectionBase *Target = getRelocTarget(Sec); | 
|  | if (!Target) | 
|  | return nullptr; | 
|  |  | 
|  | // This section contains relocation information. | 
|  | // If -r is given, we do not interpret or apply relocation | 
|  | // but just copy relocation sections to output. | 
|  | if (Config->Relocatable) | 
|  | return make<InputSection>(this, &Sec, Name); | 
|  |  | 
|  | if (Target->FirstRelocation) | 
|  | fatal(toString(this) + | 
|  | ": multiple relocation sections to one section are not supported"); | 
|  |  | 
|  | // Mergeable sections with relocations are tricky because relocations | 
|  | // need to be taken into account when comparing section contents for | 
|  | // merging. It's not worth supporting such mergeable sections because | 
|  | // they are rare and it'd complicates the internal design (we usually | 
|  | // have to determine if two sections are mergeable early in the link | 
|  | // process much before applying relocations). We simply handle mergeable | 
|  | // sections with relocations as non-mergeable. | 
|  | if (auto *MS = dyn_cast<MergeInputSection>(Target)) { | 
|  | Target = toRegularSection(MS); | 
|  | this->Sections[Sec.sh_info] = Target; | 
|  | } | 
|  |  | 
|  | size_t NumRelocations; | 
|  | if (Sec.sh_type == SHT_RELA) { | 
|  | ArrayRef<Elf_Rela> Rels = | 
|  | check(this->getObj().relas(&Sec), toString(this)); | 
|  | Target->FirstRelocation = Rels.begin(); | 
|  | NumRelocations = Rels.size(); | 
|  | Target->AreRelocsRela = true; | 
|  | } else { | 
|  | ArrayRef<Elf_Rel> Rels = check(this->getObj().rels(&Sec), toString(this)); | 
|  | Target->FirstRelocation = Rels.begin(); | 
|  | NumRelocations = Rels.size(); | 
|  | Target->AreRelocsRela = false; | 
|  | } | 
|  | assert(isUInt<31>(NumRelocations)); | 
|  | Target->NumRelocations = NumRelocations; | 
|  |  | 
|  | // Relocation sections processed by the linker are usually removed | 
|  | // from the output, so returning `nullptr` for the normal case. | 
|  | // However, if -emit-relocs is given, we need to leave them in the output. | 
|  | // (Some post link analysis tools need this information.) | 
|  | if (Config->EmitRelocs) { | 
|  | InputSection *RelocSec = make<InputSection>(this, &Sec, Name); | 
|  | // We will not emit relocation section if target was discarded. | 
|  | Target->DependentSections.push_back(RelocSec); | 
|  | return RelocSec; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The GNU linker uses .note.GNU-stack section as a marker indicating | 
|  | // that the code in the object file does not expect that the stack is | 
|  | // executable (in terms of NX bit). If all input files have the marker, | 
|  | // the GNU linker adds a PT_GNU_STACK segment to tells the loader to | 
|  | // make the stack non-executable. Most object files have this section as | 
|  | // of 2017. | 
|  | // | 
|  | // But making the stack non-executable is a norm today for security | 
|  | // reasons. Failure to do so may result in a serious security issue. | 
|  | // Therefore, we make LLD always add PT_GNU_STACK unless it is | 
|  | // explicitly told to do otherwise (by -z execstack). Because the stack | 
|  | // executable-ness is controlled solely by command line options, | 
|  | // .note.GNU-stack sections are simply ignored. | 
|  | if (Name == ".note.GNU-stack") | 
|  | return &InputSection::Discarded; | 
|  |  | 
|  | // Split stacks is a feature to support a discontiguous stack. At least | 
|  | // as of 2017, it seems that the feature is not being used widely. | 
|  | // Only GNU gold supports that. We don't. For the details about that, | 
|  | // see https://gcc.gnu.org/wiki/SplitStacks | 
|  | if (Name == ".note.GNU-split-stack") { | 
|  | error(toString(this) + | 
|  | ": object file compiled with -fsplit-stack is not supported"); | 
|  | return &InputSection::Discarded; | 
|  | } | 
|  |  | 
|  | if (Config->Strip != StripPolicy::None && Name.startswith(".debug")) | 
|  | return &InputSection::Discarded; | 
|  |  | 
|  | // The linkonce feature is a sort of proto-comdat. Some glibc i386 object | 
|  | // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce | 
|  | // sections. Drop those sections to avoid duplicate symbol errors. | 
|  | // FIXME: This is glibc PR20543, we should remove this hack once that has been | 
|  | // fixed for a while. | 
|  | if (Name.startswith(".gnu.linkonce.")) | 
|  | return &InputSection::Discarded; | 
|  |  | 
|  | // The linker merges EH (exception handling) frames and creates a | 
|  | // .eh_frame_hdr section for runtime. So we handle them with a special | 
|  | // class. For relocatable outputs, they are just passed through. | 
|  | if (Name == ".eh_frame" && !Config->Relocatable) | 
|  | return make<EhInputSection>(this, &Sec, Name); | 
|  |  | 
|  | if (shouldMerge(Sec)) | 
|  | return make<MergeInputSection>(this, &Sec, Name); | 
|  | return make<InputSection>(this, &Sec, Name); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) { | 
|  | return check(this->getObj().getSectionName(&Sec, SectionStringTable), | 
|  | toString(this)); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { | 
|  | this->Symbols.reserve(this->ELFSyms.size()); | 
|  | for (const Elf_Sym &Sym : this->ELFSyms) | 
|  | this->Symbols.push_back(createSymbolBody(&Sym)); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | InputSectionBase *ObjFile<ELFT>::getSection(const Elf_Sym &Sym) const { | 
|  | uint32_t Index = this->getSectionIndex(Sym); | 
|  | if (Index >= this->Sections.size()) | 
|  | fatal(toString(this) + ": invalid section index: " + Twine(Index)); | 
|  | InputSectionBase *S = this->Sections[Index]; | 
|  |  | 
|  | // We found that GNU assembler 2.17.50 [FreeBSD] 2007-07-03 could | 
|  | // generate broken objects. STT_SECTION/STT_NOTYPE symbols can be | 
|  | // associated with SHT_REL[A]/SHT_SYMTAB/SHT_STRTAB sections. | 
|  | // In this case it is fine for section to be null here as we do not | 
|  | // allocate sections of these types. | 
|  | if (!S) { | 
|  | if (Index == 0 || Sym.getType() == STT_SECTION || | 
|  | Sym.getType() == STT_NOTYPE) | 
|  | return nullptr; | 
|  | fatal(toString(this) + ": invalid section index: " + Twine(Index)); | 
|  | } | 
|  |  | 
|  | if (S == &InputSection::Discarded) | 
|  | return S; | 
|  | return S->Repl; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | SymbolBody *ObjFile<ELFT>::createSymbolBody(const Elf_Sym *Sym) { | 
|  | int Binding = Sym->getBinding(); | 
|  | InputSectionBase *Sec = getSection(*Sym); | 
|  |  | 
|  | uint8_t StOther = Sym->st_other; | 
|  | uint8_t Type = Sym->getType(); | 
|  | uint64_t Value = Sym->st_value; | 
|  | uint64_t Size = Sym->st_size; | 
|  |  | 
|  | if (Binding == STB_LOCAL) { | 
|  | if (Sym->getType() == STT_FILE) | 
|  | SourceFile = check(Sym->getName(this->StringTable), toString(this)); | 
|  |  | 
|  | if (this->StringTable.size() <= Sym->st_name) | 
|  | fatal(toString(this) + ": invalid symbol name offset"); | 
|  |  | 
|  | StringRefZ Name = this->StringTable.data() + Sym->st_name; | 
|  | if (Sym->st_shndx == SHN_UNDEF) | 
|  | return make<Undefined>(Name, /*IsLocal=*/true, StOther, Type); | 
|  |  | 
|  | return make<DefinedRegular>(Name, /*IsLocal=*/true, StOther, Type, Value, | 
|  | Size, Sec); | 
|  | } | 
|  |  | 
|  | StringRef Name = check(Sym->getName(this->StringTable), toString(this)); | 
|  |  | 
|  | switch (Sym->st_shndx) { | 
|  | case SHN_UNDEF: | 
|  | return Symtab | 
|  | ->addUndefined<ELFT>(Name, /*IsLocal=*/false, Binding, StOther, Type, | 
|  | /*CanOmitFromDynSym=*/false, this) | 
|  | ->body(); | 
|  | case SHN_COMMON: | 
|  | if (Value == 0 || Value >= UINT32_MAX) | 
|  | fatal(toString(this) + ": common symbol '" + Name + | 
|  | "' has invalid alignment: " + Twine(Value)); | 
|  | return Symtab->addCommon(Name, Size, Value, Binding, StOther, Type, this) | 
|  | ->body(); | 
|  | } | 
|  |  | 
|  | switch (Binding) { | 
|  | default: | 
|  | fatal(toString(this) + ": unexpected binding: " + Twine(Binding)); | 
|  | case STB_GLOBAL: | 
|  | case STB_WEAK: | 
|  | case STB_GNU_UNIQUE: | 
|  | if (Sec == &InputSection::Discarded) | 
|  | return Symtab | 
|  | ->addUndefined<ELFT>(Name, /*IsLocal=*/false, Binding, StOther, Type, | 
|  | /*CanOmitFromDynSym=*/false, this) | 
|  | ->body(); | 
|  | return Symtab | 
|  | ->addRegular<ELFT>(Name, StOther, Type, Value, Size, Binding, Sec, this) | 
|  | ->body(); | 
|  | } | 
|  | } | 
|  |  | 
|  | ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File) | 
|  | : InputFile(ArchiveKind, File->getMemoryBufferRef()), | 
|  | File(std::move(File)) {} | 
|  |  | 
|  | template <class ELFT> void ArchiveFile::parse() { | 
|  | Symbols.reserve(File->getNumberOfSymbols()); | 
|  | for (const Archive::Symbol &Sym : File->symbols()) | 
|  | Symbols.push_back( | 
|  | Symtab->addLazyArchive<ELFT>(Sym.getName(), this, Sym)->body()); | 
|  | } | 
|  |  | 
|  | // Returns a buffer pointing to a member file containing a given symbol. | 
|  | std::pair<MemoryBufferRef, uint64_t> | 
|  | ArchiveFile::getMember(const Archive::Symbol *Sym) { | 
|  | Archive::Child C = | 
|  | check(Sym->getMember(), toString(this) + | 
|  | ": could not get the member for symbol " + | 
|  | Sym->getName()); | 
|  |  | 
|  | if (!Seen.insert(C.getChildOffset()).second) | 
|  | return {MemoryBufferRef(), 0}; | 
|  |  | 
|  | MemoryBufferRef Ret = | 
|  | check(C.getMemoryBufferRef(), | 
|  | toString(this) + | 
|  | ": could not get the buffer for the member defining symbol " + | 
|  | Sym->getName()); | 
|  |  | 
|  | if (C.getParent()->isThin() && Tar) | 
|  | Tar->append(relativeToRoot(check(C.getFullName(), toString(this))), | 
|  | Ret.getBuffer()); | 
|  | if (C.getParent()->isThin()) | 
|  | return {Ret, 0}; | 
|  | return {Ret, C.getChildOffset()}; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | SharedFile<ELFT>::SharedFile(MemoryBufferRef M, StringRef DefaultSoName) | 
|  | : ELFFileBase<ELFT>(Base::SharedKind, M), SoName(DefaultSoName), | 
|  | AsNeeded(Config->AsNeeded) {} | 
|  |  | 
|  | template <class ELFT> | 
|  | const typename ELFT::Shdr * | 
|  | SharedFile<ELFT>::getSection(const Elf_Sym &Sym) const { | 
|  | return check( | 
|  | this->getObj().getSection(&Sym, this->ELFSyms, this->SymtabSHNDX), | 
|  | toString(this)); | 
|  | } | 
|  |  | 
|  | // Partially parse the shared object file so that we can call | 
|  | // getSoName on this object. | 
|  | template <class ELFT> void SharedFile<ELFT>::parseSoName() { | 
|  | const Elf_Shdr *DynamicSec = nullptr; | 
|  | const ELFFile<ELFT> Obj = this->getObj(); | 
|  | ArrayRef<Elf_Shdr> Sections = check(Obj.sections(), toString(this)); | 
|  |  | 
|  | // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. | 
|  | for (const Elf_Shdr &Sec : Sections) { | 
|  | switch (Sec.sh_type) { | 
|  | default: | 
|  | continue; | 
|  | case SHT_DYNSYM: | 
|  | this->initSymtab(Sections, &Sec); | 
|  | break; | 
|  | case SHT_DYNAMIC: | 
|  | DynamicSec = &Sec; | 
|  | break; | 
|  | case SHT_SYMTAB_SHNDX: | 
|  | this->SymtabSHNDX = | 
|  | check(Obj.getSHNDXTable(Sec, Sections), toString(this)); | 
|  | break; | 
|  | case SHT_GNU_versym: | 
|  | this->VersymSec = &Sec; | 
|  | break; | 
|  | case SHT_GNU_verdef: | 
|  | this->VerdefSec = &Sec; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (this->VersymSec && this->ELFSyms.empty()) | 
|  | error("SHT_GNU_versym should be associated with symbol table"); | 
|  |  | 
|  | // Search for a DT_SONAME tag to initialize this->SoName. | 
|  | if (!DynamicSec) | 
|  | return; | 
|  | ArrayRef<Elf_Dyn> Arr = | 
|  | check(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), | 
|  | toString(this)); | 
|  | for (const Elf_Dyn &Dyn : Arr) { | 
|  | if (Dyn.d_tag == DT_SONAME) { | 
|  | uint64_t Val = Dyn.getVal(); | 
|  | if (Val >= this->StringTable.size()) | 
|  | fatal(toString(this) + ": invalid DT_SONAME entry"); | 
|  | SoName = this->StringTable.data() + Val; | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Parse the version definitions in the object file if present. Returns a vector | 
|  | // whose nth element contains a pointer to the Elf_Verdef for version identifier | 
|  | // n. Version identifiers that are not definitions map to nullptr. The array | 
|  | // always has at least length 1. | 
|  | template <class ELFT> | 
|  | std::vector<const typename ELFT::Verdef *> | 
|  | SharedFile<ELFT>::parseVerdefs(const Elf_Versym *&Versym) { | 
|  | std::vector<const Elf_Verdef *> Verdefs(1); | 
|  | // We only need to process symbol versions for this DSO if it has both a | 
|  | // versym and a verdef section, which indicates that the DSO contains symbol | 
|  | // version definitions. | 
|  | if (!VersymSec || !VerdefSec) | 
|  | return Verdefs; | 
|  |  | 
|  | // The location of the first global versym entry. | 
|  | const char *Base = this->MB.getBuffer().data(); | 
|  | Versym = reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) + | 
|  | this->FirstNonLocal; | 
|  |  | 
|  | // We cannot determine the largest verdef identifier without inspecting | 
|  | // every Elf_Verdef, but both bfd and gold assign verdef identifiers | 
|  | // sequentially starting from 1, so we predict that the largest identifier | 
|  | // will be VerdefCount. | 
|  | unsigned VerdefCount = VerdefSec->sh_info; | 
|  | Verdefs.resize(VerdefCount + 1); | 
|  |  | 
|  | // Build the Verdefs array by following the chain of Elf_Verdef objects | 
|  | // from the start of the .gnu.version_d section. | 
|  | const char *Verdef = Base + VerdefSec->sh_offset; | 
|  | for (unsigned I = 0; I != VerdefCount; ++I) { | 
|  | auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); | 
|  | Verdef += CurVerdef->vd_next; | 
|  | unsigned VerdefIndex = CurVerdef->vd_ndx; | 
|  | if (Verdefs.size() <= VerdefIndex) | 
|  | Verdefs.resize(VerdefIndex + 1); | 
|  | Verdefs[VerdefIndex] = CurVerdef; | 
|  | } | 
|  |  | 
|  | return Verdefs; | 
|  | } | 
|  |  | 
|  | // Fully parse the shared object file. This must be called after parseSoName(). | 
|  | template <class ELFT> void SharedFile<ELFT>::parseRest() { | 
|  | // Create mapping from version identifiers to Elf_Verdef entries. | 
|  | const Elf_Versym *Versym = nullptr; | 
|  | std::vector<const Elf_Verdef *> Verdefs = parseVerdefs(Versym); | 
|  |  | 
|  | Elf_Sym_Range Syms = this->getGlobalELFSyms(); | 
|  | for (const Elf_Sym &Sym : Syms) { | 
|  | unsigned VersymIndex = 0; | 
|  | if (Versym) { | 
|  | VersymIndex = Versym->vs_index; | 
|  | ++Versym; | 
|  | } | 
|  | bool Hidden = VersymIndex & VERSYM_HIDDEN; | 
|  | VersymIndex = VersymIndex & ~VERSYM_HIDDEN; | 
|  |  | 
|  | StringRef Name = check(Sym.getName(this->StringTable), toString(this)); | 
|  | if (Sym.isUndefined()) { | 
|  | Undefs.push_back(Name); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Ignore local symbols. | 
|  | if (Versym && VersymIndex == VER_NDX_LOCAL) | 
|  | continue; | 
|  | const Elf_Verdef *V = nullptr; | 
|  | if (VersymIndex != VER_NDX_GLOBAL) { | 
|  | if (VersymIndex >= Verdefs.size()) { | 
|  | error("corrupt input file: version definition index " + | 
|  | Twine(VersymIndex) + " for symbol " + Name + | 
|  | " is out of bounds\n>>> defined in " + toString(this)); | 
|  | continue; | 
|  | } | 
|  | V = Verdefs[VersymIndex]; | 
|  | } | 
|  |  | 
|  | if (!Hidden) | 
|  | Symtab->addShared(Name, this, Sym, V); | 
|  |  | 
|  | // Also add the symbol with the versioned name to handle undefined symbols | 
|  | // with explicit versions. | 
|  | if (V) { | 
|  | StringRef VerName = this->StringTable.data() + V->getAux()->vda_name; | 
|  | Name = Saver.save(Name + "@" + VerName); | 
|  | Symtab->addShared(Name, this, Sym, V); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static ELFKind getBitcodeELFKind(const Triple &T) { | 
|  | if (T.isLittleEndian()) | 
|  | return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; | 
|  | return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; | 
|  | } | 
|  |  | 
|  | static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) { | 
|  | switch (T.getArch()) { | 
|  | case Triple::aarch64: | 
|  | return EM_AARCH64; | 
|  | case Triple::arm: | 
|  | case Triple::thumb: | 
|  | return EM_ARM; | 
|  | case Triple::avr: | 
|  | return EM_AVR; | 
|  | case Triple::mips: | 
|  | case Triple::mipsel: | 
|  | case Triple::mips64: | 
|  | case Triple::mips64el: | 
|  | return EM_MIPS; | 
|  | case Triple::ppc: | 
|  | return EM_PPC; | 
|  | case Triple::ppc64: | 
|  | return EM_PPC64; | 
|  | case Triple::x86: | 
|  | return T.isOSIAMCU() ? EM_IAMCU : EM_386; | 
|  | case Triple::x86_64: | 
|  | return EM_X86_64; | 
|  | default: | 
|  | fatal(Path + ": could not infer e_machine from bitcode target triple " + | 
|  | T.str()); | 
|  | } | 
|  | } | 
|  |  | 
|  | BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName, | 
|  | uint64_t OffsetInArchive) | 
|  | : InputFile(BitcodeKind, MB) { | 
|  | this->ArchiveName = ArchiveName; | 
|  |  | 
|  | // Here we pass a new MemoryBufferRef which is identified by ArchiveName | 
|  | // (the fully resolved path of the archive) + member name + offset of the | 
|  | // member in the archive. | 
|  | // ThinLTO uses the MemoryBufferRef identifier to access its internal | 
|  | // data structures and if two archives define two members with the same name, | 
|  | // this causes a collision which result in only one of the objects being | 
|  | // taken into consideration at LTO time (which very likely causes undefined | 
|  | // symbols later in the link stage). | 
|  | MemoryBufferRef MBRef(MB.getBuffer(), | 
|  | Saver.save(ArchiveName + MB.getBufferIdentifier() + | 
|  | utostr(OffsetInArchive))); | 
|  | Obj = check(lto::InputFile::create(MBRef), toString(this)); | 
|  |  | 
|  | Triple T(Obj->getTargetTriple()); | 
|  | EKind = getBitcodeELFKind(T); | 
|  | EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T); | 
|  | } | 
|  |  | 
|  | static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { | 
|  | switch (GvVisibility) { | 
|  | case GlobalValue::DefaultVisibility: | 
|  | return STV_DEFAULT; | 
|  | case GlobalValue::HiddenVisibility: | 
|  | return STV_HIDDEN; | 
|  | case GlobalValue::ProtectedVisibility: | 
|  | return STV_PROTECTED; | 
|  | } | 
|  | llvm_unreachable("unknown visibility"); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats, | 
|  | const lto::InputFile::Symbol &ObjSym, | 
|  | BitcodeFile *F) { | 
|  | StringRef NameRef = Saver.save(ObjSym.getName()); | 
|  | uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL; | 
|  |  | 
|  | uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; | 
|  | uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); | 
|  | bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); | 
|  |  | 
|  | int C = ObjSym.getComdatIndex(); | 
|  | if (C != -1 && !KeptComdats[C]) | 
|  | return Symtab->addUndefined<ELFT>(NameRef, /*IsLocal=*/false, Binding, | 
|  | Visibility, Type, CanOmitFromDynSym, F); | 
|  |  | 
|  | if (ObjSym.isUndefined()) | 
|  | return Symtab->addUndefined<ELFT>(NameRef, /*IsLocal=*/false, Binding, | 
|  | Visibility, Type, CanOmitFromDynSym, F); | 
|  |  | 
|  | if (ObjSym.isCommon()) | 
|  | return Symtab->addCommon(NameRef, ObjSym.getCommonSize(), | 
|  | ObjSym.getCommonAlignment(), Binding, Visibility, | 
|  | STT_OBJECT, F); | 
|  |  | 
|  | return Symtab->addBitcode(NameRef, Binding, Visibility, Type, | 
|  | CanOmitFromDynSym, F); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { | 
|  | std::vector<bool> KeptComdats; | 
|  | for (StringRef S : Obj->getComdatTable()) | 
|  | KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second); | 
|  |  | 
|  | for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) | 
|  | Symbols.push_back( | 
|  | createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, this)->body()); | 
|  | } | 
|  |  | 
|  | static ELFKind getELFKind(MemoryBufferRef MB) { | 
|  | unsigned char Size; | 
|  | unsigned char Endian; | 
|  | std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); | 
|  |  | 
|  | if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) | 
|  | fatal(MB.getBufferIdentifier() + ": invalid data encoding"); | 
|  | if (Size != ELFCLASS32 && Size != ELFCLASS64) | 
|  | fatal(MB.getBufferIdentifier() + ": invalid file class"); | 
|  |  | 
|  | size_t BufSize = MB.getBuffer().size(); | 
|  | if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) || | 
|  | (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr))) | 
|  | fatal(MB.getBufferIdentifier() + ": file is too short"); | 
|  |  | 
|  | if (Size == ELFCLASS32) | 
|  | return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; | 
|  | return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void BinaryFile::parse() { | 
|  | ArrayRef<uint8_t> Data = toArrayRef(MB.getBuffer()); | 
|  | auto *Section = | 
|  | make<InputSection>(SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 8, Data, ".data"); | 
|  | Sections.push_back(Section); | 
|  |  | 
|  | // For each input file foo that is embedded to a result as a binary | 
|  | // blob, we define _binary_foo_{start,end,size} symbols, so that | 
|  | // user programs can access blobs by name. Non-alphanumeric | 
|  | // characters in a filename are replaced with underscore. | 
|  | std::string S = "_binary_" + MB.getBufferIdentifier().str(); | 
|  | for (size_t I = 0; I < S.size(); ++I) | 
|  | if (!isAlnum(S[I])) | 
|  | S[I] = '_'; | 
|  |  | 
|  | Symtab->addRegular<ELFT>(Saver.save(S + "_start"), STV_DEFAULT, STT_OBJECT, | 
|  | 0, 0, STB_GLOBAL, Section, nullptr); | 
|  | Symtab->addRegular<ELFT>(Saver.save(S + "_end"), STV_DEFAULT, STT_OBJECT, | 
|  | Data.size(), 0, STB_GLOBAL, Section, nullptr); | 
|  | Symtab->addRegular<ELFT>(Saver.save(S + "_size"), STV_DEFAULT, STT_OBJECT, | 
|  | Data.size(), 0, STB_GLOBAL, nullptr, nullptr); | 
|  | } | 
|  |  | 
|  | static bool isBitcode(MemoryBufferRef MB) { | 
|  | using namespace sys::fs; | 
|  | return identify_magic(MB.getBuffer()) == file_magic::bitcode; | 
|  | } | 
|  |  | 
|  | InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, | 
|  | uint64_t OffsetInArchive) { | 
|  | if (isBitcode(MB)) | 
|  | return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive); | 
|  |  | 
|  | switch (getELFKind(MB)) { | 
|  | case ELF32LEKind: | 
|  | return make<ObjFile<ELF32LE>>(MB, ArchiveName); | 
|  | case ELF32BEKind: | 
|  | return make<ObjFile<ELF32BE>>(MB, ArchiveName); | 
|  | case ELF64LEKind: | 
|  | return make<ObjFile<ELF64LE>>(MB, ArchiveName); | 
|  | case ELF64BEKind: | 
|  | return make<ObjFile<ELF64BE>>(MB, ArchiveName); | 
|  | default: | 
|  | llvm_unreachable("getELFKind"); | 
|  | } | 
|  | } | 
|  |  | 
|  | InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) { | 
|  | switch (getELFKind(MB)) { | 
|  | case ELF32LEKind: | 
|  | return make<SharedFile<ELF32LE>>(MB, DefaultSoName); | 
|  | case ELF32BEKind: | 
|  | return make<SharedFile<ELF32BE>>(MB, DefaultSoName); | 
|  | case ELF64LEKind: | 
|  | return make<SharedFile<ELF64LE>>(MB, DefaultSoName); | 
|  | case ELF64BEKind: | 
|  | return make<SharedFile<ELF64BE>>(MB, DefaultSoName); | 
|  | default: | 
|  | llvm_unreachable("getELFKind"); | 
|  | } | 
|  | } | 
|  |  | 
|  | MemoryBufferRef LazyObjFile::getBuffer() { | 
|  | if (Seen) | 
|  | return MemoryBufferRef(); | 
|  | Seen = true; | 
|  | return MB; | 
|  | } | 
|  |  | 
|  | InputFile *LazyObjFile::fetch() { | 
|  | MemoryBufferRef MBRef = getBuffer(); | 
|  | if (MBRef.getBuffer().empty()) | 
|  | return nullptr; | 
|  | return createObjectFile(MBRef, ArchiveName, OffsetInArchive); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void LazyObjFile::parse() { | 
|  | for (StringRef Sym : getSymbolNames()) | 
|  | Symtab->addLazyObject<ELFT>(Sym, *this); | 
|  | } | 
|  |  | 
|  | template <class ELFT> std::vector<StringRef> LazyObjFile::getElfSymbols() { | 
|  | typedef typename ELFT::Shdr Elf_Shdr; | 
|  | typedef typename ELFT::Sym Elf_Sym; | 
|  | typedef typename ELFT::SymRange Elf_Sym_Range; | 
|  |  | 
|  | ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(this->MB.getBuffer())); | 
|  | ArrayRef<Elf_Shdr> Sections = check(Obj.sections(), toString(this)); | 
|  | for (const Elf_Shdr &Sec : Sections) { | 
|  | if (Sec.sh_type != SHT_SYMTAB) | 
|  | continue; | 
|  |  | 
|  | Elf_Sym_Range Syms = check(Obj.symbols(&Sec), toString(this)); | 
|  | uint32_t FirstNonLocal = Sec.sh_info; | 
|  | StringRef StringTable = | 
|  | check(Obj.getStringTableForSymtab(Sec, Sections), toString(this)); | 
|  | std::vector<StringRef> V; | 
|  |  | 
|  | for (const Elf_Sym &Sym : Syms.slice(FirstNonLocal)) | 
|  | if (Sym.st_shndx != SHN_UNDEF) | 
|  | V.push_back(check(Sym.getName(StringTable), toString(this))); | 
|  | return V; | 
|  | } | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | std::vector<StringRef> LazyObjFile::getBitcodeSymbols() { | 
|  | std::unique_ptr<lto::InputFile> Obj = | 
|  | check(lto::InputFile::create(this->MB), toString(this)); | 
|  | std::vector<StringRef> V; | 
|  | for (const lto::InputFile::Symbol &Sym : Obj->symbols()) | 
|  | if (!Sym.isUndefined()) | 
|  | V.push_back(Saver.save(Sym.getName())); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // Returns a vector of globally-visible defined symbol names. | 
|  | std::vector<StringRef> LazyObjFile::getSymbolNames() { | 
|  | if (isBitcode(this->MB)) | 
|  | return getBitcodeSymbols(); | 
|  |  | 
|  | switch (getELFKind(this->MB)) { | 
|  | case ELF32LEKind: | 
|  | return getElfSymbols<ELF32LE>(); | 
|  | case ELF32BEKind: | 
|  | return getElfSymbols<ELF32BE>(); | 
|  | case ELF64LEKind: | 
|  | return getElfSymbols<ELF64LE>(); | 
|  | case ELF64BEKind: | 
|  | return getElfSymbols<ELF64BE>(); | 
|  | default: | 
|  | llvm_unreachable("getELFKind"); | 
|  | } | 
|  | } | 
|  |  | 
|  | template void ArchiveFile::parse<ELF32LE>(); | 
|  | template void ArchiveFile::parse<ELF32BE>(); | 
|  | template void ArchiveFile::parse<ELF64LE>(); | 
|  | template void ArchiveFile::parse<ELF64BE>(); | 
|  |  | 
|  | template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &); | 
|  | template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &); | 
|  | template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &); | 
|  | template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &); | 
|  |  | 
|  | template void LazyObjFile::parse<ELF32LE>(); | 
|  | template void LazyObjFile::parse<ELF32BE>(); | 
|  | template void LazyObjFile::parse<ELF64LE>(); | 
|  | template void LazyObjFile::parse<ELF64BE>(); | 
|  |  | 
|  | template class elf::ELFFileBase<ELF32LE>; | 
|  | template class elf::ELFFileBase<ELF32BE>; | 
|  | template class elf::ELFFileBase<ELF64LE>; | 
|  | template class elf::ELFFileBase<ELF64BE>; | 
|  |  | 
|  | template class elf::ObjFile<ELF32LE>; | 
|  | template class elf::ObjFile<ELF32BE>; | 
|  | template class elf::ObjFile<ELF64LE>; | 
|  | template class elf::ObjFile<ELF64BE>; | 
|  |  | 
|  | template class elf::SharedFile<ELF32LE>; | 
|  | template class elf::SharedFile<ELF32BE>; | 
|  | template class elf::SharedFile<ELF64LE>; | 
|  | template class elf::SharedFile<ELF64BE>; | 
|  |  | 
|  | template void BinaryFile::parse<ELF32LE>(); | 
|  | template void BinaryFile::parse<ELF32BE>(); | 
|  | template void BinaryFile::parse<ELF64LE>(); | 
|  | template void BinaryFile::parse<ELF64BE>(); |