AMDGPU: Unify divergent function exits.

StructurizeCFG can't handle cases with multiple
returns creating regions with multiple exits.
Create a copy of UnifyFunctionExitNodes that only
unifies exit nodes that skips exit nodes
with uniform branch sources.

llvm-svn: 298729
diff --git a/llvm/lib/Target/AMDGPU/AMDGPUUnifyDivergentExitNodes.cpp b/llvm/lib/Target/AMDGPU/AMDGPUUnifyDivergentExitNodes.cpp
new file mode 100644
index 0000000..309913f
--- /dev/null
+++ b/llvm/lib/Target/AMDGPU/AMDGPUUnifyDivergentExitNodes.cpp
@@ -0,0 +1,225 @@
+//===- AMDGPUUnifyDivergentExitNodes.cpp ----------------------------------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This is a variant of the UnifyDivergentExitNodes pass. Rather than ensuring
+// there is at most one ret and one unreachable instruction, it ensures there is
+// at most one divergent exiting block.
+//
+// StructurizeCFG can't deal with multi-exit regions formed by branches to
+// multiple return nodes. It is not desirable to structurize regions with
+// uniform branches, so unifying those to the same return block as divergent
+// branches inhibits use of scalar branching. It still can't deal with the case
+// where one branch goes to return, and one unreachable. Replace unreachable in
+// this case with a return.
+//
+//===----------------------------------------------------------------------===//
+
+#include "AMDGPU.h"
+#include "llvm/ADT/DepthFirstIterator.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/Analysis/DivergenceAnalysis.h"
+#include "llvm/Analysis/PostDominators.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/Local.h"
+using namespace llvm;
+
+#define DEBUG_TYPE "amdgpu-unify-divergent-exit-nodes"
+
+namespace {
+
+class AMDGPUUnifyDivergentExitNodes : public FunctionPass {
+public:
+  static char ID; // Pass identification, replacement for typeid
+  AMDGPUUnifyDivergentExitNodes() : FunctionPass(ID) {
+    initializeAMDGPUUnifyDivergentExitNodesPass(*PassRegistry::getPassRegistry());
+  }
+
+  // We can preserve non-critical-edgeness when we unify function exit nodes
+  void getAnalysisUsage(AnalysisUsage &AU) const override;
+  bool runOnFunction(Function &F) override;
+};
+
+}
+
+char AMDGPUUnifyDivergentExitNodes::ID = 0;
+INITIALIZE_PASS_BEGIN(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE,
+                     "Unify divergent function exit nodes", false, false)
+INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(DivergenceAnalysis)
+INITIALIZE_PASS_END(AMDGPUUnifyDivergentExitNodes, DEBUG_TYPE,
+                    "Unify divergent function exit nodes", false, false)
+
+char &llvm::AMDGPUUnifyDivergentExitNodesID = AMDGPUUnifyDivergentExitNodes::ID;
+
+void AMDGPUUnifyDivergentExitNodes::getAnalysisUsage(AnalysisUsage &AU) const{
+  // TODO: Preserve dominator tree.
+  AU.addRequired<PostDominatorTreeWrapperPass>();
+
+  AU.addRequired<DivergenceAnalysis>();
+
+  // No divergent values are changed, only blocks and branch edges.
+  AU.addPreserved<DivergenceAnalysis>();
+
+  // We preserve the non-critical-edgeness property
+  AU.addPreservedID(BreakCriticalEdgesID);
+
+  // This is a cluster of orthogonal Transforms
+  AU.addPreservedID(LowerSwitchID);
+  FunctionPass::getAnalysisUsage(AU);
+
+  AU.addRequired<TargetTransformInfoWrapperPass>();
+}
+
+/// \returns true if \p BB is reachable through only uniform branches.
+/// XXX - Is there a more efficient way to find this?
+static bool isUniformlyReached(const DivergenceAnalysis &DA,
+                               BasicBlock &BB) {
+  SmallVector<BasicBlock *, 8> Stack;
+  SmallPtrSet<BasicBlock *, 8> Visited;
+
+  for (BasicBlock *Pred : predecessors(&BB))
+    Stack.push_back(Pred);
+
+  while (!Stack.empty()) {
+    BasicBlock *Top = Stack.pop_back_val();
+    if (!DA.isUniform(Top->getTerminator()))
+      return false;
+
+    for (BasicBlock *Pred : predecessors(Top)) {
+      if (Visited.insert(Pred).second)
+        Stack.push_back(Pred);
+    }
+  }
+
+  return true;
+}
+
+static BasicBlock *unifyReturnBlockSet(Function &F,
+                                       ArrayRef<BasicBlock *> ReturningBlocks,
+                                       const TargetTransformInfo &TTI,
+                                       StringRef Name) {
+  // Otherwise, we need to insert a new basic block into the function, add a PHI
+  // nodes (if the function returns values), and convert all of the return
+  // instructions into unconditional branches.
+  //
+  BasicBlock *NewRetBlock = BasicBlock::Create(F.getContext(), Name, &F);
+
+  PHINode *PN = nullptr;
+  if (F.getReturnType()->isVoidTy()) {
+    ReturnInst::Create(F.getContext(), nullptr, NewRetBlock);
+  } else {
+    // If the function doesn't return void... add a PHI node to the block...
+    PN = PHINode::Create(F.getReturnType(), ReturningBlocks.size(),
+                         "UnifiedRetVal");
+    NewRetBlock->getInstList().push_back(PN);
+    ReturnInst::Create(F.getContext(), PN, NewRetBlock);
+  }
+
+  // Loop over all of the blocks, replacing the return instruction with an
+  // unconditional branch.
+  //
+  for (BasicBlock *BB : ReturningBlocks) {
+    // Add an incoming element to the PHI node for every return instruction that
+    // is merging into this new block...
+    if (PN)
+      PN->addIncoming(BB->getTerminator()->getOperand(0), BB);
+
+    BB->getInstList().pop_back();  // Remove the return insn
+    BranchInst::Create(NewRetBlock, BB);
+  }
+
+  for (BasicBlock *BB : ReturningBlocks) {
+    // Cleanup possible branch to unconditional branch to the return.
+    SimplifyCFG(BB, TTI, 2);
+  }
+
+  return NewRetBlock;
+}
+
+bool AMDGPUUnifyDivergentExitNodes::runOnFunction(Function &F) {
+  auto &PDT = getAnalysis<PostDominatorTreeWrapperPass>().getPostDomTree();
+  if (PDT.getRoots().size() <= 1)
+    return false;
+
+  DivergenceAnalysis &DA = getAnalysis<DivergenceAnalysis>();
+
+  // Loop over all of the blocks in a function, tracking all of the blocks that
+  // return.
+  //
+  SmallVector<BasicBlock *, 4> ReturningBlocks;
+  SmallVector<BasicBlock *, 4> UnreachableBlocks;
+
+  for (BasicBlock *BB : PDT.getRoots()) {
+    if (isa<ReturnInst>(BB->getTerminator())) {
+      if (!isUniformlyReached(DA, *BB))
+        ReturningBlocks.push_back(BB);
+    } else if (isa<UnreachableInst>(BB->getTerminator())) {
+      if (!isUniformlyReached(DA, *BB))
+        UnreachableBlocks.push_back(BB);
+    }
+  }
+
+  if (!UnreachableBlocks.empty()) {
+    BasicBlock *UnreachableBlock = nullptr;
+
+    if (UnreachableBlocks.size() == 1) {
+      UnreachableBlock = UnreachableBlocks.front();
+    } else {
+      UnreachableBlock = BasicBlock::Create(F.getContext(),
+                                            "UnifiedUnreachableBlock", &F);
+      new UnreachableInst(F.getContext(), UnreachableBlock);
+
+      for (BasicBlock *BB : UnreachableBlocks) {
+        BB->getInstList().pop_back();  // Remove the unreachable inst.
+        BranchInst::Create(UnreachableBlock, BB);
+      }
+    }
+
+    if (!ReturningBlocks.empty()) {
+      // Don't create a new unreachable inst if we have a return. The
+      // structurizer/annotator can't handle the multiple exits
+
+      Type *RetTy = F.getReturnType();
+      Value *RetVal = RetTy->isVoidTy() ? nullptr : UndefValue::get(RetTy);
+      UnreachableBlock->getInstList().pop_back();  // Remove the unreachable inst.
+
+      Function *UnreachableIntrin =
+        Intrinsic::getDeclaration(F.getParent(), Intrinsic::amdgcn_unreachable);
+
+      // Insert a call to an intrinsic tracking that this is an unreachable
+      // point, in case we want to kill the active lanes or something later.
+      CallInst::Create(UnreachableIntrin, {}, "", UnreachableBlock);
+
+      // Don't create a scalar trap. We would only want to trap if this code was
+      // really reached, but a scalar trap would happen even if no lanes
+      // actually reached here.
+      ReturnInst::Create(F.getContext(), RetVal, UnreachableBlock);
+      ReturningBlocks.push_back(UnreachableBlock);
+    }
+  }
+
+  // Now handle return blocks.
+  if (ReturningBlocks.empty())
+    return false; // No blocks return
+
+  if (ReturningBlocks.size() == 1)
+    return false; // Already has a single return block
+
+  const TargetTransformInfo &TTI
+    = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
+
+  unifyReturnBlockSet(F, ReturningBlocks, TTI, "UnifiedReturnBlock");
+  return true;
+}