|  | //===- OutputSections.cpp -------------------------------------------------===// | 
|  | // | 
|  | //                             The LLVM Linker | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "OutputSections.h" | 
|  | #include "Config.h" | 
|  | #include "LinkerScript.h" | 
|  | #include "Memory.h" | 
|  | #include "Strings.h" | 
|  | #include "SymbolTable.h" | 
|  | #include "SyntheticSections.h" | 
|  | #include "Target.h" | 
|  | #include "Threads.h" | 
|  | #include "llvm/BinaryFormat/Dwarf.h" | 
|  | #include "llvm/Support/Compression.h" | 
|  | #include "llvm/Support/MD5.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/SHA1.h" | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::dwarf; | 
|  | using namespace llvm::object; | 
|  | using namespace llvm::support::endian; | 
|  | using namespace llvm::ELF; | 
|  |  | 
|  | using namespace lld; | 
|  | using namespace lld::elf; | 
|  |  | 
|  | uint8_t Out::First; | 
|  | OutputSection *Out::Opd; | 
|  | uint8_t *Out::OpdBuf; | 
|  | PhdrEntry *Out::TlsPhdr; | 
|  | OutputSection *Out::DebugInfo; | 
|  | OutputSection *Out::ElfHeader; | 
|  | OutputSection *Out::ProgramHeaders; | 
|  | OutputSection *Out::PreinitArray; | 
|  | OutputSection *Out::InitArray; | 
|  | OutputSection *Out::FiniArray; | 
|  |  | 
|  | std::vector<OutputSection *> elf::OutputSections; | 
|  |  | 
|  | uint32_t OutputSection::getPhdrFlags() const { | 
|  | uint32_t Ret = PF_R; | 
|  | if (Flags & SHF_WRITE) | 
|  | Ret |= PF_W; | 
|  | if (Flags & SHF_EXECINSTR) | 
|  | Ret |= PF_X; | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void OutputSection::writeHeaderTo(typename ELFT::Shdr *Shdr) { | 
|  | Shdr->sh_entsize = Entsize; | 
|  | Shdr->sh_addralign = Alignment; | 
|  | Shdr->sh_type = Type; | 
|  | Shdr->sh_offset = Offset; | 
|  | Shdr->sh_flags = Flags; | 
|  | Shdr->sh_info = Info; | 
|  | Shdr->sh_link = Link; | 
|  | Shdr->sh_addr = Addr; | 
|  | Shdr->sh_size = Size; | 
|  | Shdr->sh_name = ShName; | 
|  | } | 
|  |  | 
|  | OutputSection::OutputSection(StringRef Name, uint32_t Type, uint64_t Flags) | 
|  | : BaseCommand(OutputSectionKind), | 
|  | SectionBase(Output, Name, Flags, /*Entsize*/ 0, /*Alignment*/ 1, Type, | 
|  | /*Info*/ 0, | 
|  | /*Link*/ 0), | 
|  | SectionIndex(INT_MAX) { | 
|  | Live = false; | 
|  | } | 
|  |  | 
|  | void OutputSection::addSection(InputSection *S) { | 
|  | assert(S->Live); | 
|  | Live = true; | 
|  | S->Parent = this; | 
|  | this->updateAlignment(S->Alignment); | 
|  |  | 
|  | // The actual offsets will be computed by assignAddresses. For now, use | 
|  | // crude approximation so that it is at least easy for other code to know the | 
|  | // section order. It is also used to calculate the output section size early | 
|  | // for compressed debug sections. | 
|  | S->OutSecOff = alignTo(Size, S->Alignment); | 
|  | this->Size = S->OutSecOff + S->getSize(); | 
|  |  | 
|  | // If this section contains a table of fixed-size entries, sh_entsize | 
|  | // holds the element size. Consequently, if this contains two or more | 
|  | // input sections, all of them must have the same sh_entsize. However, | 
|  | // you can put different types of input sections into one output | 
|  | // section by using linker scripts. I don't know what to do here. | 
|  | // Probably we sholuld handle that as an error. But for now we just | 
|  | // pick the largest sh_entsize. | 
|  | this->Entsize = std::max(this->Entsize, S->Entsize); | 
|  |  | 
|  | if (!S->Assigned) { | 
|  | S->Assigned = true; | 
|  | if (Commands.empty() || !isa<InputSectionDescription>(Commands.back())) | 
|  | Commands.push_back(make<InputSectionDescription>("")); | 
|  | auto *ISD = cast<InputSectionDescription>(Commands.back()); | 
|  | ISD->Sections.push_back(S); | 
|  | } | 
|  | } | 
|  |  | 
|  | static SectionKey createKey(InputSectionBase *C, StringRef OutsecName) { | 
|  | //  The ELF spec just says | 
|  | // ---------------------------------------------------------------- | 
|  | // In the first phase, input sections that match in name, type and | 
|  | // attribute flags should be concatenated into single sections. | 
|  | // ---------------------------------------------------------------- | 
|  | // | 
|  | // However, it is clear that at least some flags have to be ignored for | 
|  | // section merging. At the very least SHF_GROUP and SHF_COMPRESSED have to be | 
|  | // ignored. We should not have two output .text sections just because one was | 
|  | // in a group and another was not for example. | 
|  | // | 
|  | // It also seems that that wording was a late addition and didn't get the | 
|  | // necessary scrutiny. | 
|  | // | 
|  | // Merging sections with different flags is expected by some users. One | 
|  | // reason is that if one file has | 
|  | // | 
|  | // int *const bar __attribute__((section(".foo"))) = (int *)0; | 
|  | // | 
|  | // gcc with -fPIC will produce a read only .foo section. But if another | 
|  | // file has | 
|  | // | 
|  | // int zed; | 
|  | // int *const bar __attribute__((section(".foo"))) = (int *)&zed; | 
|  | // | 
|  | // gcc with -fPIC will produce a read write section. | 
|  | // | 
|  | // Last but not least, when using linker script the merge rules are forced by | 
|  | // the script. Unfortunately, linker scripts are name based. This means that | 
|  | // expressions like *(.foo*) can refer to multiple input sections with | 
|  | // different flags. We cannot put them in different output sections or we | 
|  | // would produce wrong results for | 
|  | // | 
|  | // start = .; *(.foo.*) end = .; *(.bar) | 
|  | // | 
|  | // and a mapping of .foo1 and .bar1 to one section and .foo2 and .bar2 to | 
|  | // another. The problem is that there is no way to layout those output | 
|  | // sections such that the .foo sections are the only thing between the start | 
|  | // and end symbols. | 
|  | // | 
|  | // Given the above issues, we instead merge sections by name and error on | 
|  | // incompatible types and flags. | 
|  |  | 
|  | uint32_t Alignment = 0; | 
|  | uint64_t Flags = 0; | 
|  | if (Config->Relocatable && (C->Flags & SHF_MERGE)) { | 
|  | Alignment = std::max<uint64_t>(C->Alignment, C->Entsize); | 
|  | Flags = C->Flags & (SHF_MERGE | SHF_STRINGS); | 
|  | } | 
|  |  | 
|  | return SectionKey{OutsecName, Flags, Alignment}; | 
|  | } | 
|  |  | 
|  | OutputSectionFactory::OutputSectionFactory() {} | 
|  |  | 
|  | static uint64_t getIncompatibleFlags(uint64_t Flags) { | 
|  | return Flags & (SHF_ALLOC | SHF_TLS); | 
|  | } | 
|  |  | 
|  | // We allow sections of types listed below to merged into a | 
|  | // single progbits section. This is typically done by linker | 
|  | // scripts. Merging nobits and progbits will force disk space | 
|  | // to be allocated for nobits sections. Other ones don't require | 
|  | // any special treatment on top of progbits, so there doesn't | 
|  | // seem to be a harm in merging them. | 
|  | static bool canMergeToProgbits(unsigned Type) { | 
|  | return Type == SHT_NOBITS || Type == SHT_PROGBITS || Type == SHT_INIT_ARRAY || | 
|  | Type == SHT_PREINIT_ARRAY || Type == SHT_FINI_ARRAY || | 
|  | Type == SHT_NOTE; | 
|  | } | 
|  |  | 
|  | void elf::sortByOrder(MutableArrayRef<InputSection *> In, | 
|  | std::function<int(InputSectionBase *S)> Order) { | 
|  | typedef std::pair<int, InputSection *> Pair; | 
|  | auto Comp = [](const Pair &A, const Pair &B) { return A.first < B.first; }; | 
|  |  | 
|  | std::vector<Pair> V; | 
|  | for (InputSection *S : In) | 
|  | V.push_back({Order(S), S}); | 
|  | std::stable_sort(V.begin(), V.end(), Comp); | 
|  |  | 
|  | for (size_t I = 0; I < V.size(); ++I) | 
|  | In[I] = V[I].second; | 
|  | } | 
|  |  | 
|  | void elf::reportDiscarded(InputSectionBase *IS) { | 
|  | if (!Config->PrintGcSections) | 
|  | return; | 
|  | message("removing unused section from '" + IS->Name + "' in file '" + | 
|  | IS->File->getName() + "'"); | 
|  | } | 
|  |  | 
|  | static OutputSection *addSection(InputSectionBase *IS, StringRef OutsecName, | 
|  | OutputSection *Sec) { | 
|  | if (Sec && Sec->Live) { | 
|  | if (getIncompatibleFlags(Sec->Flags) != getIncompatibleFlags(IS->Flags)) | 
|  | error("incompatible section flags for " + Sec->Name + "\n>>> " + | 
|  | toString(IS) + ": 0x" + utohexstr(IS->Flags) + | 
|  | "\n>>> output section " + Sec->Name + ": 0x" + | 
|  | utohexstr(Sec->Flags)); | 
|  | if (Sec->Type != IS->Type) { | 
|  | if (canMergeToProgbits(Sec->Type) && canMergeToProgbits(IS->Type)) | 
|  | Sec->Type = SHT_PROGBITS; | 
|  | else | 
|  | error("section type mismatch for " + IS->Name + "\n>>> " + | 
|  | toString(IS) + ": " + | 
|  | getELFSectionTypeName(Config->EMachine, IS->Type) + | 
|  | "\n>>> output section " + Sec->Name + ": " + | 
|  | getELFSectionTypeName(Config->EMachine, Sec->Type)); | 
|  | } | 
|  | Sec->Flags |= IS->Flags; | 
|  | } else { | 
|  | if (!Sec) { | 
|  | Sec = Script->createOutputSection(OutsecName, "<internal>"); | 
|  | Script->Opt.Commands.push_back(Sec); | 
|  | } | 
|  | Sec->Type = IS->Type; | 
|  | Sec->Flags = IS->Flags; | 
|  | } | 
|  |  | 
|  | Sec->addSection(cast<InputSection>(IS)); | 
|  | return Sec; | 
|  | } | 
|  |  | 
|  | void OutputSectionFactory::addInputSec(InputSectionBase *IS, | 
|  | StringRef OutsecName, | 
|  | OutputSection *OS) { | 
|  | if (!IS->Live) { | 
|  | reportDiscarded(IS); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // If we have destination output section - use it directly. | 
|  | if (OS) { | 
|  | addSection(IS, OutsecName, OS); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Sections with SHT_GROUP or SHF_GROUP attributes reach here only when the -r | 
|  | // option is given. A section with SHT_GROUP defines a "section group", and | 
|  | // its members have SHF_GROUP attribute. Usually these flags have already been | 
|  | // stripped by InputFiles.cpp as section groups are processed and uniquified. | 
|  | // However, for the -r option, we want to pass through all section groups | 
|  | // as-is because adding/removing members or merging them with other groups | 
|  | // change their semantics. | 
|  | if (IS->Type == SHT_GROUP || (IS->Flags & SHF_GROUP)) { | 
|  | addSection(IS, OutsecName, nullptr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Imagine .zed : { *(.foo) *(.bar) } script. Both foo and bar may have | 
|  | // relocation sections .rela.foo and .rela.bar for example. Most tools do | 
|  | // not allow multiple REL[A] sections for output section. Hence we | 
|  | // should combine these relocation sections into single output. | 
|  | // We skip synthetic sections because it can be .rela.dyn/.rela.plt or any | 
|  | // other REL[A] sections created by linker itself. | 
|  | if (!isa<SyntheticSection>(IS) && | 
|  | (IS->Type == SHT_REL || IS->Type == SHT_RELA)) { | 
|  | auto *Sec = cast<InputSection>(IS); | 
|  | OutputSection *Out = Sec->getRelocatedSection()->getOutputSection(); | 
|  | Out->RelocationSection = addSection(IS, OutsecName, Out->RelocationSection); | 
|  | return; | 
|  | } | 
|  |  | 
|  | SectionKey Key = createKey(IS, OutsecName); | 
|  | OutputSection *&Sec = Map[Key]; | 
|  | Sec = addSection(IS, OutsecName, Sec); | 
|  | } | 
|  |  | 
|  | OutputSectionFactory::~OutputSectionFactory() {} | 
|  |  | 
|  | SectionKey DenseMapInfo<SectionKey>::getEmptyKey() { | 
|  | return SectionKey{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0}; | 
|  | } | 
|  |  | 
|  | SectionKey DenseMapInfo<SectionKey>::getTombstoneKey() { | 
|  | return SectionKey{DenseMapInfo<StringRef>::getTombstoneKey(), 0, 0}; | 
|  | } | 
|  |  | 
|  | unsigned DenseMapInfo<SectionKey>::getHashValue(const SectionKey &Val) { | 
|  | return hash_combine(Val.Name, Val.Flags, Val.Alignment); | 
|  | } | 
|  |  | 
|  | bool DenseMapInfo<SectionKey>::isEqual(const SectionKey &LHS, | 
|  | const SectionKey &RHS) { | 
|  | return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) && | 
|  | LHS.Flags == RHS.Flags && LHS.Alignment == RHS.Alignment; | 
|  | } | 
|  |  | 
|  | uint64_t elf::getHeaderSize() { | 
|  | if (Config->OFormatBinary) | 
|  | return 0; | 
|  | return Out::ElfHeader->Size + Out::ProgramHeaders->Size; | 
|  | } | 
|  |  | 
|  | bool OutputSection::classof(const BaseCommand *C) { | 
|  | return C->Kind == OutputSectionKind; | 
|  | } | 
|  |  | 
|  | void OutputSection::sort(std::function<int(InputSectionBase *S)> Order) { | 
|  | assert(Commands.size() == 1); | 
|  | sortByOrder(cast<InputSectionDescription>(Commands[0])->Sections, Order); | 
|  | } | 
|  |  | 
|  | // Fill [Buf, Buf + Size) with Filler. | 
|  | // This is used for linker script "=fillexp" command. | 
|  | static void fill(uint8_t *Buf, size_t Size, uint32_t Filler) { | 
|  | size_t I = 0; | 
|  | for (; I + 4 < Size; I += 4) | 
|  | memcpy(Buf + I, &Filler, 4); | 
|  | memcpy(Buf + I, &Filler, Size - I); | 
|  | } | 
|  |  | 
|  | // Compress section contents if this section contains debug info. | 
|  | template <class ELFT> void OutputSection::maybeCompress() { | 
|  | typedef typename ELFT::Chdr Elf_Chdr; | 
|  |  | 
|  | // Compress only DWARF debug sections. | 
|  | if (!Config->CompressDebugSections || (Flags & SHF_ALLOC) || | 
|  | !Name.startswith(".debug_")) | 
|  | return; | 
|  |  | 
|  | // Create a section header. | 
|  | ZDebugHeader.resize(sizeof(Elf_Chdr)); | 
|  | auto *Hdr = reinterpret_cast<Elf_Chdr *>(ZDebugHeader.data()); | 
|  | Hdr->ch_type = ELFCOMPRESS_ZLIB; | 
|  | Hdr->ch_size = Size; | 
|  | Hdr->ch_addralign = Alignment; | 
|  |  | 
|  | // Write section contents to a temporary buffer and compress it. | 
|  | std::vector<uint8_t> Buf(Size); | 
|  | writeTo<ELFT>(Buf.data()); | 
|  | if (Error E = zlib::compress(toStringRef(Buf), CompressedData)) | 
|  | fatal("compress failed: " + llvm::toString(std::move(E))); | 
|  |  | 
|  | // Update section headers. | 
|  | Size = sizeof(Elf_Chdr) + CompressedData.size(); | 
|  | Flags |= SHF_COMPRESSED; | 
|  | } | 
|  |  | 
|  | static void writeInt(uint8_t *Buf, uint64_t Data, uint64_t Size) { | 
|  | if (Size == 1) | 
|  | *Buf = Data; | 
|  | else if (Size == 2) | 
|  | write16(Buf, Data, Config->Endianness); | 
|  | else if (Size == 4) | 
|  | write32(Buf, Data, Config->Endianness); | 
|  | else if (Size == 8) | 
|  | write64(Buf, Data, Config->Endianness); | 
|  | else | 
|  | llvm_unreachable("unsupported Size argument"); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void OutputSection::writeTo(uint8_t *Buf) { | 
|  | if (Type == SHT_NOBITS) | 
|  | return; | 
|  |  | 
|  | Loc = Buf; | 
|  |  | 
|  | // If -compress-debug-section is specified and if this is a debug seciton, | 
|  | // we've already compressed section contents. If that's the case, | 
|  | // just write it down. | 
|  | if (!CompressedData.empty()) { | 
|  | memcpy(Buf, ZDebugHeader.data(), ZDebugHeader.size()); | 
|  | memcpy(Buf + ZDebugHeader.size(), CompressedData.data(), | 
|  | CompressedData.size()); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Write leading padding. | 
|  | std::vector<InputSection *> Sections; | 
|  | for (BaseCommand *Cmd : Commands) | 
|  | if (auto *ISD = dyn_cast<InputSectionDescription>(Cmd)) | 
|  | for (InputSection *IS : ISD->Sections) | 
|  | if (IS->Live) | 
|  | Sections.push_back(IS); | 
|  | uint32_t Filler = getFiller(); | 
|  | if (Filler) | 
|  | fill(Buf, Sections.empty() ? Size : Sections[0]->OutSecOff, Filler); | 
|  |  | 
|  | parallelForEachN(0, Sections.size(), [=](size_t I) { | 
|  | InputSection *IS = Sections[I]; | 
|  | IS->writeTo<ELFT>(Buf); | 
|  |  | 
|  | // Fill gaps between sections. | 
|  | if (Filler) { | 
|  | uint8_t *Start = Buf + IS->OutSecOff + IS->getSize(); | 
|  | uint8_t *End; | 
|  | if (I + 1 == Sections.size()) | 
|  | End = Buf + Size; | 
|  | else | 
|  | End = Buf + Sections[I + 1]->OutSecOff; | 
|  | fill(Start, End - Start, Filler); | 
|  | } | 
|  | }); | 
|  |  | 
|  | // Linker scripts may have BYTE()-family commands with which you | 
|  | // can write arbitrary bytes to the output. Process them if any. | 
|  | for (BaseCommand *Base : Commands) | 
|  | if (auto *Data = dyn_cast<BytesDataCommand>(Base)) | 
|  | writeInt(Buf + Data->Offset, Data->Expression().getValue(), Data->Size); | 
|  | } | 
|  |  | 
|  | static bool compareByFilePosition(InputSection *A, InputSection *B) { | 
|  | // Synthetic doesn't have link order dependecy, stable_sort will keep it last | 
|  | if (A->kind() == InputSectionBase::Synthetic || | 
|  | B->kind() == InputSectionBase::Synthetic) | 
|  | return false; | 
|  | InputSection *LA = A->getLinkOrderDep(); | 
|  | InputSection *LB = B->getLinkOrderDep(); | 
|  | OutputSection *AOut = LA->getParent(); | 
|  | OutputSection *BOut = LB->getParent(); | 
|  | if (AOut != BOut) | 
|  | return AOut->SectionIndex < BOut->SectionIndex; | 
|  | return LA->OutSecOff < LB->OutSecOff; | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static void finalizeShtGroup(OutputSection *OS, | 
|  | ArrayRef<InputSection *> Sections) { | 
|  | assert(Config->Relocatable && Sections.size() == 1); | 
|  |  | 
|  | // sh_link field for SHT_GROUP sections should contain the section index of | 
|  | // the symbol table. | 
|  | OS->Link = InX::SymTab->getParent()->SectionIndex; | 
|  |  | 
|  | // sh_info then contain index of an entry in symbol table section which | 
|  | // provides signature of the section group. | 
|  | ObjFile<ELFT> *Obj = Sections[0]->getFile<ELFT>(); | 
|  | ArrayRef<SymbolBody *> Symbols = Obj->getSymbols(); | 
|  | OS->Info = InX::SymTab->getSymbolIndex(Symbols[Sections[0]->Info]); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void OutputSection::finalize() { | 
|  | // Link order may be distributed across several InputSectionDescriptions | 
|  | // but sort must consider them all at once. | 
|  | std::vector<InputSection **> ScriptSections; | 
|  | std::vector<InputSection *> Sections; | 
|  | for (BaseCommand *Base : Commands) { | 
|  | if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) { | 
|  | for (InputSection *&IS : ISD->Sections) { | 
|  | ScriptSections.push_back(&IS); | 
|  | Sections.push_back(IS); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Flags & SHF_LINK_ORDER) { | 
|  | std::stable_sort(Sections.begin(), Sections.end(), compareByFilePosition); | 
|  | for (int I = 0, N = Sections.size(); I < N; ++I) | 
|  | *ScriptSections[I] = Sections[I]; | 
|  |  | 
|  | // We must preserve the link order dependency of sections with the | 
|  | // SHF_LINK_ORDER flag. The dependency is indicated by the sh_link field. We | 
|  | // need to translate the InputSection sh_link to the OutputSection sh_link, | 
|  | // all InputSections in the OutputSection have the same dependency. | 
|  | if (auto *D = Sections.front()->getLinkOrderDep()) | 
|  | Link = D->getParent()->SectionIndex; | 
|  | } | 
|  |  | 
|  | if (Type == SHT_GROUP) { | 
|  | finalizeShtGroup<ELFT>(this, Sections); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!Config->CopyRelocs || (Type != SHT_RELA && Type != SHT_REL)) | 
|  | return; | 
|  |  | 
|  | InputSection *First = Sections[0]; | 
|  | if (isa<SyntheticSection>(First)) | 
|  | return; | 
|  |  | 
|  | Link = InX::SymTab->getParent()->SectionIndex; | 
|  | // sh_info for SHT_REL[A] sections should contain the section header index of | 
|  | // the section to which the relocation applies. | 
|  | InputSectionBase *S = First->getRelocatedSection(); | 
|  | Info = S->getOutputSection()->SectionIndex; | 
|  | Flags |= SHF_INFO_LINK; | 
|  | } | 
|  |  | 
|  | // Returns true if S matches /Filename.?\.o$/. | 
|  | static bool isCrtBeginEnd(StringRef S, StringRef Filename) { | 
|  | if (!S.endswith(".o")) | 
|  | return false; | 
|  | S = S.drop_back(2); | 
|  | if (S.endswith(Filename)) | 
|  | return true; | 
|  | return !S.empty() && S.drop_back().endswith(Filename); | 
|  | } | 
|  |  | 
|  | static bool isCrtbegin(StringRef S) { return isCrtBeginEnd(S, "crtbegin"); } | 
|  | static bool isCrtend(StringRef S) { return isCrtBeginEnd(S, "crtend"); } | 
|  |  | 
|  | // .ctors and .dtors are sorted by this priority from highest to lowest. | 
|  | // | 
|  | //  1. The section was contained in crtbegin (crtbegin contains | 
|  | //     some sentinel value in its .ctors and .dtors so that the runtime | 
|  | //     can find the beginning of the sections.) | 
|  | // | 
|  | //  2. The section has an optional priority value in the form of ".ctors.N" | 
|  | //     or ".dtors.N" where N is a number. Unlike .{init,fini}_array, | 
|  | //     they are compared as string rather than number. | 
|  | // | 
|  | //  3. The section is just ".ctors" or ".dtors". | 
|  | // | 
|  | //  4. The section was contained in crtend, which contains an end marker. | 
|  | // | 
|  | // In an ideal world, we don't need this function because .init_array and | 
|  | // .ctors are duplicate features (and .init_array is newer.) However, there | 
|  | // are too many real-world use cases of .ctors, so we had no choice to | 
|  | // support that with this rather ad-hoc semantics. | 
|  | static bool compCtors(const InputSection *A, const InputSection *B) { | 
|  | bool BeginA = isCrtbegin(A->File->getName()); | 
|  | bool BeginB = isCrtbegin(B->File->getName()); | 
|  | if (BeginA != BeginB) | 
|  | return BeginA; | 
|  | bool EndA = isCrtend(A->File->getName()); | 
|  | bool EndB = isCrtend(B->File->getName()); | 
|  | if (EndA != EndB) | 
|  | return EndB; | 
|  | StringRef X = A->Name; | 
|  | StringRef Y = B->Name; | 
|  | assert(X.startswith(".ctors") || X.startswith(".dtors")); | 
|  | assert(Y.startswith(".ctors") || Y.startswith(".dtors")); | 
|  | X = X.substr(6); | 
|  | Y = Y.substr(6); | 
|  | if (X.empty() && Y.empty()) | 
|  | return false; | 
|  | return X < Y; | 
|  | } | 
|  |  | 
|  | // Sorts input sections by the special rules for .ctors and .dtors. | 
|  | // Unfortunately, the rules are different from the one for .{init,fini}_array. | 
|  | // Read the comment above. | 
|  | void OutputSection::sortCtorsDtors() { | 
|  | assert(Commands.size() == 1); | 
|  | auto *ISD = cast<InputSectionDescription>(Commands[0]); | 
|  | std::stable_sort(ISD->Sections.begin(), ISD->Sections.end(), compCtors); | 
|  | } | 
|  |  | 
|  | // If an input string is in the form of "foo.N" where N is a number, | 
|  | // return N. Otherwise, returns 65536, which is one greater than the | 
|  | // lowest priority. | 
|  | int elf::getPriority(StringRef S) { | 
|  | size_t Pos = S.rfind('.'); | 
|  | if (Pos == StringRef::npos) | 
|  | return 65536; | 
|  | int V; | 
|  | if (!to_integer(S.substr(Pos + 1), V, 10)) | 
|  | return 65536; | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // Sorts input sections by section name suffixes, so that .foo.N comes | 
|  | // before .foo.M if N < M. Used to sort .{init,fini}_array.N sections. | 
|  | // We want to keep the original order if the priorities are the same | 
|  | // because the compiler keeps the original initialization order in a | 
|  | // translation unit and we need to respect that. | 
|  | // For more detail, read the section of the GCC's manual about init_priority. | 
|  | void OutputSection::sortInitFini() { | 
|  | // Sort sections by priority. | 
|  | sort([](InputSectionBase *S) { return getPriority(S->Name); }); | 
|  | } | 
|  |  | 
|  | uint32_t OutputSection::getFiller() { | 
|  | if (Filler) | 
|  | return *Filler; | 
|  | if (Flags & SHF_EXECINSTR) | 
|  | return Target->TrapInstr; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | template void OutputSection::writeHeaderTo<ELF32LE>(ELF32LE::Shdr *Shdr); | 
|  | template void OutputSection::writeHeaderTo<ELF32BE>(ELF32BE::Shdr *Shdr); | 
|  | template void OutputSection::writeHeaderTo<ELF64LE>(ELF64LE::Shdr *Shdr); | 
|  | template void OutputSection::writeHeaderTo<ELF64BE>(ELF64BE::Shdr *Shdr); | 
|  |  | 
|  | template void OutputSection::writeTo<ELF32LE>(uint8_t *Buf); | 
|  | template void OutputSection::writeTo<ELF32BE>(uint8_t *Buf); | 
|  | template void OutputSection::writeTo<ELF64LE>(uint8_t *Buf); | 
|  | template void OutputSection::writeTo<ELF64BE>(uint8_t *Buf); | 
|  |  | 
|  | template void OutputSection::maybeCompress<ELF32LE>(); | 
|  | template void OutputSection::maybeCompress<ELF32BE>(); | 
|  | template void OutputSection::maybeCompress<ELF64LE>(); | 
|  | template void OutputSection::maybeCompress<ELF64BE>(); | 
|  |  | 
|  | template void OutputSection::finalize<ELF32LE>(); | 
|  | template void OutputSection::finalize<ELF32BE>(); | 
|  | template void OutputSection::finalize<ELF64LE>(); | 
|  | template void OutputSection::finalize<ELF64BE>(); |