| //===-- X86ShuffleDecode.cpp - X86 shuffle decode logic -------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // Define several functions to decode x86 specific shuffle semantics into a |
| // generic vector mask. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "X86ShuffleDecode.h" |
| |
| //===----------------------------------------------------------------------===// |
| // Vector Mask Decoding |
| //===----------------------------------------------------------------------===// |
| |
| namespace llvm { |
| |
| void DecodeINSERTPSMask(unsigned Imm, SmallVectorImpl<unsigned> &ShuffleMask) { |
| // Defaults the copying the dest value. |
| ShuffleMask.push_back(0); |
| ShuffleMask.push_back(1); |
| ShuffleMask.push_back(2); |
| ShuffleMask.push_back(3); |
| |
| // Decode the immediate. |
| unsigned ZMask = Imm & 15; |
| unsigned CountD = (Imm >> 4) & 3; |
| unsigned CountS = (Imm >> 6) & 3; |
| |
| // CountS selects which input element to use. |
| unsigned InVal = 4+CountS; |
| // CountD specifies which element of destination to update. |
| ShuffleMask[CountD] = InVal; |
| // ZMask zaps values, potentially overriding the CountD elt. |
| if (ZMask & 1) ShuffleMask[0] = SM_SentinelZero; |
| if (ZMask & 2) ShuffleMask[1] = SM_SentinelZero; |
| if (ZMask & 4) ShuffleMask[2] = SM_SentinelZero; |
| if (ZMask & 8) ShuffleMask[3] = SM_SentinelZero; |
| } |
| |
| // <3,1> or <6,7,2,3> |
| void DecodeMOVHLPSMask(unsigned NElts, |
| SmallVectorImpl<unsigned> &ShuffleMask) { |
| for (unsigned i = NElts/2; i != NElts; ++i) |
| ShuffleMask.push_back(NElts+i); |
| |
| for (unsigned i = NElts/2; i != NElts; ++i) |
| ShuffleMask.push_back(i); |
| } |
| |
| // <0,2> or <0,1,4,5> |
| void DecodeMOVLHPSMask(unsigned NElts, |
| SmallVectorImpl<unsigned> &ShuffleMask) { |
| for (unsigned i = 0; i != NElts/2; ++i) |
| ShuffleMask.push_back(i); |
| |
| for (unsigned i = 0; i != NElts/2; ++i) |
| ShuffleMask.push_back(NElts+i); |
| } |
| |
| void DecodePSHUFMask(unsigned NElts, unsigned Imm, |
| SmallVectorImpl<unsigned> &ShuffleMask) { |
| for (unsigned i = 0; i != NElts; ++i) { |
| ShuffleMask.push_back(Imm % NElts); |
| Imm /= NElts; |
| } |
| } |
| |
| void DecodePSHUFHWMask(unsigned Imm, |
| SmallVectorImpl<unsigned> &ShuffleMask) { |
| ShuffleMask.push_back(0); |
| ShuffleMask.push_back(1); |
| ShuffleMask.push_back(2); |
| ShuffleMask.push_back(3); |
| for (unsigned i = 0; i != 4; ++i) { |
| ShuffleMask.push_back(4+(Imm & 3)); |
| Imm >>= 2; |
| } |
| } |
| |
| void DecodePSHUFLWMask(unsigned Imm, |
| SmallVectorImpl<unsigned> &ShuffleMask) { |
| for (unsigned i = 0; i != 4; ++i) { |
| ShuffleMask.push_back((Imm & 3)); |
| Imm >>= 2; |
| } |
| ShuffleMask.push_back(4); |
| ShuffleMask.push_back(5); |
| ShuffleMask.push_back(6); |
| ShuffleMask.push_back(7); |
| } |
| |
| void DecodePUNPCKLBWMask(unsigned NElts, |
| SmallVectorImpl<unsigned> &ShuffleMask) { |
| DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i8, NElts), ShuffleMask); |
| } |
| |
| void DecodePUNPCKLWDMask(unsigned NElts, |
| SmallVectorImpl<unsigned> &ShuffleMask) { |
| DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i16, NElts), ShuffleMask); |
| } |
| |
| void DecodePUNPCKLDQMask(unsigned NElts, |
| SmallVectorImpl<unsigned> &ShuffleMask) { |
| DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i32, NElts), ShuffleMask); |
| } |
| |
| void DecodePUNPCKLQDQMask(unsigned NElts, |
| SmallVectorImpl<unsigned> &ShuffleMask) { |
| DecodeUNPCKLPMask(MVT::getVectorVT(MVT::i64, NElts), ShuffleMask); |
| } |
| |
| void DecodePUNPCKLMask(EVT VT, |
| SmallVectorImpl<unsigned> &ShuffleMask) { |
| DecodeUNPCKLPMask(VT, ShuffleMask); |
| } |
| |
| void DecodePUNPCKHMask(unsigned NElts, |
| SmallVectorImpl<unsigned> &ShuffleMask) { |
| for (unsigned i = 0; i != NElts/2; ++i) { |
| ShuffleMask.push_back(i+NElts/2); |
| ShuffleMask.push_back(i+NElts+NElts/2); |
| } |
| } |
| |
| void DecodeSHUFPMask(EVT VT, unsigned Imm, |
| SmallVectorImpl<unsigned> &ShuffleMask) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| unsigned NumLanes = VT.getSizeInBits() / 128; |
| unsigned NumLaneElts = NumElts / NumLanes; |
| |
| int NewImm = Imm; |
| for (unsigned l = 0; l < NumLanes; ++l) { |
| unsigned LaneStart = l * NumLaneElts; |
| // Part that reads from dest. |
| for (unsigned i = 0; i != NumLaneElts/2; ++i) { |
| ShuffleMask.push_back(NewImm % NumLaneElts + LaneStart); |
| NewImm /= NumLaneElts; |
| } |
| // Part that reads from src. |
| for (unsigned i = 0; i != NumLaneElts/2; ++i) { |
| ShuffleMask.push_back(NewImm % NumLaneElts + NumElts + LaneStart); |
| NewImm /= NumLaneElts; |
| } |
| if (NumLaneElts == 4) NewImm = Imm; // reload imm |
| } |
| } |
| |
| void DecodeUNPCKHPMask(EVT VT, SmallVectorImpl<unsigned> &ShuffleMask) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate |
| // independently on 128-bit lanes. |
| unsigned NumLanes = VT.getSizeInBits() / 128; |
| if (NumLanes == 0 ) NumLanes = 1; // Handle MMX |
| unsigned NumLaneElts = NumElts / NumLanes; |
| |
| for (unsigned s = 0; s < NumLanes; ++s) { |
| unsigned Start = s * NumLaneElts + NumLaneElts/2; |
| unsigned End = s * NumLaneElts + NumLaneElts; |
| for (unsigned i = Start; i != End; ++i) { |
| ShuffleMask.push_back(i); // Reads from dest/src1 |
| ShuffleMask.push_back(i+NumElts); // Reads from src/src2 |
| } |
| } |
| } |
| |
| /// DecodeUNPCKLPMask - This decodes the shuffle masks for unpcklps/unpcklpd |
| /// etc. VT indicates the type of the vector allowing it to handle different |
| /// datatypes and vector widths. |
| void DecodeUNPCKLPMask(EVT VT, SmallVectorImpl<unsigned> &ShuffleMask) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| // Handle 128 and 256-bit vector lengths. AVX defines UNPCK* to operate |
| // independently on 128-bit lanes. |
| unsigned NumLanes = VT.getSizeInBits() / 128; |
| if (NumLanes == 0 ) NumLanes = 1; // Handle MMX |
| unsigned NumLaneElts = NumElts / NumLanes; |
| |
| for (unsigned s = 0; s < NumLanes; ++s) { |
| unsigned Start = s * NumLaneElts; |
| unsigned End = s * NumLaneElts + NumLaneElts/2; |
| for (unsigned i = Start; i != End; ++i) { |
| ShuffleMask.push_back(i); // Reads from dest/src1 |
| ShuffleMask.push_back(i+NumElts); // Reads from src/src2 |
| } |
| } |
| } |
| |
| // DecodeVPERMILPMask - Decodes VPERMILPS/ VPERMILPD permutes for any 128-bit |
| // 32-bit or 64-bit elements. For 256-bit vectors, it's considered as two 128 |
| // lanes. For VPERMILPS, referenced elements can't cross lanes and the mask of |
| // the first lane must be the same of the second. |
| void DecodeVPERMILPMask(EVT VT, unsigned Imm, |
| SmallVectorImpl<unsigned> &ShuffleMask) { |
| unsigned NumElts = VT.getVectorNumElements(); |
| |
| unsigned NumLanes = VT.getSizeInBits() / 128; |
| unsigned NumLaneElts = NumElts / NumLanes; |
| |
| for (unsigned l = 0; l != NumLanes; ++l) { |
| unsigned LaneStart = l*NumLaneElts; |
| for (unsigned i = 0; i != NumLaneElts; ++i) { |
| unsigned Idx = NumLaneElts == 4 ? (Imm >> (i*2)) & 0x3 |
| : (Imm >> (i+LaneStart)) & 0x1; |
| ShuffleMask.push_back(Idx+LaneStart); |
| } |
| } |
| } |
| |
| void DecodeVPERM2F128Mask(EVT VT, unsigned Imm, |
| SmallVectorImpl<unsigned> &ShuffleMask) { |
| unsigned HalfSize = VT.getVectorNumElements()/2; |
| unsigned FstHalfBegin = (Imm & 0x3) * HalfSize; |
| unsigned SndHalfBegin = ((Imm >> 4) & 0x3) * HalfSize; |
| |
| for (int i = FstHalfBegin, e = FstHalfBegin+HalfSize; i != e; ++i) |
| ShuffleMask.push_back(i); |
| for (int i = SndHalfBegin, e = SndHalfBegin+HalfSize; i != e; ++i) |
| ShuffleMask.push_back(i); |
| } |
| |
| void DecodeVPERM2F128Mask(unsigned Imm, |
| SmallVectorImpl<unsigned> &ShuffleMask) { |
| // VPERM2F128 is used by any 256-bit EVT, but X86InstComments only |
| // has information about the instruction and not the types. So for |
| // instruction comments purpose, assume the 256-bit vector is v4i64. |
| return DecodeVPERM2F128Mask(MVT::v4i64, Imm, ShuffleMask); |
| } |
| |
| } // llvm namespace |