|  | //===-- MachineSink.cpp - Sinking for machine instructions ----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass moves instructions into successor blocks when possible, so that | 
|  | // they aren't executed on paths where their results aren't needed. | 
|  | // | 
|  | // This pass is not intended to be a replacement or a complete alternative | 
|  | // for an LLVM-IR-level sinking pass. It is only designed to sink simple | 
|  | // constructs that are not exposed before lowering and instruction selection. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallSet.h" | 
|  | #include "llvm/ADT/SparseBitVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" | 
|  | #include "llvm/CodeGen/MachineDominators.h" | 
|  | #include "llvm/CodeGen/MachineLoopInfo.h" | 
|  | #include "llvm/CodeGen/MachinePostDominators.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/Target/TargetSubtargetInfo.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "machine-sink" | 
|  |  | 
|  | static cl::opt<bool> | 
|  | SplitEdges("machine-sink-split", | 
|  | cl::desc("Split critical edges during machine sinking"), | 
|  | cl::init(true), cl::Hidden); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | UseBlockFreqInfo("machine-sink-bfi", | 
|  | cl::desc("Use block frequency info to find successors to sink"), | 
|  | cl::init(true), cl::Hidden); | 
|  |  | 
|  |  | 
|  | STATISTIC(NumSunk,      "Number of machine instructions sunk"); | 
|  | STATISTIC(NumSplit,     "Number of critical edges split"); | 
|  | STATISTIC(NumCoalesces, "Number of copies coalesced"); | 
|  |  | 
|  | namespace { | 
|  | class MachineSinking : public MachineFunctionPass { | 
|  | const TargetInstrInfo *TII; | 
|  | const TargetRegisterInfo *TRI; | 
|  | MachineRegisterInfo  *MRI;     // Machine register information | 
|  | MachineDominatorTree *DT;      // Machine dominator tree | 
|  | MachinePostDominatorTree *PDT; // Machine post dominator tree | 
|  | MachineLoopInfo *LI; | 
|  | const MachineBlockFrequencyInfo *MBFI; | 
|  | AliasAnalysis *AA; | 
|  |  | 
|  | // Remember which edges have been considered for breaking. | 
|  | SmallSet<std::pair<MachineBasicBlock*,MachineBasicBlock*>, 8> | 
|  | CEBCandidates; | 
|  | // Remember which edges we are about to split. | 
|  | // This is different from CEBCandidates since those edges | 
|  | // will be split. | 
|  | SetVector<std::pair<MachineBasicBlock*,MachineBasicBlock*> > ToSplit; | 
|  |  | 
|  | SparseBitVector<> RegsToClearKillFlags; | 
|  |  | 
|  | typedef std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>> | 
|  | AllSuccsCache; | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass identification | 
|  | MachineSinking() : MachineFunctionPass(ID) { | 
|  | initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override; | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | AU.addRequired<AAResultsWrapperPass>(); | 
|  | AU.addRequired<MachineDominatorTree>(); | 
|  | AU.addRequired<MachinePostDominatorTree>(); | 
|  | AU.addRequired<MachineLoopInfo>(); | 
|  | AU.addPreserved<MachineDominatorTree>(); | 
|  | AU.addPreserved<MachinePostDominatorTree>(); | 
|  | AU.addPreserved<MachineLoopInfo>(); | 
|  | if (UseBlockFreqInfo) | 
|  | AU.addRequired<MachineBlockFrequencyInfo>(); | 
|  | } | 
|  |  | 
|  | void releaseMemory() override { | 
|  | CEBCandidates.clear(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool ProcessBlock(MachineBasicBlock &MBB); | 
|  | bool isWorthBreakingCriticalEdge(MachineInstr *MI, | 
|  | MachineBasicBlock *From, | 
|  | MachineBasicBlock *To); | 
|  | /// \brief Postpone the splitting of the given critical | 
|  | /// edge (\p From, \p To). | 
|  | /// | 
|  | /// We do not split the edges on the fly. Indeed, this invalidates | 
|  | /// the dominance information and thus triggers a lot of updates | 
|  | /// of that information underneath. | 
|  | /// Instead, we postpone all the splits after each iteration of | 
|  | /// the main loop. That way, the information is at least valid | 
|  | /// for the lifetime of an iteration. | 
|  | /// | 
|  | /// \return True if the edge is marked as toSplit, false otherwise. | 
|  | /// False can be returned if, for instance, this is not profitable. | 
|  | bool PostponeSplitCriticalEdge(MachineInstr *MI, | 
|  | MachineBasicBlock *From, | 
|  | MachineBasicBlock *To, | 
|  | bool BreakPHIEdge); | 
|  | bool SinkInstruction(MachineInstr *MI, bool &SawStore, | 
|  | AllSuccsCache &AllSuccessors); | 
|  | bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, | 
|  | MachineBasicBlock *DefMBB, | 
|  | bool &BreakPHIEdge, bool &LocalUse) const; | 
|  | MachineBasicBlock *FindSuccToSinkTo(MachineInstr *MI, MachineBasicBlock *MBB, | 
|  | bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); | 
|  | bool isProfitableToSinkTo(unsigned Reg, MachineInstr *MI, | 
|  | MachineBasicBlock *MBB, | 
|  | MachineBasicBlock *SuccToSinkTo, | 
|  | AllSuccsCache &AllSuccessors); | 
|  |  | 
|  | bool PerformTrivialForwardCoalescing(MachineInstr *MI, | 
|  | MachineBasicBlock *MBB); | 
|  |  | 
|  | SmallVector<MachineBasicBlock *, 4> & | 
|  | GetAllSortedSuccessors(MachineInstr *MI, MachineBasicBlock *MBB, | 
|  | AllSuccsCache &AllSuccessors) const; | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char MachineSinking::ID = 0; | 
|  | char &llvm::MachineSinkingID = MachineSinking::ID; | 
|  | INITIALIZE_PASS_BEGIN(MachineSinking, "machine-sink", | 
|  | "Machine code sinking", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) | 
|  | INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) | 
|  | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) | 
|  | INITIALIZE_PASS_END(MachineSinking, "machine-sink", | 
|  | "Machine code sinking", false, false) | 
|  |  | 
|  | bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr *MI, | 
|  | MachineBasicBlock *MBB) { | 
|  | if (!MI->isCopy()) | 
|  | return false; | 
|  |  | 
|  | unsigned SrcReg = MI->getOperand(1).getReg(); | 
|  | unsigned DstReg = MI->getOperand(0).getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(SrcReg) || | 
|  | !TargetRegisterInfo::isVirtualRegister(DstReg) || | 
|  | !MRI->hasOneNonDBGUse(SrcReg)) | 
|  | return false; | 
|  |  | 
|  | const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); | 
|  | const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); | 
|  | if (SRC != DRC) | 
|  | return false; | 
|  |  | 
|  | MachineInstr *DefMI = MRI->getVRegDef(SrcReg); | 
|  | if (DefMI->isCopyLike()) | 
|  | return false; | 
|  | DEBUG(dbgs() << "Coalescing: " << *DefMI); | 
|  | DEBUG(dbgs() << "*** to: " << *MI); | 
|  | MRI->replaceRegWith(DstReg, SrcReg); | 
|  | MI->eraseFromParent(); | 
|  |  | 
|  | // Conservatively, clear any kill flags, since it's possible that they are no | 
|  | // longer correct. | 
|  | MRI->clearKillFlags(SrcReg); | 
|  |  | 
|  | ++NumCoalesces; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// AllUsesDominatedByBlock - Return true if all uses of the specified register | 
|  | /// occur in blocks dominated by the specified block. If any use is in the | 
|  | /// definition block, then return false since it is never legal to move def | 
|  | /// after uses. | 
|  | bool | 
|  | MachineSinking::AllUsesDominatedByBlock(unsigned Reg, | 
|  | MachineBasicBlock *MBB, | 
|  | MachineBasicBlock *DefMBB, | 
|  | bool &BreakPHIEdge, | 
|  | bool &LocalUse) const { | 
|  | assert(TargetRegisterInfo::isVirtualRegister(Reg) && | 
|  | "Only makes sense for vregs"); | 
|  |  | 
|  | // Ignore debug uses because debug info doesn't affect the code. | 
|  | if (MRI->use_nodbg_empty(Reg)) | 
|  | return true; | 
|  |  | 
|  | // BreakPHIEdge is true if all the uses are in the successor MBB being sunken | 
|  | // into and they are all PHI nodes. In this case, machine-sink must break | 
|  | // the critical edge first. e.g. | 
|  | // | 
|  | // BB#1: derived from LLVM BB %bb4.preheader | 
|  | //   Predecessors according to CFG: BB#0 | 
|  | //     ... | 
|  | //     %reg16385<def> = DEC64_32r %reg16437, %EFLAGS<imp-def,dead> | 
|  | //     ... | 
|  | //     JE_4 <BB#37>, %EFLAGS<imp-use> | 
|  | //   Successors according to CFG: BB#37 BB#2 | 
|  | // | 
|  | // BB#2: derived from LLVM BB %bb.nph | 
|  | //   Predecessors according to CFG: BB#0 BB#1 | 
|  | //     %reg16386<def> = PHI %reg16434, <BB#0>, %reg16385, <BB#1> | 
|  | BreakPHIEdge = true; | 
|  | for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { | 
|  | MachineInstr *UseInst = MO.getParent(); | 
|  | unsigned OpNo = &MO - &UseInst->getOperand(0); | 
|  | MachineBasicBlock *UseBlock = UseInst->getParent(); | 
|  | if (!(UseBlock == MBB && UseInst->isPHI() && | 
|  | UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) { | 
|  | BreakPHIEdge = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (BreakPHIEdge) | 
|  | return true; | 
|  |  | 
|  | for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { | 
|  | // Determine the block of the use. | 
|  | MachineInstr *UseInst = MO.getParent(); | 
|  | unsigned OpNo = &MO - &UseInst->getOperand(0); | 
|  | MachineBasicBlock *UseBlock = UseInst->getParent(); | 
|  | if (UseInst->isPHI()) { | 
|  | // PHI nodes use the operand in the predecessor block, not the block with | 
|  | // the PHI. | 
|  | UseBlock = UseInst->getOperand(OpNo+1).getMBB(); | 
|  | } else if (UseBlock == DefMBB) { | 
|  | LocalUse = true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check that it dominates. | 
|  | if (!DT->dominates(MBB, UseBlock)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { | 
|  | if (skipOptnoneFunction(*MF.getFunction())) | 
|  | return false; | 
|  |  | 
|  | DEBUG(dbgs() << "******** Machine Sinking ********\n"); | 
|  |  | 
|  | TII = MF.getSubtarget().getInstrInfo(); | 
|  | TRI = MF.getSubtarget().getRegisterInfo(); | 
|  | MRI = &MF.getRegInfo(); | 
|  | DT = &getAnalysis<MachineDominatorTree>(); | 
|  | PDT = &getAnalysis<MachinePostDominatorTree>(); | 
|  | LI = &getAnalysis<MachineLoopInfo>(); | 
|  | MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; | 
|  | AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); | 
|  |  | 
|  | bool EverMadeChange = false; | 
|  |  | 
|  | while (1) { | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // Process all basic blocks. | 
|  | CEBCandidates.clear(); | 
|  | ToSplit.clear(); | 
|  | for (auto &MBB: MF) | 
|  | MadeChange |= ProcessBlock(MBB); | 
|  |  | 
|  | // If we have anything we marked as toSplit, split it now. | 
|  | for (auto &Pair : ToSplit) { | 
|  | auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, this); | 
|  | if (NewSucc != nullptr) { | 
|  | DEBUG(dbgs() << " *** Splitting critical edge:" | 
|  | " BB#" << Pair.first->getNumber() | 
|  | << " -- BB#" << NewSucc->getNumber() | 
|  | << " -- BB#" << Pair.second->getNumber() << '\n'); | 
|  | MadeChange = true; | 
|  | ++NumSplit; | 
|  | } else | 
|  | DEBUG(dbgs() << " *** Not legal to break critical edge\n"); | 
|  | } | 
|  | // If this iteration over the code changed anything, keep iterating. | 
|  | if (!MadeChange) break; | 
|  | EverMadeChange = true; | 
|  | } | 
|  |  | 
|  | // Now clear any kill flags for recorded registers. | 
|  | for (auto I : RegsToClearKillFlags) | 
|  | MRI->clearKillFlags(I); | 
|  | RegsToClearKillFlags.clear(); | 
|  |  | 
|  | return EverMadeChange; | 
|  | } | 
|  |  | 
|  | bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { | 
|  | // Can't sink anything out of a block that has less than two successors. | 
|  | if (MBB.succ_size() <= 1 || MBB.empty()) return false; | 
|  |  | 
|  | // Don't bother sinking code out of unreachable blocks. In addition to being | 
|  | // unprofitable, it can also lead to infinite looping, because in an | 
|  | // unreachable loop there may be nowhere to stop. | 
|  | if (!DT->isReachableFromEntry(&MBB)) return false; | 
|  |  | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // Cache all successors, sorted by frequency info and loop depth. | 
|  | AllSuccsCache AllSuccessors; | 
|  |  | 
|  | // Walk the basic block bottom-up.  Remember if we saw a store. | 
|  | MachineBasicBlock::iterator I = MBB.end(); | 
|  | --I; | 
|  | bool ProcessedBegin, SawStore = false; | 
|  | do { | 
|  | MachineInstr *MI = I;  // The instruction to sink. | 
|  |  | 
|  | // Predecrement I (if it's not begin) so that it isn't invalidated by | 
|  | // sinking. | 
|  | ProcessedBegin = I == MBB.begin(); | 
|  | if (!ProcessedBegin) | 
|  | --I; | 
|  |  | 
|  | if (MI->isDebugValue()) | 
|  | continue; | 
|  |  | 
|  | bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); | 
|  | if (Joined) { | 
|  | MadeChange = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (SinkInstruction(MI, SawStore, AllSuccessors)) { | 
|  | ++NumSunk; | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | // If we just processed the first instruction in the block, we're done. | 
|  | } while (!ProcessedBegin); | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr *MI, | 
|  | MachineBasicBlock *From, | 
|  | MachineBasicBlock *To) { | 
|  | // FIXME: Need much better heuristics. | 
|  |  | 
|  | // If the pass has already considered breaking this edge (during this pass | 
|  | // through the function), then let's go ahead and break it. This means | 
|  | // sinking multiple "cheap" instructions into the same block. | 
|  | if (!CEBCandidates.insert(std::make_pair(From, To)).second) | 
|  | return true; | 
|  |  | 
|  | if (!MI->isCopy() && !TII->isAsCheapAsAMove(MI)) | 
|  | return true; | 
|  |  | 
|  | // MI is cheap, we probably don't want to break the critical edge for it. | 
|  | // However, if this would allow some definitions of its source operands | 
|  | // to be sunk then it's probably worth it. | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI->getOperand(i); | 
|  | if (!MO.isReg() || !MO.isUse()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (Reg == 0) | 
|  | continue; | 
|  |  | 
|  | // We don't move live definitions of physical registers, | 
|  | // so sinking their uses won't enable any opportunities. | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg)) | 
|  | continue; | 
|  |  | 
|  | // If this instruction is the only user of a virtual register, | 
|  | // check if breaking the edge will enable sinking | 
|  | // both this instruction and the defining instruction. | 
|  | if (MRI->hasOneNonDBGUse(Reg)) { | 
|  | // If the definition resides in same MBB, | 
|  | // claim it's likely we can sink these together. | 
|  | // If definition resides elsewhere, we aren't | 
|  | // blocking it from being sunk so don't break the edge. | 
|  | MachineInstr *DefMI = MRI->getVRegDef(Reg); | 
|  | if (DefMI->getParent() == MI->getParent()) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr *MI, | 
|  | MachineBasicBlock *FromBB, | 
|  | MachineBasicBlock *ToBB, | 
|  | bool BreakPHIEdge) { | 
|  | if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) | 
|  | return false; | 
|  |  | 
|  | // Avoid breaking back edge. From == To means backedge for single BB loop. | 
|  | if (!SplitEdges || FromBB == ToBB) | 
|  | return false; | 
|  |  | 
|  | // Check for backedges of more "complex" loops. | 
|  | if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && | 
|  | LI->isLoopHeader(ToBB)) | 
|  | return false; | 
|  |  | 
|  | // It's not always legal to break critical edges and sink the computation | 
|  | // to the edge. | 
|  | // | 
|  | // BB#1: | 
|  | // v1024 | 
|  | // Beq BB#3 | 
|  | // <fallthrough> | 
|  | // BB#2: | 
|  | // ... no uses of v1024 | 
|  | // <fallthrough> | 
|  | // BB#3: | 
|  | // ... | 
|  | //       = v1024 | 
|  | // | 
|  | // If BB#1 -> BB#3 edge is broken and computation of v1024 is inserted: | 
|  | // | 
|  | // BB#1: | 
|  | // ... | 
|  | // Bne BB#2 | 
|  | // BB#4: | 
|  | // v1024 = | 
|  | // B BB#3 | 
|  | // BB#2: | 
|  | // ... no uses of v1024 | 
|  | // <fallthrough> | 
|  | // BB#3: | 
|  | // ... | 
|  | //       = v1024 | 
|  | // | 
|  | // This is incorrect since v1024 is not computed along the BB#1->BB#2->BB#3 | 
|  | // flow. We need to ensure the new basic block where the computation is | 
|  | // sunk to dominates all the uses. | 
|  | // It's only legal to break critical edge and sink the computation to the | 
|  | // new block if all the predecessors of "To", except for "From", are | 
|  | // not dominated by "From". Given SSA property, this means these | 
|  | // predecessors are dominated by "To". | 
|  | // | 
|  | // There is no need to do this check if all the uses are PHI nodes. PHI | 
|  | // sources are only defined on the specific predecessor edges. | 
|  | if (!BreakPHIEdge) { | 
|  | for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), | 
|  | E = ToBB->pred_end(); PI != E; ++PI) { | 
|  | if (*PI == FromBB) | 
|  | continue; | 
|  | if (!DT->dominates(ToBB, *PI)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | ToSplit.insert(std::make_pair(FromBB, ToBB)); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool AvoidsSinking(MachineInstr *MI, MachineRegisterInfo *MRI) { | 
|  | return MI->isInsertSubreg() || MI->isSubregToReg() || MI->isRegSequence(); | 
|  | } | 
|  |  | 
|  | /// collectDebgValues - Scan instructions following MI and collect any | 
|  | /// matching DBG_VALUEs. | 
|  | static void collectDebugValues(MachineInstr *MI, | 
|  | SmallVectorImpl<MachineInstr *> &DbgValues) { | 
|  | DbgValues.clear(); | 
|  | if (!MI->getOperand(0).isReg()) | 
|  | return; | 
|  |  | 
|  | MachineBasicBlock::iterator DI = MI; ++DI; | 
|  | for (MachineBasicBlock::iterator DE = MI->getParent()->end(); | 
|  | DI != DE; ++DI) { | 
|  | if (!DI->isDebugValue()) | 
|  | return; | 
|  | if (DI->getOperand(0).isReg() && | 
|  | DI->getOperand(0).getReg() == MI->getOperand(0).getReg()) | 
|  | DbgValues.push_back(DI); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isProfitableToSinkTo - Return true if it is profitable to sink MI. | 
|  | bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr *MI, | 
|  | MachineBasicBlock *MBB, | 
|  | MachineBasicBlock *SuccToSinkTo, | 
|  | AllSuccsCache &AllSuccessors) { | 
|  | assert (MI && "Invalid MachineInstr!"); | 
|  | assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); | 
|  |  | 
|  | if (MBB == SuccToSinkTo) | 
|  | return false; | 
|  |  | 
|  | // It is profitable if SuccToSinkTo does not post dominate current block. | 
|  | if (!PDT->dominates(SuccToSinkTo, MBB)) | 
|  | return true; | 
|  |  | 
|  | // It is profitable to sink an instruction from a deeper loop to a shallower | 
|  | // loop, even if the latter post-dominates the former (PR21115). | 
|  | if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) | 
|  | return true; | 
|  |  | 
|  | // Check if only use in post dominated block is PHI instruction. | 
|  | bool NonPHIUse = false; | 
|  | for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { | 
|  | MachineBasicBlock *UseBlock = UseInst.getParent(); | 
|  | if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) | 
|  | NonPHIUse = true; | 
|  | } | 
|  | if (!NonPHIUse) | 
|  | return true; | 
|  |  | 
|  | // If SuccToSinkTo post dominates then also it may be profitable if MI | 
|  | // can further profitably sinked into another block in next round. | 
|  | bool BreakPHIEdge = false; | 
|  | // FIXME - If finding successor is compile time expensive then cache results. | 
|  | if (MachineBasicBlock *MBB2 = | 
|  | FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) | 
|  | return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); | 
|  |  | 
|  | // If SuccToSinkTo is final destination and it is a post dominator of current | 
|  | // block then it is not profitable to sink MI into SuccToSinkTo block. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Get the sorted sequence of successors for this MachineBasicBlock, possibly | 
|  | /// computing it if it was not already cached. | 
|  | SmallVector<MachineBasicBlock *, 4> & | 
|  | MachineSinking::GetAllSortedSuccessors(MachineInstr *MI, MachineBasicBlock *MBB, | 
|  | AllSuccsCache &AllSuccessors) const { | 
|  |  | 
|  | // Do we have the sorted successors in cache ? | 
|  | auto Succs = AllSuccessors.find(MBB); | 
|  | if (Succs != AllSuccessors.end()) | 
|  | return Succs->second; | 
|  |  | 
|  | SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(), | 
|  | MBB->succ_end()); | 
|  |  | 
|  | // Handle cases where sinking can happen but where the sink point isn't a | 
|  | // successor. For example: | 
|  | // | 
|  | //   x = computation | 
|  | //   if () {} else {} | 
|  | //   use x | 
|  | // | 
|  | const std::vector<MachineDomTreeNode *> &Children = | 
|  | DT->getNode(MBB)->getChildren(); | 
|  | for (const auto &DTChild : Children) | 
|  | // DomTree children of MBB that have MBB as immediate dominator are added. | 
|  | if (DTChild->getIDom()->getBlock() == MI->getParent() && | 
|  | // Skip MBBs already added to the AllSuccs vector above. | 
|  | !MBB->isSuccessor(DTChild->getBlock())) | 
|  | AllSuccs.push_back(DTChild->getBlock()); | 
|  |  | 
|  | // Sort Successors according to their loop depth or block frequency info. | 
|  | std::stable_sort( | 
|  | AllSuccs.begin(), AllSuccs.end(), | 
|  | [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { | 
|  | uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; | 
|  | uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; | 
|  | bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; | 
|  | return HasBlockFreq ? LHSFreq < RHSFreq | 
|  | : LI->getLoopDepth(L) < LI->getLoopDepth(R); | 
|  | }); | 
|  |  | 
|  | auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); | 
|  |  | 
|  | return it.first->second; | 
|  | } | 
|  |  | 
|  | /// FindSuccToSinkTo - Find a successor to sink this instruction to. | 
|  | MachineBasicBlock *MachineSinking::FindSuccToSinkTo(MachineInstr *MI, | 
|  | MachineBasicBlock *MBB, | 
|  | bool &BreakPHIEdge, | 
|  | AllSuccsCache &AllSuccessors) { | 
|  |  | 
|  | assert (MI && "Invalid MachineInstr!"); | 
|  | assert (MBB && "Invalid MachineBasicBlock!"); | 
|  |  | 
|  | // Loop over all the operands of the specified instruction.  If there is | 
|  | // anything we can't handle, bail out. | 
|  |  | 
|  | // SuccToSinkTo - This is the successor to sink this instruction to, once we | 
|  | // decide. | 
|  | MachineBasicBlock *SuccToSinkTo = nullptr; | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI->getOperand(i); | 
|  | if (!MO.isReg()) continue;  // Ignore non-register operands. | 
|  |  | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (Reg == 0) continue; | 
|  |  | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg)) { | 
|  | if (MO.isUse()) { | 
|  | // If the physreg has no defs anywhere, it's just an ambient register | 
|  | // and we can freely move its uses. Alternatively, if it's allocatable, | 
|  | // it could get allocated to something with a def during allocation. | 
|  | if (!MRI->isConstantPhysReg(Reg, *MBB->getParent())) | 
|  | return nullptr; | 
|  | } else if (!MO.isDead()) { | 
|  | // A def that isn't dead. We can't move it. | 
|  | return nullptr; | 
|  | } | 
|  | } else { | 
|  | // Virtual register uses are always safe to sink. | 
|  | if (MO.isUse()) continue; | 
|  |  | 
|  | // If it's not safe to move defs of the register class, then abort. | 
|  | if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) | 
|  | return nullptr; | 
|  |  | 
|  | // Virtual register defs can only be sunk if all their uses are in blocks | 
|  | // dominated by one of the successors. | 
|  | if (SuccToSinkTo) { | 
|  | // If a previous operand picked a block to sink to, then this operand | 
|  | // must be sinkable to the same block. | 
|  | bool LocalUse = false; | 
|  | if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, | 
|  | BreakPHIEdge, LocalUse)) | 
|  | return nullptr; | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, we should look at all the successors and decide which one | 
|  | // we should sink to. If we have reliable block frequency information | 
|  | // (frequency != 0) available, give successors with smaller frequencies | 
|  | // higher priority, otherwise prioritize smaller loop depths. | 
|  | for (MachineBasicBlock *SuccBlock : | 
|  | GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { | 
|  | bool LocalUse = false; | 
|  | if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, | 
|  | BreakPHIEdge, LocalUse)) { | 
|  | SuccToSinkTo = SuccBlock; | 
|  | break; | 
|  | } | 
|  | if (LocalUse) | 
|  | // Def is used locally, it's never safe to move this def. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // If we couldn't find a block to sink to, ignore this instruction. | 
|  | if (!SuccToSinkTo) | 
|  | return nullptr; | 
|  | if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // It is not possible to sink an instruction into its own block.  This can | 
|  | // happen with loops. | 
|  | if (MBB == SuccToSinkTo) | 
|  | return nullptr; | 
|  |  | 
|  | // It's not safe to sink instructions to EH landing pad. Control flow into | 
|  | // landing pad is implicitly defined. | 
|  | if (SuccToSinkTo && SuccToSinkTo->isEHPad()) | 
|  | return nullptr; | 
|  |  | 
|  | return SuccToSinkTo; | 
|  | } | 
|  |  | 
|  | /// \brief Return true if MI is likely to be usable as a memory operation by the | 
|  | /// implicit null check optimization. | 
|  | /// | 
|  | /// This is a "best effort" heuristic, and should not be relied upon for | 
|  | /// correctness.  This returning true does not guarantee that the implicit null | 
|  | /// check optimization is legal over MI, and this returning false does not | 
|  | /// guarantee MI cannot possibly be used to do a null check. | 
|  | static bool SinkingPreventsImplicitNullCheck(MachineInstr *MI, | 
|  | const TargetInstrInfo *TII, | 
|  | const TargetRegisterInfo *TRI) { | 
|  | typedef TargetInstrInfo::MachineBranchPredicate MachineBranchPredicate; | 
|  |  | 
|  | auto *MBB = MI->getParent(); | 
|  | if (MBB->pred_size() != 1) | 
|  | return false; | 
|  |  | 
|  | auto *PredMBB = *MBB->pred_begin(); | 
|  | auto *PredBB = PredMBB->getBasicBlock(); | 
|  |  | 
|  | // Frontends that don't use implicit null checks have no reason to emit | 
|  | // branches with make.implicit metadata, and this function should always | 
|  | // return false for them. | 
|  | if (!PredBB || | 
|  | !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) | 
|  | return false; | 
|  |  | 
|  | unsigned BaseReg; | 
|  | int64_t Offset; | 
|  | if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI)) | 
|  | return false; | 
|  |  | 
|  | if (!(MI->mayLoad() && !MI->isPredicable())) | 
|  | return false; | 
|  |  | 
|  | MachineBranchPredicate MBP; | 
|  | if (TII->AnalyzeBranchPredicate(*PredMBB, MBP, false)) | 
|  | return false; | 
|  |  | 
|  | return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && | 
|  | (MBP.Predicate == MachineBranchPredicate::PRED_NE || | 
|  | MBP.Predicate == MachineBranchPredicate::PRED_EQ) && | 
|  | MBP.LHS.getReg() == BaseReg; | 
|  | } | 
|  |  | 
|  | /// SinkInstruction - Determine whether it is safe to sink the specified machine | 
|  | /// instruction out of its current block into a successor. | 
|  | bool MachineSinking::SinkInstruction(MachineInstr *MI, bool &SawStore, | 
|  | AllSuccsCache &AllSuccessors) { | 
|  | // Don't sink insert_subreg, subreg_to_reg, reg_sequence. These are meant to | 
|  | // be close to the source to make it easier to coalesce. | 
|  | if (AvoidsSinking(MI, MRI)) | 
|  | return false; | 
|  |  | 
|  | // Check if it's safe to move the instruction. | 
|  | if (!MI->isSafeToMove(AA, SawStore)) | 
|  | return false; | 
|  |  | 
|  | // Convergent operations may not be made control-dependent on additional | 
|  | // values. | 
|  | if (MI->isConvergent()) | 
|  | return false; | 
|  |  | 
|  | // Don't break implicit null checks.  This is a performance heuristic, and not | 
|  | // required for correctness. | 
|  | if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) | 
|  | return false; | 
|  |  | 
|  | // FIXME: This should include support for sinking instructions within the | 
|  | // block they are currently in to shorten the live ranges.  We often get | 
|  | // instructions sunk into the top of a large block, but it would be better to | 
|  | // also sink them down before their first use in the block.  This xform has to | 
|  | // be careful not to *increase* register pressure though, e.g. sinking | 
|  | // "x = y + z" down if it kills y and z would increase the live ranges of y | 
|  | // and z and only shrink the live range of x. | 
|  |  | 
|  | bool BreakPHIEdge = false; | 
|  | MachineBasicBlock *ParentBlock = MI->getParent(); | 
|  | MachineBasicBlock *SuccToSinkTo = | 
|  | FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); | 
|  |  | 
|  | // If there are no outputs, it must have side-effects. | 
|  | if (!SuccToSinkTo) | 
|  | return false; | 
|  |  | 
|  |  | 
|  | // If the instruction to move defines a dead physical register which is live | 
|  | // when leaving the basic block, don't move it because it could turn into a | 
|  | // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) | 
|  | for (unsigned I = 0, E = MI->getNumOperands(); I != E; ++I) { | 
|  | const MachineOperand &MO = MI->getOperand(I); | 
|  | if (!MO.isReg()) continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue; | 
|  | if (SuccToSinkTo->isLiveIn(Reg)) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Sink instr " << *MI << "\tinto block " << *SuccToSinkTo); | 
|  |  | 
|  | // If the block has multiple predecessors, this is a critical edge. | 
|  | // Decide if we can sink along it or need to break the edge. | 
|  | if (SuccToSinkTo->pred_size() > 1) { | 
|  | // We cannot sink a load across a critical edge - there may be stores in | 
|  | // other code paths. | 
|  | bool TryBreak = false; | 
|  | bool store = true; | 
|  | if (!MI->isSafeToMove(AA, store)) { | 
|  | DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); | 
|  | TryBreak = true; | 
|  | } | 
|  |  | 
|  | // We don't want to sink across a critical edge if we don't dominate the | 
|  | // successor. We could be introducing calculations to new code paths. | 
|  | if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { | 
|  | DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); | 
|  | TryBreak = true; | 
|  | } | 
|  |  | 
|  | // Don't sink instructions into a loop. | 
|  | if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { | 
|  | DEBUG(dbgs() << " *** NOTE: Loop header found\n"); | 
|  | TryBreak = true; | 
|  | } | 
|  |  | 
|  | // Otherwise we are OK with sinking along a critical edge. | 
|  | if (!TryBreak) | 
|  | DEBUG(dbgs() << "Sinking along critical edge.\n"); | 
|  | else { | 
|  | // Mark this edge as to be split. | 
|  | // If the edge can actually be split, the next iteration of the main loop | 
|  | // will sink MI in the newly created block. | 
|  | bool Status = | 
|  | PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); | 
|  | if (!Status) | 
|  | DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " | 
|  | "break critical edge\n"); | 
|  | // The instruction will not be sunk this time. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (BreakPHIEdge) { | 
|  | // BreakPHIEdge is true if all the uses are in the successor MBB being | 
|  | // sunken into and they are all PHI nodes. In this case, machine-sink must | 
|  | // break the critical edge first. | 
|  | bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, | 
|  | SuccToSinkTo, BreakPHIEdge); | 
|  | if (!Status) | 
|  | DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " | 
|  | "break critical edge\n"); | 
|  | // The instruction will not be sunk this time. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Determine where to insert into. Skip phi nodes. | 
|  | MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); | 
|  | while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) | 
|  | ++InsertPos; | 
|  |  | 
|  | // collect matching debug values. | 
|  | SmallVector<MachineInstr *, 2> DbgValuesToSink; | 
|  | collectDebugValues(MI, DbgValuesToSink); | 
|  |  | 
|  | // Move the instruction. | 
|  | SuccToSinkTo->splice(InsertPos, ParentBlock, MI, | 
|  | ++MachineBasicBlock::iterator(MI)); | 
|  |  | 
|  | // Move debug values. | 
|  | for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), | 
|  | DBE = DbgValuesToSink.end(); DBI != DBE; ++DBI) { | 
|  | MachineInstr *DbgMI = *DBI; | 
|  | SuccToSinkTo->splice(InsertPos, ParentBlock,  DbgMI, | 
|  | ++MachineBasicBlock::iterator(DbgMI)); | 
|  | } | 
|  |  | 
|  | // Conservatively, clear any kill flags, since it's possible that they are no | 
|  | // longer correct. | 
|  | // Note that we have to clear the kill flags for any register this instruction | 
|  | // uses as we may sink over another instruction which currently kills the | 
|  | // used registers. | 
|  | for (MachineOperand &MO : MI->operands()) { | 
|  | if (MO.isReg() && MO.isUse()) | 
|  | RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } |