|  | //===-- PredicateInfo.cpp - PredicateInfo Builder--------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the PredicateInfo class. | 
|  | // | 
|  | //===----------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Utils/PredicateInfo.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/CFG.h" | 
|  | #include "llvm/IR/AssemblyAnnotationWriter.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/DebugCounter.h" | 
|  | #include "llvm/Support/FormattedStream.h" | 
|  | #include "llvm/Transforms/Utils.h" | 
|  | #include "llvm/Transforms/Utils/OrderedInstructions.h" | 
|  | #include <algorithm> | 
|  | #define DEBUG_TYPE "predicateinfo" | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  | using namespace llvm::PredicateInfoClasses; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(PredicateInfoPrinterLegacyPass, "print-predicateinfo", | 
|  | "PredicateInfo Printer", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
|  | INITIALIZE_PASS_END(PredicateInfoPrinterLegacyPass, "print-predicateinfo", | 
|  | "PredicateInfo Printer", false, false) | 
|  | static cl::opt<bool> VerifyPredicateInfo( | 
|  | "verify-predicateinfo", cl::init(false), cl::Hidden, | 
|  | cl::desc("Verify PredicateInfo in legacy printer pass.")); | 
|  | DEBUG_COUNTER(RenameCounter, "predicateinfo-rename", | 
|  | "Controls which variables are renamed with predicateinfo"); | 
|  |  | 
|  | namespace { | 
|  | // Given a predicate info that is a type of branching terminator, get the | 
|  | // branching block. | 
|  | const BasicBlock *getBranchBlock(const PredicateBase *PB) { | 
|  | assert(isa<PredicateWithEdge>(PB) && | 
|  | "Only branches and switches should have PHIOnly defs that " | 
|  | "require branch blocks."); | 
|  | return cast<PredicateWithEdge>(PB)->From; | 
|  | } | 
|  |  | 
|  | // Given a predicate info that is a type of branching terminator, get the | 
|  | // branching terminator. | 
|  | static Instruction *getBranchTerminator(const PredicateBase *PB) { | 
|  | assert(isa<PredicateWithEdge>(PB) && | 
|  | "Not a predicate info type we know how to get a terminator from."); | 
|  | return cast<PredicateWithEdge>(PB)->From->getTerminator(); | 
|  | } | 
|  |  | 
|  | // Given a predicate info that is a type of branching terminator, get the | 
|  | // edge this predicate info represents | 
|  | const std::pair<BasicBlock *, BasicBlock *> | 
|  | getBlockEdge(const PredicateBase *PB) { | 
|  | assert(isa<PredicateWithEdge>(PB) && | 
|  | "Not a predicate info type we know how to get an edge from."); | 
|  | const auto *PEdge = cast<PredicateWithEdge>(PB); | 
|  | return std::make_pair(PEdge->From, PEdge->To); | 
|  | } | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  | namespace PredicateInfoClasses { | 
|  | enum LocalNum { | 
|  | // Operations that must appear first in the block. | 
|  | LN_First, | 
|  | // Operations that are somewhere in the middle of the block, and are sorted on | 
|  | // demand. | 
|  | LN_Middle, | 
|  | // Operations that must appear last in a block, like successor phi node uses. | 
|  | LN_Last | 
|  | }; | 
|  |  | 
|  | // Associate global and local DFS info with defs and uses, so we can sort them | 
|  | // into a global domination ordering. | 
|  | struct ValueDFS { | 
|  | int DFSIn = 0; | 
|  | int DFSOut = 0; | 
|  | unsigned int LocalNum = LN_Middle; | 
|  | // Only one of Def or Use will be set. | 
|  | Value *Def = nullptr; | 
|  | Use *U = nullptr; | 
|  | // Neither PInfo nor EdgeOnly participate in the ordering | 
|  | PredicateBase *PInfo = nullptr; | 
|  | bool EdgeOnly = false; | 
|  | }; | 
|  |  | 
|  | // Perform a strict weak ordering on instructions and arguments. | 
|  | static bool valueComesBefore(OrderedInstructions &OI, const Value *A, | 
|  | const Value *B) { | 
|  | auto *ArgA = dyn_cast_or_null<Argument>(A); | 
|  | auto *ArgB = dyn_cast_or_null<Argument>(B); | 
|  | if (ArgA && !ArgB) | 
|  | return true; | 
|  | if (ArgB && !ArgA) | 
|  | return false; | 
|  | if (ArgA && ArgB) | 
|  | return ArgA->getArgNo() < ArgB->getArgNo(); | 
|  | return OI.dominates(cast<Instruction>(A), cast<Instruction>(B)); | 
|  | } | 
|  |  | 
|  | // This compares ValueDFS structures, creating OrderedBasicBlocks where | 
|  | // necessary to compare uses/defs in the same block.  Doing so allows us to walk | 
|  | // the minimum number of instructions necessary to compute our def/use ordering. | 
|  | struct ValueDFS_Compare { | 
|  | OrderedInstructions &OI; | 
|  | ValueDFS_Compare(OrderedInstructions &OI) : OI(OI) {} | 
|  |  | 
|  | bool operator()(const ValueDFS &A, const ValueDFS &B) const { | 
|  | if (&A == &B) | 
|  | return false; | 
|  | // The only case we can't directly compare them is when they in the same | 
|  | // block, and both have localnum == middle.  In that case, we have to use | 
|  | // comesbefore to see what the real ordering is, because they are in the | 
|  | // same basic block. | 
|  |  | 
|  | bool SameBlock = std::tie(A.DFSIn, A.DFSOut) == std::tie(B.DFSIn, B.DFSOut); | 
|  |  | 
|  | // We want to put the def that will get used for a given set of phi uses, | 
|  | // before those phi uses. | 
|  | // So we sort by edge, then by def. | 
|  | // Note that only phi nodes uses and defs can come last. | 
|  | if (SameBlock && A.LocalNum == LN_Last && B.LocalNum == LN_Last) | 
|  | return comparePHIRelated(A, B); | 
|  |  | 
|  | if (!SameBlock || A.LocalNum != LN_Middle || B.LocalNum != LN_Middle) | 
|  | return std::tie(A.DFSIn, A.DFSOut, A.LocalNum, A.Def, A.U) < | 
|  | std::tie(B.DFSIn, B.DFSOut, B.LocalNum, B.Def, B.U); | 
|  | return localComesBefore(A, B); | 
|  | } | 
|  |  | 
|  | // For a phi use, or a non-materialized def, return the edge it represents. | 
|  | const std::pair<BasicBlock *, BasicBlock *> | 
|  | getBlockEdge(const ValueDFS &VD) const { | 
|  | if (!VD.Def && VD.U) { | 
|  | auto *PHI = cast<PHINode>(VD.U->getUser()); | 
|  | return std::make_pair(PHI->getIncomingBlock(*VD.U), PHI->getParent()); | 
|  | } | 
|  | // This is really a non-materialized def. | 
|  | return ::getBlockEdge(VD.PInfo); | 
|  | } | 
|  |  | 
|  | // For two phi related values, return the ordering. | 
|  | bool comparePHIRelated(const ValueDFS &A, const ValueDFS &B) const { | 
|  | auto &ABlockEdge = getBlockEdge(A); | 
|  | auto &BBlockEdge = getBlockEdge(B); | 
|  | // Now sort by block edge and then defs before uses. | 
|  | return std::tie(ABlockEdge, A.Def, A.U) < std::tie(BBlockEdge, B.Def, B.U); | 
|  | } | 
|  |  | 
|  | // Get the definition of an instruction that occurs in the middle of a block. | 
|  | Value *getMiddleDef(const ValueDFS &VD) const { | 
|  | if (VD.Def) | 
|  | return VD.Def; | 
|  | // It's possible for the defs and uses to be null.  For branches, the local | 
|  | // numbering will say the placed predicaeinfos should go first (IE | 
|  | // LN_beginning), so we won't be in this function. For assumes, we will end | 
|  | // up here, beause we need to order the def we will place relative to the | 
|  | // assume.  So for the purpose of ordering, we pretend the def is the assume | 
|  | // because that is where we will insert the info. | 
|  | if (!VD.U) { | 
|  | assert(VD.PInfo && | 
|  | "No def, no use, and no predicateinfo should not occur"); | 
|  | assert(isa<PredicateAssume>(VD.PInfo) && | 
|  | "Middle of block should only occur for assumes"); | 
|  | return cast<PredicateAssume>(VD.PInfo)->AssumeInst; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Return either the Def, if it's not null, or the user of the Use, if the def | 
|  | // is null. | 
|  | const Instruction *getDefOrUser(const Value *Def, const Use *U) const { | 
|  | if (Def) | 
|  | return cast<Instruction>(Def); | 
|  | return cast<Instruction>(U->getUser()); | 
|  | } | 
|  |  | 
|  | // This performs the necessary local basic block ordering checks to tell | 
|  | // whether A comes before B, where both are in the same basic block. | 
|  | bool localComesBefore(const ValueDFS &A, const ValueDFS &B) const { | 
|  | auto *ADef = getMiddleDef(A); | 
|  | auto *BDef = getMiddleDef(B); | 
|  |  | 
|  | // See if we have real values or uses. If we have real values, we are | 
|  | // guaranteed they are instructions or arguments. No matter what, we are | 
|  | // guaranteed they are in the same block if they are instructions. | 
|  | auto *ArgA = dyn_cast_or_null<Argument>(ADef); | 
|  | auto *ArgB = dyn_cast_or_null<Argument>(BDef); | 
|  |  | 
|  | if (ArgA || ArgB) | 
|  | return valueComesBefore(OI, ArgA, ArgB); | 
|  |  | 
|  | auto *AInst = getDefOrUser(ADef, A.U); | 
|  | auto *BInst = getDefOrUser(BDef, B.U); | 
|  | return valueComesBefore(OI, AInst, BInst); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // namespace PredicateInfoClasses | 
|  |  | 
|  | bool PredicateInfo::stackIsInScope(const ValueDFSStack &Stack, | 
|  | const ValueDFS &VDUse) const { | 
|  | if (Stack.empty()) | 
|  | return false; | 
|  | // If it's a phi only use, make sure it's for this phi node edge, and that the | 
|  | // use is in a phi node.  If it's anything else, and the top of the stack is | 
|  | // EdgeOnly, we need to pop the stack.  We deliberately sort phi uses next to | 
|  | // the defs they must go with so that we can know it's time to pop the stack | 
|  | // when we hit the end of the phi uses for a given def. | 
|  | if (Stack.back().EdgeOnly) { | 
|  | if (!VDUse.U) | 
|  | return false; | 
|  | auto *PHI = dyn_cast<PHINode>(VDUse.U->getUser()); | 
|  | if (!PHI) | 
|  | return false; | 
|  | // Check edge | 
|  | BasicBlock *EdgePred = PHI->getIncomingBlock(*VDUse.U); | 
|  | if (EdgePred != getBranchBlock(Stack.back().PInfo)) | 
|  | return false; | 
|  |  | 
|  | // Use dominates, which knows how to handle edge dominance. | 
|  | return DT.dominates(getBlockEdge(Stack.back().PInfo), *VDUse.U); | 
|  | } | 
|  |  | 
|  | return (VDUse.DFSIn >= Stack.back().DFSIn && | 
|  | VDUse.DFSOut <= Stack.back().DFSOut); | 
|  | } | 
|  |  | 
|  | void PredicateInfo::popStackUntilDFSScope(ValueDFSStack &Stack, | 
|  | const ValueDFS &VD) { | 
|  | while (!Stack.empty() && !stackIsInScope(Stack, VD)) | 
|  | Stack.pop_back(); | 
|  | } | 
|  |  | 
|  | // Convert the uses of Op into a vector of uses, associating global and local | 
|  | // DFS info with each one. | 
|  | void PredicateInfo::convertUsesToDFSOrdered( | 
|  | Value *Op, SmallVectorImpl<ValueDFS> &DFSOrderedSet) { | 
|  | for (auto &U : Op->uses()) { | 
|  | if (auto *I = dyn_cast<Instruction>(U.getUser())) { | 
|  | ValueDFS VD; | 
|  | // Put the phi node uses in the incoming block. | 
|  | BasicBlock *IBlock; | 
|  | if (auto *PN = dyn_cast<PHINode>(I)) { | 
|  | IBlock = PN->getIncomingBlock(U); | 
|  | // Make phi node users appear last in the incoming block | 
|  | // they are from. | 
|  | VD.LocalNum = LN_Last; | 
|  | } else { | 
|  | // If it's not a phi node use, it is somewhere in the middle of the | 
|  | // block. | 
|  | IBlock = I->getParent(); | 
|  | VD.LocalNum = LN_Middle; | 
|  | } | 
|  | DomTreeNode *DomNode = DT.getNode(IBlock); | 
|  | // It's possible our use is in an unreachable block. Skip it if so. | 
|  | if (!DomNode) | 
|  | continue; | 
|  | VD.DFSIn = DomNode->getDFSNumIn(); | 
|  | VD.DFSOut = DomNode->getDFSNumOut(); | 
|  | VD.U = &U; | 
|  | DFSOrderedSet.push_back(VD); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Collect relevant operations from Comparison that we may want to insert copies | 
|  | // for. | 
|  | void collectCmpOps(CmpInst *Comparison, SmallVectorImpl<Value *> &CmpOperands) { | 
|  | auto *Op0 = Comparison->getOperand(0); | 
|  | auto *Op1 = Comparison->getOperand(1); | 
|  | if (Op0 == Op1) | 
|  | return; | 
|  | CmpOperands.push_back(Comparison); | 
|  | // Only want real values, not constants.  Additionally, operands with one use | 
|  | // are only being used in the comparison, which means they will not be useful | 
|  | // for us to consider for predicateinfo. | 
|  | // | 
|  | if ((isa<Instruction>(Op0) || isa<Argument>(Op0)) && !Op0->hasOneUse()) | 
|  | CmpOperands.push_back(Op0); | 
|  | if ((isa<Instruction>(Op1) || isa<Argument>(Op1)) && !Op1->hasOneUse()) | 
|  | CmpOperands.push_back(Op1); | 
|  | } | 
|  |  | 
|  | // Add Op, PB to the list of value infos for Op, and mark Op to be renamed. | 
|  | void PredicateInfo::addInfoFor(SmallPtrSetImpl<Value *> &OpsToRename, Value *Op, | 
|  | PredicateBase *PB) { | 
|  | OpsToRename.insert(Op); | 
|  | auto &OperandInfo = getOrCreateValueInfo(Op); | 
|  | AllInfos.push_back(PB); | 
|  | OperandInfo.Infos.push_back(PB); | 
|  | } | 
|  |  | 
|  | // Process an assume instruction and place relevant operations we want to rename | 
|  | // into OpsToRename. | 
|  | void PredicateInfo::processAssume(IntrinsicInst *II, BasicBlock *AssumeBB, | 
|  | SmallPtrSetImpl<Value *> &OpsToRename) { | 
|  | // See if we have a comparison we support | 
|  | SmallVector<Value *, 8> CmpOperands; | 
|  | SmallVector<Value *, 2> ConditionsToProcess; | 
|  | CmpInst::Predicate Pred; | 
|  | Value *Operand = II->getOperand(0); | 
|  | if (m_c_And(m_Cmp(Pred, m_Value(), m_Value()), | 
|  | m_Cmp(Pred, m_Value(), m_Value())) | 
|  | .match(II->getOperand(0))) { | 
|  | ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(0)); | 
|  | ConditionsToProcess.push_back(cast<BinaryOperator>(Operand)->getOperand(1)); | 
|  | ConditionsToProcess.push_back(Operand); | 
|  | } else if (isa<CmpInst>(Operand)) { | 
|  |  | 
|  | ConditionsToProcess.push_back(Operand); | 
|  | } | 
|  | for (auto Cond : ConditionsToProcess) { | 
|  | if (auto *Cmp = dyn_cast<CmpInst>(Cond)) { | 
|  | collectCmpOps(Cmp, CmpOperands); | 
|  | // Now add our copy infos for our operands | 
|  | for (auto *Op : CmpOperands) { | 
|  | auto *PA = new PredicateAssume(Op, II, Cmp); | 
|  | addInfoFor(OpsToRename, Op, PA); | 
|  | } | 
|  | CmpOperands.clear(); | 
|  | } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) { | 
|  | // Otherwise, it should be an AND. | 
|  | assert(BinOp->getOpcode() == Instruction::And && | 
|  | "Should have been an AND"); | 
|  | auto *PA = new PredicateAssume(BinOp, II, BinOp); | 
|  | addInfoFor(OpsToRename, BinOp, PA); | 
|  | } else { | 
|  | llvm_unreachable("Unknown type of condition"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Process a block terminating branch, and place relevant operations to be | 
|  | // renamed into OpsToRename. | 
|  | void PredicateInfo::processBranch(BranchInst *BI, BasicBlock *BranchBB, | 
|  | SmallPtrSetImpl<Value *> &OpsToRename) { | 
|  | BasicBlock *FirstBB = BI->getSuccessor(0); | 
|  | BasicBlock *SecondBB = BI->getSuccessor(1); | 
|  | SmallVector<BasicBlock *, 2> SuccsToProcess; | 
|  | SuccsToProcess.push_back(FirstBB); | 
|  | SuccsToProcess.push_back(SecondBB); | 
|  | SmallVector<Value *, 2> ConditionsToProcess; | 
|  |  | 
|  | auto InsertHelper = [&](Value *Op, bool isAnd, bool isOr, Value *Cond) { | 
|  | for (auto *Succ : SuccsToProcess) { | 
|  | // Don't try to insert on a self-edge. This is mainly because we will | 
|  | // eliminate during renaming anyway. | 
|  | if (Succ == BranchBB) | 
|  | continue; | 
|  | bool TakenEdge = (Succ == FirstBB); | 
|  | // For and, only insert on the true edge | 
|  | // For or, only insert on the false edge | 
|  | if ((isAnd && !TakenEdge) || (isOr && TakenEdge)) | 
|  | continue; | 
|  | PredicateBase *PB = | 
|  | new PredicateBranch(Op, BranchBB, Succ, Cond, TakenEdge); | 
|  | addInfoFor(OpsToRename, Op, PB); | 
|  | if (!Succ->getSinglePredecessor()) | 
|  | EdgeUsesOnly.insert({BranchBB, Succ}); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Match combinations of conditions. | 
|  | CmpInst::Predicate Pred; | 
|  | bool isAnd = false; | 
|  | bool isOr = false; | 
|  | SmallVector<Value *, 8> CmpOperands; | 
|  | if (match(BI->getCondition(), m_And(m_Cmp(Pred, m_Value(), m_Value()), | 
|  | m_Cmp(Pred, m_Value(), m_Value()))) || | 
|  | match(BI->getCondition(), m_Or(m_Cmp(Pred, m_Value(), m_Value()), | 
|  | m_Cmp(Pred, m_Value(), m_Value())))) { | 
|  | auto *BinOp = cast<BinaryOperator>(BI->getCondition()); | 
|  | if (BinOp->getOpcode() == Instruction::And) | 
|  | isAnd = true; | 
|  | else if (BinOp->getOpcode() == Instruction::Or) | 
|  | isOr = true; | 
|  | ConditionsToProcess.push_back(BinOp->getOperand(0)); | 
|  | ConditionsToProcess.push_back(BinOp->getOperand(1)); | 
|  | ConditionsToProcess.push_back(BI->getCondition()); | 
|  | } else if (isa<CmpInst>(BI->getCondition())) { | 
|  | ConditionsToProcess.push_back(BI->getCondition()); | 
|  | } | 
|  | for (auto Cond : ConditionsToProcess) { | 
|  | if (auto *Cmp = dyn_cast<CmpInst>(Cond)) { | 
|  | collectCmpOps(Cmp, CmpOperands); | 
|  | // Now add our copy infos for our operands | 
|  | for (auto *Op : CmpOperands) | 
|  | InsertHelper(Op, isAnd, isOr, Cmp); | 
|  | } else if (auto *BinOp = dyn_cast<BinaryOperator>(Cond)) { | 
|  | // This must be an AND or an OR. | 
|  | assert((BinOp->getOpcode() == Instruction::And || | 
|  | BinOp->getOpcode() == Instruction::Or) && | 
|  | "Should have been an AND or an OR"); | 
|  | // The actual value of the binop is not subject to the same restrictions | 
|  | // as the comparison. It's either true or false on the true/false branch. | 
|  | InsertHelper(BinOp, false, false, BinOp); | 
|  | } else { | 
|  | llvm_unreachable("Unknown type of condition"); | 
|  | } | 
|  | CmpOperands.clear(); | 
|  | } | 
|  | } | 
|  | // Process a block terminating switch, and place relevant operations to be | 
|  | // renamed into OpsToRename. | 
|  | void PredicateInfo::processSwitch(SwitchInst *SI, BasicBlock *BranchBB, | 
|  | SmallPtrSetImpl<Value *> &OpsToRename) { | 
|  | Value *Op = SI->getCondition(); | 
|  | if ((!isa<Instruction>(Op) && !isa<Argument>(Op)) || Op->hasOneUse()) | 
|  | return; | 
|  |  | 
|  | // Remember how many outgoing edges there are to every successor. | 
|  | SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; | 
|  | for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { | 
|  | BasicBlock *TargetBlock = SI->getSuccessor(i); | 
|  | ++SwitchEdges[TargetBlock]; | 
|  | } | 
|  |  | 
|  | // Now propagate info for each case value | 
|  | for (auto C : SI->cases()) { | 
|  | BasicBlock *TargetBlock = C.getCaseSuccessor(); | 
|  | if (SwitchEdges.lookup(TargetBlock) == 1) { | 
|  | PredicateSwitch *PS = new PredicateSwitch( | 
|  | Op, SI->getParent(), TargetBlock, C.getCaseValue(), SI); | 
|  | addInfoFor(OpsToRename, Op, PS); | 
|  | if (!TargetBlock->getSinglePredecessor()) | 
|  | EdgeUsesOnly.insert({BranchBB, TargetBlock}); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Build predicate info for our function | 
|  | void PredicateInfo::buildPredicateInfo() { | 
|  | DT.updateDFSNumbers(); | 
|  | // Collect operands to rename from all conditional branch terminators, as well | 
|  | // as assume statements. | 
|  | SmallPtrSet<Value *, 8> OpsToRename; | 
|  | for (auto DTN : depth_first(DT.getRootNode())) { | 
|  | BasicBlock *BranchBB = DTN->getBlock(); | 
|  | if (auto *BI = dyn_cast<BranchInst>(BranchBB->getTerminator())) { | 
|  | if (!BI->isConditional()) | 
|  | continue; | 
|  | // Can't insert conditional information if they all go to the same place. | 
|  | if (BI->getSuccessor(0) == BI->getSuccessor(1)) | 
|  | continue; | 
|  | processBranch(BI, BranchBB, OpsToRename); | 
|  | } else if (auto *SI = dyn_cast<SwitchInst>(BranchBB->getTerminator())) { | 
|  | processSwitch(SI, BranchBB, OpsToRename); | 
|  | } | 
|  | } | 
|  | for (auto &Assume : AC.assumptions()) { | 
|  | if (auto *II = dyn_cast_or_null<IntrinsicInst>(Assume)) | 
|  | processAssume(II, II->getParent(), OpsToRename); | 
|  | } | 
|  | // Now rename all our operations. | 
|  | renameUses(OpsToRename); | 
|  | } | 
|  |  | 
|  | // Given the renaming stack, make all the operands currently on the stack real | 
|  | // by inserting them into the IR.  Return the last operation's value. | 
|  | Value *PredicateInfo::materializeStack(unsigned int &Counter, | 
|  | ValueDFSStack &RenameStack, | 
|  | Value *OrigOp) { | 
|  | // Find the first thing we have to materialize | 
|  | auto RevIter = RenameStack.rbegin(); | 
|  | for (; RevIter != RenameStack.rend(); ++RevIter) | 
|  | if (RevIter->Def) | 
|  | break; | 
|  |  | 
|  | size_t Start = RevIter - RenameStack.rbegin(); | 
|  | // The maximum number of things we should be trying to materialize at once | 
|  | // right now is 4, depending on if we had an assume, a branch, and both used | 
|  | // and of conditions. | 
|  | for (auto RenameIter = RenameStack.end() - Start; | 
|  | RenameIter != RenameStack.end(); ++RenameIter) { | 
|  | auto *Op = | 
|  | RenameIter == RenameStack.begin() ? OrigOp : (RenameIter - 1)->Def; | 
|  | ValueDFS &Result = *RenameIter; | 
|  | auto *ValInfo = Result.PInfo; | 
|  | // For edge predicates, we can just place the operand in the block before | 
|  | // the terminator.  For assume, we have to place it right before the assume | 
|  | // to ensure we dominate all of our uses.  Always insert right before the | 
|  | // relevant instruction (terminator, assume), so that we insert in proper | 
|  | // order in the case of multiple predicateinfo in the same block. | 
|  | if (isa<PredicateWithEdge>(ValInfo)) { | 
|  | IRBuilder<> B(getBranchTerminator(ValInfo)); | 
|  | Function *IF = Intrinsic::getDeclaration( | 
|  | F.getParent(), Intrinsic::ssa_copy, Op->getType()); | 
|  | CallInst *PIC = | 
|  | B.CreateCall(IF, Op, Op->getName() + "." + Twine(Counter++)); | 
|  | PredicateMap.insert({PIC, ValInfo}); | 
|  | Result.Def = PIC; | 
|  | } else { | 
|  | auto *PAssume = dyn_cast<PredicateAssume>(ValInfo); | 
|  | assert(PAssume && | 
|  | "Should not have gotten here without it being an assume"); | 
|  | IRBuilder<> B(PAssume->AssumeInst); | 
|  | Function *IF = Intrinsic::getDeclaration( | 
|  | F.getParent(), Intrinsic::ssa_copy, Op->getType()); | 
|  | CallInst *PIC = B.CreateCall(IF, Op); | 
|  | PredicateMap.insert({PIC, ValInfo}); | 
|  | Result.Def = PIC; | 
|  | } | 
|  | } | 
|  | return RenameStack.back().Def; | 
|  | } | 
|  |  | 
|  | // Instead of the standard SSA renaming algorithm, which is O(Number of | 
|  | // instructions), and walks the entire dominator tree, we walk only the defs + | 
|  | // uses.  The standard SSA renaming algorithm does not really rely on the | 
|  | // dominator tree except to order the stack push/pops of the renaming stacks, so | 
|  | // that defs end up getting pushed before hitting the correct uses.  This does | 
|  | // not require the dominator tree, only the *order* of the dominator tree. The | 
|  | // complete and correct ordering of the defs and uses, in dominator tree is | 
|  | // contained in the DFS numbering of the dominator tree. So we sort the defs and | 
|  | // uses into the DFS ordering, and then just use the renaming stack as per | 
|  | // normal, pushing when we hit a def (which is a predicateinfo instruction), | 
|  | // popping when we are out of the dfs scope for that def, and replacing any uses | 
|  | // with top of stack if it exists.  In order to handle liveness without | 
|  | // propagating liveness info, we don't actually insert the predicateinfo | 
|  | // instruction def until we see a use that it would dominate.  Once we see such | 
|  | // a use, we materialize the predicateinfo instruction in the right place and | 
|  | // use it. | 
|  | // | 
|  | // TODO: Use this algorithm to perform fast single-variable renaming in | 
|  | // promotememtoreg and memoryssa. | 
|  | void PredicateInfo::renameUses(SmallPtrSetImpl<Value *> &OpSet) { | 
|  | // Sort OpsToRename since we are going to iterate it. | 
|  | SmallVector<Value *, 8> OpsToRename(OpSet.begin(), OpSet.end()); | 
|  | auto Comparator = [&](const Value *A, const Value *B) { | 
|  | return valueComesBefore(OI, A, B); | 
|  | }; | 
|  | llvm::sort(OpsToRename.begin(), OpsToRename.end(), Comparator); | 
|  | ValueDFS_Compare Compare(OI); | 
|  | // Compute liveness, and rename in O(uses) per Op. | 
|  | for (auto *Op : OpsToRename) { | 
|  | unsigned Counter = 0; | 
|  | SmallVector<ValueDFS, 16> OrderedUses; | 
|  | const auto &ValueInfo = getValueInfo(Op); | 
|  | // Insert the possible copies into the def/use list. | 
|  | // They will become real copies if we find a real use for them, and never | 
|  | // created otherwise. | 
|  | for (auto &PossibleCopy : ValueInfo.Infos) { | 
|  | ValueDFS VD; | 
|  | // Determine where we are going to place the copy by the copy type. | 
|  | // The predicate info for branches always come first, they will get | 
|  | // materialized in the split block at the top of the block. | 
|  | // The predicate info for assumes will be somewhere in the middle, | 
|  | // it will get materialized in front of the assume. | 
|  | if (const auto *PAssume = dyn_cast<PredicateAssume>(PossibleCopy)) { | 
|  | VD.LocalNum = LN_Middle; | 
|  | DomTreeNode *DomNode = DT.getNode(PAssume->AssumeInst->getParent()); | 
|  | if (!DomNode) | 
|  | continue; | 
|  | VD.DFSIn = DomNode->getDFSNumIn(); | 
|  | VD.DFSOut = DomNode->getDFSNumOut(); | 
|  | VD.PInfo = PossibleCopy; | 
|  | OrderedUses.push_back(VD); | 
|  | } else if (isa<PredicateWithEdge>(PossibleCopy)) { | 
|  | // If we can only do phi uses, we treat it like it's in the branch | 
|  | // block, and handle it specially. We know that it goes last, and only | 
|  | // dominate phi uses. | 
|  | auto BlockEdge = getBlockEdge(PossibleCopy); | 
|  | if (EdgeUsesOnly.count(BlockEdge)) { | 
|  | VD.LocalNum = LN_Last; | 
|  | auto *DomNode = DT.getNode(BlockEdge.first); | 
|  | if (DomNode) { | 
|  | VD.DFSIn = DomNode->getDFSNumIn(); | 
|  | VD.DFSOut = DomNode->getDFSNumOut(); | 
|  | VD.PInfo = PossibleCopy; | 
|  | VD.EdgeOnly = true; | 
|  | OrderedUses.push_back(VD); | 
|  | } | 
|  | } else { | 
|  | // Otherwise, we are in the split block (even though we perform | 
|  | // insertion in the branch block). | 
|  | // Insert a possible copy at the split block and before the branch. | 
|  | VD.LocalNum = LN_First; | 
|  | auto *DomNode = DT.getNode(BlockEdge.second); | 
|  | if (DomNode) { | 
|  | VD.DFSIn = DomNode->getDFSNumIn(); | 
|  | VD.DFSOut = DomNode->getDFSNumOut(); | 
|  | VD.PInfo = PossibleCopy; | 
|  | OrderedUses.push_back(VD); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | convertUsesToDFSOrdered(Op, OrderedUses); | 
|  | // Here we require a stable sort because we do not bother to try to | 
|  | // assign an order to the operands the uses represent. Thus, two | 
|  | // uses in the same instruction do not have a strict sort order | 
|  | // currently and will be considered equal. We could get rid of the | 
|  | // stable sort by creating one if we wanted. | 
|  | std::stable_sort(OrderedUses.begin(), OrderedUses.end(), Compare); | 
|  | SmallVector<ValueDFS, 8> RenameStack; | 
|  | // For each use, sorted into dfs order, push values and replaces uses with | 
|  | // top of stack, which will represent the reaching def. | 
|  | for (auto &VD : OrderedUses) { | 
|  | // We currently do not materialize copy over copy, but we should decide if | 
|  | // we want to. | 
|  | bool PossibleCopy = VD.PInfo != nullptr; | 
|  | if (RenameStack.empty()) { | 
|  | LLVM_DEBUG(dbgs() << "Rename Stack is empty\n"); | 
|  | } else { | 
|  | LLVM_DEBUG(dbgs() << "Rename Stack Top DFS numbers are (" | 
|  | << RenameStack.back().DFSIn << "," | 
|  | << RenameStack.back().DFSOut << ")\n"); | 
|  | } | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Current DFS numbers are (" << VD.DFSIn << "," | 
|  | << VD.DFSOut << ")\n"); | 
|  |  | 
|  | bool ShouldPush = (VD.Def || PossibleCopy); | 
|  | bool OutOfScope = !stackIsInScope(RenameStack, VD); | 
|  | if (OutOfScope || ShouldPush) { | 
|  | // Sync to our current scope. | 
|  | popStackUntilDFSScope(RenameStack, VD); | 
|  | if (ShouldPush) { | 
|  | RenameStack.push_back(VD); | 
|  | } | 
|  | } | 
|  | // If we get to this point, and the stack is empty we must have a use | 
|  | // with no renaming needed, just skip it. | 
|  | if (RenameStack.empty()) | 
|  | continue; | 
|  | // Skip values, only want to rename the uses | 
|  | if (VD.Def || PossibleCopy) | 
|  | continue; | 
|  | if (!DebugCounter::shouldExecute(RenameCounter)) { | 
|  | LLVM_DEBUG(dbgs() << "Skipping execution due to debug counter\n"); | 
|  | continue; | 
|  | } | 
|  | ValueDFS &Result = RenameStack.back(); | 
|  |  | 
|  | // If the possible copy dominates something, materialize our stack up to | 
|  | // this point. This ensures every comparison that affects our operation | 
|  | // ends up with predicateinfo. | 
|  | if (!Result.Def) | 
|  | Result.Def = materializeStack(Counter, RenameStack, Op); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Found replacement " << *Result.Def << " for " | 
|  | << *VD.U->get() << " in " << *(VD.U->getUser()) | 
|  | << "\n"); | 
|  | assert(DT.dominates(cast<Instruction>(Result.Def), *VD.U) && | 
|  | "Predicateinfo def should have dominated this use"); | 
|  | VD.U->set(Result.Def); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | PredicateInfo::ValueInfo &PredicateInfo::getOrCreateValueInfo(Value *Operand) { | 
|  | auto OIN = ValueInfoNums.find(Operand); | 
|  | if (OIN == ValueInfoNums.end()) { | 
|  | // This will grow it | 
|  | ValueInfos.resize(ValueInfos.size() + 1); | 
|  | // This will use the new size and give us a 0 based number of the info | 
|  | auto InsertResult = ValueInfoNums.insert({Operand, ValueInfos.size() - 1}); | 
|  | assert(InsertResult.second && "Value info number already existed?"); | 
|  | return ValueInfos[InsertResult.first->second]; | 
|  | } | 
|  | return ValueInfos[OIN->second]; | 
|  | } | 
|  |  | 
|  | const PredicateInfo::ValueInfo & | 
|  | PredicateInfo::getValueInfo(Value *Operand) const { | 
|  | auto OINI = ValueInfoNums.lookup(Operand); | 
|  | assert(OINI != 0 && "Operand was not really in the Value Info Numbers"); | 
|  | assert(OINI < ValueInfos.size() && | 
|  | "Value Info Number greater than size of Value Info Table"); | 
|  | return ValueInfos[OINI]; | 
|  | } | 
|  |  | 
|  | PredicateInfo::PredicateInfo(Function &F, DominatorTree &DT, | 
|  | AssumptionCache &AC) | 
|  | : F(F), DT(DT), AC(AC), OI(&DT) { | 
|  | // Push an empty operand info so that we can detect 0 as not finding one | 
|  | ValueInfos.resize(1); | 
|  | buildPredicateInfo(); | 
|  | } | 
|  |  | 
|  | PredicateInfo::~PredicateInfo() {} | 
|  |  | 
|  | void PredicateInfo::verifyPredicateInfo() const {} | 
|  |  | 
|  | char PredicateInfoPrinterLegacyPass::ID = 0; | 
|  |  | 
|  | PredicateInfoPrinterLegacyPass::PredicateInfoPrinterLegacyPass() | 
|  | : FunctionPass(ID) { | 
|  | initializePredicateInfoPrinterLegacyPassPass( | 
|  | *PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | void PredicateInfoPrinterLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesAll(); | 
|  | AU.addRequiredTransitive<DominatorTreeWrapperPass>(); | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  | } | 
|  |  | 
|  | bool PredicateInfoPrinterLegacyPass::runOnFunction(Function &F) { | 
|  | auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  | auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); | 
|  | auto PredInfo = make_unique<PredicateInfo>(F, DT, AC); | 
|  | PredInfo->print(dbgs()); | 
|  | if (VerifyPredicateInfo) | 
|  | PredInfo->verifyPredicateInfo(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | PreservedAnalyses PredicateInfoPrinterPass::run(Function &F, | 
|  | FunctionAnalysisManager &AM) { | 
|  | auto &DT = AM.getResult<DominatorTreeAnalysis>(F); | 
|  | auto &AC = AM.getResult<AssumptionAnalysis>(F); | 
|  | OS << "PredicateInfo for function: " << F.getName() << "\n"; | 
|  | make_unique<PredicateInfo>(F, DT, AC)->print(OS); | 
|  |  | 
|  | return PreservedAnalyses::all(); | 
|  | } | 
|  |  | 
|  | /// An assembly annotator class to print PredicateInfo information in | 
|  | /// comments. | 
|  | class PredicateInfoAnnotatedWriter : public AssemblyAnnotationWriter { | 
|  | friend class PredicateInfo; | 
|  | const PredicateInfo *PredInfo; | 
|  |  | 
|  | public: | 
|  | PredicateInfoAnnotatedWriter(const PredicateInfo *M) : PredInfo(M) {} | 
|  |  | 
|  | virtual void emitBasicBlockStartAnnot(const BasicBlock *BB, | 
|  | formatted_raw_ostream &OS) {} | 
|  |  | 
|  | virtual void emitInstructionAnnot(const Instruction *I, | 
|  | formatted_raw_ostream &OS) { | 
|  | if (const auto *PI = PredInfo->getPredicateInfoFor(I)) { | 
|  | OS << "; Has predicate info\n"; | 
|  | if (const auto *PB = dyn_cast<PredicateBranch>(PI)) { | 
|  | OS << "; branch predicate info { TrueEdge: " << PB->TrueEdge | 
|  | << " Comparison:" << *PB->Condition << " Edge: ["; | 
|  | PB->From->printAsOperand(OS); | 
|  | OS << ","; | 
|  | PB->To->printAsOperand(OS); | 
|  | OS << "] }\n"; | 
|  | } else if (const auto *PS = dyn_cast<PredicateSwitch>(PI)) { | 
|  | OS << "; switch predicate info { CaseValue: " << *PS->CaseValue | 
|  | << " Switch:" << *PS->Switch << " Edge: ["; | 
|  | PS->From->printAsOperand(OS); | 
|  | OS << ","; | 
|  | PS->To->printAsOperand(OS); | 
|  | OS << "] }\n"; | 
|  | } else if (const auto *PA = dyn_cast<PredicateAssume>(PI)) { | 
|  | OS << "; assume predicate info {" | 
|  | << " Comparison:" << *PA->Condition << " }\n"; | 
|  | } | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | void PredicateInfo::print(raw_ostream &OS) const { | 
|  | PredicateInfoAnnotatedWriter Writer(this); | 
|  | F.print(OS, &Writer); | 
|  | } | 
|  |  | 
|  | void PredicateInfo::dump() const { | 
|  | PredicateInfoAnnotatedWriter Writer(this); | 
|  | F.print(dbgs(), &Writer); | 
|  | } | 
|  |  | 
|  | PreservedAnalyses PredicateInfoVerifierPass::run(Function &F, | 
|  | FunctionAnalysisManager &AM) { | 
|  | auto &DT = AM.getResult<DominatorTreeAnalysis>(F); | 
|  | auto &AC = AM.getResult<AssumptionAnalysis>(F); | 
|  | make_unique<PredicateInfo>(F, DT, AC)->verifyPredicateInfo(); | 
|  |  | 
|  | return PreservedAnalyses::all(); | 
|  | } | 
|  | } |