|  | //===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements the TargetLoweringBase class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/CodeGen/Analysis.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/CodeGen/StackMaps.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/Mangler.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/MC/MCContext.h" | 
|  | #include "llvm/MC/MCExpr.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Target/TargetLoweringObjectFile.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/Target/TargetSubtargetInfo.h" | 
|  | #include <cctype> | 
|  | using namespace llvm; | 
|  |  | 
|  | /// InitLibcallNames - Set default libcall names. | 
|  | /// | 
|  | static void InitLibcallNames(const char **Names, const Triple &TT) { | 
|  | Names[RTLIB::SHL_I16] = "__ashlhi3"; | 
|  | Names[RTLIB::SHL_I32] = "__ashlsi3"; | 
|  | Names[RTLIB::SHL_I64] = "__ashldi3"; | 
|  | Names[RTLIB::SHL_I128] = "__ashlti3"; | 
|  | Names[RTLIB::SRL_I16] = "__lshrhi3"; | 
|  | Names[RTLIB::SRL_I32] = "__lshrsi3"; | 
|  | Names[RTLIB::SRL_I64] = "__lshrdi3"; | 
|  | Names[RTLIB::SRL_I128] = "__lshrti3"; | 
|  | Names[RTLIB::SRA_I16] = "__ashrhi3"; | 
|  | Names[RTLIB::SRA_I32] = "__ashrsi3"; | 
|  | Names[RTLIB::SRA_I64] = "__ashrdi3"; | 
|  | Names[RTLIB::SRA_I128] = "__ashrti3"; | 
|  | Names[RTLIB::MUL_I8] = "__mulqi3"; | 
|  | Names[RTLIB::MUL_I16] = "__mulhi3"; | 
|  | Names[RTLIB::MUL_I32] = "__mulsi3"; | 
|  | Names[RTLIB::MUL_I64] = "__muldi3"; | 
|  | Names[RTLIB::MUL_I128] = "__multi3"; | 
|  | Names[RTLIB::MULO_I32] = "__mulosi4"; | 
|  | Names[RTLIB::MULO_I64] = "__mulodi4"; | 
|  | Names[RTLIB::MULO_I128] = "__muloti4"; | 
|  | Names[RTLIB::SDIV_I8] = "__divqi3"; | 
|  | Names[RTLIB::SDIV_I16] = "__divhi3"; | 
|  | Names[RTLIB::SDIV_I32] = "__divsi3"; | 
|  | Names[RTLIB::SDIV_I64] = "__divdi3"; | 
|  | Names[RTLIB::SDIV_I128] = "__divti3"; | 
|  | Names[RTLIB::UDIV_I8] = "__udivqi3"; | 
|  | Names[RTLIB::UDIV_I16] = "__udivhi3"; | 
|  | Names[RTLIB::UDIV_I32] = "__udivsi3"; | 
|  | Names[RTLIB::UDIV_I64] = "__udivdi3"; | 
|  | Names[RTLIB::UDIV_I128] = "__udivti3"; | 
|  | Names[RTLIB::SREM_I8] = "__modqi3"; | 
|  | Names[RTLIB::SREM_I16] = "__modhi3"; | 
|  | Names[RTLIB::SREM_I32] = "__modsi3"; | 
|  | Names[RTLIB::SREM_I64] = "__moddi3"; | 
|  | Names[RTLIB::SREM_I128] = "__modti3"; | 
|  | Names[RTLIB::UREM_I8] = "__umodqi3"; | 
|  | Names[RTLIB::UREM_I16] = "__umodhi3"; | 
|  | Names[RTLIB::UREM_I32] = "__umodsi3"; | 
|  | Names[RTLIB::UREM_I64] = "__umoddi3"; | 
|  | Names[RTLIB::UREM_I128] = "__umodti3"; | 
|  |  | 
|  | // These are generally not available. | 
|  | Names[RTLIB::SDIVREM_I8] = nullptr; | 
|  | Names[RTLIB::SDIVREM_I16] = nullptr; | 
|  | Names[RTLIB::SDIVREM_I32] = nullptr; | 
|  | Names[RTLIB::SDIVREM_I64] = nullptr; | 
|  | Names[RTLIB::SDIVREM_I128] = nullptr; | 
|  | Names[RTLIB::UDIVREM_I8] = nullptr; | 
|  | Names[RTLIB::UDIVREM_I16] = nullptr; | 
|  | Names[RTLIB::UDIVREM_I32] = nullptr; | 
|  | Names[RTLIB::UDIVREM_I64] = nullptr; | 
|  | Names[RTLIB::UDIVREM_I128] = nullptr; | 
|  |  | 
|  | Names[RTLIB::NEG_I32] = "__negsi2"; | 
|  | Names[RTLIB::NEG_I64] = "__negdi2"; | 
|  | Names[RTLIB::ADD_F32] = "__addsf3"; | 
|  | Names[RTLIB::ADD_F64] = "__adddf3"; | 
|  | Names[RTLIB::ADD_F80] = "__addxf3"; | 
|  | Names[RTLIB::ADD_F128] = "__addtf3"; | 
|  | Names[RTLIB::ADD_PPCF128] = "__gcc_qadd"; | 
|  | Names[RTLIB::SUB_F32] = "__subsf3"; | 
|  | Names[RTLIB::SUB_F64] = "__subdf3"; | 
|  | Names[RTLIB::SUB_F80] = "__subxf3"; | 
|  | Names[RTLIB::SUB_F128] = "__subtf3"; | 
|  | Names[RTLIB::SUB_PPCF128] = "__gcc_qsub"; | 
|  | Names[RTLIB::MUL_F32] = "__mulsf3"; | 
|  | Names[RTLIB::MUL_F64] = "__muldf3"; | 
|  | Names[RTLIB::MUL_F80] = "__mulxf3"; | 
|  | Names[RTLIB::MUL_F128] = "__multf3"; | 
|  | Names[RTLIB::MUL_PPCF128] = "__gcc_qmul"; | 
|  | Names[RTLIB::DIV_F32] = "__divsf3"; | 
|  | Names[RTLIB::DIV_F64] = "__divdf3"; | 
|  | Names[RTLIB::DIV_F80] = "__divxf3"; | 
|  | Names[RTLIB::DIV_F128] = "__divtf3"; | 
|  | Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv"; | 
|  | Names[RTLIB::REM_F32] = "fmodf"; | 
|  | Names[RTLIB::REM_F64] = "fmod"; | 
|  | Names[RTLIB::REM_F80] = "fmodl"; | 
|  | Names[RTLIB::REM_F128] = "fmodl"; | 
|  | Names[RTLIB::REM_PPCF128] = "fmodl"; | 
|  | Names[RTLIB::FMA_F32] = "fmaf"; | 
|  | Names[RTLIB::FMA_F64] = "fma"; | 
|  | Names[RTLIB::FMA_F80] = "fmal"; | 
|  | Names[RTLIB::FMA_F128] = "fmal"; | 
|  | Names[RTLIB::FMA_PPCF128] = "fmal"; | 
|  | Names[RTLIB::POWI_F32] = "__powisf2"; | 
|  | Names[RTLIB::POWI_F64] = "__powidf2"; | 
|  | Names[RTLIB::POWI_F80] = "__powixf2"; | 
|  | Names[RTLIB::POWI_F128] = "__powitf2"; | 
|  | Names[RTLIB::POWI_PPCF128] = "__powitf2"; | 
|  | Names[RTLIB::SQRT_F32] = "sqrtf"; | 
|  | Names[RTLIB::SQRT_F64] = "sqrt"; | 
|  | Names[RTLIB::SQRT_F80] = "sqrtl"; | 
|  | Names[RTLIB::SQRT_F128] = "sqrtl"; | 
|  | Names[RTLIB::SQRT_PPCF128] = "sqrtl"; | 
|  | Names[RTLIB::LOG_F32] = "logf"; | 
|  | Names[RTLIB::LOG_F64] = "log"; | 
|  | Names[RTLIB::LOG_F80] = "logl"; | 
|  | Names[RTLIB::LOG_F128] = "logl"; | 
|  | Names[RTLIB::LOG_PPCF128] = "logl"; | 
|  | Names[RTLIB::LOG2_F32] = "log2f"; | 
|  | Names[RTLIB::LOG2_F64] = "log2"; | 
|  | Names[RTLIB::LOG2_F80] = "log2l"; | 
|  | Names[RTLIB::LOG2_F128] = "log2l"; | 
|  | Names[RTLIB::LOG2_PPCF128] = "log2l"; | 
|  | Names[RTLIB::LOG10_F32] = "log10f"; | 
|  | Names[RTLIB::LOG10_F64] = "log10"; | 
|  | Names[RTLIB::LOG10_F80] = "log10l"; | 
|  | Names[RTLIB::LOG10_F128] = "log10l"; | 
|  | Names[RTLIB::LOG10_PPCF128] = "log10l"; | 
|  | Names[RTLIB::EXP_F32] = "expf"; | 
|  | Names[RTLIB::EXP_F64] = "exp"; | 
|  | Names[RTLIB::EXP_F80] = "expl"; | 
|  | Names[RTLIB::EXP_F128] = "expl"; | 
|  | Names[RTLIB::EXP_PPCF128] = "expl"; | 
|  | Names[RTLIB::EXP2_F32] = "exp2f"; | 
|  | Names[RTLIB::EXP2_F64] = "exp2"; | 
|  | Names[RTLIB::EXP2_F80] = "exp2l"; | 
|  | Names[RTLIB::EXP2_F128] = "exp2l"; | 
|  | Names[RTLIB::EXP2_PPCF128] = "exp2l"; | 
|  | Names[RTLIB::SIN_F32] = "sinf"; | 
|  | Names[RTLIB::SIN_F64] = "sin"; | 
|  | Names[RTLIB::SIN_F80] = "sinl"; | 
|  | Names[RTLIB::SIN_F128] = "sinl"; | 
|  | Names[RTLIB::SIN_PPCF128] = "sinl"; | 
|  | Names[RTLIB::COS_F32] = "cosf"; | 
|  | Names[RTLIB::COS_F64] = "cos"; | 
|  | Names[RTLIB::COS_F80] = "cosl"; | 
|  | Names[RTLIB::COS_F128] = "cosl"; | 
|  | Names[RTLIB::COS_PPCF128] = "cosl"; | 
|  | Names[RTLIB::POW_F32] = "powf"; | 
|  | Names[RTLIB::POW_F64] = "pow"; | 
|  | Names[RTLIB::POW_F80] = "powl"; | 
|  | Names[RTLIB::POW_F128] = "powl"; | 
|  | Names[RTLIB::POW_PPCF128] = "powl"; | 
|  | Names[RTLIB::CEIL_F32] = "ceilf"; | 
|  | Names[RTLIB::CEIL_F64] = "ceil"; | 
|  | Names[RTLIB::CEIL_F80] = "ceill"; | 
|  | Names[RTLIB::CEIL_F128] = "ceill"; | 
|  | Names[RTLIB::CEIL_PPCF128] = "ceill"; | 
|  | Names[RTLIB::TRUNC_F32] = "truncf"; | 
|  | Names[RTLIB::TRUNC_F64] = "trunc"; | 
|  | Names[RTLIB::TRUNC_F80] = "truncl"; | 
|  | Names[RTLIB::TRUNC_F128] = "truncl"; | 
|  | Names[RTLIB::TRUNC_PPCF128] = "truncl"; | 
|  | Names[RTLIB::RINT_F32] = "rintf"; | 
|  | Names[RTLIB::RINT_F64] = "rint"; | 
|  | Names[RTLIB::RINT_F80] = "rintl"; | 
|  | Names[RTLIB::RINT_F128] = "rintl"; | 
|  | Names[RTLIB::RINT_PPCF128] = "rintl"; | 
|  | Names[RTLIB::NEARBYINT_F32] = "nearbyintf"; | 
|  | Names[RTLIB::NEARBYINT_F64] = "nearbyint"; | 
|  | Names[RTLIB::NEARBYINT_F80] = "nearbyintl"; | 
|  | Names[RTLIB::NEARBYINT_F128] = "nearbyintl"; | 
|  | Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl"; | 
|  | Names[RTLIB::ROUND_F32] = "roundf"; | 
|  | Names[RTLIB::ROUND_F64] = "round"; | 
|  | Names[RTLIB::ROUND_F80] = "roundl"; | 
|  | Names[RTLIB::ROUND_F128] = "roundl"; | 
|  | Names[RTLIB::ROUND_PPCF128] = "roundl"; | 
|  | Names[RTLIB::FLOOR_F32] = "floorf"; | 
|  | Names[RTLIB::FLOOR_F64] = "floor"; | 
|  | Names[RTLIB::FLOOR_F80] = "floorl"; | 
|  | Names[RTLIB::FLOOR_F128] = "floorl"; | 
|  | Names[RTLIB::FLOOR_PPCF128] = "floorl"; | 
|  | Names[RTLIB::FMIN_F32] = "fminf"; | 
|  | Names[RTLIB::FMIN_F64] = "fmin"; | 
|  | Names[RTLIB::FMIN_F80] = "fminl"; | 
|  | Names[RTLIB::FMIN_F128] = "fminl"; | 
|  | Names[RTLIB::FMIN_PPCF128] = "fminl"; | 
|  | Names[RTLIB::FMAX_F32] = "fmaxf"; | 
|  | Names[RTLIB::FMAX_F64] = "fmax"; | 
|  | Names[RTLIB::FMAX_F80] = "fmaxl"; | 
|  | Names[RTLIB::FMAX_F128] = "fmaxl"; | 
|  | Names[RTLIB::FMAX_PPCF128] = "fmaxl"; | 
|  | Names[RTLIB::ROUND_F32] = "roundf"; | 
|  | Names[RTLIB::ROUND_F64] = "round"; | 
|  | Names[RTLIB::ROUND_F80] = "roundl"; | 
|  | Names[RTLIB::ROUND_F128] = "roundl"; | 
|  | Names[RTLIB::ROUND_PPCF128] = "roundl"; | 
|  | Names[RTLIB::COPYSIGN_F32] = "copysignf"; | 
|  | Names[RTLIB::COPYSIGN_F64] = "copysign"; | 
|  | Names[RTLIB::COPYSIGN_F80] = "copysignl"; | 
|  | Names[RTLIB::COPYSIGN_F128] = "copysignl"; | 
|  | Names[RTLIB::COPYSIGN_PPCF128] = "copysignl"; | 
|  | Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2"; | 
|  | Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2"; | 
|  | Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2"; | 
|  | Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee"; | 
|  | Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee"; | 
|  | Names[RTLIB::FPROUND_F64_F16] = "__truncdfhf2"; | 
|  | Names[RTLIB::FPROUND_F80_F16] = "__truncxfhf2"; | 
|  | Names[RTLIB::FPROUND_F128_F16] = "__trunctfhf2"; | 
|  | Names[RTLIB::FPROUND_PPCF128_F16] = "__trunctfhf2"; | 
|  | Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2"; | 
|  | Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2"; | 
|  | Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2"; | 
|  | Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2"; | 
|  | Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2"; | 
|  | Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2"; | 
|  | Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2"; | 
|  | Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi"; | 
|  | Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi"; | 
|  | Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi"; | 
|  | Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi"; | 
|  | Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti"; | 
|  | Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi"; | 
|  | Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi"; | 
|  | Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi"; | 
|  | Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi"; | 
|  | Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti"; | 
|  | Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi"; | 
|  | Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi"; | 
|  | Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti"; | 
|  | Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi"; | 
|  | Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi"; | 
|  | Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti"; | 
|  | Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi"; | 
|  | Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi"; | 
|  | Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti"; | 
|  | Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi"; | 
|  | Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi"; | 
|  | Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi"; | 
|  | Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi"; | 
|  | Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti"; | 
|  | Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi"; | 
|  | Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi"; | 
|  | Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi"; | 
|  | Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi"; | 
|  | Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti"; | 
|  | Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi"; | 
|  | Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi"; | 
|  | Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti"; | 
|  | Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi"; | 
|  | Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi"; | 
|  | Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti"; | 
|  | Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi"; | 
|  | Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi"; | 
|  | Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti"; | 
|  | Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf"; | 
|  | Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf"; | 
|  | Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf"; | 
|  | Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf"; | 
|  | Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf"; | 
|  | Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf"; | 
|  | Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf"; | 
|  | Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf"; | 
|  | Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf"; | 
|  | Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf"; | 
|  | Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf"; | 
|  | Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf"; | 
|  | Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf"; | 
|  | Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf"; | 
|  | Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf"; | 
|  | Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf"; | 
|  | Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf"; | 
|  | Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf"; | 
|  | Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf"; | 
|  | Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf"; | 
|  | Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf"; | 
|  | Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf"; | 
|  | Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf"; | 
|  | Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf"; | 
|  | Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf"; | 
|  | Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf"; | 
|  | Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf"; | 
|  | Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf"; | 
|  | Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf"; | 
|  | Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf"; | 
|  | Names[RTLIB::OEQ_F32] = "__eqsf2"; | 
|  | Names[RTLIB::OEQ_F64] = "__eqdf2"; | 
|  | Names[RTLIB::OEQ_F128] = "__eqtf2"; | 
|  | Names[RTLIB::UNE_F32] = "__nesf2"; | 
|  | Names[RTLIB::UNE_F64] = "__nedf2"; | 
|  | Names[RTLIB::UNE_F128] = "__netf2"; | 
|  | Names[RTLIB::OGE_F32] = "__gesf2"; | 
|  | Names[RTLIB::OGE_F64] = "__gedf2"; | 
|  | Names[RTLIB::OGE_F128] = "__getf2"; | 
|  | Names[RTLIB::OLT_F32] = "__ltsf2"; | 
|  | Names[RTLIB::OLT_F64] = "__ltdf2"; | 
|  | Names[RTLIB::OLT_F128] = "__lttf2"; | 
|  | Names[RTLIB::OLE_F32] = "__lesf2"; | 
|  | Names[RTLIB::OLE_F64] = "__ledf2"; | 
|  | Names[RTLIB::OLE_F128] = "__letf2"; | 
|  | Names[RTLIB::OGT_F32] = "__gtsf2"; | 
|  | Names[RTLIB::OGT_F64] = "__gtdf2"; | 
|  | Names[RTLIB::OGT_F128] = "__gttf2"; | 
|  | Names[RTLIB::UO_F32] = "__unordsf2"; | 
|  | Names[RTLIB::UO_F64] = "__unorddf2"; | 
|  | Names[RTLIB::UO_F128] = "__unordtf2"; | 
|  | Names[RTLIB::O_F32] = "__unordsf2"; | 
|  | Names[RTLIB::O_F64] = "__unorddf2"; | 
|  | Names[RTLIB::O_F128] = "__unordtf2"; | 
|  | Names[RTLIB::MEMCPY] = "memcpy"; | 
|  | Names[RTLIB::MEMMOVE] = "memmove"; | 
|  | Names[RTLIB::MEMSET] = "memset"; | 
|  | Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume"; | 
|  | Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1"; | 
|  | Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2"; | 
|  | Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4"; | 
|  | Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8"; | 
|  | Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16"; | 
|  | Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1"; | 
|  | Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2"; | 
|  | Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4"; | 
|  | Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8"; | 
|  | Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8"; | 
|  | Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16"; | 
|  |  | 
|  | if (TT.getEnvironment() == Triple::GNU) { | 
|  | Names[RTLIB::SINCOS_F32] = "sincosf"; | 
|  | Names[RTLIB::SINCOS_F64] = "sincos"; | 
|  | Names[RTLIB::SINCOS_F80] = "sincosl"; | 
|  | Names[RTLIB::SINCOS_F128] = "sincosl"; | 
|  | Names[RTLIB::SINCOS_PPCF128] = "sincosl"; | 
|  | } else { | 
|  | // These are generally not available. | 
|  | Names[RTLIB::SINCOS_F32] = nullptr; | 
|  | Names[RTLIB::SINCOS_F64] = nullptr; | 
|  | Names[RTLIB::SINCOS_F80] = nullptr; | 
|  | Names[RTLIB::SINCOS_F128] = nullptr; | 
|  | Names[RTLIB::SINCOS_PPCF128] = nullptr; | 
|  | } | 
|  |  | 
|  | if (!TT.isOSOpenBSD()) { | 
|  | Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail"; | 
|  | } else { | 
|  | // These are generally not available. | 
|  | Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// InitLibcallCallingConvs - Set default libcall CallingConvs. | 
|  | /// | 
|  | static void InitLibcallCallingConvs(CallingConv::ID *CCs) { | 
|  | for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) { | 
|  | CCs[i] = CallingConv::C; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getFPEXT - Return the FPEXT_*_* value for the given types, or | 
|  | /// UNKNOWN_LIBCALL if there is none. | 
|  | RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) { | 
|  | if (OpVT == MVT::f16) { | 
|  | if (RetVT == MVT::f32) | 
|  | return FPEXT_F16_F32; | 
|  | } else if (OpVT == MVT::f32) { | 
|  | if (RetVT == MVT::f64) | 
|  | return FPEXT_F32_F64; | 
|  | if (RetVT == MVT::f128) | 
|  | return FPEXT_F32_F128; | 
|  | } else if (OpVT == MVT::f64) { | 
|  | if (RetVT == MVT::f128) | 
|  | return FPEXT_F64_F128; | 
|  | } | 
|  |  | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  |  | 
|  | /// getFPROUND - Return the FPROUND_*_* value for the given types, or | 
|  | /// UNKNOWN_LIBCALL if there is none. | 
|  | RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) { | 
|  | if (RetVT == MVT::f16) { | 
|  | if (OpVT == MVT::f32) | 
|  | return FPROUND_F32_F16; | 
|  | if (OpVT == MVT::f64) | 
|  | return FPROUND_F64_F16; | 
|  | if (OpVT == MVT::f80) | 
|  | return FPROUND_F80_F16; | 
|  | if (OpVT == MVT::f128) | 
|  | return FPROUND_F128_F16; | 
|  | if (OpVT == MVT::ppcf128) | 
|  | return FPROUND_PPCF128_F16; | 
|  | } else if (RetVT == MVT::f32) { | 
|  | if (OpVT == MVT::f64) | 
|  | return FPROUND_F64_F32; | 
|  | if (OpVT == MVT::f80) | 
|  | return FPROUND_F80_F32; | 
|  | if (OpVT == MVT::f128) | 
|  | return FPROUND_F128_F32; | 
|  | if (OpVT == MVT::ppcf128) | 
|  | return FPROUND_PPCF128_F32; | 
|  | } else if (RetVT == MVT::f64) { | 
|  | if (OpVT == MVT::f80) | 
|  | return FPROUND_F80_F64; | 
|  | if (OpVT == MVT::f128) | 
|  | return FPROUND_F128_F64; | 
|  | if (OpVT == MVT::ppcf128) | 
|  | return FPROUND_PPCF128_F64; | 
|  | } | 
|  |  | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  |  | 
|  | /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or | 
|  | /// UNKNOWN_LIBCALL if there is none. | 
|  | RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) { | 
|  | if (OpVT == MVT::f32) { | 
|  | if (RetVT == MVT::i8) | 
|  | return FPTOSINT_F32_I8; | 
|  | if (RetVT == MVT::i16) | 
|  | return FPTOSINT_F32_I16; | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOSINT_F32_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOSINT_F32_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOSINT_F32_I128; | 
|  | } else if (OpVT == MVT::f64) { | 
|  | if (RetVT == MVT::i8) | 
|  | return FPTOSINT_F64_I8; | 
|  | if (RetVT == MVT::i16) | 
|  | return FPTOSINT_F64_I16; | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOSINT_F64_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOSINT_F64_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOSINT_F64_I128; | 
|  | } else if (OpVT == MVT::f80) { | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOSINT_F80_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOSINT_F80_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOSINT_F80_I128; | 
|  | } else if (OpVT == MVT::f128) { | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOSINT_F128_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOSINT_F128_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOSINT_F128_I128; | 
|  | } else if (OpVT == MVT::ppcf128) { | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOSINT_PPCF128_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOSINT_PPCF128_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOSINT_PPCF128_I128; | 
|  | } | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  |  | 
|  | /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or | 
|  | /// UNKNOWN_LIBCALL if there is none. | 
|  | RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) { | 
|  | if (OpVT == MVT::f32) { | 
|  | if (RetVT == MVT::i8) | 
|  | return FPTOUINT_F32_I8; | 
|  | if (RetVT == MVT::i16) | 
|  | return FPTOUINT_F32_I16; | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOUINT_F32_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOUINT_F32_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOUINT_F32_I128; | 
|  | } else if (OpVT == MVT::f64) { | 
|  | if (RetVT == MVT::i8) | 
|  | return FPTOUINT_F64_I8; | 
|  | if (RetVT == MVT::i16) | 
|  | return FPTOUINT_F64_I16; | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOUINT_F64_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOUINT_F64_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOUINT_F64_I128; | 
|  | } else if (OpVT == MVT::f80) { | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOUINT_F80_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOUINT_F80_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOUINT_F80_I128; | 
|  | } else if (OpVT == MVT::f128) { | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOUINT_F128_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOUINT_F128_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOUINT_F128_I128; | 
|  | } else if (OpVT == MVT::ppcf128) { | 
|  | if (RetVT == MVT::i32) | 
|  | return FPTOUINT_PPCF128_I32; | 
|  | if (RetVT == MVT::i64) | 
|  | return FPTOUINT_PPCF128_I64; | 
|  | if (RetVT == MVT::i128) | 
|  | return FPTOUINT_PPCF128_I128; | 
|  | } | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  |  | 
|  | /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or | 
|  | /// UNKNOWN_LIBCALL if there is none. | 
|  | RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) { | 
|  | if (OpVT == MVT::i32) { | 
|  | if (RetVT == MVT::f32) | 
|  | return SINTTOFP_I32_F32; | 
|  | if (RetVT == MVT::f64) | 
|  | return SINTTOFP_I32_F64; | 
|  | if (RetVT == MVT::f80) | 
|  | return SINTTOFP_I32_F80; | 
|  | if (RetVT == MVT::f128) | 
|  | return SINTTOFP_I32_F128; | 
|  | if (RetVT == MVT::ppcf128) | 
|  | return SINTTOFP_I32_PPCF128; | 
|  | } else if (OpVT == MVT::i64) { | 
|  | if (RetVT == MVT::f32) | 
|  | return SINTTOFP_I64_F32; | 
|  | if (RetVT == MVT::f64) | 
|  | return SINTTOFP_I64_F64; | 
|  | if (RetVT == MVT::f80) | 
|  | return SINTTOFP_I64_F80; | 
|  | if (RetVT == MVT::f128) | 
|  | return SINTTOFP_I64_F128; | 
|  | if (RetVT == MVT::ppcf128) | 
|  | return SINTTOFP_I64_PPCF128; | 
|  | } else if (OpVT == MVT::i128) { | 
|  | if (RetVT == MVT::f32) | 
|  | return SINTTOFP_I128_F32; | 
|  | if (RetVT == MVT::f64) | 
|  | return SINTTOFP_I128_F64; | 
|  | if (RetVT == MVT::f80) | 
|  | return SINTTOFP_I128_F80; | 
|  | if (RetVT == MVT::f128) | 
|  | return SINTTOFP_I128_F128; | 
|  | if (RetVT == MVT::ppcf128) | 
|  | return SINTTOFP_I128_PPCF128; | 
|  | } | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  |  | 
|  | /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or | 
|  | /// UNKNOWN_LIBCALL if there is none. | 
|  | RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) { | 
|  | if (OpVT == MVT::i32) { | 
|  | if (RetVT == MVT::f32) | 
|  | return UINTTOFP_I32_F32; | 
|  | if (RetVT == MVT::f64) | 
|  | return UINTTOFP_I32_F64; | 
|  | if (RetVT == MVT::f80) | 
|  | return UINTTOFP_I32_F80; | 
|  | if (RetVT == MVT::f128) | 
|  | return UINTTOFP_I32_F128; | 
|  | if (RetVT == MVT::ppcf128) | 
|  | return UINTTOFP_I32_PPCF128; | 
|  | } else if (OpVT == MVT::i64) { | 
|  | if (RetVT == MVT::f32) | 
|  | return UINTTOFP_I64_F32; | 
|  | if (RetVT == MVT::f64) | 
|  | return UINTTOFP_I64_F64; | 
|  | if (RetVT == MVT::f80) | 
|  | return UINTTOFP_I64_F80; | 
|  | if (RetVT == MVT::f128) | 
|  | return UINTTOFP_I64_F128; | 
|  | if (RetVT == MVT::ppcf128) | 
|  | return UINTTOFP_I64_PPCF128; | 
|  | } else if (OpVT == MVT::i128) { | 
|  | if (RetVT == MVT::f32) | 
|  | return UINTTOFP_I128_F32; | 
|  | if (RetVT == MVT::f64) | 
|  | return UINTTOFP_I128_F64; | 
|  | if (RetVT == MVT::f80) | 
|  | return UINTTOFP_I128_F80; | 
|  | if (RetVT == MVT::f128) | 
|  | return UINTTOFP_I128_F128; | 
|  | if (RetVT == MVT::ppcf128) | 
|  | return UINTTOFP_I128_PPCF128; | 
|  | } | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  |  | 
|  | RTLIB::Libcall RTLIB::getATOMIC(unsigned Opc, MVT VT) { | 
|  | #define OP_TO_LIBCALL(Name, Enum)                                              \ | 
|  | case Name:                                                                   \ | 
|  | switch (VT.SimpleTy) {                                                     \ | 
|  | default:                                                                   \ | 
|  | return UNKNOWN_LIBCALL;                                                  \ | 
|  | case MVT::i8:                                                              \ | 
|  | return Enum##_1;                                                         \ | 
|  | case MVT::i16:                                                             \ | 
|  | return Enum##_2;                                                         \ | 
|  | case MVT::i32:                                                             \ | 
|  | return Enum##_4;                                                         \ | 
|  | case MVT::i64:                                                             \ | 
|  | return Enum##_8;                                                         \ | 
|  | case MVT::i128:                                                            \ | 
|  | return Enum##_16;                                                        \ | 
|  | } | 
|  |  | 
|  | switch (Opc) { | 
|  | OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET) | 
|  | OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP) | 
|  | OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD) | 
|  | OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB) | 
|  | OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND) | 
|  | OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR) | 
|  | OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR) | 
|  | OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND) | 
|  | OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX) | 
|  | OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX) | 
|  | OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN) | 
|  | OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN) | 
|  | } | 
|  |  | 
|  | #undef OP_TO_LIBCALL | 
|  |  | 
|  | return UNKNOWN_LIBCALL; | 
|  | } | 
|  |  | 
|  | /// InitCmpLibcallCCs - Set default comparison libcall CC. | 
|  | /// | 
|  | static void InitCmpLibcallCCs(ISD::CondCode *CCs) { | 
|  | memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL); | 
|  | CCs[RTLIB::OEQ_F32] = ISD::SETEQ; | 
|  | CCs[RTLIB::OEQ_F64] = ISD::SETEQ; | 
|  | CCs[RTLIB::OEQ_F128] = ISD::SETEQ; | 
|  | CCs[RTLIB::UNE_F32] = ISD::SETNE; | 
|  | CCs[RTLIB::UNE_F64] = ISD::SETNE; | 
|  | CCs[RTLIB::UNE_F128] = ISD::SETNE; | 
|  | CCs[RTLIB::OGE_F32] = ISD::SETGE; | 
|  | CCs[RTLIB::OGE_F64] = ISD::SETGE; | 
|  | CCs[RTLIB::OGE_F128] = ISD::SETGE; | 
|  | CCs[RTLIB::OLT_F32] = ISD::SETLT; | 
|  | CCs[RTLIB::OLT_F64] = ISD::SETLT; | 
|  | CCs[RTLIB::OLT_F128] = ISD::SETLT; | 
|  | CCs[RTLIB::OLE_F32] = ISD::SETLE; | 
|  | CCs[RTLIB::OLE_F64] = ISD::SETLE; | 
|  | CCs[RTLIB::OLE_F128] = ISD::SETLE; | 
|  | CCs[RTLIB::OGT_F32] = ISD::SETGT; | 
|  | CCs[RTLIB::OGT_F64] = ISD::SETGT; | 
|  | CCs[RTLIB::OGT_F128] = ISD::SETGT; | 
|  | CCs[RTLIB::UO_F32] = ISD::SETNE; | 
|  | CCs[RTLIB::UO_F64] = ISD::SETNE; | 
|  | CCs[RTLIB::UO_F128] = ISD::SETNE; | 
|  | CCs[RTLIB::O_F32] = ISD::SETEQ; | 
|  | CCs[RTLIB::O_F64] = ISD::SETEQ; | 
|  | CCs[RTLIB::O_F128] = ISD::SETEQ; | 
|  | } | 
|  |  | 
|  | /// NOTE: The TargetMachine owns TLOF. | 
|  | TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) { | 
|  | initActions(); | 
|  |  | 
|  | // Perform these initializations only once. | 
|  | IsLittleEndian = getDataLayout()->isLittleEndian(); | 
|  | MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8; | 
|  | MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize | 
|  | = MaxStoresPerMemmoveOptSize = 4; | 
|  | UseUnderscoreSetJmp = false; | 
|  | UseUnderscoreLongJmp = false; | 
|  | SelectIsExpensive = false; | 
|  | HasMultipleConditionRegisters = false; | 
|  | HasExtractBitsInsn = false; | 
|  | IntDivIsCheap = false; | 
|  | FsqrtIsCheap = false; | 
|  | Pow2SDivIsCheap = false; | 
|  | JumpIsExpensive = false; | 
|  | PredictableSelectIsExpensive = false; | 
|  | MaskAndBranchFoldingIsLegal = false; | 
|  | EnableExtLdPromotion = false; | 
|  | HasFloatingPointExceptions = true; | 
|  | StackPointerRegisterToSaveRestore = 0; | 
|  | ExceptionPointerRegister = 0; | 
|  | ExceptionSelectorRegister = 0; | 
|  | BooleanContents = UndefinedBooleanContent; | 
|  | BooleanFloatContents = UndefinedBooleanContent; | 
|  | BooleanVectorContents = UndefinedBooleanContent; | 
|  | SchedPreferenceInfo = Sched::ILP; | 
|  | JumpBufSize = 0; | 
|  | JumpBufAlignment = 0; | 
|  | MinFunctionAlignment = 0; | 
|  | PrefFunctionAlignment = 0; | 
|  | PrefLoopAlignment = 0; | 
|  | MinStackArgumentAlignment = 1; | 
|  | InsertFencesForAtomic = false; | 
|  | MinimumJumpTableEntries = 4; | 
|  |  | 
|  | InitLibcallNames(LibcallRoutineNames, Triple(TM.getTargetTriple())); | 
|  | InitCmpLibcallCCs(CmpLibcallCCs); | 
|  | InitLibcallCallingConvs(LibcallCallingConvs); | 
|  | } | 
|  |  | 
|  | void TargetLoweringBase::initActions() { | 
|  | // All operations default to being supported. | 
|  | memset(OpActions, 0, sizeof(OpActions)); | 
|  | memset(LoadExtActions, 0, sizeof(LoadExtActions)); | 
|  | memset(TruncStoreActions, 0, sizeof(TruncStoreActions)); | 
|  | memset(IndexedModeActions, 0, sizeof(IndexedModeActions)); | 
|  | memset(CondCodeActions, 0, sizeof(CondCodeActions)); | 
|  | memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*)); | 
|  | memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray)); | 
|  |  | 
|  | // Set default actions for various operations. | 
|  | for (MVT VT : MVT::all_valuetypes()) { | 
|  | // Default all indexed load / store to expand. | 
|  | for (unsigned IM = (unsigned)ISD::PRE_INC; | 
|  | IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) { | 
|  | setIndexedLoadAction(IM, VT, Expand); | 
|  | setIndexedStoreAction(IM, VT, Expand); | 
|  | } | 
|  |  | 
|  | // Most backends expect to see the node which just returns the value loaded. | 
|  | setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand); | 
|  |  | 
|  | // These operations default to expand. | 
|  | setOperationAction(ISD::FGETSIGN, VT, Expand); | 
|  | setOperationAction(ISD::CONCAT_VECTORS, VT, Expand); | 
|  | setOperationAction(ISD::FMINNUM, VT, Expand); | 
|  | setOperationAction(ISD::FMAXNUM, VT, Expand); | 
|  | setOperationAction(ISD::FMAD, VT, Expand); | 
|  |  | 
|  | // These library functions default to expand. | 
|  | setOperationAction(ISD::FROUND, VT, Expand); | 
|  |  | 
|  | // These operations default to expand for vector types. | 
|  | if (VT.isVector()) { | 
|  | setOperationAction(ISD::FCOPYSIGN, VT, Expand); | 
|  | setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand); | 
|  | setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand); | 
|  | setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Most targets ignore the @llvm.prefetch intrinsic. | 
|  | setOperationAction(ISD::PREFETCH, MVT::Other, Expand); | 
|  |  | 
|  | // ConstantFP nodes default to expand.  Targets can either change this to | 
|  | // Legal, in which case all fp constants are legal, or use isFPImmLegal() | 
|  | // to optimize expansions for certain constants. | 
|  | setOperationAction(ISD::ConstantFP, MVT::f16, Expand); | 
|  | setOperationAction(ISD::ConstantFP, MVT::f32, Expand); | 
|  | setOperationAction(ISD::ConstantFP, MVT::f64, Expand); | 
|  | setOperationAction(ISD::ConstantFP, MVT::f80, Expand); | 
|  | setOperationAction(ISD::ConstantFP, MVT::f128, Expand); | 
|  |  | 
|  | // These library functions default to expand. | 
|  | for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) { | 
|  | setOperationAction(ISD::FLOG ,      VT, Expand); | 
|  | setOperationAction(ISD::FLOG2,      VT, Expand); | 
|  | setOperationAction(ISD::FLOG10,     VT, Expand); | 
|  | setOperationAction(ISD::FEXP ,      VT, Expand); | 
|  | setOperationAction(ISD::FEXP2,      VT, Expand); | 
|  | setOperationAction(ISD::FFLOOR,     VT, Expand); | 
|  | setOperationAction(ISD::FMINNUM,    VT, Expand); | 
|  | setOperationAction(ISD::FMAXNUM,    VT, Expand); | 
|  | setOperationAction(ISD::FNEARBYINT, VT, Expand); | 
|  | setOperationAction(ISD::FCEIL,      VT, Expand); | 
|  | setOperationAction(ISD::FRINT,      VT, Expand); | 
|  | setOperationAction(ISD::FTRUNC,     VT, Expand); | 
|  | setOperationAction(ISD::FROUND,     VT, Expand); | 
|  | } | 
|  |  | 
|  | // Default ISD::TRAP to expand (which turns it into abort). | 
|  | setOperationAction(ISD::TRAP, MVT::Other, Expand); | 
|  |  | 
|  | // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand" | 
|  | // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP. | 
|  | // | 
|  | setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand); | 
|  | } | 
|  |  | 
|  | MVT TargetLoweringBase::getPointerTy(uint32_t AS) const { | 
|  | return MVT::getIntegerVT(getPointerSizeInBits(AS)); | 
|  | } | 
|  |  | 
|  | unsigned TargetLoweringBase::getPointerSizeInBits(uint32_t AS) const { | 
|  | return getDataLayout()->getPointerSizeInBits(AS); | 
|  | } | 
|  |  | 
|  | unsigned TargetLoweringBase::getPointerTypeSizeInBits(Type *Ty) const { | 
|  | assert(Ty->isPointerTy()); | 
|  | return getPointerSizeInBits(Ty->getPointerAddressSpace()); | 
|  | } | 
|  |  | 
|  | MVT TargetLoweringBase::getScalarShiftAmountTy(EVT LHSTy) const { | 
|  | return MVT::getIntegerVT(8 * getDataLayout()->getPointerSize(0)); | 
|  | } | 
|  |  | 
|  | EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy) const { | 
|  | assert(LHSTy.isInteger() && "Shift amount is not an integer type!"); | 
|  | if (LHSTy.isVector()) | 
|  | return LHSTy; | 
|  | return getScalarShiftAmountTy(LHSTy); | 
|  | } | 
|  |  | 
|  | /// canOpTrap - Returns true if the operation can trap for the value type. | 
|  | /// VT must be a legal type. | 
|  | bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const { | 
|  | assert(isTypeLegal(VT)); | 
|  | switch (Op) { | 
|  | default: | 
|  | return false; | 
|  | case ISD::FDIV: | 
|  | case ISD::FREM: | 
|  | case ISD::SDIV: | 
|  | case ISD::UDIV: | 
|  | case ISD::SREM: | 
|  | case ISD::UREM: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | TargetLoweringBase::LegalizeKind | 
|  | TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const { | 
|  | // If this is a simple type, use the ComputeRegisterProp mechanism. | 
|  | if (VT.isSimple()) { | 
|  | MVT SVT = VT.getSimpleVT(); | 
|  | assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType)); | 
|  | MVT NVT = TransformToType[SVT.SimpleTy]; | 
|  | LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT); | 
|  |  | 
|  | assert((LA == TypeLegal || LA == TypeSoftenFloat || | 
|  | ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) && | 
|  | "Promote may not follow Expand or Promote"); | 
|  |  | 
|  | if (LA == TypeSplitVector) | 
|  | return LegalizeKind(LA, | 
|  | EVT::getVectorVT(Context, SVT.getVectorElementType(), | 
|  | SVT.getVectorNumElements() / 2)); | 
|  | if (LA == TypeScalarizeVector) | 
|  | return LegalizeKind(LA, SVT.getVectorElementType()); | 
|  | return LegalizeKind(LA, NVT); | 
|  | } | 
|  |  | 
|  | // Handle Extended Scalar Types. | 
|  | if (!VT.isVector()) { | 
|  | assert(VT.isInteger() && "Float types must be simple"); | 
|  | unsigned BitSize = VT.getSizeInBits(); | 
|  | // First promote to a power-of-two size, then expand if necessary. | 
|  | if (BitSize < 8 || !isPowerOf2_32(BitSize)) { | 
|  | EVT NVT = VT.getRoundIntegerType(Context); | 
|  | assert(NVT != VT && "Unable to round integer VT"); | 
|  | LegalizeKind NextStep = getTypeConversion(Context, NVT); | 
|  | // Avoid multi-step promotion. | 
|  | if (NextStep.first == TypePromoteInteger) | 
|  | return NextStep; | 
|  | // Return rounded integer type. | 
|  | return LegalizeKind(TypePromoteInteger, NVT); | 
|  | } | 
|  |  | 
|  | return LegalizeKind(TypeExpandInteger, | 
|  | EVT::getIntegerVT(Context, VT.getSizeInBits() / 2)); | 
|  | } | 
|  |  | 
|  | // Handle vector types. | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | EVT EltVT = VT.getVectorElementType(); | 
|  |  | 
|  | // Vectors with only one element are always scalarized. | 
|  | if (NumElts == 1) | 
|  | return LegalizeKind(TypeScalarizeVector, EltVT); | 
|  |  | 
|  | // Try to widen vector elements until the element type is a power of two and | 
|  | // promote it to a legal type later on, for example: | 
|  | // <3 x i8> -> <4 x i8> -> <4 x i32> | 
|  | if (EltVT.isInteger()) { | 
|  | // Vectors with a number of elements that is not a power of two are always | 
|  | // widened, for example <3 x i8> -> <4 x i8>. | 
|  | if (!VT.isPow2VectorType()) { | 
|  | NumElts = (unsigned)NextPowerOf2(NumElts); | 
|  | EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts); | 
|  | return LegalizeKind(TypeWidenVector, NVT); | 
|  | } | 
|  |  | 
|  | // Examine the element type. | 
|  | LegalizeKind LK = getTypeConversion(Context, EltVT); | 
|  |  | 
|  | // If type is to be expanded, split the vector. | 
|  | //  <4 x i140> -> <2 x i140> | 
|  | if (LK.first == TypeExpandInteger) | 
|  | return LegalizeKind(TypeSplitVector, | 
|  | EVT::getVectorVT(Context, EltVT, NumElts / 2)); | 
|  |  | 
|  | // Promote the integer element types until a legal vector type is found | 
|  | // or until the element integer type is too big. If a legal type was not | 
|  | // found, fallback to the usual mechanism of widening/splitting the | 
|  | // vector. | 
|  | EVT OldEltVT = EltVT; | 
|  | while (1) { | 
|  | // Increase the bitwidth of the element to the next pow-of-two | 
|  | // (which is greater than 8 bits). | 
|  | EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits()) | 
|  | .getRoundIntegerType(Context); | 
|  |  | 
|  | // Stop trying when getting a non-simple element type. | 
|  | // Note that vector elements may be greater than legal vector element | 
|  | // types. Example: X86 XMM registers hold 64bit element on 32bit | 
|  | // systems. | 
|  | if (!EltVT.isSimple()) | 
|  | break; | 
|  |  | 
|  | // Build a new vector type and check if it is legal. | 
|  | MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); | 
|  | // Found a legal promoted vector type. | 
|  | if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal) | 
|  | return LegalizeKind(TypePromoteInteger, | 
|  | EVT::getVectorVT(Context, EltVT, NumElts)); | 
|  | } | 
|  |  | 
|  | // Reset the type to the unexpanded type if we did not find a legal vector | 
|  | // type with a promoted vector element type. | 
|  | EltVT = OldEltVT; | 
|  | } | 
|  |  | 
|  | // Try to widen the vector until a legal type is found. | 
|  | // If there is no wider legal type, split the vector. | 
|  | while (1) { | 
|  | // Round up to the next power of 2. | 
|  | NumElts = (unsigned)NextPowerOf2(NumElts); | 
|  |  | 
|  | // If there is no simple vector type with this many elements then there | 
|  | // cannot be a larger legal vector type.  Note that this assumes that | 
|  | // there are no skipped intermediate vector types in the simple types. | 
|  | if (!EltVT.isSimple()) | 
|  | break; | 
|  | MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts); | 
|  | if (LargerVector == MVT()) | 
|  | break; | 
|  |  | 
|  | // If this type is legal then widen the vector. | 
|  | if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal) | 
|  | return LegalizeKind(TypeWidenVector, LargerVector); | 
|  | } | 
|  |  | 
|  | // Widen odd vectors to next power of two. | 
|  | if (!VT.isPow2VectorType()) { | 
|  | EVT NVT = VT.getPow2VectorType(Context); | 
|  | return LegalizeKind(TypeWidenVector, NVT); | 
|  | } | 
|  |  | 
|  | // Vectors with illegal element types are expanded. | 
|  | EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2); | 
|  | return LegalizeKind(TypeSplitVector, NVT); | 
|  | } | 
|  |  | 
|  | static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT, | 
|  | unsigned &NumIntermediates, | 
|  | MVT &RegisterVT, | 
|  | TargetLoweringBase *TLI) { | 
|  | // Figure out the right, legal destination reg to copy into. | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  | MVT EltTy = VT.getVectorElementType(); | 
|  |  | 
|  | unsigned NumVectorRegs = 1; | 
|  |  | 
|  | // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we | 
|  | // could break down into LHS/RHS like LegalizeDAG does. | 
|  | if (!isPowerOf2_32(NumElts)) { | 
|  | NumVectorRegs = NumElts; | 
|  | NumElts = 1; | 
|  | } | 
|  |  | 
|  | // Divide the input until we get to a supported size.  This will always | 
|  | // end with a scalar if the target doesn't support vectors. | 
|  | while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) { | 
|  | NumElts >>= 1; | 
|  | NumVectorRegs <<= 1; | 
|  | } | 
|  |  | 
|  | NumIntermediates = NumVectorRegs; | 
|  |  | 
|  | MVT NewVT = MVT::getVectorVT(EltTy, NumElts); | 
|  | if (!TLI->isTypeLegal(NewVT)) | 
|  | NewVT = EltTy; | 
|  | IntermediateVT = NewVT; | 
|  |  | 
|  | unsigned NewVTSize = NewVT.getSizeInBits(); | 
|  |  | 
|  | // Convert sizes such as i33 to i64. | 
|  | if (!isPowerOf2_32(NewVTSize)) | 
|  | NewVTSize = NextPowerOf2(NewVTSize); | 
|  |  | 
|  | MVT DestVT = TLI->getRegisterType(NewVT); | 
|  | RegisterVT = DestVT; | 
|  | if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16. | 
|  | return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); | 
|  |  | 
|  | // Otherwise, promotion or legal types use the same number of registers as | 
|  | // the vector decimated to the appropriate level. | 
|  | return NumVectorRegs; | 
|  | } | 
|  |  | 
|  | /// isLegalRC - Return true if the value types that can be represented by the | 
|  | /// specified register class are all legal. | 
|  | bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const { | 
|  | for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end(); | 
|  | I != E; ++I) { | 
|  | if (isTypeLegal(*I)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Replace/modify any TargetFrameIndex operands with a targte-dependent | 
|  | /// sequence of memory operands that is recognized by PrologEpilogInserter. | 
|  | MachineBasicBlock* | 
|  | TargetLoweringBase::emitPatchPoint(MachineInstr *MI, | 
|  | MachineBasicBlock *MBB) const { | 
|  | MachineFunction &MF = *MI->getParent()->getParent(); | 
|  |  | 
|  | // MI changes inside this loop as we grow operands. | 
|  | for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) { | 
|  | MachineOperand &MO = MI->getOperand(OperIdx); | 
|  | if (!MO.isFI()) | 
|  | continue; | 
|  |  | 
|  | // foldMemoryOperand builds a new MI after replacing a single FI operand | 
|  | // with the canonical set of five x86 addressing-mode operands. | 
|  | int FI = MO.getIndex(); | 
|  | MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc()); | 
|  |  | 
|  | // Copy operands before the frame-index. | 
|  | for (unsigned i = 0; i < OperIdx; ++i) | 
|  | MIB.addOperand(MI->getOperand(i)); | 
|  | // Add frame index operands: direct-mem-ref tag, #FI, offset. | 
|  | MIB.addImm(StackMaps::DirectMemRefOp); | 
|  | MIB.addOperand(MI->getOperand(OperIdx)); | 
|  | MIB.addImm(0); | 
|  | // Copy the operands after the frame index. | 
|  | for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i) | 
|  | MIB.addOperand(MI->getOperand(i)); | 
|  |  | 
|  | // Inherit previous memory operands. | 
|  | MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end()); | 
|  | assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!"); | 
|  |  | 
|  | // Add a new memory operand for this FI. | 
|  | const MachineFrameInfo &MFI = *MF.getFrameInfo(); | 
|  | assert(MFI.getObjectOffset(FI) != -1); | 
|  |  | 
|  | unsigned Flags = MachineMemOperand::MOLoad; | 
|  | if (MI->getOpcode() == TargetOpcode::STATEPOINT) { | 
|  | Flags |= MachineMemOperand::MOStore; | 
|  | Flags |= MachineMemOperand::MOVolatile; | 
|  | } | 
|  | MachineMemOperand *MMO = MF.getMachineMemOperand( | 
|  | MachinePointerInfo::getFixedStack(FI), Flags, | 
|  | TM.getDataLayout()->getPointerSize(), MFI.getObjectAlignment(FI)); | 
|  | MIB->addMemOperand(MF, MMO); | 
|  |  | 
|  | // Replace the instruction and update the operand index. | 
|  | MBB->insert(MachineBasicBlock::iterator(MI), MIB); | 
|  | OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1; | 
|  | MI->eraseFromParent(); | 
|  | MI = MIB; | 
|  | } | 
|  | return MBB; | 
|  | } | 
|  |  | 
|  | /// findRepresentativeClass - Return the largest legal super-reg register class | 
|  | /// of the register class for the specified type and its associated "cost". | 
|  | // This function is in TargetLowering because it uses RegClassForVT which would | 
|  | // need to be moved to TargetRegisterInfo and would necessitate moving | 
|  | // isTypeLegal over as well - a massive change that would just require | 
|  | // TargetLowering having a TargetRegisterInfo class member that it would use. | 
|  | std::pair<const TargetRegisterClass *, uint8_t> | 
|  | TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI, | 
|  | MVT VT) const { | 
|  | const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy]; | 
|  | if (!RC) | 
|  | return std::make_pair(RC, 0); | 
|  |  | 
|  | // Compute the set of all super-register classes. | 
|  | BitVector SuperRegRC(TRI->getNumRegClasses()); | 
|  | for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI) | 
|  | SuperRegRC.setBitsInMask(RCI.getMask()); | 
|  |  | 
|  | // Find the first legal register class with the largest spill size. | 
|  | const TargetRegisterClass *BestRC = RC; | 
|  | for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) { | 
|  | const TargetRegisterClass *SuperRC = TRI->getRegClass(i); | 
|  | // We want the largest possible spill size. | 
|  | if (SuperRC->getSize() <= BestRC->getSize()) | 
|  | continue; | 
|  | if (!isLegalRC(SuperRC)) | 
|  | continue; | 
|  | BestRC = SuperRC; | 
|  | } | 
|  | return std::make_pair(BestRC, 1); | 
|  | } | 
|  |  | 
|  | /// computeRegisterProperties - Once all of the register classes are added, | 
|  | /// this allows us to compute derived properties we expose. | 
|  | void TargetLoweringBase::computeRegisterProperties( | 
|  | const TargetRegisterInfo *TRI) { | 
|  | static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE, | 
|  | "Too many value types for ValueTypeActions to hold!"); | 
|  |  | 
|  | // Everything defaults to needing one register. | 
|  | for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { | 
|  | NumRegistersForVT[i] = 1; | 
|  | RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i; | 
|  | } | 
|  | // ...except isVoid, which doesn't need any registers. | 
|  | NumRegistersForVT[MVT::isVoid] = 0; | 
|  |  | 
|  | // Find the largest integer register class. | 
|  | unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE; | 
|  | for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg) | 
|  | assert(LargestIntReg != MVT::i1 && "No integer registers defined!"); | 
|  |  | 
|  | // Every integer value type larger than this largest register takes twice as | 
|  | // many registers to represent as the previous ValueType. | 
|  | for (unsigned ExpandedReg = LargestIntReg + 1; | 
|  | ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) { | 
|  | NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1]; | 
|  | RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg; | 
|  | TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1); | 
|  | ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg, | 
|  | TypeExpandInteger); | 
|  | } | 
|  |  | 
|  | // Inspect all of the ValueType's smaller than the largest integer | 
|  | // register to see which ones need promotion. | 
|  | unsigned LegalIntReg = LargestIntReg; | 
|  | for (unsigned IntReg = LargestIntReg - 1; | 
|  | IntReg >= (unsigned)MVT::i1; --IntReg) { | 
|  | MVT IVT = (MVT::SimpleValueType)IntReg; | 
|  | if (isTypeLegal(IVT)) { | 
|  | LegalIntReg = IntReg; | 
|  | } else { | 
|  | RegisterTypeForVT[IntReg] = TransformToType[IntReg] = | 
|  | (const MVT::SimpleValueType)LegalIntReg; | 
|  | ValueTypeActions.setTypeAction(IVT, TypePromoteInteger); | 
|  | } | 
|  | } | 
|  |  | 
|  | // ppcf128 type is really two f64's. | 
|  | if (!isTypeLegal(MVT::ppcf128)) { | 
|  | NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64]; | 
|  | RegisterTypeForVT[MVT::ppcf128] = MVT::f64; | 
|  | TransformToType[MVT::ppcf128] = MVT::f64; | 
|  | ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat); | 
|  | } | 
|  |  | 
|  | // Decide how to handle f128. If the target does not have native f128 support, | 
|  | // expand it to i128 and we will be generating soft float library calls. | 
|  | if (!isTypeLegal(MVT::f128)) { | 
|  | NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128]; | 
|  | RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128]; | 
|  | TransformToType[MVT::f128] = MVT::i128; | 
|  | ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat); | 
|  | } | 
|  |  | 
|  | // Decide how to handle f64. If the target does not have native f64 support, | 
|  | // expand it to i64 and we will be generating soft float library calls. | 
|  | if (!isTypeLegal(MVT::f64)) { | 
|  | NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64]; | 
|  | RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64]; | 
|  | TransformToType[MVT::f64] = MVT::i64; | 
|  | ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat); | 
|  | } | 
|  |  | 
|  | // Decide how to handle f32. If the target does not have native f32 support, | 
|  | // expand it to i32 and we will be generating soft float library calls. | 
|  | if (!isTypeLegal(MVT::f32)) { | 
|  | NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32]; | 
|  | RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32]; | 
|  | TransformToType[MVT::f32] = MVT::i32; | 
|  | ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat); | 
|  | } | 
|  |  | 
|  | if (!isTypeLegal(MVT::f16)) { | 
|  | NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16]; | 
|  | RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16]; | 
|  | TransformToType[MVT::f16] = MVT::i16; | 
|  | ValueTypeActions.setTypeAction(MVT::f16, TypeSoftenFloat); | 
|  | } | 
|  |  | 
|  | // Loop over all of the vector value types to see which need transformations. | 
|  | for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE; | 
|  | i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) { | 
|  | MVT VT = (MVT::SimpleValueType) i; | 
|  | if (isTypeLegal(VT)) | 
|  | continue; | 
|  |  | 
|  | MVT EltVT = VT.getVectorElementType(); | 
|  | unsigned NElts = VT.getVectorNumElements(); | 
|  | bool IsLegalWiderType = false; | 
|  | LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT); | 
|  | switch (PreferredAction) { | 
|  | case TypePromoteInteger: { | 
|  | // Try to promote the elements of integer vectors. If no legal | 
|  | // promotion was found, fall through to the widen-vector method. | 
|  | for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { | 
|  | MVT SVT = (MVT::SimpleValueType) nVT; | 
|  | // Promote vectors of integers to vectors with the same number | 
|  | // of elements, with a wider element type. | 
|  | if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits() | 
|  | && SVT.getVectorNumElements() == NElts && isTypeLegal(SVT) | 
|  | && SVT.getScalarType().isInteger()) { | 
|  | TransformToType[i] = SVT; | 
|  | RegisterTypeForVT[i] = SVT; | 
|  | NumRegistersForVT[i] = 1; | 
|  | ValueTypeActions.setTypeAction(VT, TypePromoteInteger); | 
|  | IsLegalWiderType = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (IsLegalWiderType) | 
|  | break; | 
|  | } | 
|  | case TypeWidenVector: { | 
|  | // Try to widen the vector. | 
|  | for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) { | 
|  | MVT SVT = (MVT::SimpleValueType) nVT; | 
|  | if (SVT.getVectorElementType() == EltVT | 
|  | && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) { | 
|  | TransformToType[i] = SVT; | 
|  | RegisterTypeForVT[i] = SVT; | 
|  | NumRegistersForVT[i] = 1; | 
|  | ValueTypeActions.setTypeAction(VT, TypeWidenVector); | 
|  | IsLegalWiderType = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (IsLegalWiderType) | 
|  | break; | 
|  | } | 
|  | case TypeSplitVector: | 
|  | case TypeScalarizeVector: { | 
|  | MVT IntermediateVT; | 
|  | MVT RegisterVT; | 
|  | unsigned NumIntermediates; | 
|  | NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT, | 
|  | NumIntermediates, RegisterVT, this); | 
|  | RegisterTypeForVT[i] = RegisterVT; | 
|  |  | 
|  | MVT NVT = VT.getPow2VectorType(); | 
|  | if (NVT == VT) { | 
|  | // Type is already a power of 2.  The default action is to split. | 
|  | TransformToType[i] = MVT::Other; | 
|  | if (PreferredAction == TypeScalarizeVector) | 
|  | ValueTypeActions.setTypeAction(VT, TypeScalarizeVector); | 
|  | else if (PreferredAction == TypeSplitVector) | 
|  | ValueTypeActions.setTypeAction(VT, TypeSplitVector); | 
|  | else | 
|  | // Set type action according to the number of elements. | 
|  | ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector | 
|  | : TypeSplitVector); | 
|  | } else { | 
|  | TransformToType[i] = NVT; | 
|  | ValueTypeActions.setTypeAction(VT, TypeWidenVector); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("Unknown vector legalization action!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Determine the 'representative' register class for each value type. | 
|  | // An representative register class is the largest (meaning one which is | 
|  | // not a sub-register class / subreg register class) legal register class for | 
|  | // a group of value types. For example, on i386, i8, i16, and i32 | 
|  | // representative would be GR32; while on x86_64 it's GR64. | 
|  | for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) { | 
|  | const TargetRegisterClass* RRC; | 
|  | uint8_t Cost; | 
|  | std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i); | 
|  | RepRegClassForVT[i] = RRC; | 
|  | RepRegClassCostForVT[i] = Cost; | 
|  | } | 
|  | } | 
|  |  | 
|  | EVT TargetLoweringBase::getSetCCResultType(LLVMContext &, EVT VT) const { | 
|  | assert(!VT.isVector() && "No default SetCC type for vectors!"); | 
|  | return getPointerTy(0).SimpleTy; | 
|  | } | 
|  |  | 
|  | MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const { | 
|  | return MVT::i32; // return the default value | 
|  | } | 
|  |  | 
|  | /// getVectorTypeBreakdown - Vector types are broken down into some number of | 
|  | /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32 | 
|  | /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack. | 
|  | /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86. | 
|  | /// | 
|  | /// This method returns the number of registers needed, and the VT for each | 
|  | /// register.  It also returns the VT and quantity of the intermediate values | 
|  | /// before they are promoted/expanded. | 
|  | /// | 
|  | unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT, | 
|  | EVT &IntermediateVT, | 
|  | unsigned &NumIntermediates, | 
|  | MVT &RegisterVT) const { | 
|  | unsigned NumElts = VT.getVectorNumElements(); | 
|  |  | 
|  | // If there is a wider vector type with the same element type as this one, | 
|  | // or a promoted vector type that has the same number of elements which | 
|  | // are wider, then we should convert to that legal vector type. | 
|  | // This handles things like <2 x float> -> <4 x float> and | 
|  | // <4 x i1> -> <4 x i32>. | 
|  | LegalizeTypeAction TA = getTypeAction(Context, VT); | 
|  | if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) { | 
|  | EVT RegisterEVT = getTypeToTransformTo(Context, VT); | 
|  | if (isTypeLegal(RegisterEVT)) { | 
|  | IntermediateVT = RegisterEVT; | 
|  | RegisterVT = RegisterEVT.getSimpleVT(); | 
|  | NumIntermediates = 1; | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Figure out the right, legal destination reg to copy into. | 
|  | EVT EltTy = VT.getVectorElementType(); | 
|  |  | 
|  | unsigned NumVectorRegs = 1; | 
|  |  | 
|  | // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we | 
|  | // could break down into LHS/RHS like LegalizeDAG does. | 
|  | if (!isPowerOf2_32(NumElts)) { | 
|  | NumVectorRegs = NumElts; | 
|  | NumElts = 1; | 
|  | } | 
|  |  | 
|  | // Divide the input until we get to a supported size.  This will always | 
|  | // end with a scalar if the target doesn't support vectors. | 
|  | while (NumElts > 1 && !isTypeLegal( | 
|  | EVT::getVectorVT(Context, EltTy, NumElts))) { | 
|  | NumElts >>= 1; | 
|  | NumVectorRegs <<= 1; | 
|  | } | 
|  |  | 
|  | NumIntermediates = NumVectorRegs; | 
|  |  | 
|  | EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts); | 
|  | if (!isTypeLegal(NewVT)) | 
|  | NewVT = EltTy; | 
|  | IntermediateVT = NewVT; | 
|  |  | 
|  | MVT DestVT = getRegisterType(Context, NewVT); | 
|  | RegisterVT = DestVT; | 
|  | unsigned NewVTSize = NewVT.getSizeInBits(); | 
|  |  | 
|  | // Convert sizes such as i33 to i64. | 
|  | if (!isPowerOf2_32(NewVTSize)) | 
|  | NewVTSize = NextPowerOf2(NewVTSize); | 
|  |  | 
|  | if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16. | 
|  | return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits()); | 
|  |  | 
|  | // Otherwise, promotion or legal types use the same number of registers as | 
|  | // the vector decimated to the appropriate level. | 
|  | return NumVectorRegs; | 
|  | } | 
|  |  | 
|  | /// Get the EVTs and ArgFlags collections that represent the legalized return | 
|  | /// type of the given function.  This does not require a DAG or a return value, | 
|  | /// and is suitable for use before any DAGs for the function are constructed. | 
|  | /// TODO: Move this out of TargetLowering.cpp. | 
|  | void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr, | 
|  | SmallVectorImpl<ISD::OutputArg> &Outs, | 
|  | const TargetLowering &TLI) { | 
|  | SmallVector<EVT, 4> ValueVTs; | 
|  | ComputeValueVTs(TLI, ReturnType, ValueVTs); | 
|  | unsigned NumValues = ValueVTs.size(); | 
|  | if (NumValues == 0) return; | 
|  |  | 
|  | for (unsigned j = 0, f = NumValues; j != f; ++j) { | 
|  | EVT VT = ValueVTs[j]; | 
|  | ISD::NodeType ExtendKind = ISD::ANY_EXTEND; | 
|  |  | 
|  | if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) | 
|  | ExtendKind = ISD::SIGN_EXTEND; | 
|  | else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt)) | 
|  | ExtendKind = ISD::ZERO_EXTEND; | 
|  |  | 
|  | // FIXME: C calling convention requires the return type to be promoted to | 
|  | // at least 32-bit. But this is not necessary for non-C calling | 
|  | // conventions. The frontend should mark functions whose return values | 
|  | // require promoting with signext or zeroext attributes. | 
|  | if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) { | 
|  | MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32); | 
|  | if (VT.bitsLT(MinVT)) | 
|  | VT = MinVT; | 
|  | } | 
|  |  | 
|  | unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT); | 
|  | MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT); | 
|  |  | 
|  | // 'inreg' on function refers to return value | 
|  | ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); | 
|  | if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg)) | 
|  | Flags.setInReg(); | 
|  |  | 
|  | // Propagate extension type if any | 
|  | if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) | 
|  | Flags.setSExt(); | 
|  | else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt)) | 
|  | Flags.setZExt(); | 
|  |  | 
|  | for (unsigned i = 0; i < NumParts; ++i) | 
|  | Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate | 
|  | /// function arguments in the caller parameter area.  This is the actual | 
|  | /// alignment, not its logarithm. | 
|  | unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty) const { | 
|  | return getDataLayout()->getABITypeAlignment(Ty); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  TargetTransformInfo Helpers | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const { | 
|  | enum InstructionOpcodes { | 
|  | #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM, | 
|  | #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM | 
|  | #include "llvm/IR/Instruction.def" | 
|  | }; | 
|  | switch (static_cast<InstructionOpcodes>(Opcode)) { | 
|  | case Ret:            return 0; | 
|  | case Br:             return 0; | 
|  | case Switch:         return 0; | 
|  | case IndirectBr:     return 0; | 
|  | case Invoke:         return 0; | 
|  | case Resume:         return 0; | 
|  | case Unreachable:    return 0; | 
|  | case Add:            return ISD::ADD; | 
|  | case FAdd:           return ISD::FADD; | 
|  | case Sub:            return ISD::SUB; | 
|  | case FSub:           return ISD::FSUB; | 
|  | case Mul:            return ISD::MUL; | 
|  | case FMul:           return ISD::FMUL; | 
|  | case UDiv:           return ISD::UDIV; | 
|  | case SDiv:           return ISD::SDIV; | 
|  | case FDiv:           return ISD::FDIV; | 
|  | case URem:           return ISD::UREM; | 
|  | case SRem:           return ISD::SREM; | 
|  | case FRem:           return ISD::FREM; | 
|  | case Shl:            return ISD::SHL; | 
|  | case LShr:           return ISD::SRL; | 
|  | case AShr:           return ISD::SRA; | 
|  | case And:            return ISD::AND; | 
|  | case Or:             return ISD::OR; | 
|  | case Xor:            return ISD::XOR; | 
|  | case Alloca:         return 0; | 
|  | case Load:           return ISD::LOAD; | 
|  | case Store:          return ISD::STORE; | 
|  | case GetElementPtr:  return 0; | 
|  | case Fence:          return 0; | 
|  | case AtomicCmpXchg:  return 0; | 
|  | case AtomicRMW:      return 0; | 
|  | case Trunc:          return ISD::TRUNCATE; | 
|  | case ZExt:           return ISD::ZERO_EXTEND; | 
|  | case SExt:           return ISD::SIGN_EXTEND; | 
|  | case FPToUI:         return ISD::FP_TO_UINT; | 
|  | case FPToSI:         return ISD::FP_TO_SINT; | 
|  | case UIToFP:         return ISD::UINT_TO_FP; | 
|  | case SIToFP:         return ISD::SINT_TO_FP; | 
|  | case FPTrunc:        return ISD::FP_ROUND; | 
|  | case FPExt:          return ISD::FP_EXTEND; | 
|  | case PtrToInt:       return ISD::BITCAST; | 
|  | case IntToPtr:       return ISD::BITCAST; | 
|  | case BitCast:        return ISD::BITCAST; | 
|  | case AddrSpaceCast:  return ISD::ADDRSPACECAST; | 
|  | case ICmp:           return ISD::SETCC; | 
|  | case FCmp:           return ISD::SETCC; | 
|  | case PHI:            return 0; | 
|  | case Call:           return 0; | 
|  | case Select:         return ISD::SELECT; | 
|  | case UserOp1:        return 0; | 
|  | case UserOp2:        return 0; | 
|  | case VAArg:          return 0; | 
|  | case ExtractElement: return ISD::EXTRACT_VECTOR_ELT; | 
|  | case InsertElement:  return ISD::INSERT_VECTOR_ELT; | 
|  | case ShuffleVector:  return ISD::VECTOR_SHUFFLE; | 
|  | case ExtractValue:   return ISD::MERGE_VALUES; | 
|  | case InsertValue:    return ISD::MERGE_VALUES; | 
|  | case LandingPad:     return 0; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unknown instruction type encountered!"); | 
|  | } | 
|  |  | 
|  | std::pair<unsigned, MVT> | 
|  | TargetLoweringBase::getTypeLegalizationCost(Type *Ty) const { | 
|  | LLVMContext &C = Ty->getContext(); | 
|  | EVT MTy = getValueType(Ty); | 
|  |  | 
|  | unsigned Cost = 1; | 
|  | // We keep legalizing the type until we find a legal kind. We assume that | 
|  | // the only operation that costs anything is the split. After splitting | 
|  | // we need to handle two types. | 
|  | while (true) { | 
|  | LegalizeKind LK = getTypeConversion(C, MTy); | 
|  |  | 
|  | if (LK.first == TypeLegal) | 
|  | return std::make_pair(Cost, MTy.getSimpleVT()); | 
|  |  | 
|  | if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger) | 
|  | Cost *= 2; | 
|  |  | 
|  | // Keep legalizing the type. | 
|  | MTy = LK.second; | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //  Loop Strength Reduction hooks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// isLegalAddressingMode - Return true if the addressing mode represented | 
|  | /// by AM is legal for this target, for a load/store of the specified type. | 
|  | bool TargetLoweringBase::isLegalAddressingMode(const AddrMode &AM, | 
|  | Type *Ty) const { | 
|  | // The default implementation of this implements a conservative RISCy, r+r and | 
|  | // r+i addr mode. | 
|  |  | 
|  | // Allows a sign-extended 16-bit immediate field. | 
|  | if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1) | 
|  | return false; | 
|  |  | 
|  | // No global is ever allowed as a base. | 
|  | if (AM.BaseGV) | 
|  | return false; | 
|  |  | 
|  | // Only support r+r, | 
|  | switch (AM.Scale) { | 
|  | case 0:  // "r+i" or just "i", depending on HasBaseReg. | 
|  | break; | 
|  | case 1: | 
|  | if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed. | 
|  | return false; | 
|  | // Otherwise we have r+r or r+i. | 
|  | break; | 
|  | case 2: | 
|  | if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed. | 
|  | return false; | 
|  | // Allow 2*r as r+r. | 
|  | break; | 
|  | default: // Don't allow n * r | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } |