|  | //===- ConstantFold.cpp - LLVM constant folder ----------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements folding of constants for LLVM.  This implements the | 
|  | // (internal) ConstantFold.h interface, which is used by the | 
|  | // ConstantExpr::get* methods to automatically fold constants when possible. | 
|  | // | 
|  | // The current constant folding implementation is implemented in two pieces: the | 
|  | // pieces that don't need DataLayout, and the pieces that do. This is to avoid | 
|  | // a dependence in IR on Target. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "ConstantFold.h" | 
|  | #include "llvm/ADT/APSInt.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/GlobalAlias.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/ManagedStatic.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | using namespace llvm; | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                ConstantFold*Instruction Implementations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Convert the specified vector Constant node to the specified vector type. | 
|  | /// At this point, we know that the elements of the input vector constant are | 
|  | /// all simple integer or FP values. | 
|  | static Constant *BitCastConstantVector(Constant *CV, VectorType *DstTy) { | 
|  |  | 
|  | if (CV->isAllOnesValue()) return Constant::getAllOnesValue(DstTy); | 
|  | if (CV->isNullValue()) return Constant::getNullValue(DstTy); | 
|  |  | 
|  | // If this cast changes element count then we can't handle it here: | 
|  | // doing so requires endianness information.  This should be handled by | 
|  | // Analysis/ConstantFolding.cpp | 
|  | unsigned NumElts = DstTy->getNumElements(); | 
|  | if (NumElts != CV->getType()->getVectorNumElements()) | 
|  | return nullptr; | 
|  |  | 
|  | Type *DstEltTy = DstTy->getElementType(); | 
|  |  | 
|  | SmallVector<Constant*, 16> Result; | 
|  | Type *Ty = IntegerType::get(CV->getContext(), 32); | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | Constant *C = | 
|  | ConstantExpr::getExtractElement(CV, ConstantInt::get(Ty, i)); | 
|  | C = ConstantExpr::getBitCast(C, DstEltTy); | 
|  | Result.push_back(C); | 
|  | } | 
|  |  | 
|  | return ConstantVector::get(Result); | 
|  | } | 
|  |  | 
|  | /// This function determines which opcode to use to fold two constant cast | 
|  | /// expressions together. It uses CastInst::isEliminableCastPair to determine | 
|  | /// the opcode. Consequently its just a wrapper around that function. | 
|  | /// Determine if it is valid to fold a cast of a cast | 
|  | static unsigned | 
|  | foldConstantCastPair( | 
|  | unsigned opc,          ///< opcode of the second cast constant expression | 
|  | ConstantExpr *Op,      ///< the first cast constant expression | 
|  | Type *DstTy            ///< destination type of the first cast | 
|  | ) { | 
|  | assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!"); | 
|  | assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type"); | 
|  | assert(CastInst::isCast(opc) && "Invalid cast opcode"); | 
|  |  | 
|  | // The types and opcodes for the two Cast constant expressions | 
|  | Type *SrcTy = Op->getOperand(0)->getType(); | 
|  | Type *MidTy = Op->getType(); | 
|  | Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode()); | 
|  | Instruction::CastOps secondOp = Instruction::CastOps(opc); | 
|  |  | 
|  | // Assume that pointers are never more than 64 bits wide, and only use this | 
|  | // for the middle type. Otherwise we could end up folding away illegal | 
|  | // bitcasts between address spaces with different sizes. | 
|  | IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext()); | 
|  |  | 
|  | // Let CastInst::isEliminableCastPair do the heavy lifting. | 
|  | return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy, | 
|  | nullptr, FakeIntPtrTy, nullptr); | 
|  | } | 
|  |  | 
|  | static Constant *FoldBitCast(Constant *V, Type *DestTy) { | 
|  | Type *SrcTy = V->getType(); | 
|  | if (SrcTy == DestTy) | 
|  | return V; // no-op cast | 
|  |  | 
|  | // Check to see if we are casting a pointer to an aggregate to a pointer to | 
|  | // the first element.  If so, return the appropriate GEP instruction. | 
|  | if (PointerType *PTy = dyn_cast<PointerType>(V->getType())) | 
|  | if (PointerType *DPTy = dyn_cast<PointerType>(DestTy)) | 
|  | if (PTy->getAddressSpace() == DPTy->getAddressSpace() | 
|  | && PTy->getElementType()->isSized()) { | 
|  | SmallVector<Value*, 8> IdxList; | 
|  | Value *Zero = | 
|  | Constant::getNullValue(Type::getInt32Ty(DPTy->getContext())); | 
|  | IdxList.push_back(Zero); | 
|  | Type *ElTy = PTy->getElementType(); | 
|  | while (ElTy != DPTy->getElementType()) { | 
|  | if (StructType *STy = dyn_cast<StructType>(ElTy)) { | 
|  | if (STy->getNumElements() == 0) break; | 
|  | ElTy = STy->getElementType(0); | 
|  | IdxList.push_back(Zero); | 
|  | } else if (SequentialType *STy = | 
|  | dyn_cast<SequentialType>(ElTy)) { | 
|  | ElTy = STy->getElementType(); | 
|  | IdxList.push_back(Zero); | 
|  | } else { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ElTy == DPTy->getElementType()) | 
|  | // This GEP is inbounds because all indices are zero. | 
|  | return ConstantExpr::getInBoundsGetElementPtr(PTy->getElementType(), | 
|  | V, IdxList); | 
|  | } | 
|  |  | 
|  | // Handle casts from one vector constant to another.  We know that the src | 
|  | // and dest type have the same size (otherwise its an illegal cast). | 
|  | if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) { | 
|  | if (VectorType *SrcTy = dyn_cast<VectorType>(V->getType())) { | 
|  | assert(DestPTy->getBitWidth() == SrcTy->getBitWidth() && | 
|  | "Not cast between same sized vectors!"); | 
|  | SrcTy = nullptr; | 
|  | // First, check for null.  Undef is already handled. | 
|  | if (isa<ConstantAggregateZero>(V)) | 
|  | return Constant::getNullValue(DestTy); | 
|  |  | 
|  | // Handle ConstantVector and ConstantAggregateVector. | 
|  | return BitCastConstantVector(V, DestPTy); | 
|  | } | 
|  |  | 
|  | // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts | 
|  | // This allows for other simplifications (although some of them | 
|  | // can only be handled by Analysis/ConstantFolding.cpp). | 
|  | if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) | 
|  | return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy); | 
|  | } | 
|  |  | 
|  | // Finally, implement bitcast folding now.   The code below doesn't handle | 
|  | // bitcast right. | 
|  | if (isa<ConstantPointerNull>(V))  // ptr->ptr cast. | 
|  | return ConstantPointerNull::get(cast<PointerType>(DestTy)); | 
|  |  | 
|  | // Handle integral constant input. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | if (DestTy->isIntegerTy()) | 
|  | // Integral -> Integral. This is a no-op because the bit widths must | 
|  | // be the same. Consequently, we just fold to V. | 
|  | return V; | 
|  |  | 
|  | // See note below regarding the PPC_FP128 restriction. | 
|  | if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty()) | 
|  | return ConstantFP::get(DestTy->getContext(), | 
|  | APFloat(DestTy->getFltSemantics(), | 
|  | CI->getValue())); | 
|  |  | 
|  | // Otherwise, can't fold this (vector?) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Handle ConstantFP input: FP -> Integral. | 
|  | if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) { | 
|  | // PPC_FP128 is really the sum of two consecutive doubles, where the first | 
|  | // double is always stored first in memory, regardless of the target | 
|  | // endianness. The memory layout of i128, however, depends on the target | 
|  | // endianness, and so we can't fold this without target endianness | 
|  | // information. This should instead be handled by | 
|  | // Analysis/ConstantFolding.cpp | 
|  | if (FP->getType()->isPPC_FP128Ty()) | 
|  | return nullptr; | 
|  |  | 
|  | // Make sure dest type is compatible with the folded integer constant. | 
|  | if (!DestTy->isIntegerTy()) | 
|  | return nullptr; | 
|  |  | 
|  | return ConstantInt::get(FP->getContext(), | 
|  | FP->getValueAPF().bitcastToAPInt()); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// V is an integer constant which only has a subset of its bytes used. | 
|  | /// The bytes used are indicated by ByteStart (which is the first byte used, | 
|  | /// counting from the least significant byte) and ByteSize, which is the number | 
|  | /// of bytes used. | 
|  | /// | 
|  | /// This function analyzes the specified constant to see if the specified byte | 
|  | /// range can be returned as a simplified constant.  If so, the constant is | 
|  | /// returned, otherwise null is returned. | 
|  | static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart, | 
|  | unsigned ByteSize) { | 
|  | assert(C->getType()->isIntegerTy() && | 
|  | (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 && | 
|  | "Non-byte sized integer input"); | 
|  | unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8; | 
|  | assert(ByteSize && "Must be accessing some piece"); | 
|  | assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input"); | 
|  | assert(ByteSize != CSize && "Should not extract everything"); | 
|  |  | 
|  | // Constant Integers are simple. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { | 
|  | APInt V = CI->getValue(); | 
|  | if (ByteStart) | 
|  | V.lshrInPlace(ByteStart*8); | 
|  | V = V.trunc(ByteSize*8); | 
|  | return ConstantInt::get(CI->getContext(), V); | 
|  | } | 
|  |  | 
|  | // In the input is a constant expr, we might be able to recursively simplify. | 
|  | // If not, we definitely can't do anything. | 
|  | ConstantExpr *CE = dyn_cast<ConstantExpr>(C); | 
|  | if (!CE) return nullptr; | 
|  |  | 
|  | switch (CE->getOpcode()) { | 
|  | default: return nullptr; | 
|  | case Instruction::Or: { | 
|  | Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize); | 
|  | if (!RHS) | 
|  | return nullptr; | 
|  |  | 
|  | // X | -1 -> -1. | 
|  | if (ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS)) | 
|  | if (RHSC->isMinusOne()) | 
|  | return RHSC; | 
|  |  | 
|  | Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize); | 
|  | if (!LHS) | 
|  | return nullptr; | 
|  | return ConstantExpr::getOr(LHS, RHS); | 
|  | } | 
|  | case Instruction::And: { | 
|  | Constant *RHS = ExtractConstantBytes(CE->getOperand(1), ByteStart,ByteSize); | 
|  | if (!RHS) | 
|  | return nullptr; | 
|  |  | 
|  | // X & 0 -> 0. | 
|  | if (RHS->isNullValue()) | 
|  | return RHS; | 
|  |  | 
|  | Constant *LHS = ExtractConstantBytes(CE->getOperand(0), ByteStart,ByteSize); | 
|  | if (!LHS) | 
|  | return nullptr; | 
|  | return ConstantExpr::getAnd(LHS, RHS); | 
|  | } | 
|  | case Instruction::LShr: { | 
|  | ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1)); | 
|  | if (!Amt) | 
|  | return nullptr; | 
|  | unsigned ShAmt = Amt->getZExtValue(); | 
|  | // Cannot analyze non-byte shifts. | 
|  | if ((ShAmt & 7) != 0) | 
|  | return nullptr; | 
|  | ShAmt >>= 3; | 
|  |  | 
|  | // If the extract is known to be all zeros, return zero. | 
|  | if (ByteStart >= CSize-ShAmt) | 
|  | return Constant::getNullValue(IntegerType::get(CE->getContext(), | 
|  | ByteSize*8)); | 
|  | // If the extract is known to be fully in the input, extract it. | 
|  | if (ByteStart+ByteSize+ShAmt <= CSize) | 
|  | return ExtractConstantBytes(CE->getOperand(0), ByteStart+ShAmt, ByteSize); | 
|  |  | 
|  | // TODO: Handle the 'partially zero' case. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | case Instruction::Shl: { | 
|  | ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1)); | 
|  | if (!Amt) | 
|  | return nullptr; | 
|  | unsigned ShAmt = Amt->getZExtValue(); | 
|  | // Cannot analyze non-byte shifts. | 
|  | if ((ShAmt & 7) != 0) | 
|  | return nullptr; | 
|  | ShAmt >>= 3; | 
|  |  | 
|  | // If the extract is known to be all zeros, return zero. | 
|  | if (ByteStart+ByteSize <= ShAmt) | 
|  | return Constant::getNullValue(IntegerType::get(CE->getContext(), | 
|  | ByteSize*8)); | 
|  | // If the extract is known to be fully in the input, extract it. | 
|  | if (ByteStart >= ShAmt) | 
|  | return ExtractConstantBytes(CE->getOperand(0), ByteStart-ShAmt, ByteSize); | 
|  |  | 
|  | // TODO: Handle the 'partially zero' case. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | case Instruction::ZExt: { | 
|  | unsigned SrcBitSize = | 
|  | cast<IntegerType>(CE->getOperand(0)->getType())->getBitWidth(); | 
|  |  | 
|  | // If extracting something that is completely zero, return 0. | 
|  | if (ByteStart*8 >= SrcBitSize) | 
|  | return Constant::getNullValue(IntegerType::get(CE->getContext(), | 
|  | ByteSize*8)); | 
|  |  | 
|  | // If exactly extracting the input, return it. | 
|  | if (ByteStart == 0 && ByteSize*8 == SrcBitSize) | 
|  | return CE->getOperand(0); | 
|  |  | 
|  | // If extracting something completely in the input, if the input is a | 
|  | // multiple of 8 bits, recurse. | 
|  | if ((SrcBitSize&7) == 0 && (ByteStart+ByteSize)*8 <= SrcBitSize) | 
|  | return ExtractConstantBytes(CE->getOperand(0), ByteStart, ByteSize); | 
|  |  | 
|  | // Otherwise, if extracting a subset of the input, which is not multiple of | 
|  | // 8 bits, do a shift and trunc to get the bits. | 
|  | if ((ByteStart+ByteSize)*8 < SrcBitSize) { | 
|  | assert((SrcBitSize&7) && "Shouldn't get byte sized case here"); | 
|  | Constant *Res = CE->getOperand(0); | 
|  | if (ByteStart) | 
|  | Res = ConstantExpr::getLShr(Res, | 
|  | ConstantInt::get(Res->getType(), ByteStart*8)); | 
|  | return ConstantExpr::getTrunc(Res, IntegerType::get(C->getContext(), | 
|  | ByteSize*8)); | 
|  | } | 
|  |  | 
|  | // TODO: Handle the 'partially zero' case. | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return a ConstantExpr with type DestTy for sizeof on Ty, with any known | 
|  | /// factors factored out. If Folded is false, return null if no factoring was | 
|  | /// possible, to avoid endlessly bouncing an unfoldable expression back into the | 
|  | /// top-level folder. | 
|  | static Constant *getFoldedSizeOf(Type *Ty, Type *DestTy, bool Folded) { | 
|  | if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
|  | Constant *N = ConstantInt::get(DestTy, ATy->getNumElements()); | 
|  | Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true); | 
|  | return ConstantExpr::getNUWMul(E, N); | 
|  | } | 
|  |  | 
|  | if (StructType *STy = dyn_cast<StructType>(Ty)) | 
|  | if (!STy->isPacked()) { | 
|  | unsigned NumElems = STy->getNumElements(); | 
|  | // An empty struct has size zero. | 
|  | if (NumElems == 0) | 
|  | return ConstantExpr::getNullValue(DestTy); | 
|  | // Check for a struct with all members having the same size. | 
|  | Constant *MemberSize = | 
|  | getFoldedSizeOf(STy->getElementType(0), DestTy, true); | 
|  | bool AllSame = true; | 
|  | for (unsigned i = 1; i != NumElems; ++i) | 
|  | if (MemberSize != | 
|  | getFoldedSizeOf(STy->getElementType(i), DestTy, true)) { | 
|  | AllSame = false; | 
|  | break; | 
|  | } | 
|  | if (AllSame) { | 
|  | Constant *N = ConstantInt::get(DestTy, NumElems); | 
|  | return ConstantExpr::getNUWMul(MemberSize, N); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Pointer size doesn't depend on the pointee type, so canonicalize them | 
|  | // to an arbitrary pointee. | 
|  | if (PointerType *PTy = dyn_cast<PointerType>(Ty)) | 
|  | if (!PTy->getElementType()->isIntegerTy(1)) | 
|  | return | 
|  | getFoldedSizeOf(PointerType::get(IntegerType::get(PTy->getContext(), 1), | 
|  | PTy->getAddressSpace()), | 
|  | DestTy, true); | 
|  |  | 
|  | // If there's no interesting folding happening, bail so that we don't create | 
|  | // a constant that looks like it needs folding but really doesn't. | 
|  | if (!Folded) | 
|  | return nullptr; | 
|  |  | 
|  | // Base case: Get a regular sizeof expression. | 
|  | Constant *C = ConstantExpr::getSizeOf(Ty); | 
|  | C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, | 
|  | DestTy, false), | 
|  | C, DestTy); | 
|  | return C; | 
|  | } | 
|  |  | 
|  | /// Return a ConstantExpr with type DestTy for alignof on Ty, with any known | 
|  | /// factors factored out. If Folded is false, return null if no factoring was | 
|  | /// possible, to avoid endlessly bouncing an unfoldable expression back into the | 
|  | /// top-level folder. | 
|  | static Constant *getFoldedAlignOf(Type *Ty, Type *DestTy, bool Folded) { | 
|  | // The alignment of an array is equal to the alignment of the | 
|  | // array element. Note that this is not always true for vectors. | 
|  | if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
|  | Constant *C = ConstantExpr::getAlignOf(ATy->getElementType()); | 
|  | C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, | 
|  | DestTy, | 
|  | false), | 
|  | C, DestTy); | 
|  | return C; | 
|  | } | 
|  |  | 
|  | if (StructType *STy = dyn_cast<StructType>(Ty)) { | 
|  | // Packed structs always have an alignment of 1. | 
|  | if (STy->isPacked()) | 
|  | return ConstantInt::get(DestTy, 1); | 
|  |  | 
|  | // Otherwise, struct alignment is the maximum alignment of any member. | 
|  | // Without target data, we can't compare much, but we can check to see | 
|  | // if all the members have the same alignment. | 
|  | unsigned NumElems = STy->getNumElements(); | 
|  | // An empty struct has minimal alignment. | 
|  | if (NumElems == 0) | 
|  | return ConstantInt::get(DestTy, 1); | 
|  | // Check for a struct with all members having the same alignment. | 
|  | Constant *MemberAlign = | 
|  | getFoldedAlignOf(STy->getElementType(0), DestTy, true); | 
|  | bool AllSame = true; | 
|  | for (unsigned i = 1; i != NumElems; ++i) | 
|  | if (MemberAlign != getFoldedAlignOf(STy->getElementType(i), DestTy, true)) { | 
|  | AllSame = false; | 
|  | break; | 
|  | } | 
|  | if (AllSame) | 
|  | return MemberAlign; | 
|  | } | 
|  |  | 
|  | // Pointer alignment doesn't depend on the pointee type, so canonicalize them | 
|  | // to an arbitrary pointee. | 
|  | if (PointerType *PTy = dyn_cast<PointerType>(Ty)) | 
|  | if (!PTy->getElementType()->isIntegerTy(1)) | 
|  | return | 
|  | getFoldedAlignOf(PointerType::get(IntegerType::get(PTy->getContext(), | 
|  | 1), | 
|  | PTy->getAddressSpace()), | 
|  | DestTy, true); | 
|  |  | 
|  | // If there's no interesting folding happening, bail so that we don't create | 
|  | // a constant that looks like it needs folding but really doesn't. | 
|  | if (!Folded) | 
|  | return nullptr; | 
|  |  | 
|  | // Base case: Get a regular alignof expression. | 
|  | Constant *C = ConstantExpr::getAlignOf(Ty); | 
|  | C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, | 
|  | DestTy, false), | 
|  | C, DestTy); | 
|  | return C; | 
|  | } | 
|  |  | 
|  | /// Return a ConstantExpr with type DestTy for offsetof on Ty and FieldNo, with | 
|  | /// any known factors factored out. If Folded is false, return null if no | 
|  | /// factoring was possible, to avoid endlessly bouncing an unfoldable expression | 
|  | /// back into the top-level folder. | 
|  | static Constant *getFoldedOffsetOf(Type *Ty, Constant *FieldNo, Type *DestTy, | 
|  | bool Folded) { | 
|  | if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
|  | Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, false, | 
|  | DestTy, false), | 
|  | FieldNo, DestTy); | 
|  | Constant *E = getFoldedSizeOf(ATy->getElementType(), DestTy, true); | 
|  | return ConstantExpr::getNUWMul(E, N); | 
|  | } | 
|  |  | 
|  | if (StructType *STy = dyn_cast<StructType>(Ty)) | 
|  | if (!STy->isPacked()) { | 
|  | unsigned NumElems = STy->getNumElements(); | 
|  | // An empty struct has no members. | 
|  | if (NumElems == 0) | 
|  | return nullptr; | 
|  | // Check for a struct with all members having the same size. | 
|  | Constant *MemberSize = | 
|  | getFoldedSizeOf(STy->getElementType(0), DestTy, true); | 
|  | bool AllSame = true; | 
|  | for (unsigned i = 1; i != NumElems; ++i) | 
|  | if (MemberSize != | 
|  | getFoldedSizeOf(STy->getElementType(i), DestTy, true)) { | 
|  | AllSame = false; | 
|  | break; | 
|  | } | 
|  | if (AllSame) { | 
|  | Constant *N = ConstantExpr::getCast(CastInst::getCastOpcode(FieldNo, | 
|  | false, | 
|  | DestTy, | 
|  | false), | 
|  | FieldNo, DestTy); | 
|  | return ConstantExpr::getNUWMul(MemberSize, N); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there's no interesting folding happening, bail so that we don't create | 
|  | // a constant that looks like it needs folding but really doesn't. | 
|  | if (!Folded) | 
|  | return nullptr; | 
|  |  | 
|  | // Base case: Get a regular offsetof expression. | 
|  | Constant *C = ConstantExpr::getOffsetOf(Ty, FieldNo); | 
|  | C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, | 
|  | DestTy, false), | 
|  | C, DestTy); | 
|  | return C; | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V, | 
|  | Type *DestTy) { | 
|  | if (isa<UndefValue>(V)) { | 
|  | // zext(undef) = 0, because the top bits will be zero. | 
|  | // sext(undef) = 0, because the top bits will all be the same. | 
|  | // [us]itofp(undef) = 0, because the result value is bounded. | 
|  | if (opc == Instruction::ZExt || opc == Instruction::SExt || | 
|  | opc == Instruction::UIToFP || opc == Instruction::SIToFP) | 
|  | return Constant::getNullValue(DestTy); | 
|  | return UndefValue::get(DestTy); | 
|  | } | 
|  |  | 
|  | if (V->isNullValue() && !DestTy->isX86_MMXTy() && | 
|  | opc != Instruction::AddrSpaceCast) | 
|  | return Constant::getNullValue(DestTy); | 
|  |  | 
|  | // If the cast operand is a constant expression, there's a few things we can | 
|  | // do to try to simplify it. | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { | 
|  | if (CE->isCast()) { | 
|  | // Try hard to fold cast of cast because they are often eliminable. | 
|  | if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy)) | 
|  | return ConstantExpr::getCast(newOpc, CE->getOperand(0), DestTy); | 
|  | } else if (CE->getOpcode() == Instruction::GetElementPtr && | 
|  | // Do not fold addrspacecast (gep 0, .., 0). It might make the | 
|  | // addrspacecast uncanonicalized. | 
|  | opc != Instruction::AddrSpaceCast && | 
|  | // Do not fold bitcast (gep) with inrange index, as this loses | 
|  | // information. | 
|  | !cast<GEPOperator>(CE)->getInRangeIndex().hasValue() && | 
|  | // Do not fold if the gep type is a vector, as bitcasting | 
|  | // operand 0 of a vector gep will result in a bitcast between | 
|  | // different sizes. | 
|  | !CE->getType()->isVectorTy()) { | 
|  | // If all of the indexes in the GEP are null values, there is no pointer | 
|  | // adjustment going on.  We might as well cast the source pointer. | 
|  | bool isAllNull = true; | 
|  | for (unsigned i = 1, e = CE->getNumOperands(); i != e; ++i) | 
|  | if (!CE->getOperand(i)->isNullValue()) { | 
|  | isAllNull = false; | 
|  | break; | 
|  | } | 
|  | if (isAllNull) | 
|  | // This is casting one pointer type to another, always BitCast | 
|  | return ConstantExpr::getPointerCast(CE->getOperand(0), DestTy); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the cast operand is a constant vector, perform the cast by | 
|  | // operating on each element. In the cast of bitcasts, the element | 
|  | // count may be mismatched; don't attempt to handle that here. | 
|  | if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) && | 
|  | DestTy->isVectorTy() && | 
|  | DestTy->getVectorNumElements() == V->getType()->getVectorNumElements()) { | 
|  | SmallVector<Constant*, 16> res; | 
|  | VectorType *DestVecTy = cast<VectorType>(DestTy); | 
|  | Type *DstEltTy = DestVecTy->getElementType(); | 
|  | Type *Ty = IntegerType::get(V->getContext(), 32); | 
|  | for (unsigned i = 0, e = V->getType()->getVectorNumElements(); i != e; ++i) { | 
|  | Constant *C = | 
|  | ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i)); | 
|  | res.push_back(ConstantExpr::getCast(opc, C, DstEltTy)); | 
|  | } | 
|  | return ConstantVector::get(res); | 
|  | } | 
|  |  | 
|  | // We actually have to do a cast now. Perform the cast according to the | 
|  | // opcode specified. | 
|  | switch (opc) { | 
|  | default: | 
|  | llvm_unreachable("Failed to cast constant expression"); | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { | 
|  | bool ignored; | 
|  | APFloat Val = FPC->getValueAPF(); | 
|  | Val.convert(DestTy->isHalfTy() ? APFloat::IEEEhalf() : | 
|  | DestTy->isFloatTy() ? APFloat::IEEEsingle() : | 
|  | DestTy->isDoubleTy() ? APFloat::IEEEdouble() : | 
|  | DestTy->isX86_FP80Ty() ? APFloat::x87DoubleExtended() : | 
|  | DestTy->isFP128Ty() ? APFloat::IEEEquad() : | 
|  | DestTy->isPPC_FP128Ty() ? APFloat::PPCDoubleDouble() : | 
|  | APFloat::Bogus(), | 
|  | APFloat::rmNearestTiesToEven, &ignored); | 
|  | return ConstantFP::get(V->getContext(), Val); | 
|  | } | 
|  | return nullptr; // Can't fold. | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { | 
|  | const APFloat &V = FPC->getValueAPF(); | 
|  | bool ignored; | 
|  | uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); | 
|  | APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI); | 
|  | if (APFloat::opInvalidOp == | 
|  | V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) { | 
|  | // Undefined behavior invoked - the destination type can't represent | 
|  | // the input constant. | 
|  | return UndefValue::get(DestTy); | 
|  | } | 
|  | return ConstantInt::get(FPC->getContext(), IntVal); | 
|  | } | 
|  | return nullptr; // Can't fold. | 
|  | case Instruction::IntToPtr:   //always treated as unsigned | 
|  | if (V->isNullValue())       // Is it an integral null value? | 
|  | return ConstantPointerNull::get(cast<PointerType>(DestTy)); | 
|  | return nullptr;                   // Other pointer types cannot be casted | 
|  | case Instruction::PtrToInt:   // always treated as unsigned | 
|  | // Is it a null pointer value? | 
|  | if (V->isNullValue()) | 
|  | return ConstantInt::get(DestTy, 0); | 
|  | // If this is a sizeof-like expression, pull out multiplications by | 
|  | // known factors to expose them to subsequent folding. If it's an | 
|  | // alignof-like expression, factor out known factors. | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) | 
|  | if (CE->getOpcode() == Instruction::GetElementPtr && | 
|  | CE->getOperand(0)->isNullValue()) { | 
|  | // FIXME: Looks like getFoldedSizeOf(), getFoldedOffsetOf() and | 
|  | // getFoldedAlignOf() don't handle the case when DestTy is a vector of | 
|  | // pointers yet. We end up in asserts in CastInst::getCastOpcode (see | 
|  | // test/Analysis/ConstantFolding/cast-vector.ll). I've only seen this | 
|  | // happen in one "real" C-code test case, so it does not seem to be an | 
|  | // important optimization to handle vectors here. For now, simply bail | 
|  | // out. | 
|  | if (DestTy->isVectorTy()) | 
|  | return nullptr; | 
|  | GEPOperator *GEPO = cast<GEPOperator>(CE); | 
|  | Type *Ty = GEPO->getSourceElementType(); | 
|  | if (CE->getNumOperands() == 2) { | 
|  | // Handle a sizeof-like expression. | 
|  | Constant *Idx = CE->getOperand(1); | 
|  | bool isOne = isa<ConstantInt>(Idx) && cast<ConstantInt>(Idx)->isOne(); | 
|  | if (Constant *C = getFoldedSizeOf(Ty, DestTy, !isOne)) { | 
|  | Idx = ConstantExpr::getCast(CastInst::getCastOpcode(Idx, true, | 
|  | DestTy, false), | 
|  | Idx, DestTy); | 
|  | return ConstantExpr::getMul(C, Idx); | 
|  | } | 
|  | } else if (CE->getNumOperands() == 3 && | 
|  | CE->getOperand(1)->isNullValue()) { | 
|  | // Handle an alignof-like expression. | 
|  | if (StructType *STy = dyn_cast<StructType>(Ty)) | 
|  | if (!STy->isPacked()) { | 
|  | ConstantInt *CI = cast<ConstantInt>(CE->getOperand(2)); | 
|  | if (CI->isOne() && | 
|  | STy->getNumElements() == 2 && | 
|  | STy->getElementType(0)->isIntegerTy(1)) { | 
|  | return getFoldedAlignOf(STy->getElementType(1), DestTy, false); | 
|  | } | 
|  | } | 
|  | // Handle an offsetof-like expression. | 
|  | if (Ty->isStructTy() || Ty->isArrayTy()) { | 
|  | if (Constant *C = getFoldedOffsetOf(Ty, CE->getOperand(2), | 
|  | DestTy, false)) | 
|  | return C; | 
|  | } | 
|  | } | 
|  | } | 
|  | // Other pointer types cannot be casted | 
|  | return nullptr; | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | const APInt &api = CI->getValue(); | 
|  | APFloat apf(DestTy->getFltSemantics(), | 
|  | APInt::getNullValue(DestTy->getPrimitiveSizeInBits())); | 
|  | apf.convertFromAPInt(api, opc==Instruction::SIToFP, | 
|  | APFloat::rmNearestTiesToEven); | 
|  | return ConstantFP::get(V->getContext(), apf); | 
|  | } | 
|  | return nullptr; | 
|  | case Instruction::ZExt: | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); | 
|  | return ConstantInt::get(V->getContext(), | 
|  | CI->getValue().zext(BitWidth)); | 
|  | } | 
|  | return nullptr; | 
|  | case Instruction::SExt: | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); | 
|  | return ConstantInt::get(V->getContext(), | 
|  | CI->getValue().sext(BitWidth)); | 
|  | } | 
|  | return nullptr; | 
|  | case Instruction::Trunc: { | 
|  | if (V->getType()->isVectorTy()) | 
|  | return nullptr; | 
|  |  | 
|  | uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | return ConstantInt::get(V->getContext(), | 
|  | CI->getValue().trunc(DestBitWidth)); | 
|  | } | 
|  |  | 
|  | // The input must be a constantexpr.  See if we can simplify this based on | 
|  | // the bytes we are demanding.  Only do this if the source and dest are an | 
|  | // even multiple of a byte. | 
|  | if ((DestBitWidth & 7) == 0 && | 
|  | (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0) | 
|  | if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8)) | 
|  | return Res; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  | case Instruction::BitCast: | 
|  | return FoldBitCast(V, DestTy); | 
|  | case Instruction::AddrSpaceCast: | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond, | 
|  | Constant *V1, Constant *V2) { | 
|  | // Check for i1 and vector true/false conditions. | 
|  | if (Cond->isNullValue()) return V2; | 
|  | if (Cond->isAllOnesValue()) return V1; | 
|  |  | 
|  | // If the condition is a vector constant, fold the result elementwise. | 
|  | if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) { | 
|  | SmallVector<Constant*, 16> Result; | 
|  | Type *Ty = IntegerType::get(CondV->getContext(), 32); | 
|  | for (unsigned i = 0, e = V1->getType()->getVectorNumElements(); i != e;++i){ | 
|  | Constant *V; | 
|  | Constant *V1Element = ConstantExpr::getExtractElement(V1, | 
|  | ConstantInt::get(Ty, i)); | 
|  | Constant *V2Element = ConstantExpr::getExtractElement(V2, | 
|  | ConstantInt::get(Ty, i)); | 
|  | Constant *Cond = dyn_cast<Constant>(CondV->getOperand(i)); | 
|  | if (V1Element == V2Element) { | 
|  | V = V1Element; | 
|  | } else if (isa<UndefValue>(Cond)) { | 
|  | V = isa<UndefValue>(V1Element) ? V1Element : V2Element; | 
|  | } else { | 
|  | if (!isa<ConstantInt>(Cond)) break; | 
|  | V = Cond->isNullValue() ? V2Element : V1Element; | 
|  | } | 
|  | Result.push_back(V); | 
|  | } | 
|  |  | 
|  | // If we were able to build the vector, return it. | 
|  | if (Result.size() == V1->getType()->getVectorNumElements()) | 
|  | return ConstantVector::get(Result); | 
|  | } | 
|  |  | 
|  | if (isa<UndefValue>(Cond)) { | 
|  | if (isa<UndefValue>(V1)) return V1; | 
|  | return V2; | 
|  | } | 
|  | if (isa<UndefValue>(V1)) return V2; | 
|  | if (isa<UndefValue>(V2)) return V1; | 
|  | if (V1 == V2) return V1; | 
|  |  | 
|  | if (ConstantExpr *TrueVal = dyn_cast<ConstantExpr>(V1)) { | 
|  | if (TrueVal->getOpcode() == Instruction::Select) | 
|  | if (TrueVal->getOperand(0) == Cond) | 
|  | return ConstantExpr::getSelect(Cond, TrueVal->getOperand(1), V2); | 
|  | } | 
|  | if (ConstantExpr *FalseVal = dyn_cast<ConstantExpr>(V2)) { | 
|  | if (FalseVal->getOpcode() == Instruction::Select) | 
|  | if (FalseVal->getOperand(0) == Cond) | 
|  | return ConstantExpr::getSelect(Cond, V1, FalseVal->getOperand(2)); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val, | 
|  | Constant *Idx) { | 
|  | if (isa<UndefValue>(Val))  // ee(undef, x) -> undef | 
|  | return UndefValue::get(Val->getType()->getVectorElementType()); | 
|  | if (Val->isNullValue())  // ee(zero, x) -> zero | 
|  | return Constant::getNullValue(Val->getType()->getVectorElementType()); | 
|  | // ee({w,x,y,z}, undef) -> undef | 
|  | if (isa<UndefValue>(Idx)) | 
|  | return UndefValue::get(Val->getType()->getVectorElementType()); | 
|  |  | 
|  | if (ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx)) { | 
|  | // ee({w,x,y,z}, wrong_value) -> undef | 
|  | if (CIdx->uge(Val->getType()->getVectorNumElements())) | 
|  | return UndefValue::get(Val->getType()->getVectorElementType()); | 
|  | return Val->getAggregateElement(CIdx->getZExtValue()); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val, | 
|  | Constant *Elt, | 
|  | Constant *Idx) { | 
|  | if (isa<UndefValue>(Idx)) | 
|  | return UndefValue::get(Val->getType()); | 
|  |  | 
|  | ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx); | 
|  | if (!CIdx) return nullptr; | 
|  |  | 
|  | unsigned NumElts = Val->getType()->getVectorNumElements(); | 
|  | if (CIdx->uge(NumElts)) | 
|  | return UndefValue::get(Val->getType()); | 
|  |  | 
|  | SmallVector<Constant*, 16> Result; | 
|  | Result.reserve(NumElts); | 
|  | auto *Ty = Type::getInt32Ty(Val->getContext()); | 
|  | uint64_t IdxVal = CIdx->getZExtValue(); | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | if (i == IdxVal) { | 
|  | Result.push_back(Elt); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i)); | 
|  | Result.push_back(C); | 
|  | } | 
|  |  | 
|  | return ConstantVector::get(Result); | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, | 
|  | Constant *V2, | 
|  | Constant *Mask) { | 
|  | unsigned MaskNumElts = Mask->getType()->getVectorNumElements(); | 
|  | Type *EltTy = V1->getType()->getVectorElementType(); | 
|  |  | 
|  | // Undefined shuffle mask -> undefined value. | 
|  | if (isa<UndefValue>(Mask)) | 
|  | return UndefValue::get(VectorType::get(EltTy, MaskNumElts)); | 
|  |  | 
|  | // Don't break the bitcode reader hack. | 
|  | if (isa<ConstantExpr>(Mask)) return nullptr; | 
|  |  | 
|  | unsigned SrcNumElts = V1->getType()->getVectorNumElements(); | 
|  |  | 
|  | // Loop over the shuffle mask, evaluating each element. | 
|  | SmallVector<Constant*, 32> Result; | 
|  | for (unsigned i = 0; i != MaskNumElts; ++i) { | 
|  | int Elt = ShuffleVectorInst::getMaskValue(Mask, i); | 
|  | if (Elt == -1) { | 
|  | Result.push_back(UndefValue::get(EltTy)); | 
|  | continue; | 
|  | } | 
|  | Constant *InElt; | 
|  | if (unsigned(Elt) >= SrcNumElts*2) | 
|  | InElt = UndefValue::get(EltTy); | 
|  | else if (unsigned(Elt) >= SrcNumElts) { | 
|  | Type *Ty = IntegerType::get(V2->getContext(), 32); | 
|  | InElt = | 
|  | ConstantExpr::getExtractElement(V2, | 
|  | ConstantInt::get(Ty, Elt - SrcNumElts)); | 
|  | } else { | 
|  | Type *Ty = IntegerType::get(V1->getContext(), 32); | 
|  | InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt)); | 
|  | } | 
|  | Result.push_back(InElt); | 
|  | } | 
|  |  | 
|  | return ConstantVector::get(Result); | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg, | 
|  | ArrayRef<unsigned> Idxs) { | 
|  | // Base case: no indices, so return the entire value. | 
|  | if (Idxs.empty()) | 
|  | return Agg; | 
|  |  | 
|  | if (Constant *C = Agg->getAggregateElement(Idxs[0])) | 
|  | return ConstantFoldExtractValueInstruction(C, Idxs.slice(1)); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg, | 
|  | Constant *Val, | 
|  | ArrayRef<unsigned> Idxs) { | 
|  | // Base case: no indices, so replace the entire value. | 
|  | if (Idxs.empty()) | 
|  | return Val; | 
|  |  | 
|  | unsigned NumElts; | 
|  | if (StructType *ST = dyn_cast<StructType>(Agg->getType())) | 
|  | NumElts = ST->getNumElements(); | 
|  | else | 
|  | NumElts = cast<SequentialType>(Agg->getType())->getNumElements(); | 
|  |  | 
|  | SmallVector<Constant*, 32> Result; | 
|  | for (unsigned i = 0; i != NumElts; ++i) { | 
|  | Constant *C = Agg->getAggregateElement(i); | 
|  | if (!C) return nullptr; | 
|  |  | 
|  | if (Idxs[0] == i) | 
|  | C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1)); | 
|  |  | 
|  | Result.push_back(C); | 
|  | } | 
|  |  | 
|  | if (StructType *ST = dyn_cast<StructType>(Agg->getType())) | 
|  | return ConstantStruct::get(ST, Result); | 
|  | if (ArrayType *AT = dyn_cast<ArrayType>(Agg->getType())) | 
|  | return ConstantArray::get(AT, Result); | 
|  | return ConstantVector::get(Result); | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1, | 
|  | Constant *C2) { | 
|  | assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected"); | 
|  |  | 
|  | // Handle scalar UndefValue. Vectors are always evaluated per element. | 
|  | bool HasScalarUndef = !C1->getType()->isVectorTy() && | 
|  | (isa<UndefValue>(C1) || isa<UndefValue>(C2)); | 
|  | if (HasScalarUndef) { | 
|  | switch (static_cast<Instruction::BinaryOps>(Opcode)) { | 
|  | case Instruction::Xor: | 
|  | if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) | 
|  | // Handle undef ^ undef -> 0 special case. This is a common | 
|  | // idiom (misuse). | 
|  | return Constant::getNullValue(C1->getType()); | 
|  | LLVM_FALLTHROUGH; | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | return UndefValue::get(C1->getType()); | 
|  | case Instruction::And: | 
|  | if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef | 
|  | return C1; | 
|  | return Constant::getNullValue(C1->getType());   // undef & X -> 0 | 
|  | case Instruction::Mul: { | 
|  | // undef * undef -> undef | 
|  | if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) | 
|  | return C1; | 
|  | const APInt *CV; | 
|  | // X * undef -> undef   if X is odd | 
|  | if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV))) | 
|  | if ((*CV)[0]) | 
|  | return UndefValue::get(C1->getType()); | 
|  |  | 
|  | // X * undef -> 0       otherwise | 
|  | return Constant::getNullValue(C1->getType()); | 
|  | } | 
|  | case Instruction::SDiv: | 
|  | case Instruction::UDiv: | 
|  | // X / undef -> undef | 
|  | if (isa<UndefValue>(C2)) | 
|  | return C2; | 
|  | // undef / 0 -> undef | 
|  | // undef / 1 -> undef | 
|  | if (match(C2, m_Zero()) || match(C2, m_One())) | 
|  | return C1; | 
|  | // undef / X -> 0       otherwise | 
|  | return Constant::getNullValue(C1->getType()); | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | // X % undef -> undef | 
|  | if (match(C2, m_Undef())) | 
|  | return C2; | 
|  | // undef % 0 -> undef | 
|  | if (match(C2, m_Zero())) | 
|  | return C1; | 
|  | // undef % X -> 0       otherwise | 
|  | return Constant::getNullValue(C1->getType()); | 
|  | case Instruction::Or:                          // X | undef -> -1 | 
|  | if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef | 
|  | return C1; | 
|  | return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0 | 
|  | case Instruction::LShr: | 
|  | // X >>l undef -> undef | 
|  | if (isa<UndefValue>(C2)) | 
|  | return C2; | 
|  | // undef >>l 0 -> undef | 
|  | if (match(C2, m_Zero())) | 
|  | return C1; | 
|  | // undef >>l X -> 0 | 
|  | return Constant::getNullValue(C1->getType()); | 
|  | case Instruction::AShr: | 
|  | // X >>a undef -> undef | 
|  | if (isa<UndefValue>(C2)) | 
|  | return C2; | 
|  | // undef >>a 0 -> undef | 
|  | if (match(C2, m_Zero())) | 
|  | return C1; | 
|  | // TODO: undef >>a X -> undef if the shift is exact | 
|  | // undef >>a X -> 0 | 
|  | return Constant::getNullValue(C1->getType()); | 
|  | case Instruction::Shl: | 
|  | // X << undef -> undef | 
|  | if (isa<UndefValue>(C2)) | 
|  | return C2; | 
|  | // undef << 0 -> undef | 
|  | if (match(C2, m_Zero())) | 
|  | return C1; | 
|  | // undef << X -> 0 | 
|  | return Constant::getNullValue(C1->getType()); | 
|  | case Instruction::FAdd: | 
|  | case Instruction::FSub: | 
|  | case Instruction::FMul: | 
|  | case Instruction::FDiv: | 
|  | case Instruction::FRem: | 
|  | // [any flop] undef, undef -> undef | 
|  | if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) | 
|  | return C1; | 
|  | // [any flop] C, undef -> NaN | 
|  | // [any flop] undef, C -> NaN | 
|  | // We could potentially specialize NaN/Inf constants vs. 'normal' | 
|  | // constants (possibly differently depending on opcode and operand). This | 
|  | // would allow returning undef sometimes. But it is always safe to fold to | 
|  | // NaN because we can choose the undef operand as NaN, and any FP opcode | 
|  | // with a NaN operand will propagate NaN. | 
|  | return ConstantFP::getNaN(C1->getType()); | 
|  | case Instruction::BinaryOpsEnd: | 
|  | llvm_unreachable("Invalid BinaryOp"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Neither constant should be UndefValue, unless these are vector constants. | 
|  | assert(!HasScalarUndef && "Unexpected UndefValue"); | 
|  |  | 
|  | // Handle simplifications when the RHS is a constant int. | 
|  | if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { | 
|  | switch (Opcode) { | 
|  | case Instruction::Add: | 
|  | if (CI2->isZero()) return C1;                             // X + 0 == X | 
|  | break; | 
|  | case Instruction::Sub: | 
|  | if (CI2->isZero()) return C1;                             // X - 0 == X | 
|  | break; | 
|  | case Instruction::Mul: | 
|  | if (CI2->isZero()) return C2;                             // X * 0 == 0 | 
|  | if (CI2->isOne()) | 
|  | return C1;                                              // X * 1 == X | 
|  | break; | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SDiv: | 
|  | if (CI2->isOne()) | 
|  | return C1;                                            // X / 1 == X | 
|  | if (CI2->isZero()) | 
|  | return UndefValue::get(CI2->getType());               // X / 0 == undef | 
|  | break; | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | if (CI2->isOne()) | 
|  | return Constant::getNullValue(CI2->getType());        // X % 1 == 0 | 
|  | if (CI2->isZero()) | 
|  | return UndefValue::get(CI2->getType());               // X % 0 == undef | 
|  | break; | 
|  | case Instruction::And: | 
|  | if (CI2->isZero()) return C2;                           // X & 0 == 0 | 
|  | if (CI2->isMinusOne()) | 
|  | return C1;                                            // X & -1 == X | 
|  |  | 
|  | if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { | 
|  | // (zext i32 to i64) & 4294967295 -> (zext i32 to i64) | 
|  | if (CE1->getOpcode() == Instruction::ZExt) { | 
|  | unsigned DstWidth = CI2->getType()->getBitWidth(); | 
|  | unsigned SrcWidth = | 
|  | CE1->getOperand(0)->getType()->getPrimitiveSizeInBits(); | 
|  | APInt PossiblySetBits(APInt::getLowBitsSet(DstWidth, SrcWidth)); | 
|  | if ((PossiblySetBits & CI2->getValue()) == PossiblySetBits) | 
|  | return C1; | 
|  | } | 
|  |  | 
|  | // If and'ing the address of a global with a constant, fold it. | 
|  | if (CE1->getOpcode() == Instruction::PtrToInt && | 
|  | isa<GlobalValue>(CE1->getOperand(0))) { | 
|  | GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0)); | 
|  |  | 
|  | // Functions are at least 4-byte aligned. | 
|  | unsigned GVAlign = GV->getAlignment(); | 
|  | if (isa<Function>(GV)) | 
|  | GVAlign = std::max(GVAlign, 4U); | 
|  |  | 
|  | if (GVAlign > 1) { | 
|  | unsigned DstWidth = CI2->getType()->getBitWidth(); | 
|  | unsigned SrcWidth = std::min(DstWidth, Log2_32(GVAlign)); | 
|  | APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth)); | 
|  |  | 
|  | // If checking bits we know are clear, return zero. | 
|  | if ((CI2->getValue() & BitsNotSet) == CI2->getValue()) | 
|  | return Constant::getNullValue(CI2->getType()); | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::Or: | 
|  | if (CI2->isZero()) return C1;        // X | 0 == X | 
|  | if (CI2->isMinusOne()) | 
|  | return C2;                         // X | -1 == -1 | 
|  | break; | 
|  | case Instruction::Xor: | 
|  | if (CI2->isZero()) return C1;        // X ^ 0 == X | 
|  |  | 
|  | if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { | 
|  | switch (CE1->getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::ICmp: | 
|  | case Instruction::FCmp: | 
|  | // cmp pred ^ true -> cmp !pred | 
|  | assert(CI2->isOne()); | 
|  | CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate(); | 
|  | pred = CmpInst::getInversePredicate(pred); | 
|  | return ConstantExpr::getCompare(pred, CE1->getOperand(0), | 
|  | CE1->getOperand(1)); | 
|  | } | 
|  | } | 
|  | break; | 
|  | case Instruction::AShr: | 
|  | // ashr (zext C to Ty), C2 -> lshr (zext C, CSA), C2 | 
|  | if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) | 
|  | if (CE1->getOpcode() == Instruction::ZExt)  // Top bits known zero. | 
|  | return ConstantExpr::getLShr(C1, C2); | 
|  | break; | 
|  | } | 
|  | } else if (isa<ConstantInt>(C1)) { | 
|  | // If C1 is a ConstantInt and C2 is not, swap the operands. | 
|  | if (Instruction::isCommutative(Opcode)) | 
|  | return ConstantExpr::get(Opcode, C2, C1); | 
|  | } | 
|  |  | 
|  | if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) { | 
|  | if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { | 
|  | const APInt &C1V = CI1->getValue(); | 
|  | const APInt &C2V = CI2->getValue(); | 
|  | switch (Opcode) { | 
|  | default: | 
|  | break; | 
|  | case Instruction::Add: | 
|  | return ConstantInt::get(CI1->getContext(), C1V + C2V); | 
|  | case Instruction::Sub: | 
|  | return ConstantInt::get(CI1->getContext(), C1V - C2V); | 
|  | case Instruction::Mul: | 
|  | return ConstantInt::get(CI1->getContext(), C1V * C2V); | 
|  | case Instruction::UDiv: | 
|  | assert(!CI2->isZero() && "Div by zero handled above"); | 
|  | return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V)); | 
|  | case Instruction::SDiv: | 
|  | assert(!CI2->isZero() && "Div by zero handled above"); | 
|  | if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) | 
|  | return UndefValue::get(CI1->getType());   // MIN_INT / -1 -> undef | 
|  | return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V)); | 
|  | case Instruction::URem: | 
|  | assert(!CI2->isZero() && "Div by zero handled above"); | 
|  | return ConstantInt::get(CI1->getContext(), C1V.urem(C2V)); | 
|  | case Instruction::SRem: | 
|  | assert(!CI2->isZero() && "Div by zero handled above"); | 
|  | if (C2V.isAllOnesValue() && C1V.isMinSignedValue()) | 
|  | return UndefValue::get(CI1->getType());   // MIN_INT % -1 -> undef | 
|  | return ConstantInt::get(CI1->getContext(), C1V.srem(C2V)); | 
|  | case Instruction::And: | 
|  | return ConstantInt::get(CI1->getContext(), C1V & C2V); | 
|  | case Instruction::Or: | 
|  | return ConstantInt::get(CI1->getContext(), C1V | C2V); | 
|  | case Instruction::Xor: | 
|  | return ConstantInt::get(CI1->getContext(), C1V ^ C2V); | 
|  | case Instruction::Shl: | 
|  | if (C2V.ult(C1V.getBitWidth())) | 
|  | return ConstantInt::get(CI1->getContext(), C1V.shl(C2V)); | 
|  | return UndefValue::get(C1->getType()); // too big shift is undef | 
|  | case Instruction::LShr: | 
|  | if (C2V.ult(C1V.getBitWidth())) | 
|  | return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V)); | 
|  | return UndefValue::get(C1->getType()); // too big shift is undef | 
|  | case Instruction::AShr: | 
|  | if (C2V.ult(C1V.getBitWidth())) | 
|  | return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V)); | 
|  | return UndefValue::get(C1->getType()); // too big shift is undef | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (Opcode) { | 
|  | case Instruction::SDiv: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | case Instruction::Shl: | 
|  | if (CI1->isZero()) return C1; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) { | 
|  | if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) { | 
|  | const APFloat &C1V = CFP1->getValueAPF(); | 
|  | const APFloat &C2V = CFP2->getValueAPF(); | 
|  | APFloat C3V = C1V;  // copy for modification | 
|  | switch (Opcode) { | 
|  | default: | 
|  | break; | 
|  | case Instruction::FAdd: | 
|  | (void)C3V.add(C2V, APFloat::rmNearestTiesToEven); | 
|  | return ConstantFP::get(C1->getContext(), C3V); | 
|  | case Instruction::FSub: | 
|  | (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven); | 
|  | return ConstantFP::get(C1->getContext(), C3V); | 
|  | case Instruction::FMul: | 
|  | (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven); | 
|  | return ConstantFP::get(C1->getContext(), C3V); | 
|  | case Instruction::FDiv: | 
|  | (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven); | 
|  | return ConstantFP::get(C1->getContext(), C3V); | 
|  | case Instruction::FRem: | 
|  | (void)C3V.mod(C2V); | 
|  | return ConstantFP::get(C1->getContext(), C3V); | 
|  | } | 
|  | } | 
|  | } else if (VectorType *VTy = dyn_cast<VectorType>(C1->getType())) { | 
|  | // Fold each element and create a vector constant from those constants. | 
|  | SmallVector<Constant*, 16> Result; | 
|  | Type *Ty = IntegerType::get(VTy->getContext(), 32); | 
|  | for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { | 
|  | Constant *ExtractIdx = ConstantInt::get(Ty, i); | 
|  | Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx); | 
|  | Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx); | 
|  |  | 
|  | // If any element of a divisor vector is zero, the whole op is undef. | 
|  | if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue()) | 
|  | return UndefValue::get(VTy); | 
|  |  | 
|  | Result.push_back(ConstantExpr::get(Opcode, LHS, RHS)); | 
|  | } | 
|  |  | 
|  | return ConstantVector::get(Result); | 
|  | } | 
|  |  | 
|  | if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { | 
|  | // There are many possible foldings we could do here.  We should probably | 
|  | // at least fold add of a pointer with an integer into the appropriate | 
|  | // getelementptr.  This will improve alias analysis a bit. | 
|  |  | 
|  | // Given ((a + b) + c), if (b + c) folds to something interesting, return | 
|  | // (a + (b + c)). | 
|  | if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) { | 
|  | Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2); | 
|  | if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode) | 
|  | return ConstantExpr::get(Opcode, CE1->getOperand(0), T); | 
|  | } | 
|  | } else if (isa<ConstantExpr>(C2)) { | 
|  | // If C2 is a constant expr and C1 isn't, flop them around and fold the | 
|  | // other way if possible. | 
|  | if (Instruction::isCommutative(Opcode)) | 
|  | return ConstantFoldBinaryInstruction(Opcode, C2, C1); | 
|  | } | 
|  |  | 
|  | // i1 can be simplified in many cases. | 
|  | if (C1->getType()->isIntegerTy(1)) { | 
|  | switch (Opcode) { | 
|  | case Instruction::Add: | 
|  | case Instruction::Sub: | 
|  | return ConstantExpr::getXor(C1, C2); | 
|  | case Instruction::Mul: | 
|  | return ConstantExpr::getAnd(C1, C2); | 
|  | case Instruction::Shl: | 
|  | case Instruction::LShr: | 
|  | case Instruction::AShr: | 
|  | // We can assume that C2 == 0.  If it were one the result would be | 
|  | // undefined because the shift value is as large as the bitwidth. | 
|  | return C1; | 
|  | case Instruction::SDiv: | 
|  | case Instruction::UDiv: | 
|  | // We can assume that C2 == 1.  If it were zero the result would be | 
|  | // undefined through division by zero. | 
|  | return C1; | 
|  | case Instruction::URem: | 
|  | case Instruction::SRem: | 
|  | // We can assume that C2 == 1.  If it were zero the result would be | 
|  | // undefined through division by zero. | 
|  | return ConstantInt::getFalse(C1->getContext()); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We don't know how to fold this. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// This type is zero-sized if it's an array or structure of zero-sized types. | 
|  | /// The only leaf zero-sized type is an empty structure. | 
|  | static bool isMaybeZeroSizedType(Type *Ty) { | 
|  | if (StructType *STy = dyn_cast<StructType>(Ty)) { | 
|  | if (STy->isOpaque()) return true;  // Can't say. | 
|  |  | 
|  | // If all of elements have zero size, this does too. | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) | 
|  | if (!isMaybeZeroSizedType(STy->getElementType(i))) return false; | 
|  | return true; | 
|  |  | 
|  | } else if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { | 
|  | return isMaybeZeroSizedType(ATy->getElementType()); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Compare the two constants as though they were getelementptr indices. | 
|  | /// This allows coercion of the types to be the same thing. | 
|  | /// | 
|  | /// If the two constants are the "same" (after coercion), return 0.  If the | 
|  | /// first is less than the second, return -1, if the second is less than the | 
|  | /// first, return 1.  If the constants are not integral, return -2. | 
|  | /// | 
|  | static int IdxCompare(Constant *C1, Constant *C2, Type *ElTy) { | 
|  | if (C1 == C2) return 0; | 
|  |  | 
|  | // Ok, we found a different index.  If they are not ConstantInt, we can't do | 
|  | // anything with them. | 
|  | if (!isa<ConstantInt>(C1) || !isa<ConstantInt>(C2)) | 
|  | return -2; // don't know! | 
|  |  | 
|  | // We cannot compare the indices if they don't fit in an int64_t. | 
|  | if (cast<ConstantInt>(C1)->getValue().getActiveBits() > 64 || | 
|  | cast<ConstantInt>(C2)->getValue().getActiveBits() > 64) | 
|  | return -2; // don't know! | 
|  |  | 
|  | // Ok, we have two differing integer indices.  Sign extend them to be the same | 
|  | // type. | 
|  | int64_t C1Val = cast<ConstantInt>(C1)->getSExtValue(); | 
|  | int64_t C2Val = cast<ConstantInt>(C2)->getSExtValue(); | 
|  |  | 
|  | if (C1Val == C2Val) return 0;  // They are equal | 
|  |  | 
|  | // If the type being indexed over is really just a zero sized type, there is | 
|  | // no pointer difference being made here. | 
|  | if (isMaybeZeroSizedType(ElTy)) | 
|  | return -2; // dunno. | 
|  |  | 
|  | // If they are really different, now that they are the same type, then we | 
|  | // found a difference! | 
|  | if (C1Val < C2Val) | 
|  | return -1; | 
|  | else | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /// This function determines if there is anything we can decide about the two | 
|  | /// constants provided. This doesn't need to handle simple things like | 
|  | /// ConstantFP comparisons, but should instead handle ConstantExprs. | 
|  | /// If we can determine that the two constants have a particular relation to | 
|  | /// each other, we should return the corresponding FCmpInst predicate, | 
|  | /// otherwise return FCmpInst::BAD_FCMP_PREDICATE. This is used below in | 
|  | /// ConstantFoldCompareInstruction. | 
|  | /// | 
|  | /// To simplify this code we canonicalize the relation so that the first | 
|  | /// operand is always the most "complex" of the two.  We consider ConstantFP | 
|  | /// to be the simplest, and ConstantExprs to be the most complex. | 
|  | static FCmpInst::Predicate evaluateFCmpRelation(Constant *V1, Constant *V2) { | 
|  | assert(V1->getType() == V2->getType() && | 
|  | "Cannot compare values of different types!"); | 
|  |  | 
|  | // Handle degenerate case quickly | 
|  | if (V1 == V2) return FCmpInst::FCMP_OEQ; | 
|  |  | 
|  | if (!isa<ConstantExpr>(V1)) { | 
|  | if (!isa<ConstantExpr>(V2)) { | 
|  | // Simple case, use the standard constant folder. | 
|  | ConstantInt *R = nullptr; | 
|  | R = dyn_cast<ConstantInt>( | 
|  | ConstantExpr::getFCmp(FCmpInst::FCMP_OEQ, V1, V2)); | 
|  | if (R && !R->isZero()) | 
|  | return FCmpInst::FCMP_OEQ; | 
|  | R = dyn_cast<ConstantInt>( | 
|  | ConstantExpr::getFCmp(FCmpInst::FCMP_OLT, V1, V2)); | 
|  | if (R && !R->isZero()) | 
|  | return FCmpInst::FCMP_OLT; | 
|  | R = dyn_cast<ConstantInt>( | 
|  | ConstantExpr::getFCmp(FCmpInst::FCMP_OGT, V1, V2)); | 
|  | if (R && !R->isZero()) | 
|  | return FCmpInst::FCMP_OGT; | 
|  |  | 
|  | // Nothing more we can do | 
|  | return FCmpInst::BAD_FCMP_PREDICATE; | 
|  | } | 
|  |  | 
|  | // If the first operand is simple and second is ConstantExpr, swap operands. | 
|  | FCmpInst::Predicate SwappedRelation = evaluateFCmpRelation(V2, V1); | 
|  | if (SwappedRelation != FCmpInst::BAD_FCMP_PREDICATE) | 
|  | return FCmpInst::getSwappedPredicate(SwappedRelation); | 
|  | } else { | 
|  | // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a | 
|  | // constantexpr or a simple constant. | 
|  | ConstantExpr *CE1 = cast<ConstantExpr>(V1); | 
|  | switch (CE1->getOpcode()) { | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | // We might be able to do something with these but we don't right now. | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | // There are MANY other foldings that we could perform here.  They will | 
|  | // probably be added on demand, as they seem needed. | 
|  | return FCmpInst::BAD_FCMP_PREDICATE; | 
|  | } | 
|  |  | 
|  | static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1, | 
|  | const GlobalValue *GV2) { | 
|  | auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) { | 
|  | if (GV->hasExternalWeakLinkage() || GV->hasWeakAnyLinkage()) | 
|  | return true; | 
|  | if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) { | 
|  | Type *Ty = GVar->getValueType(); | 
|  | // A global with opaque type might end up being zero sized. | 
|  | if (!Ty->isSized()) | 
|  | return true; | 
|  | // A global with an empty type might lie at the address of any other | 
|  | // global. | 
|  | if (Ty->isEmptyTy()) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | }; | 
|  | // Don't try to decide equality of aliases. | 
|  | if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2)) | 
|  | if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2)) | 
|  | return ICmpInst::ICMP_NE; | 
|  | return ICmpInst::BAD_ICMP_PREDICATE; | 
|  | } | 
|  |  | 
|  | /// This function determines if there is anything we can decide about the two | 
|  | /// constants provided. This doesn't need to handle simple things like integer | 
|  | /// comparisons, but should instead handle ConstantExprs and GlobalValues. | 
|  | /// If we can determine that the two constants have a particular relation to | 
|  | /// each other, we should return the corresponding ICmp predicate, otherwise | 
|  | /// return ICmpInst::BAD_ICMP_PREDICATE. | 
|  | /// | 
|  | /// To simplify this code we canonicalize the relation so that the first | 
|  | /// operand is always the most "complex" of the two.  We consider simple | 
|  | /// constants (like ConstantInt) to be the simplest, followed by | 
|  | /// GlobalValues, followed by ConstantExpr's (the most complex). | 
|  | /// | 
|  | static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2, | 
|  | bool isSigned) { | 
|  | assert(V1->getType() == V2->getType() && | 
|  | "Cannot compare different types of values!"); | 
|  | if (V1 == V2) return ICmpInst::ICMP_EQ; | 
|  |  | 
|  | if (!isa<ConstantExpr>(V1) && !isa<GlobalValue>(V1) && | 
|  | !isa<BlockAddress>(V1)) { | 
|  | if (!isa<GlobalValue>(V2) && !isa<ConstantExpr>(V2) && | 
|  | !isa<BlockAddress>(V2)) { | 
|  | // We distilled this down to a simple case, use the standard constant | 
|  | // folder. | 
|  | ConstantInt *R = nullptr; | 
|  | ICmpInst::Predicate pred = ICmpInst::ICMP_EQ; | 
|  | R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); | 
|  | if (R && !R->isZero()) | 
|  | return pred; | 
|  | pred = isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; | 
|  | R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); | 
|  | if (R && !R->isZero()) | 
|  | return pred; | 
|  | pred = isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; | 
|  | R = dyn_cast<ConstantInt>(ConstantExpr::getICmp(pred, V1, V2)); | 
|  | if (R && !R->isZero()) | 
|  | return pred; | 
|  |  | 
|  | // If we couldn't figure it out, bail. | 
|  | return ICmpInst::BAD_ICMP_PREDICATE; | 
|  | } | 
|  |  | 
|  | // If the first operand is simple, swap operands. | 
|  | ICmpInst::Predicate SwappedRelation = | 
|  | evaluateICmpRelation(V2, V1, isSigned); | 
|  | if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) | 
|  | return ICmpInst::getSwappedPredicate(SwappedRelation); | 
|  |  | 
|  | } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) { | 
|  | if (isa<ConstantExpr>(V2)) {  // Swap as necessary. | 
|  | ICmpInst::Predicate SwappedRelation = | 
|  | evaluateICmpRelation(V2, V1, isSigned); | 
|  | if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) | 
|  | return ICmpInst::getSwappedPredicate(SwappedRelation); | 
|  | return ICmpInst::BAD_ICMP_PREDICATE; | 
|  | } | 
|  |  | 
|  | // Now we know that the RHS is a GlobalValue, BlockAddress or simple | 
|  | // constant (which, since the types must match, means that it's a | 
|  | // ConstantPointerNull). | 
|  | if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { | 
|  | return areGlobalsPotentiallyEqual(GV, GV2); | 
|  | } else if (isa<BlockAddress>(V2)) { | 
|  | return ICmpInst::ICMP_NE; // Globals never equal labels. | 
|  | } else { | 
|  | assert(isa<ConstantPointerNull>(V2) && "Canonicalization guarantee!"); | 
|  | // GlobalVals can never be null unless they have external weak linkage. | 
|  | // We don't try to evaluate aliases here. | 
|  | // NOTE: We should not be doing this constant folding if null pointer | 
|  | // is considered valid for the function. But currently there is no way to | 
|  | // query it from the Constant type. | 
|  | if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) && | 
|  | !NullPointerIsDefined(nullptr /* F */, | 
|  | GV->getType()->getAddressSpace())) | 
|  | return ICmpInst::ICMP_NE; | 
|  | } | 
|  | } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) { | 
|  | if (isa<ConstantExpr>(V2)) {  // Swap as necessary. | 
|  | ICmpInst::Predicate SwappedRelation = | 
|  | evaluateICmpRelation(V2, V1, isSigned); | 
|  | if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) | 
|  | return ICmpInst::getSwappedPredicate(SwappedRelation); | 
|  | return ICmpInst::BAD_ICMP_PREDICATE; | 
|  | } | 
|  |  | 
|  | // Now we know that the RHS is a GlobalValue, BlockAddress or simple | 
|  | // constant (which, since the types must match, means that it is a | 
|  | // ConstantPointerNull). | 
|  | if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) { | 
|  | // Block address in another function can't equal this one, but block | 
|  | // addresses in the current function might be the same if blocks are | 
|  | // empty. | 
|  | if (BA2->getFunction() != BA->getFunction()) | 
|  | return ICmpInst::ICMP_NE; | 
|  | } else { | 
|  | // Block addresses aren't null, don't equal the address of globals. | 
|  | assert((isa<ConstantPointerNull>(V2) || isa<GlobalValue>(V2)) && | 
|  | "Canonicalization guarantee!"); | 
|  | return ICmpInst::ICMP_NE; | 
|  | } | 
|  | } else { | 
|  | // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a | 
|  | // constantexpr, a global, block address, or a simple constant. | 
|  | ConstantExpr *CE1 = cast<ConstantExpr>(V1); | 
|  | Constant *CE1Op0 = CE1->getOperand(0); | 
|  |  | 
|  | switch (CE1->getOpcode()) { | 
|  | case Instruction::Trunc: | 
|  | case Instruction::FPTrunc: | 
|  | case Instruction::FPExt: | 
|  | case Instruction::FPToUI: | 
|  | case Instruction::FPToSI: | 
|  | break; // We can't evaluate floating point casts or truncations. | 
|  |  | 
|  | case Instruction::UIToFP: | 
|  | case Instruction::SIToFP: | 
|  | case Instruction::BitCast: | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | // We can't evaluate floating point casts or truncations. | 
|  | if (CE1Op0->getType()->isFloatingPointTy()) | 
|  | break; | 
|  |  | 
|  | // If the cast is not actually changing bits, and the second operand is a | 
|  | // null pointer, do the comparison with the pre-casted value. | 
|  | if (V2->isNullValue() && CE1->getType()->isIntOrPtrTy()) { | 
|  | if (CE1->getOpcode() == Instruction::ZExt) isSigned = false; | 
|  | if (CE1->getOpcode() == Instruction::SExt) isSigned = true; | 
|  | return evaluateICmpRelation(CE1Op0, | 
|  | Constant::getNullValue(CE1Op0->getType()), | 
|  | isSigned); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case Instruction::GetElementPtr: { | 
|  | GEPOperator *CE1GEP = cast<GEPOperator>(CE1); | 
|  | // Ok, since this is a getelementptr, we know that the constant has a | 
|  | // pointer type.  Check the various cases. | 
|  | if (isa<ConstantPointerNull>(V2)) { | 
|  | // If we are comparing a GEP to a null pointer, check to see if the base | 
|  | // of the GEP equals the null pointer. | 
|  | if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { | 
|  | if (GV->hasExternalWeakLinkage()) | 
|  | // Weak linkage GVals could be zero or not. We're comparing that | 
|  | // to null pointer so its greater-or-equal | 
|  | return isSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; | 
|  | else | 
|  | // If its not weak linkage, the GVal must have a non-zero address | 
|  | // so the result is greater-than | 
|  | return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; | 
|  | } else if (isa<ConstantPointerNull>(CE1Op0)) { | 
|  | // If we are indexing from a null pointer, check to see if we have any | 
|  | // non-zero indices. | 
|  | for (unsigned i = 1, e = CE1->getNumOperands(); i != e; ++i) | 
|  | if (!CE1->getOperand(i)->isNullValue()) | 
|  | // Offsetting from null, must not be equal. | 
|  | return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; | 
|  | // Only zero indexes from null, must still be zero. | 
|  | return ICmpInst::ICMP_EQ; | 
|  | } | 
|  | // Otherwise, we can't really say if the first operand is null or not. | 
|  | } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { | 
|  | if (isa<ConstantPointerNull>(CE1Op0)) { | 
|  | if (GV2->hasExternalWeakLinkage()) | 
|  | // Weak linkage GVals could be zero or not. We're comparing it to | 
|  | // a null pointer, so its less-or-equal | 
|  | return isSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; | 
|  | else | 
|  | // If its not weak linkage, the GVal must have a non-zero address | 
|  | // so the result is less-than | 
|  | return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; | 
|  | } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { | 
|  | if (GV == GV2) { | 
|  | // If this is a getelementptr of the same global, then it must be | 
|  | // different.  Because the types must match, the getelementptr could | 
|  | // only have at most one index, and because we fold getelementptr's | 
|  | // with a single zero index, it must be nonzero. | 
|  | assert(CE1->getNumOperands() == 2 && | 
|  | !CE1->getOperand(1)->isNullValue() && | 
|  | "Surprising getelementptr!"); | 
|  | return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; | 
|  | } else { | 
|  | if (CE1GEP->hasAllZeroIndices()) | 
|  | return areGlobalsPotentiallyEqual(GV, GV2); | 
|  | return ICmpInst::BAD_ICMP_PREDICATE; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | ConstantExpr *CE2 = cast<ConstantExpr>(V2); | 
|  | Constant *CE2Op0 = CE2->getOperand(0); | 
|  |  | 
|  | // There are MANY other foldings that we could perform here.  They will | 
|  | // probably be added on demand, as they seem needed. | 
|  | switch (CE2->getOpcode()) { | 
|  | default: break; | 
|  | case Instruction::GetElementPtr: | 
|  | // By far the most common case to handle is when the base pointers are | 
|  | // obviously to the same global. | 
|  | if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) { | 
|  | // Don't know relative ordering, but check for inequality. | 
|  | if (CE1Op0 != CE2Op0) { | 
|  | GEPOperator *CE2GEP = cast<GEPOperator>(CE2); | 
|  | if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices()) | 
|  | return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0), | 
|  | cast<GlobalValue>(CE2Op0)); | 
|  | return ICmpInst::BAD_ICMP_PREDICATE; | 
|  | } | 
|  | // Ok, we know that both getelementptr instructions are based on the | 
|  | // same global.  From this, we can precisely determine the relative | 
|  | // ordering of the resultant pointers. | 
|  | unsigned i = 1; | 
|  |  | 
|  | // The logic below assumes that the result of the comparison | 
|  | // can be determined by finding the first index that differs. | 
|  | // This doesn't work if there is over-indexing in any | 
|  | // subsequent indices, so check for that case first. | 
|  | if (!CE1->isGEPWithNoNotionalOverIndexing() || | 
|  | !CE2->isGEPWithNoNotionalOverIndexing()) | 
|  | return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. | 
|  |  | 
|  | // Compare all of the operands the GEP's have in common. | 
|  | gep_type_iterator GTI = gep_type_begin(CE1); | 
|  | for (;i != CE1->getNumOperands() && i != CE2->getNumOperands(); | 
|  | ++i, ++GTI) | 
|  | switch (IdxCompare(CE1->getOperand(i), | 
|  | CE2->getOperand(i), GTI.getIndexedType())) { | 
|  | case -1: return isSigned ? ICmpInst::ICMP_SLT:ICmpInst::ICMP_ULT; | 
|  | case 1:  return isSigned ? ICmpInst::ICMP_SGT:ICmpInst::ICMP_UGT; | 
|  | case -2: return ICmpInst::BAD_ICMP_PREDICATE; | 
|  | } | 
|  |  | 
|  | // Ok, we ran out of things they have in common.  If any leftovers | 
|  | // are non-zero then we have a difference, otherwise we are equal. | 
|  | for (; i < CE1->getNumOperands(); ++i) | 
|  | if (!CE1->getOperand(i)->isNullValue()) { | 
|  | if (isa<ConstantInt>(CE1->getOperand(i))) | 
|  | return isSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; | 
|  | else | 
|  | return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. | 
|  | } | 
|  |  | 
|  | for (; i < CE2->getNumOperands(); ++i) | 
|  | if (!CE2->getOperand(i)->isNullValue()) { | 
|  | if (isa<ConstantInt>(CE2->getOperand(i))) | 
|  | return isSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; | 
|  | else | 
|  | return ICmpInst::BAD_ICMP_PREDICATE; // Might be equal. | 
|  | } | 
|  | return ICmpInst::ICMP_EQ; | 
|  | } | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return ICmpInst::BAD_ICMP_PREDICATE; | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldCompareInstruction(unsigned short pred, | 
|  | Constant *C1, Constant *C2) { | 
|  | Type *ResultTy; | 
|  | if (VectorType *VT = dyn_cast<VectorType>(C1->getType())) | 
|  | ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()), | 
|  | VT->getNumElements()); | 
|  | else | 
|  | ResultTy = Type::getInt1Ty(C1->getContext()); | 
|  |  | 
|  | // Fold FCMP_FALSE/FCMP_TRUE unconditionally. | 
|  | if (pred == FCmpInst::FCMP_FALSE) | 
|  | return Constant::getNullValue(ResultTy); | 
|  |  | 
|  | if (pred == FCmpInst::FCMP_TRUE) | 
|  | return Constant::getAllOnesValue(ResultTy); | 
|  |  | 
|  | // Handle some degenerate cases first | 
|  | if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) { | 
|  | CmpInst::Predicate Predicate = CmpInst::Predicate(pred); | 
|  | bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate); | 
|  | // For EQ and NE, we can always pick a value for the undef to make the | 
|  | // predicate pass or fail, so we can return undef. | 
|  | // Also, if both operands are undef, we can return undef for int comparison. | 
|  | if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2)) | 
|  | return UndefValue::get(ResultTy); | 
|  |  | 
|  | // Otherwise, for integer compare, pick the same value as the non-undef | 
|  | // operand, and fold it to true or false. | 
|  | if (isIntegerPredicate) | 
|  | return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate)); | 
|  |  | 
|  | // Choosing NaN for the undef will always make unordered comparison succeed | 
|  | // and ordered comparison fails. | 
|  | return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate)); | 
|  | } | 
|  |  | 
|  | // icmp eq/ne(null,GV) -> false/true | 
|  | if (C1->isNullValue()) { | 
|  | if (const GlobalValue *GV = dyn_cast<GlobalValue>(C2)) | 
|  | // Don't try to evaluate aliases.  External weak GV can be null. | 
|  | if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() && | 
|  | !NullPointerIsDefined(nullptr /* F */, | 
|  | GV->getType()->getAddressSpace())) { | 
|  | if (pred == ICmpInst::ICMP_EQ) | 
|  | return ConstantInt::getFalse(C1->getContext()); | 
|  | else if (pred == ICmpInst::ICMP_NE) | 
|  | return ConstantInt::getTrue(C1->getContext()); | 
|  | } | 
|  | // icmp eq/ne(GV,null) -> false/true | 
|  | } else if (C2->isNullValue()) { | 
|  | if (const GlobalValue *GV = dyn_cast<GlobalValue>(C1)) | 
|  | // Don't try to evaluate aliases.  External weak GV can be null. | 
|  | if (!isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage() && | 
|  | !NullPointerIsDefined(nullptr /* F */, | 
|  | GV->getType()->getAddressSpace())) { | 
|  | if (pred == ICmpInst::ICMP_EQ) | 
|  | return ConstantInt::getFalse(C1->getContext()); | 
|  | else if (pred == ICmpInst::ICMP_NE) | 
|  | return ConstantInt::getTrue(C1->getContext()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the comparison is a comparison between two i1's, simplify it. | 
|  | if (C1->getType()->isIntegerTy(1)) { | 
|  | switch(pred) { | 
|  | case ICmpInst::ICMP_EQ: | 
|  | if (isa<ConstantInt>(C2)) | 
|  | return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2)); | 
|  | return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2); | 
|  | case ICmpInst::ICMP_NE: | 
|  | return ConstantExpr::getXor(C1, C2); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) { | 
|  | const APInt &V1 = cast<ConstantInt>(C1)->getValue(); | 
|  | const APInt &V2 = cast<ConstantInt>(C2)->getValue(); | 
|  | switch (pred) { | 
|  | default: llvm_unreachable("Invalid ICmp Predicate"); | 
|  | case ICmpInst::ICMP_EQ:  return ConstantInt::get(ResultTy, V1 == V2); | 
|  | case ICmpInst::ICMP_NE:  return ConstantInt::get(ResultTy, V1 != V2); | 
|  | case ICmpInst::ICMP_SLT: return ConstantInt::get(ResultTy, V1.slt(V2)); | 
|  | case ICmpInst::ICMP_SGT: return ConstantInt::get(ResultTy, V1.sgt(V2)); | 
|  | case ICmpInst::ICMP_SLE: return ConstantInt::get(ResultTy, V1.sle(V2)); | 
|  | case ICmpInst::ICMP_SGE: return ConstantInt::get(ResultTy, V1.sge(V2)); | 
|  | case ICmpInst::ICMP_ULT: return ConstantInt::get(ResultTy, V1.ult(V2)); | 
|  | case ICmpInst::ICMP_UGT: return ConstantInt::get(ResultTy, V1.ugt(V2)); | 
|  | case ICmpInst::ICMP_ULE: return ConstantInt::get(ResultTy, V1.ule(V2)); | 
|  | case ICmpInst::ICMP_UGE: return ConstantInt::get(ResultTy, V1.uge(V2)); | 
|  | } | 
|  | } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) { | 
|  | const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF(); | 
|  | const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF(); | 
|  | APFloat::cmpResult R = C1V.compare(C2V); | 
|  | switch (pred) { | 
|  | default: llvm_unreachable("Invalid FCmp Predicate"); | 
|  | case FCmpInst::FCMP_FALSE: return Constant::getNullValue(ResultTy); | 
|  | case FCmpInst::FCMP_TRUE:  return Constant::getAllOnesValue(ResultTy); | 
|  | case FCmpInst::FCMP_UNO: | 
|  | return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered); | 
|  | case FCmpInst::FCMP_ORD: | 
|  | return ConstantInt::get(ResultTy, R!=APFloat::cmpUnordered); | 
|  | case FCmpInst::FCMP_UEQ: | 
|  | return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || | 
|  | R==APFloat::cmpEqual); | 
|  | case FCmpInst::FCMP_OEQ: | 
|  | return ConstantInt::get(ResultTy, R==APFloat::cmpEqual); | 
|  | case FCmpInst::FCMP_UNE: | 
|  | return ConstantInt::get(ResultTy, R!=APFloat::cmpEqual); | 
|  | case FCmpInst::FCMP_ONE: | 
|  | return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan || | 
|  | R==APFloat::cmpGreaterThan); | 
|  | case FCmpInst::FCMP_ULT: | 
|  | return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || | 
|  | R==APFloat::cmpLessThan); | 
|  | case FCmpInst::FCMP_OLT: | 
|  | return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan); | 
|  | case FCmpInst::FCMP_UGT: | 
|  | return ConstantInt::get(ResultTy, R==APFloat::cmpUnordered || | 
|  | R==APFloat::cmpGreaterThan); | 
|  | case FCmpInst::FCMP_OGT: | 
|  | return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan); | 
|  | case FCmpInst::FCMP_ULE: | 
|  | return ConstantInt::get(ResultTy, R!=APFloat::cmpGreaterThan); | 
|  | case FCmpInst::FCMP_OLE: | 
|  | return ConstantInt::get(ResultTy, R==APFloat::cmpLessThan || | 
|  | R==APFloat::cmpEqual); | 
|  | case FCmpInst::FCMP_UGE: | 
|  | return ConstantInt::get(ResultTy, R!=APFloat::cmpLessThan); | 
|  | case FCmpInst::FCMP_OGE: | 
|  | return ConstantInt::get(ResultTy, R==APFloat::cmpGreaterThan || | 
|  | R==APFloat::cmpEqual); | 
|  | } | 
|  | } else if (C1->getType()->isVectorTy()) { | 
|  | // If we can constant fold the comparison of each element, constant fold | 
|  | // the whole vector comparison. | 
|  | SmallVector<Constant*, 4> ResElts; | 
|  | Type *Ty = IntegerType::get(C1->getContext(), 32); | 
|  | // Compare the elements, producing an i1 result or constant expr. | 
|  | for (unsigned i = 0, e = C1->getType()->getVectorNumElements(); i != e;++i){ | 
|  | Constant *C1E = | 
|  | ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, i)); | 
|  | Constant *C2E = | 
|  | ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, i)); | 
|  |  | 
|  | ResElts.push_back(ConstantExpr::getCompare(pred, C1E, C2E)); | 
|  | } | 
|  |  | 
|  | return ConstantVector::get(ResElts); | 
|  | } | 
|  |  | 
|  | if (C1->getType()->isFloatingPointTy() && | 
|  | // Only call evaluateFCmpRelation if we have a constant expr to avoid | 
|  | // infinite recursive loop | 
|  | (isa<ConstantExpr>(C1) || isa<ConstantExpr>(C2))) { | 
|  | int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true. | 
|  | switch (evaluateFCmpRelation(C1, C2)) { | 
|  | default: llvm_unreachable("Unknown relation!"); | 
|  | case FCmpInst::FCMP_UNO: | 
|  | case FCmpInst::FCMP_ORD: | 
|  | case FCmpInst::FCMP_UEQ: | 
|  | case FCmpInst::FCMP_UNE: | 
|  | case FCmpInst::FCMP_ULT: | 
|  | case FCmpInst::FCMP_UGT: | 
|  | case FCmpInst::FCMP_ULE: | 
|  | case FCmpInst::FCMP_UGE: | 
|  | case FCmpInst::FCMP_TRUE: | 
|  | case FCmpInst::FCMP_FALSE: | 
|  | case FCmpInst::BAD_FCMP_PREDICATE: | 
|  | break; // Couldn't determine anything about these constants. | 
|  | case FCmpInst::FCMP_OEQ: // We know that C1 == C2 | 
|  | Result = (pred == FCmpInst::FCMP_UEQ || pred == FCmpInst::FCMP_OEQ || | 
|  | pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE || | 
|  | pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); | 
|  | break; | 
|  | case FCmpInst::FCMP_OLT: // We know that C1 < C2 | 
|  | Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || | 
|  | pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT || | 
|  | pred == FCmpInst::FCMP_ULE || pred == FCmpInst::FCMP_OLE); | 
|  | break; | 
|  | case FCmpInst::FCMP_OGT: // We know that C1 > C2 | 
|  | Result = (pred == FCmpInst::FCMP_UNE || pred == FCmpInst::FCMP_ONE || | 
|  | pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT || | 
|  | pred == FCmpInst::FCMP_UGE || pred == FCmpInst::FCMP_OGE); | 
|  | break; | 
|  | case FCmpInst::FCMP_OLE: // We know that C1 <= C2 | 
|  | // We can only partially decide this relation. | 
|  | if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) | 
|  | Result = 0; | 
|  | else if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) | 
|  | Result = 1; | 
|  | break; | 
|  | case FCmpInst::FCMP_OGE: // We known that C1 >= C2 | 
|  | // We can only partially decide this relation. | 
|  | if (pred == FCmpInst::FCMP_ULT || pred == FCmpInst::FCMP_OLT) | 
|  | Result = 0; | 
|  | else if (pred == FCmpInst::FCMP_UGT || pred == FCmpInst::FCMP_OGT) | 
|  | Result = 1; | 
|  | break; | 
|  | case FCmpInst::FCMP_ONE: // We know that C1 != C2 | 
|  | // We can only partially decide this relation. | 
|  | if (pred == FCmpInst::FCMP_OEQ || pred == FCmpInst::FCMP_UEQ) | 
|  | Result = 0; | 
|  | else if (pred == FCmpInst::FCMP_ONE || pred == FCmpInst::FCMP_UNE) | 
|  | Result = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we evaluated the result, return it now. | 
|  | if (Result != -1) | 
|  | return ConstantInt::get(ResultTy, Result); | 
|  |  | 
|  | } else { | 
|  | // Evaluate the relation between the two constants, per the predicate. | 
|  | int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true. | 
|  | switch (evaluateICmpRelation(C1, C2, | 
|  | CmpInst::isSigned((CmpInst::Predicate)pred))) { | 
|  | default: llvm_unreachable("Unknown relational!"); | 
|  | case ICmpInst::BAD_ICMP_PREDICATE: | 
|  | break;  // Couldn't determine anything about these constants. | 
|  | case ICmpInst::ICMP_EQ:   // We know the constants are equal! | 
|  | // If we know the constants are equal, we can decide the result of this | 
|  | // computation precisely. | 
|  | Result = ICmpInst::isTrueWhenEqual((ICmpInst::Predicate)pred); | 
|  | break; | 
|  | case ICmpInst::ICMP_ULT: | 
|  | switch (pred) { | 
|  | case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE: | 
|  | Result = 1; break; | 
|  | case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE: | 
|  | Result = 0; break; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_SLT: | 
|  | switch (pred) { | 
|  | case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE: | 
|  | Result = 1; break; | 
|  | case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE: | 
|  | Result = 0; break; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_UGT: | 
|  | switch (pred) { | 
|  | case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE: | 
|  | Result = 1; break; | 
|  | case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE: | 
|  | Result = 0; break; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_SGT: | 
|  | switch (pred) { | 
|  | case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE: | 
|  | Result = 1; break; | 
|  | case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE: | 
|  | Result = 0; break; | 
|  | } | 
|  | break; | 
|  | case ICmpInst::ICMP_ULE: | 
|  | if (pred == ICmpInst::ICMP_UGT) Result = 0; | 
|  | if (pred == ICmpInst::ICMP_ULT || pred == ICmpInst::ICMP_ULE) Result = 1; | 
|  | break; | 
|  | case ICmpInst::ICMP_SLE: | 
|  | if (pred == ICmpInst::ICMP_SGT) Result = 0; | 
|  | if (pred == ICmpInst::ICMP_SLT || pred == ICmpInst::ICMP_SLE) Result = 1; | 
|  | break; | 
|  | case ICmpInst::ICMP_UGE: | 
|  | if (pred == ICmpInst::ICMP_ULT) Result = 0; | 
|  | if (pred == ICmpInst::ICMP_UGT || pred == ICmpInst::ICMP_UGE) Result = 1; | 
|  | break; | 
|  | case ICmpInst::ICMP_SGE: | 
|  | if (pred == ICmpInst::ICMP_SLT) Result = 0; | 
|  | if (pred == ICmpInst::ICMP_SGT || pred == ICmpInst::ICMP_SGE) Result = 1; | 
|  | break; | 
|  | case ICmpInst::ICMP_NE: | 
|  | if (pred == ICmpInst::ICMP_EQ) Result = 0; | 
|  | if (pred == ICmpInst::ICMP_NE) Result = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If we evaluated the result, return it now. | 
|  | if (Result != -1) | 
|  | return ConstantInt::get(ResultTy, Result); | 
|  |  | 
|  | // If the right hand side is a bitcast, try using its inverse to simplify | 
|  | // it by moving it to the left hand side.  We can't do this if it would turn | 
|  | // a vector compare into a scalar compare or visa versa, or if it would turn | 
|  | // the operands into FP values. | 
|  | if (ConstantExpr *CE2 = dyn_cast<ConstantExpr>(C2)) { | 
|  | Constant *CE2Op0 = CE2->getOperand(0); | 
|  | if (CE2->getOpcode() == Instruction::BitCast && | 
|  | CE2->getType()->isVectorTy() == CE2Op0->getType()->isVectorTy() && | 
|  | !CE2Op0->getType()->isFPOrFPVectorTy()) { | 
|  | Constant *Inverse = ConstantExpr::getBitCast(C1, CE2Op0->getType()); | 
|  | return ConstantExpr::getICmp(pred, Inverse, CE2Op0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the left hand side is an extension, try eliminating it. | 
|  | if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { | 
|  | if ((CE1->getOpcode() == Instruction::SExt && | 
|  | ICmpInst::isSigned((ICmpInst::Predicate)pred)) || | 
|  | (CE1->getOpcode() == Instruction::ZExt && | 
|  | !ICmpInst::isSigned((ICmpInst::Predicate)pred))){ | 
|  | Constant *CE1Op0 = CE1->getOperand(0); | 
|  | Constant *CE1Inverse = ConstantExpr::getTrunc(CE1, CE1Op0->getType()); | 
|  | if (CE1Inverse == CE1Op0) { | 
|  | // Check whether we can safely truncate the right hand side. | 
|  | Constant *C2Inverse = ConstantExpr::getTrunc(C2, CE1Op0->getType()); | 
|  | if (ConstantExpr::getCast(CE1->getOpcode(), C2Inverse, | 
|  | C2->getType()) == C2) | 
|  | return ConstantExpr::getICmp(pred, CE1Inverse, C2Inverse); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) || | 
|  | (C1->isNullValue() && !C2->isNullValue())) { | 
|  | // If C2 is a constant expr and C1 isn't, flip them around and fold the | 
|  | // other way if possible. | 
|  | // Also, if C1 is null and C2 isn't, flip them around. | 
|  | pred = ICmpInst::getSwappedPredicate((ICmpInst::Predicate)pred); | 
|  | return ConstantExpr::getICmp(pred, C2, C1); | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Test whether the given sequence of *normalized* indices is "inbounds". | 
|  | template<typename IndexTy> | 
|  | static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) { | 
|  | // No indices means nothing that could be out of bounds. | 
|  | if (Idxs.empty()) return true; | 
|  |  | 
|  | // If the first index is zero, it's in bounds. | 
|  | if (cast<Constant>(Idxs[0])->isNullValue()) return true; | 
|  |  | 
|  | // If the first index is one and all the rest are zero, it's in bounds, | 
|  | // by the one-past-the-end rule. | 
|  | if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) { | 
|  | if (!CI->isOne()) | 
|  | return false; | 
|  | } else { | 
|  | auto *CV = cast<ConstantDataVector>(Idxs[0]); | 
|  | CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue()); | 
|  | if (!CI || !CI->isOne()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 1, e = Idxs.size(); i != e; ++i) | 
|  | if (!cast<Constant>(Idxs[i])->isNullValue()) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Test whether a given ConstantInt is in-range for a SequentialType. | 
|  | static bool isIndexInRangeOfArrayType(uint64_t NumElements, | 
|  | const ConstantInt *CI) { | 
|  | // We cannot bounds check the index if it doesn't fit in an int64_t. | 
|  | if (CI->getValue().getMinSignedBits() > 64) | 
|  | return false; | 
|  |  | 
|  | // A negative index or an index past the end of our sequential type is | 
|  | // considered out-of-range. | 
|  | int64_t IndexVal = CI->getSExtValue(); | 
|  | if (IndexVal < 0 || (NumElements > 0 && (uint64_t)IndexVal >= NumElements)) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, it is in-range. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C, | 
|  | bool InBounds, | 
|  | Optional<unsigned> InRangeIndex, | 
|  | ArrayRef<Value *> Idxs) { | 
|  | if (Idxs.empty()) return C; | 
|  |  | 
|  | Type *GEPTy = GetElementPtrInst::getGEPReturnType( | 
|  | PointeeTy, C, makeArrayRef((Value *const *)Idxs.data(), Idxs.size())); | 
|  |  | 
|  | if (isa<UndefValue>(C)) | 
|  | return UndefValue::get(GEPTy); | 
|  |  | 
|  | Constant *Idx0 = cast<Constant>(Idxs[0]); | 
|  | if (Idxs.size() == 1 && (Idx0->isNullValue() || isa<UndefValue>(Idx0))) | 
|  | return GEPTy->isVectorTy() && !C->getType()->isVectorTy() | 
|  | ? ConstantVector::getSplat( | 
|  | cast<VectorType>(GEPTy)->getNumElements(), C) | 
|  | : C; | 
|  |  | 
|  | if (C->isNullValue()) { | 
|  | bool isNull = true; | 
|  | for (unsigned i = 0, e = Idxs.size(); i != e; ++i) | 
|  | if (!isa<UndefValue>(Idxs[i]) && | 
|  | !cast<Constant>(Idxs[i])->isNullValue()) { | 
|  | isNull = false; | 
|  | break; | 
|  | } | 
|  | if (isNull) { | 
|  | PointerType *PtrTy = cast<PointerType>(C->getType()->getScalarType()); | 
|  | Type *Ty = GetElementPtrInst::getIndexedType(PointeeTy, Idxs); | 
|  |  | 
|  | assert(Ty && "Invalid indices for GEP!"); | 
|  | Type *OrigGEPTy = PointerType::get(Ty, PtrTy->getAddressSpace()); | 
|  | Type *GEPTy = PointerType::get(Ty, PtrTy->getAddressSpace()); | 
|  | if (VectorType *VT = dyn_cast<VectorType>(C->getType())) | 
|  | GEPTy = VectorType::get(OrigGEPTy, VT->getNumElements()); | 
|  |  | 
|  | // The GEP returns a vector of pointers when one of more of | 
|  | // its arguments is a vector. | 
|  | for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { | 
|  | if (auto *VT = dyn_cast<VectorType>(Idxs[i]->getType())) { | 
|  | GEPTy = VectorType::get(OrigGEPTy, VT->getNumElements()); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Constant::getNullValue(GEPTy); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { | 
|  | // Combine Indices - If the source pointer to this getelementptr instruction | 
|  | // is a getelementptr instruction, combine the indices of the two | 
|  | // getelementptr instructions into a single instruction. | 
|  | // | 
|  | if (CE->getOpcode() == Instruction::GetElementPtr) { | 
|  | gep_type_iterator LastI = gep_type_end(CE); | 
|  | for (gep_type_iterator I = gep_type_begin(CE), E = gep_type_end(CE); | 
|  | I != E; ++I) | 
|  | LastI = I; | 
|  |  | 
|  | // We cannot combine indices if doing so would take us outside of an | 
|  | // array or vector.  Doing otherwise could trick us if we evaluated such a | 
|  | // GEP as part of a load. | 
|  | // | 
|  | // e.g. Consider if the original GEP was: | 
|  | // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c, | 
|  | //                    i32 0, i32 0, i64 0) | 
|  | // | 
|  | // If we then tried to offset it by '8' to get to the third element, | 
|  | // an i8, we should *not* get: | 
|  | // i8* getelementptr ({ [2 x i8], i32, i8, [3 x i8] }* @main.c, | 
|  | //                    i32 0, i32 0, i64 8) | 
|  | // | 
|  | // This GEP tries to index array element '8  which runs out-of-bounds. | 
|  | // Subsequent evaluation would get confused and produce erroneous results. | 
|  | // | 
|  | // The following prohibits such a GEP from being formed by checking to see | 
|  | // if the index is in-range with respect to an array. | 
|  | // TODO: This code may be extended to handle vectors as well. | 
|  | bool PerformFold = false; | 
|  | if (Idx0->isNullValue()) | 
|  | PerformFold = true; | 
|  | else if (LastI.isSequential()) | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx0)) | 
|  | PerformFold = (!LastI.isBoundedSequential() || | 
|  | isIndexInRangeOfArrayType( | 
|  | LastI.getSequentialNumElements(), CI)) && | 
|  | !CE->getOperand(CE->getNumOperands() - 1) | 
|  | ->getType() | 
|  | ->isVectorTy(); | 
|  |  | 
|  | if (PerformFold) { | 
|  | SmallVector<Value*, 16> NewIndices; | 
|  | NewIndices.reserve(Idxs.size() + CE->getNumOperands()); | 
|  | NewIndices.append(CE->op_begin() + 1, CE->op_end() - 1); | 
|  |  | 
|  | // Add the last index of the source with the first index of the new GEP. | 
|  | // Make sure to handle the case when they are actually different types. | 
|  | Constant *Combined = CE->getOperand(CE->getNumOperands()-1); | 
|  | // Otherwise it must be an array. | 
|  | if (!Idx0->isNullValue()) { | 
|  | Type *IdxTy = Combined->getType(); | 
|  | if (IdxTy != Idx0->getType()) { | 
|  | unsigned CommonExtendedWidth = | 
|  | std::max(IdxTy->getIntegerBitWidth(), | 
|  | Idx0->getType()->getIntegerBitWidth()); | 
|  | CommonExtendedWidth = std::max(CommonExtendedWidth, 64U); | 
|  |  | 
|  | Type *CommonTy = | 
|  | Type::getIntNTy(IdxTy->getContext(), CommonExtendedWidth); | 
|  | Constant *C1 = ConstantExpr::getSExtOrBitCast(Idx0, CommonTy); | 
|  | Constant *C2 = ConstantExpr::getSExtOrBitCast(Combined, CommonTy); | 
|  | Combined = ConstantExpr::get(Instruction::Add, C1, C2); | 
|  | } else { | 
|  | Combined = | 
|  | ConstantExpr::get(Instruction::Add, Idx0, Combined); | 
|  | } | 
|  | } | 
|  |  | 
|  | NewIndices.push_back(Combined); | 
|  | NewIndices.append(Idxs.begin() + 1, Idxs.end()); | 
|  |  | 
|  | // The combined GEP normally inherits its index inrange attribute from | 
|  | // the inner GEP, but if the inner GEP's last index was adjusted by the | 
|  | // outer GEP, any inbounds attribute on that index is invalidated. | 
|  | Optional<unsigned> IRIndex = cast<GEPOperator>(CE)->getInRangeIndex(); | 
|  | if (IRIndex && *IRIndex == CE->getNumOperands() - 2 && !Idx0->isNullValue()) | 
|  | IRIndex = None; | 
|  |  | 
|  | return ConstantExpr::getGetElementPtr( | 
|  | cast<GEPOperator>(CE)->getSourceElementType(), CE->getOperand(0), | 
|  | NewIndices, InBounds && cast<GEPOperator>(CE)->isInBounds(), | 
|  | IRIndex); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Attempt to fold casts to the same type away.  For example, folding: | 
|  | // | 
|  | //   i32* getelementptr ([2 x i32]* bitcast ([3 x i32]* %X to [2 x i32]*), | 
|  | //                       i64 0, i64 0) | 
|  | // into: | 
|  | // | 
|  | //   i32* getelementptr ([3 x i32]* %X, i64 0, i64 0) | 
|  | // | 
|  | // Don't fold if the cast is changing address spaces. | 
|  | if (CE->isCast() && Idxs.size() > 1 && Idx0->isNullValue()) { | 
|  | PointerType *SrcPtrTy = | 
|  | dyn_cast<PointerType>(CE->getOperand(0)->getType()); | 
|  | PointerType *DstPtrTy = dyn_cast<PointerType>(CE->getType()); | 
|  | if (SrcPtrTy && DstPtrTy) { | 
|  | ArrayType *SrcArrayTy = | 
|  | dyn_cast<ArrayType>(SrcPtrTy->getElementType()); | 
|  | ArrayType *DstArrayTy = | 
|  | dyn_cast<ArrayType>(DstPtrTy->getElementType()); | 
|  | if (SrcArrayTy && DstArrayTy | 
|  | && SrcArrayTy->getElementType() == DstArrayTy->getElementType() | 
|  | && SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace()) | 
|  | return ConstantExpr::getGetElementPtr(SrcArrayTy, | 
|  | (Constant *)CE->getOperand(0), | 
|  | Idxs, InBounds, InRangeIndex); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check to see if any array indices are not within the corresponding | 
|  | // notional array or vector bounds. If so, try to determine if they can be | 
|  | // factored out into preceding dimensions. | 
|  | SmallVector<Constant *, 8> NewIdxs; | 
|  | Type *Ty = PointeeTy; | 
|  | Type *Prev = C->getType(); | 
|  | bool Unknown = | 
|  | !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]); | 
|  | for (unsigned i = 1, e = Idxs.size(); i != e; | 
|  | Prev = Ty, Ty = cast<CompositeType>(Ty)->getTypeAtIndex(Idxs[i]), ++i) { | 
|  | if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) { | 
|  | // We don't know if it's in range or not. | 
|  | Unknown = true; | 
|  | continue; | 
|  | } | 
|  | if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1])) | 
|  | // Skip if the type of the previous index is not supported. | 
|  | continue; | 
|  | if (InRangeIndex && i == *InRangeIndex + 1) { | 
|  | // If an index is marked inrange, we cannot apply this canonicalization to | 
|  | // the following index, as that will cause the inrange index to point to | 
|  | // the wrong element. | 
|  | continue; | 
|  | } | 
|  | if (isa<StructType>(Ty)) { | 
|  | // The verify makes sure that GEPs into a struct are in range. | 
|  | continue; | 
|  | } | 
|  | auto *STy = cast<SequentialType>(Ty); | 
|  | if (isa<VectorType>(STy)) { | 
|  | // There can be awkward padding in after a non-power of two vector. | 
|  | Unknown = true; | 
|  | continue; | 
|  | } | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) { | 
|  | if (isIndexInRangeOfArrayType(STy->getNumElements(), CI)) | 
|  | // It's in range, skip to the next index. | 
|  | continue; | 
|  | if (CI->getSExtValue() < 0) { | 
|  | // It's out of range and negative, don't try to factor it. | 
|  | Unknown = true; | 
|  | continue; | 
|  | } | 
|  | } else { | 
|  | auto *CV = cast<ConstantDataVector>(Idxs[i]); | 
|  | bool InRange = true; | 
|  | for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) { | 
|  | auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I)); | 
|  | InRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI); | 
|  | if (CI->getSExtValue() < 0) { | 
|  | Unknown = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (InRange || Unknown) | 
|  | // It's in range, skip to the next index. | 
|  | // It's out of range and negative, don't try to factor it. | 
|  | continue; | 
|  | } | 
|  | if (isa<StructType>(Prev)) { | 
|  | // It's out of range, but the prior dimension is a struct | 
|  | // so we can't do anything about it. | 
|  | Unknown = true; | 
|  | continue; | 
|  | } | 
|  | // It's out of range, but we can factor it into the prior | 
|  | // dimension. | 
|  | NewIdxs.resize(Idxs.size()); | 
|  | // Determine the number of elements in our sequential type. | 
|  | uint64_t NumElements = STy->getArrayNumElements(); | 
|  |  | 
|  | // Expand the current index or the previous index to a vector from a scalar | 
|  | // if necessary. | 
|  | Constant *CurrIdx = cast<Constant>(Idxs[i]); | 
|  | auto *PrevIdx = | 
|  | NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]); | 
|  | bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy(); | 
|  | bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy(); | 
|  | bool UseVector = IsCurrIdxVector || IsPrevIdxVector; | 
|  |  | 
|  | if (!IsCurrIdxVector && IsPrevIdxVector) | 
|  | CurrIdx = ConstantDataVector::getSplat( | 
|  | PrevIdx->getType()->getVectorNumElements(), CurrIdx); | 
|  |  | 
|  | if (!IsPrevIdxVector && IsCurrIdxVector) | 
|  | PrevIdx = ConstantDataVector::getSplat( | 
|  | CurrIdx->getType()->getVectorNumElements(), PrevIdx); | 
|  |  | 
|  | Constant *Factor = | 
|  | ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements); | 
|  | if (UseVector) | 
|  | Factor = ConstantDataVector::getSplat( | 
|  | IsPrevIdxVector ? PrevIdx->getType()->getVectorNumElements() | 
|  | : CurrIdx->getType()->getVectorNumElements(), | 
|  | Factor); | 
|  |  | 
|  | NewIdxs[i] = ConstantExpr::getSRem(CurrIdx, Factor); | 
|  |  | 
|  | Constant *Div = ConstantExpr::getSDiv(CurrIdx, Factor); | 
|  |  | 
|  | unsigned CommonExtendedWidth = | 
|  | std::max(PrevIdx->getType()->getScalarSizeInBits(), | 
|  | Div->getType()->getScalarSizeInBits()); | 
|  | CommonExtendedWidth = std::max(CommonExtendedWidth, 64U); | 
|  |  | 
|  | // Before adding, extend both operands to i64 to avoid | 
|  | // overflow trouble. | 
|  | Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth); | 
|  | if (UseVector) | 
|  | ExtendedTy = VectorType::get( | 
|  | ExtendedTy, IsPrevIdxVector | 
|  | ? PrevIdx->getType()->getVectorNumElements() | 
|  | : CurrIdx->getType()->getVectorNumElements()); | 
|  |  | 
|  | if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth)) | 
|  | PrevIdx = ConstantExpr::getSExt(PrevIdx, ExtendedTy); | 
|  |  | 
|  | if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth)) | 
|  | Div = ConstantExpr::getSExt(Div, ExtendedTy); | 
|  |  | 
|  | NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div); | 
|  | } | 
|  |  | 
|  | // If we did any factoring, start over with the adjusted indices. | 
|  | if (!NewIdxs.empty()) { | 
|  | for (unsigned i = 0, e = Idxs.size(); i != e; ++i) | 
|  | if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]); | 
|  | return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds, | 
|  | InRangeIndex); | 
|  | } | 
|  |  | 
|  | // If all indices are known integers and normalized, we can do a simple | 
|  | // check for the "inbounds" property. | 
|  | if (!Unknown && !InBounds) | 
|  | if (auto *GV = dyn_cast<GlobalVariable>(C)) | 
|  | if (!GV->hasExternalWeakLinkage() && isInBoundsIndices(Idxs)) | 
|  | return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs, | 
|  | /*InBounds=*/true, InRangeIndex); | 
|  |  | 
|  | return nullptr; | 
|  | } |