blob: 52549933f9d38c275a5e7db56a55996b5f1fc41a [file] [log] [blame]
//===- LinalgToLLVM.cpp - conversion from Linalg to LLVM dialect ----------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/LinalgToLLVM/LinalgToLLVM.h"
#include "mlir/Conversion/AffineToStandard/AffineToStandard.h"
#include "mlir/Conversion/LoopToStandard/ConvertLoopToStandard.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
#include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/Dialect/Linalg/IR/LinalgTypes.h"
#include "mlir/Dialect/Linalg/Passes.h"
#include "mlir/Dialect/Linalg/Utils/Intrinsics.h"
#include "mlir/EDSC/Builders.h"
#include "mlir/EDSC/Intrinsics.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Module.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/StandardTypes.h"
#include "mlir/IR/Types.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Pass/PassManager.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ErrorHandling.h"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::LLVM;
using namespace mlir::linalg;
using namespace mlir::linalg::intrinsics;
using add = ValueBuilder<mlir::LLVM::AddOp>;
using addi = ValueBuilder<mlir::AddIOp>;
using bitcast = ValueBuilder<mlir::LLVM::BitcastOp>;
using cmpi = ValueBuilder<mlir::CmpIOp>;
using constant = ValueBuilder<mlir::LLVM::ConstantOp>;
using extractvalue = ValueBuilder<mlir::LLVM::ExtractValueOp>;
using gep = ValueBuilder<mlir::LLVM::GEPOp>;
using insertvalue = ValueBuilder<mlir::LLVM::InsertValueOp>;
using llvm_call = OperationBuilder<mlir::LLVM::CallOp>;
using llvm_icmp = ValueBuilder<LLVM::ICmpOp>;
using llvm_load = ValueBuilder<LLVM::LoadOp>;
using llvm_store = OperationBuilder<LLVM::StoreOp>;
using llvm_select = ValueBuilder<LLVM::SelectOp>;
using mul = ValueBuilder<mlir::LLVM::MulOp>;
using ptrtoint = ValueBuilder<mlir::LLVM::PtrToIntOp>;
using sub = ValueBuilder<mlir::LLVM::SubOp>;
using llvm_undef = ValueBuilder<mlir::LLVM::UndefOp>;
using urem = ValueBuilder<mlir::LLVM::URemOp>;
using llvm_alloca = ValueBuilder<LLVM::AllocaOp>;
using llvm_return = OperationBuilder<LLVM::ReturnOp>;
template <typename T>
static LLVMType getPtrToElementType(T containerType,
LLVMTypeConverter &lowering) {
return lowering.convertType(containerType.getElementType())
.template cast<LLVMType>()
.getPointerTo();
}
// Convert the given type to the LLVM IR Dialect type. The following
// conversions are supported:
// - an Index type is converted into an LLVM integer type with pointer
// bitwidth (analogous to intptr_t in C);
// - an Integer type is converted into an LLVM integer type of the same width;
// - an F32 type is converted into an LLVM float type
// - a Buffer, Range or View is converted into an LLVM structure type
// containing the respective dynamic values.
static Type convertLinalgType(Type t, LLVMTypeConverter &lowering) {
auto *context = t.getContext();
auto int64Ty = lowering.convertType(IntegerType::get(64, context))
.cast<LLVM::LLVMType>();
// Range descriptor contains the range bounds and the step as 64-bit integers.
//
// struct {
// int64_t min;
// int64_t max;
// int64_t step;
// };
if (t.isa<RangeType>())
return LLVMType::getStructTy(int64Ty, int64Ty, int64Ty);
return Type();
}
namespace {
/// EDSC-compatible wrapper for MemRefDescriptor.
class BaseViewConversionHelper {
public:
BaseViewConversionHelper(Type type)
: d(MemRefDescriptor::undef(rewriter(), loc(), type)) {}
BaseViewConversionHelper(Value v) : d(v) {}
/// Wrappers around MemRefDescriptor that use EDSC builder and location.
Value allocatedPtr() { return d.allocatedPtr(rewriter(), loc()); }
void setAllocatedPtr(Value v) { d.setAllocatedPtr(rewriter(), loc(), v); }
Value alignedPtr() { return d.alignedPtr(rewriter(), loc()); }
void setAlignedPtr(Value v) { d.setAlignedPtr(rewriter(), loc(), v); }
Value offset() { return d.offset(rewriter(), loc()); }
void setOffset(Value v) { d.setOffset(rewriter(), loc(), v); }
Value size(unsigned i) { return d.size(rewriter(), loc(), i); }
void setSize(unsigned i, Value v) { d.setSize(rewriter(), loc(), i, v); }
void setConstantSize(unsigned i, int64_t v) {
d.setConstantSize(rewriter(), loc(), i, v);
}
Value stride(unsigned i) { return d.stride(rewriter(), loc(), i); }
void setStride(unsigned i, Value v) { d.setStride(rewriter(), loc(), i, v); }
void setConstantStride(unsigned i, int64_t v) {
d.setConstantStride(rewriter(), loc(), i, v);
}
operator Value() { return d; }
private:
OpBuilder &rewriter() { return ScopedContext::getBuilder(); }
Location loc() { return ScopedContext::getLocation(); }
MemRefDescriptor d;
};
} // namespace
// RangeOp creates a new range descriptor.
class RangeOpConversion : public LLVMOpLowering {
public:
explicit RangeOpConversion(MLIRContext *context, LLVMTypeConverter &lowering_)
: LLVMOpLowering(RangeOp::getOperationName(), context, lowering_) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto rangeOp = cast<RangeOp>(op);
auto rangeDescriptorTy =
convertLinalgType(rangeOp.getResult().getType(), lowering);
edsc::ScopedContext context(rewriter, op->getLoc());
// Fill in an aggregate value of the descriptor.
RangeOpOperandAdaptor adaptor(operands);
Value desc = llvm_undef(rangeDescriptorTy);
desc = insertvalue(desc, adaptor.min(), rewriter.getI64ArrayAttr(0));
desc = insertvalue(desc, adaptor.max(), rewriter.getI64ArrayAttr(1));
desc = insertvalue(desc, adaptor.step(), rewriter.getI64ArrayAttr(2));
rewriter.replaceOp(op, desc);
return matchSuccess();
}
};
// ReshapeOp creates a new view descriptor of the proper rank.
// For now, the only conversion supported is for target MemRef with static sizes
// and strides.
class ReshapeOpConversion : public LLVMOpLowering {
public:
explicit ReshapeOpConversion(MLIRContext *context,
LLVMTypeConverter &lowering_)
: LLVMOpLowering(ReshapeOp::getOperationName(), context, lowering_) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto reshapeOp = cast<ReshapeOp>(op);
MemRefType dstType = reshapeOp.getResult().getType().cast<MemRefType>();
if (!dstType.hasStaticShape())
return matchFailure();
int64_t offset;
SmallVector<int64_t, 4> strides;
auto res = getStridesAndOffset(dstType, strides, offset);
if (failed(res) || llvm::any_of(strides, [](int64_t val) {
return ShapedType::isDynamicStrideOrOffset(val);
}))
return matchFailure();
edsc::ScopedContext context(rewriter, op->getLoc());
ReshapeOpOperandAdaptor adaptor(operands);
BaseViewConversionHelper baseDesc(adaptor.view());
BaseViewConversionHelper desc(lowering.convertType(dstType));
desc.setAllocatedPtr(baseDesc.allocatedPtr());
desc.setAlignedPtr(baseDesc.alignedPtr());
desc.setOffset(baseDesc.offset());
for (auto en : llvm::enumerate(dstType.getShape()))
desc.setConstantSize(en.index(), en.value());
for (auto en : llvm::enumerate(strides))
desc.setConstantStride(en.index(), en.value());
rewriter.replaceOp(op, {desc});
return matchSuccess();
}
};
/// Conversion pattern that transforms a linalg.slice op into:
/// 1. A function entry `alloca` operation to allocate a ViewDescriptor.
/// 2. A load of the ViewDescriptor from the pointer allocated in 1.
/// 3. Updates to the ViewDescriptor to introduce the data ptr, offset, size
/// and stride corresponding to the region of memory within the bounds of
/// the parent view.
/// 4. A store of the resulting ViewDescriptor to the alloca'ed pointer.
/// The linalg.slice op is replaced by the alloca'ed pointer.
class SliceOpConversion : public LLVMOpLowering {
public:
explicit SliceOpConversion(MLIRContext *context, LLVMTypeConverter &lowering_)
: LLVMOpLowering(SliceOp::getOperationName(), context, lowering_) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
edsc::ScopedContext context(rewriter, op->getLoc());
SliceOpOperandAdaptor adaptor(operands);
BaseViewConversionHelper baseDesc(adaptor.view());
auto sliceOp = cast<SliceOp>(op);
auto memRefType = sliceOp.getBaseViewType();
auto int64Ty = lowering.convertType(rewriter.getIntegerType(64))
.cast<LLVM::LLVMType>();
BaseViewConversionHelper desc(
lowering.convertType(sliceOp.getShapedType()));
// TODO(ntv): extract sizes and emit asserts.
SmallVector<Value, 4> strides(memRefType.getRank());
for (int i = 0, e = memRefType.getRank(); i < e; ++i)
strides[i] = baseDesc.stride(i);
auto pos = [&rewriter](ArrayRef<int64_t> values) {
return rewriter.getI64ArrayAttr(values);
};
// Compute base offset.
Value baseOffset = baseDesc.offset();
for (int i = 0, e = memRefType.getRank(); i < e; ++i) {
Value indexing = adaptor.indexings()[i];
Value min = indexing;
if (sliceOp.indexing(i).getType().isa<RangeType>())
min = extractvalue(int64Ty, indexing, pos(0));
baseOffset = add(baseOffset, mul(min, strides[i]));
}
// Insert the base and aligned pointers.
desc.setAllocatedPtr(baseDesc.allocatedPtr());
desc.setAlignedPtr(baseDesc.alignedPtr());
// Insert base offset.
desc.setOffset(baseOffset);
// Corner case, no sizes or strides: early return the descriptor.
if (sliceOp.getShapedType().getRank() == 0)
return rewriter.replaceOp(op, {desc}), matchSuccess();
Value zero =
constant(int64Ty, rewriter.getIntegerAttr(rewriter.getIndexType(), 0));
// Compute and insert view sizes (max - min along the range) and strides.
// Skip the non-range operands as they will be projected away from the view.
int numNewDims = 0;
for (auto en : llvm::enumerate(sliceOp.indexings())) {
Value indexing = en.value();
if (indexing.getType().isa<RangeType>()) {
int rank = en.index();
Value rangeDescriptor = adaptor.indexings()[rank];
Value min = extractvalue(int64Ty, rangeDescriptor, pos(0));
Value max = extractvalue(int64Ty, rangeDescriptor, pos(1));
Value step = extractvalue(int64Ty, rangeDescriptor, pos(2));
Value baseSize = baseDesc.size(rank);
// Bound upper by base view upper bound.
max = llvm_select(llvm_icmp(ICmpPredicate::slt, max, baseSize), max,
baseSize);
Value size = sub(max, min);
// Bound lower by zero.
size =
llvm_select(llvm_icmp(ICmpPredicate::slt, size, zero), zero, size);
Value stride = mul(strides[rank], step);
desc.setSize(numNewDims, size);
desc.setStride(numNewDims, stride);
++numNewDims;
}
}
rewriter.replaceOp(op, {desc});
return matchSuccess();
}
};
/// Conversion pattern that transforms a linalg.transpose op into:
/// 1. A function entry `alloca` operation to allocate a ViewDescriptor.
/// 2. A load of the ViewDescriptor from the pointer allocated in 1.
/// 3. Updates to the ViewDescriptor to introduce the data ptr, offset, size
/// and stride. Size and stride are permutations of the original values.
/// 4. A store of the resulting ViewDescriptor to the alloca'ed pointer.
/// The linalg.transpose op is replaced by the alloca'ed pointer.
class TransposeOpConversion : public LLVMOpLowering {
public:
explicit TransposeOpConversion(MLIRContext *context,
LLVMTypeConverter &lowering_)
: LLVMOpLowering(TransposeOp::getOperationName(), context, lowering_) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
// Initialize the common boilerplate and alloca at the top of the FuncOp.
edsc::ScopedContext context(rewriter, op->getLoc());
TransposeOpOperandAdaptor adaptor(operands);
BaseViewConversionHelper baseDesc(adaptor.view());
auto transposeOp = cast<TransposeOp>(op);
// No permutation, early exit.
if (transposeOp.permutation().isIdentity())
return rewriter.replaceOp(op, {baseDesc}), matchSuccess();
BaseViewConversionHelper desc(
lowering.convertType(transposeOp.getShapedType()));
// Copy the base and aligned pointers from the old descriptor to the new
// one.
desc.setAllocatedPtr(baseDesc.allocatedPtr());
desc.setAlignedPtr(baseDesc.alignedPtr());
// Copy the offset pointer from the old descriptor to the new one.
desc.setOffset(baseDesc.offset());
// Iterate over the dimensions and apply size/stride permutation.
for (auto en : llvm::enumerate(transposeOp.permutation().getResults())) {
int sourcePos = en.index();
int targetPos = en.value().cast<AffineDimExpr>().getPosition();
desc.setSize(targetPos, baseDesc.size(sourcePos));
desc.setStride(targetPos, baseDesc.stride(sourcePos));
}
rewriter.replaceOp(op, {desc});
return matchSuccess();
}
};
// YieldOp produces and LLVM::ReturnOp.
class YieldOpConversion : public LLVMOpLowering {
public:
explicit YieldOpConversion(MLIRContext *context, LLVMTypeConverter &lowering_)
: LLVMOpLowering(YieldOp::getOperationName(), context, lowering_) {}
PatternMatchResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(op, operands);
return matchSuccess();
}
};
template <typename LinalgOp>
static SmallVector<Type, 4> ExtractOperandTypes(Operation *op) {
return SmallVector<Type, 4>{op->getOperandTypes()};
}
template <>
SmallVector<Type, 4> ExtractOperandTypes<IndexedGenericOp>(Operation *op) {
auto ctx = op->getContext();
auto indexedGenericOp = cast<IndexedGenericOp>(op);
auto numLoops = indexedGenericOp.getNumLoops();
SmallVector<Type, 4> result;
result.reserve(numLoops + op->getNumOperands());
for (unsigned i = 0; i < numLoops; ++i) {
result.push_back(IndexType::get(ctx));
}
for (auto type : op->getOperandTypes()) {
result.push_back(type);
}
return result;
}
// Get a SymbolRefAttr containing the library function name for the LinalgOp.
// If the library function does not exist, insert a declaration.
template <typename LinalgOp>
static FlatSymbolRefAttr getLibraryCallSymbolRef(Operation *op,
PatternRewriter &rewriter) {
auto linalgOp = cast<LinalgOp>(op);
auto fnName = linalgOp.getLibraryCallName();
if (fnName.empty()) {
op->emitWarning("No library call defined for: ") << *op;
return {};
}
// fnName is a dynamic std::String, unique it via a SymbolRefAttr.
FlatSymbolRefAttr fnNameAttr = rewriter.getSymbolRefAttr(fnName);
auto module = op->getParentOfType<ModuleOp>();
if (module.lookupSymbol(fnName)) {
return fnNameAttr;
}
SmallVector<Type, 4> inputTypes(ExtractOperandTypes<LinalgOp>(op));
assert(op->getNumResults() == 0 &&
"Library call for linalg operation can be generated only for ops that "
"have void return types");
auto libFnType = FunctionType::get(inputTypes, {}, rewriter.getContext());
OpBuilder::InsertionGuard guard(rewriter);
// Insert before module terminator.
rewriter.setInsertionPoint(module.getBody(),
std::prev(module.getBody()->end()));
rewriter.create<FuncOp>(op->getLoc(), fnNameAttr.getValue(), libFnType,
ArrayRef<NamedAttribute>{});
return fnNameAttr;
}
Type LinalgTypeConverter::convertType(Type t) {
if (auto result = LLVMTypeConverter::convertType(t))
return result;
return convertLinalgType(t, *this);
}
// LinalgOpConversion<LinalgOp> creates a new call to the
// `LinalgOp::getLibraryCallName()` function.
// The implementation of the function can be either in the same module or in an
// externally linked library.
template <typename LinalgOp>
class LinalgOpConversion : public OpRewritePattern<LinalgOp> {
public:
using OpRewritePattern<LinalgOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(LinalgOp op,
PatternRewriter &rewriter) const override {
auto libraryCallName = getLibraryCallSymbolRef<LinalgOp>(op, rewriter);
if (!libraryCallName)
return this->matchFailure();
rewriter.replaceOpWithNewOp<mlir::CallOp>(
op, libraryCallName.getValue(), ArrayRef<Type>{}, op.getOperands());
return this->matchSuccess();
}
};
/// Conversion pattern specialization for CopyOp. This kicks in when both input
/// and output permutations are left unspecified or are the identity.
template <> class LinalgOpConversion<CopyOp> : public OpRewritePattern<CopyOp> {
public:
using OpRewritePattern<CopyOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(CopyOp op,
PatternRewriter &rewriter) const override {
auto inputPerm = op.inputPermutation();
if (inputPerm.hasValue() && !inputPerm->isIdentity())
return matchFailure();
auto outputPerm = op.outputPermutation();
if (outputPerm.hasValue() && !outputPerm->isIdentity())
return matchFailure();
auto libraryCallName = getLibraryCallSymbolRef<CopyOp>(op, rewriter);
if (!libraryCallName)
return matchFailure();
rewriter.replaceOpWithNewOp<mlir::CallOp>(
op, libraryCallName.getValue(), ArrayRef<Type>{}, op.getOperands());
return matchSuccess();
}
};
/// Conversion pattern specialization for IndexedGenericOp.
template <>
class LinalgOpConversion<IndexedGenericOp>
: public OpRewritePattern<IndexedGenericOp> {
public:
using OpRewritePattern<IndexedGenericOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(IndexedGenericOp op,
PatternRewriter &rewriter) const override {
auto libraryCallName =
getLibraryCallSymbolRef<IndexedGenericOp>(op, rewriter);
if (!libraryCallName)
return this->matchFailure();
// TODO(pifon, ntv): Use induction variables values instead of zeros, when
// IndexedGenericOp is tiled.
auto zero = rewriter.create<mlir::ConstantOp>(
op.getLoc(), rewriter.getIntegerAttr(rewriter.getIndexType(), 0));
auto indexedGenericOp = cast<IndexedGenericOp>(op);
auto numLoops = indexedGenericOp.getNumLoops();
SmallVector<Value, 4> operands;
operands.reserve(numLoops + op.getNumOperands());
for (unsigned i = 0; i < numLoops; ++i) {
operands.push_back(zero);
}
for (auto operand : op.getOperands()) {
operands.push_back(operand);
}
rewriter.replaceOpWithNewOp<mlir::CallOp>(op, libraryCallName.getValue(),
ArrayRef<Type>{}, operands);
return this->matchSuccess();
}
};
/// A non-conversion rewrite pattern kicks in to convert CopyOp with
/// permutations into a sequence of TransposeOp and permutation-free CopyOp.
/// This interplays together with TransposeOpConversion and
/// LinalgConversion<CopyOp> to create a path to the LLVM dialect.
class CopyTransposeConversion : public OpRewritePattern<CopyOp> {
public:
using OpRewritePattern<CopyOp>::OpRewritePattern;
PatternMatchResult matchAndRewrite(CopyOp op,
PatternRewriter &rewriter) const override {
Value in = op.input(), out = op.output();
// If either inputPerm or outputPerm are non-identities, insert transposes.
auto inputPerm = op.inputPermutation();
if (inputPerm.hasValue() && !inputPerm->isIdentity())
in = rewriter.create<linalg::TransposeOp>(op.getLoc(), in,
AffineMapAttr::get(*inputPerm));
auto outputPerm = op.outputPermutation();
if (outputPerm.hasValue() && !outputPerm->isIdentity())
out = rewriter.create<linalg::TransposeOp>(
op.getLoc(), out, AffineMapAttr::get(*outputPerm));
// If nothing was transposed, fail and let the conversion kick in.
if (in == op.input() && out == op.output())
return matchFailure();
rewriter.replaceOpWithNewOp<CopyOp>(op, in, out);
return matchSuccess();
}
};
/// Populate the given list with patterns that convert from Linalg to Standard.
static void
populateLinalgToStandardConversionPatterns(OwningRewritePatternList &patterns,
MLIRContext *ctx) {
// TODO(ntv) ConvOp conversion needs to export a descriptor with relevant
// attribute values such as kernel striding and dilation.
patterns.insert<CopyTransposeConversion, LinalgOpConversion<ConvOp>,
LinalgOpConversion<CopyOp>, LinalgOpConversion<DotOp>,
LinalgOpConversion<FillOp>, LinalgOpConversion<GenericOp>,
LinalgOpConversion<IndexedGenericOp>,
LinalgOpConversion<MatmulOp>, LinalgOpConversion<MatvecOp>>(
ctx);
}
/// Populate the given list with patterns that convert from Linalg to LLVM.
void mlir::populateLinalgToLLVMConversionPatterns(
LinalgTypeConverter &converter, OwningRewritePatternList &patterns,
MLIRContext *ctx) {
patterns.insert<RangeOpConversion, ReshapeOpConversion, SliceOpConversion,
TransposeOpConversion, YieldOpConversion>(ctx, converter);
}
namespace {
struct ConvertLinalgToLLVMPass : public ModulePass<ConvertLinalgToLLVMPass> {
void runOnModule() override;
};
} // namespace
void ConvertLinalgToLLVMPass::runOnModule() {
auto module = getModule();
// Convert to the LLVM IR dialect using the converter defined above.
OwningRewritePatternList patterns;
LinalgTypeConverter converter(&getContext());
populateAffineToStdConversionPatterns(patterns, &getContext());
populateLoopToStdConversionPatterns(patterns, &getContext());
populateStdToLLVMConversionPatterns(converter, patterns);
populateVectorToLLVMConversionPatterns(converter, patterns);
populateLinalgToStandardConversionPatterns(patterns, &getContext());
populateLinalgToLLVMConversionPatterns(converter, patterns, &getContext());
ConversionTarget target(getContext());
target.addLegalDialect<LLVM::LLVMDialect>();
target.addDynamicallyLegalOp<FuncOp>(
[&](FuncOp op) { return converter.isSignatureLegal(op.getType()); });
target.addLegalOp<ModuleOp, ModuleTerminatorOp>();
if (failed(applyFullConversion(module, target, patterns, &converter)))
signalPassFailure();
}
std::unique_ptr<OpPassBase<ModuleOp>>
mlir::linalg::createConvertLinalgToLLVMPass() {
return std::make_unique<ConvertLinalgToLLVMPass>();
}
static PassRegistration<ConvertLinalgToLLVMPass> pass(
"convert-linalg-to-llvm",
"Convert the operations from the linalg dialect into the LLVM dialect");