|  | //===- DeclCXX.cpp - C++ Declaration AST Node Implementation --------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the C++ related Decl classes. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "clang/AST/DeclCXX.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/ASTLambda.h" | 
|  | #include "clang/AST/ASTMutationListener.h" | 
|  | #include "clang/AST/ASTUnresolvedSet.h" | 
|  | #include "clang/AST/CXXInheritance.h" | 
|  | #include "clang/AST/DeclBase.h" | 
|  | #include "clang/AST/DeclTemplate.h" | 
|  | #include "clang/AST/DeclarationName.h" | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/ExprCXX.h" | 
|  | #include "clang/AST/LambdaCapture.h" | 
|  | #include "clang/AST/NestedNameSpecifier.h" | 
|  | #include "clang/AST/ODRHash.h" | 
|  | #include "clang/AST/Type.h" | 
|  | #include "clang/AST/TypeLoc.h" | 
|  | #include "clang/AST/UnresolvedSet.h" | 
|  | #include "clang/Basic/Diagnostic.h" | 
|  | #include "clang/Basic/IdentifierTable.h" | 
|  | #include "clang/Basic/LLVM.h" | 
|  | #include "clang/Basic/LangOptions.h" | 
|  | #include "clang/Basic/OperatorKinds.h" | 
|  | #include "clang/Basic/PartialDiagnostic.h" | 
|  | #include "clang/Basic/SourceLocation.h" | 
|  | #include "clang/Basic/Specifiers.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/iterator_range.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstddef> | 
|  | #include <cstdint> | 
|  |  | 
|  | using namespace clang; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Decl Allocation/Deallocation Method Implementations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | void AccessSpecDecl::anchor() {} | 
|  |  | 
|  | AccessSpecDecl *AccessSpecDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
|  | return new (C, ID) AccessSpecDecl(EmptyShell()); | 
|  | } | 
|  |  | 
|  | void LazyASTUnresolvedSet::getFromExternalSource(ASTContext &C) const { | 
|  | ExternalASTSource *Source = C.getExternalSource(); | 
|  | assert(Impl.Decls.isLazy() && "getFromExternalSource for non-lazy set"); | 
|  | assert(Source && "getFromExternalSource with no external source"); | 
|  |  | 
|  | for (ASTUnresolvedSet::iterator I = Impl.begin(); I != Impl.end(); ++I) | 
|  | I.setDecl(cast<NamedDecl>(Source->GetExternalDecl( | 
|  | reinterpret_cast<uintptr_t>(I.getDecl()) >> 2))); | 
|  | Impl.Decls.setLazy(false); | 
|  | } | 
|  |  | 
|  | CXXRecordDecl::DefinitionData::DefinitionData(CXXRecordDecl *D) | 
|  | : UserDeclaredConstructor(false), UserDeclaredSpecialMembers(0), | 
|  | Aggregate(true), PlainOldData(true), Empty(true), Polymorphic(false), | 
|  | Abstract(false), IsStandardLayout(true), IsCXX11StandardLayout(true), | 
|  | HasBasesWithFields(false), HasBasesWithNonStaticDataMembers(false), | 
|  | HasPrivateFields(false), HasProtectedFields(false), | 
|  | HasPublicFields(false), HasMutableFields(false), HasVariantMembers(false), | 
|  | HasOnlyCMembers(true), HasInClassInitializer(false), | 
|  | HasUninitializedReferenceMember(false), HasUninitializedFields(false), | 
|  | HasInheritedConstructor(false), HasInheritedAssignment(false), | 
|  | NeedOverloadResolutionForCopyConstructor(false), | 
|  | NeedOverloadResolutionForMoveConstructor(false), | 
|  | NeedOverloadResolutionForMoveAssignment(false), | 
|  | NeedOverloadResolutionForDestructor(false), | 
|  | DefaultedCopyConstructorIsDeleted(false), | 
|  | DefaultedMoveConstructorIsDeleted(false), | 
|  | DefaultedMoveAssignmentIsDeleted(false), | 
|  | DefaultedDestructorIsDeleted(false), HasTrivialSpecialMembers(SMF_All), | 
|  | HasTrivialSpecialMembersForCall(SMF_All), | 
|  | DeclaredNonTrivialSpecialMembers(0), | 
|  | DeclaredNonTrivialSpecialMembersForCall(0), HasIrrelevantDestructor(true), | 
|  | HasConstexprNonCopyMoveConstructor(false), | 
|  | HasDefaultedDefaultConstructor(false), | 
|  | DefaultedDefaultConstructorIsConstexpr(true), | 
|  | HasConstexprDefaultConstructor(false), | 
|  | DefaultedDestructorIsConstexpr(true), | 
|  | HasNonLiteralTypeFieldsOrBases(false), ComputedVisibleConversions(false), | 
|  | UserProvidedDefaultConstructor(false), DeclaredSpecialMembers(0), | 
|  | ImplicitCopyConstructorCanHaveConstParamForVBase(true), | 
|  | ImplicitCopyConstructorCanHaveConstParamForNonVBase(true), | 
|  | ImplicitCopyAssignmentHasConstParam(true), | 
|  | HasDeclaredCopyConstructorWithConstParam(false), | 
|  | HasDeclaredCopyAssignmentWithConstParam(false), IsLambda(false), | 
|  | IsParsingBaseSpecifiers(false), HasODRHash(false), Definition(D) {} | 
|  |  | 
|  | CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getBasesSlowCase() const { | 
|  | return Bases.get(Definition->getASTContext().getExternalSource()); | 
|  | } | 
|  |  | 
|  | CXXBaseSpecifier *CXXRecordDecl::DefinitionData::getVBasesSlowCase() const { | 
|  | return VBases.get(Definition->getASTContext().getExternalSource()); | 
|  | } | 
|  |  | 
|  | CXXRecordDecl::CXXRecordDecl(Kind K, TagKind TK, const ASTContext &C, | 
|  | DeclContext *DC, SourceLocation StartLoc, | 
|  | SourceLocation IdLoc, IdentifierInfo *Id, | 
|  | CXXRecordDecl *PrevDecl) | 
|  | : RecordDecl(K, TK, C, DC, StartLoc, IdLoc, Id, PrevDecl), | 
|  | DefinitionData(PrevDecl ? PrevDecl->DefinitionData | 
|  | : nullptr) {} | 
|  |  | 
|  | CXXRecordDecl *CXXRecordDecl::Create(const ASTContext &C, TagKind TK, | 
|  | DeclContext *DC, SourceLocation StartLoc, | 
|  | SourceLocation IdLoc, IdentifierInfo *Id, | 
|  | CXXRecordDecl *PrevDecl, | 
|  | bool DelayTypeCreation) { | 
|  | auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TK, C, DC, StartLoc, IdLoc, Id, | 
|  | PrevDecl); | 
|  | R->setMayHaveOutOfDateDef(C.getLangOpts().Modules); | 
|  |  | 
|  | // FIXME: DelayTypeCreation seems like such a hack | 
|  | if (!DelayTypeCreation) | 
|  | C.getTypeDeclType(R, PrevDecl); | 
|  | return R; | 
|  | } | 
|  |  | 
|  | CXXRecordDecl * | 
|  | CXXRecordDecl::CreateLambda(const ASTContext &C, DeclContext *DC, | 
|  | TypeSourceInfo *Info, SourceLocation Loc, | 
|  | bool Dependent, bool IsGeneric, | 
|  | LambdaCaptureDefault CaptureDefault) { | 
|  | auto *R = new (C, DC) CXXRecordDecl(CXXRecord, TTK_Class, C, DC, Loc, Loc, | 
|  | nullptr, nullptr); | 
|  | R->setBeingDefined(true); | 
|  | R->DefinitionData = | 
|  | new (C) struct LambdaDefinitionData(R, Info, Dependent, IsGeneric, | 
|  | CaptureDefault); | 
|  | R->setMayHaveOutOfDateDef(false); | 
|  | R->setImplicit(true); | 
|  | C.getTypeDeclType(R, /*PrevDecl=*/nullptr); | 
|  | return R; | 
|  | } | 
|  |  | 
|  | CXXRecordDecl * | 
|  | CXXRecordDecl::CreateDeserialized(const ASTContext &C, unsigned ID) { | 
|  | auto *R = new (C, ID) CXXRecordDecl( | 
|  | CXXRecord, TTK_Struct, C, nullptr, SourceLocation(), SourceLocation(), | 
|  | nullptr, nullptr); | 
|  | R->setMayHaveOutOfDateDef(false); | 
|  | return R; | 
|  | } | 
|  |  | 
|  | /// Determine whether a class has a repeated base class. This is intended for | 
|  | /// use when determining if a class is standard-layout, so makes no attempt to | 
|  | /// handle virtual bases. | 
|  | static bool hasRepeatedBaseClass(const CXXRecordDecl *StartRD) { | 
|  | llvm::SmallPtrSet<const CXXRecordDecl*, 8> SeenBaseTypes; | 
|  | SmallVector<const CXXRecordDecl*, 8> WorkList = {StartRD}; | 
|  | while (!WorkList.empty()) { | 
|  | const CXXRecordDecl *RD = WorkList.pop_back_val(); | 
|  | for (const CXXBaseSpecifier &BaseSpec : RD->bases()) { | 
|  | if (const CXXRecordDecl *B = BaseSpec.getType()->getAsCXXRecordDecl()) { | 
|  | if (!SeenBaseTypes.insert(B).second) | 
|  | return true; | 
|  | WorkList.push_back(B); | 
|  | } | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void | 
|  | CXXRecordDecl::setBases(CXXBaseSpecifier const * const *Bases, | 
|  | unsigned NumBases) { | 
|  | ASTContext &C = getASTContext(); | 
|  |  | 
|  | if (!data().Bases.isOffset() && data().NumBases > 0) | 
|  | C.Deallocate(data().getBases()); | 
|  |  | 
|  | if (NumBases) { | 
|  | if (!C.getLangOpts().CPlusPlus17) { | 
|  | // C++ [dcl.init.aggr]p1: | 
|  | //   An aggregate is [...] a class with [...] no base classes [...]. | 
|  | data().Aggregate = false; | 
|  | } | 
|  |  | 
|  | // C++ [class]p4: | 
|  | //   A POD-struct is an aggregate class... | 
|  | data().PlainOldData = false; | 
|  | } | 
|  |  | 
|  | // The set of seen virtual base types. | 
|  | llvm::SmallPtrSet<CanQualType, 8> SeenVBaseTypes; | 
|  |  | 
|  | // The virtual bases of this class. | 
|  | SmallVector<const CXXBaseSpecifier *, 8> VBases; | 
|  |  | 
|  | data().Bases = new(C) CXXBaseSpecifier [NumBases]; | 
|  | data().NumBases = NumBases; | 
|  | for (unsigned i = 0; i < NumBases; ++i) { | 
|  | data().getBases()[i] = *Bases[i]; | 
|  | // Keep track of inherited vbases for this base class. | 
|  | const CXXBaseSpecifier *Base = Bases[i]; | 
|  | QualType BaseType = Base->getType(); | 
|  | // Skip dependent types; we can't do any checking on them now. | 
|  | if (BaseType->isDependentType()) | 
|  | continue; | 
|  | auto *BaseClassDecl = | 
|  | cast<CXXRecordDecl>(BaseType->getAs<RecordType>()->getDecl()); | 
|  |  | 
|  | // C++2a [class]p7: | 
|  | //   A standard-layout class is a class that: | 
|  | //    [...] | 
|  | //    -- has all non-static data members and bit-fields in the class and | 
|  | //       its base classes first declared in the same class | 
|  | if (BaseClassDecl->data().HasBasesWithFields || | 
|  | !BaseClassDecl->field_empty()) { | 
|  | if (data().HasBasesWithFields) | 
|  | // Two bases have members or bit-fields: not standard-layout. | 
|  | data().IsStandardLayout = false; | 
|  | data().HasBasesWithFields = true; | 
|  | } | 
|  |  | 
|  | // C++11 [class]p7: | 
|  | //   A standard-layout class is a class that: | 
|  | //     -- [...] has [...] at most one base class with non-static data | 
|  | //        members | 
|  | if (BaseClassDecl->data().HasBasesWithNonStaticDataMembers || | 
|  | BaseClassDecl->hasDirectFields()) { | 
|  | if (data().HasBasesWithNonStaticDataMembers) | 
|  | data().IsCXX11StandardLayout = false; | 
|  | data().HasBasesWithNonStaticDataMembers = true; | 
|  | } | 
|  |  | 
|  | if (!BaseClassDecl->isEmpty()) { | 
|  | // C++14 [meta.unary.prop]p4: | 
|  | //   T is a class type [...] with [...] no base class B for which | 
|  | //   is_empty<B>::value is false. | 
|  | data().Empty = false; | 
|  | } | 
|  |  | 
|  | // C++1z [dcl.init.agg]p1: | 
|  | //   An aggregate is a class with [...] no private or protected base classes | 
|  | if (Base->getAccessSpecifier() != AS_public) | 
|  | data().Aggregate = false; | 
|  |  | 
|  | // C++ [class.virtual]p1: | 
|  | //   A class that declares or inherits a virtual function is called a | 
|  | //   polymorphic class. | 
|  | if (BaseClassDecl->isPolymorphic()) { | 
|  | data().Polymorphic = true; | 
|  |  | 
|  | //   An aggregate is a class with [...] no virtual functions. | 
|  | data().Aggregate = false; | 
|  | } | 
|  |  | 
|  | // C++0x [class]p7: | 
|  | //   A standard-layout class is a class that: [...] | 
|  | //    -- has no non-standard-layout base classes | 
|  | if (!BaseClassDecl->isStandardLayout()) | 
|  | data().IsStandardLayout = false; | 
|  | if (!BaseClassDecl->isCXX11StandardLayout()) | 
|  | data().IsCXX11StandardLayout = false; | 
|  |  | 
|  | // Record if this base is the first non-literal field or base. | 
|  | if (!hasNonLiteralTypeFieldsOrBases() && !BaseType->isLiteralType(C)) | 
|  | data().HasNonLiteralTypeFieldsOrBases = true; | 
|  |  | 
|  | // Now go through all virtual bases of this base and add them. | 
|  | for (const auto &VBase : BaseClassDecl->vbases()) { | 
|  | // Add this base if it's not already in the list. | 
|  | if (SeenVBaseTypes.insert(C.getCanonicalType(VBase.getType())).second) { | 
|  | VBases.push_back(&VBase); | 
|  |  | 
|  | // C++11 [class.copy]p8: | 
|  | //   The implicitly-declared copy constructor for a class X will have | 
|  | //   the form 'X::X(const X&)' if each [...] virtual base class B of X | 
|  | //   has a copy constructor whose first parameter is of type | 
|  | //   'const B&' or 'const volatile B&' [...] | 
|  | if (CXXRecordDecl *VBaseDecl = VBase.getType()->getAsCXXRecordDecl()) | 
|  | if (!VBaseDecl->hasCopyConstructorWithConstParam()) | 
|  | data().ImplicitCopyConstructorCanHaveConstParamForVBase = false; | 
|  |  | 
|  | // C++1z [dcl.init.agg]p1: | 
|  | //   An aggregate is a class with [...] no virtual base classes | 
|  | data().Aggregate = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Base->isVirtual()) { | 
|  | // Add this base if it's not already in the list. | 
|  | if (SeenVBaseTypes.insert(C.getCanonicalType(BaseType)).second) | 
|  | VBases.push_back(Base); | 
|  |  | 
|  | // C++14 [meta.unary.prop] is_empty: | 
|  | //   T is a class type, but not a union type, with ... no virtual base | 
|  | //   classes | 
|  | data().Empty = false; | 
|  |  | 
|  | // C++1z [dcl.init.agg]p1: | 
|  | //   An aggregate is a class with [...] no virtual base classes | 
|  | data().Aggregate = false; | 
|  |  | 
|  | // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: | 
|  | //   A [default constructor, copy/move constructor, or copy/move assignment | 
|  | //   operator for a class X] is trivial [...] if: | 
|  | //    -- class X has [...] no virtual base classes | 
|  | data().HasTrivialSpecialMembers &= SMF_Destructor; | 
|  | data().HasTrivialSpecialMembersForCall &= SMF_Destructor; | 
|  |  | 
|  | // C++0x [class]p7: | 
|  | //   A standard-layout class is a class that: [...] | 
|  | //    -- has [...] no virtual base classes | 
|  | data().IsStandardLayout = false; | 
|  | data().IsCXX11StandardLayout = false; | 
|  |  | 
|  | // C++20 [dcl.constexpr]p3: | 
|  | //   In the definition of a constexpr function [...] | 
|  | //    -- if the function is a constructor or destructor, | 
|  | //       its class shall not have any virtual base classes | 
|  | data().DefaultedDefaultConstructorIsConstexpr = false; | 
|  | data().DefaultedDestructorIsConstexpr = false; | 
|  |  | 
|  | // C++1z [class.copy]p8: | 
|  | //   The implicitly-declared copy constructor for a class X will have | 
|  | //   the form 'X::X(const X&)' if each potentially constructed subobject | 
|  | //   has a copy constructor whose first parameter is of type | 
|  | //   'const B&' or 'const volatile B&' [...] | 
|  | if (!BaseClassDecl->hasCopyConstructorWithConstParam()) | 
|  | data().ImplicitCopyConstructorCanHaveConstParamForVBase = false; | 
|  | } else { | 
|  | // C++ [class.ctor]p5: | 
|  | //   A default constructor is trivial [...] if: | 
|  | //    -- all the direct base classes of its class have trivial default | 
|  | //       constructors. | 
|  | if (!BaseClassDecl->hasTrivialDefaultConstructor()) | 
|  | data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; | 
|  |  | 
|  | // C++0x [class.copy]p13: | 
|  | //   A copy/move constructor for class X is trivial if [...] | 
|  | //    [...] | 
|  | //    -- the constructor selected to copy/move each direct base class | 
|  | //       subobject is trivial, and | 
|  | if (!BaseClassDecl->hasTrivialCopyConstructor()) | 
|  | data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; | 
|  |  | 
|  | if (!BaseClassDecl->hasTrivialCopyConstructorForCall()) | 
|  | data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor; | 
|  |  | 
|  | // If the base class doesn't have a simple move constructor, we'll eagerly | 
|  | // declare it and perform overload resolution to determine which function | 
|  | // it actually calls. If it does have a simple move constructor, this | 
|  | // check is correct. | 
|  | if (!BaseClassDecl->hasTrivialMoveConstructor()) | 
|  | data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; | 
|  |  | 
|  | if (!BaseClassDecl->hasTrivialMoveConstructorForCall()) | 
|  | data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor; | 
|  |  | 
|  | // C++0x [class.copy]p27: | 
|  | //   A copy/move assignment operator for class X is trivial if [...] | 
|  | //    [...] | 
|  | //    -- the assignment operator selected to copy/move each direct base | 
|  | //       class subobject is trivial, and | 
|  | if (!BaseClassDecl->hasTrivialCopyAssignment()) | 
|  | data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; | 
|  | // If the base class doesn't have a simple move assignment, we'll eagerly | 
|  | // declare it and perform overload resolution to determine which function | 
|  | // it actually calls. If it does have a simple move assignment, this | 
|  | // check is correct. | 
|  | if (!BaseClassDecl->hasTrivialMoveAssignment()) | 
|  | data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; | 
|  |  | 
|  | // C++11 [class.ctor]p6: | 
|  | //   If that user-written default constructor would satisfy the | 
|  | //   requirements of a constexpr constructor, the implicitly-defined | 
|  | //   default constructor is constexpr. | 
|  | if (!BaseClassDecl->hasConstexprDefaultConstructor()) | 
|  | data().DefaultedDefaultConstructorIsConstexpr = false; | 
|  |  | 
|  | // C++1z [class.copy]p8: | 
|  | //   The implicitly-declared copy constructor for a class X will have | 
|  | //   the form 'X::X(const X&)' if each potentially constructed subobject | 
|  | //   has a copy constructor whose first parameter is of type | 
|  | //   'const B&' or 'const volatile B&' [...] | 
|  | if (!BaseClassDecl->hasCopyConstructorWithConstParam()) | 
|  | data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false; | 
|  | } | 
|  |  | 
|  | // C++ [class.ctor]p3: | 
|  | //   A destructor is trivial if all the direct base classes of its class | 
|  | //   have trivial destructors. | 
|  | if (!BaseClassDecl->hasTrivialDestructor()) | 
|  | data().HasTrivialSpecialMembers &= ~SMF_Destructor; | 
|  |  | 
|  | if (!BaseClassDecl->hasTrivialDestructorForCall()) | 
|  | data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; | 
|  |  | 
|  | if (!BaseClassDecl->hasIrrelevantDestructor()) | 
|  | data().HasIrrelevantDestructor = false; | 
|  |  | 
|  | // C++11 [class.copy]p18: | 
|  | //   The implicitly-declared copy assignment oeprator for a class X will | 
|  | //   have the form 'X& X::operator=(const X&)' if each direct base class B | 
|  | //   of X has a copy assignment operator whose parameter is of type 'const | 
|  | //   B&', 'const volatile B&', or 'B' [...] | 
|  | if (!BaseClassDecl->hasCopyAssignmentWithConstParam()) | 
|  | data().ImplicitCopyAssignmentHasConstParam = false; | 
|  |  | 
|  | // A class has an Objective-C object member if... or any of its bases | 
|  | // has an Objective-C object member. | 
|  | if (BaseClassDecl->hasObjectMember()) | 
|  | setHasObjectMember(true); | 
|  |  | 
|  | if (BaseClassDecl->hasVolatileMember()) | 
|  | setHasVolatileMember(true); | 
|  |  | 
|  | if (BaseClassDecl->getArgPassingRestrictions() == | 
|  | RecordDecl::APK_CanNeverPassInRegs) | 
|  | setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); | 
|  |  | 
|  | // Keep track of the presence of mutable fields. | 
|  | if (BaseClassDecl->hasMutableFields()) { | 
|  | data().HasMutableFields = true; | 
|  | data().NeedOverloadResolutionForCopyConstructor = true; | 
|  | } | 
|  |  | 
|  | if (BaseClassDecl->hasUninitializedReferenceMember()) | 
|  | data().HasUninitializedReferenceMember = true; | 
|  |  | 
|  | if (!BaseClassDecl->allowConstDefaultInit()) | 
|  | data().HasUninitializedFields = true; | 
|  |  | 
|  | addedClassSubobject(BaseClassDecl); | 
|  | } | 
|  |  | 
|  | // C++2a [class]p7: | 
|  | //   A class S is a standard-layout class if it: | 
|  | //     -- has at most one base class subobject of any given type | 
|  | // | 
|  | // Note that we only need to check this for classes with more than one base | 
|  | // class. If there's only one base class, and it's standard layout, then | 
|  | // we know there are no repeated base classes. | 
|  | if (data().IsStandardLayout && NumBases > 1 && hasRepeatedBaseClass(this)) | 
|  | data().IsStandardLayout = false; | 
|  |  | 
|  | if (VBases.empty()) { | 
|  | data().IsParsingBaseSpecifiers = false; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Create base specifier for any direct or indirect virtual bases. | 
|  | data().VBases = new (C) CXXBaseSpecifier[VBases.size()]; | 
|  | data().NumVBases = VBases.size(); | 
|  | for (int I = 0, E = VBases.size(); I != E; ++I) { | 
|  | QualType Type = VBases[I]->getType(); | 
|  | if (!Type->isDependentType()) | 
|  | addedClassSubobject(Type->getAsCXXRecordDecl()); | 
|  | data().getVBases()[I] = *VBases[I]; | 
|  | } | 
|  |  | 
|  | data().IsParsingBaseSpecifiers = false; | 
|  | } | 
|  |  | 
|  | unsigned CXXRecordDecl::getODRHash() const { | 
|  | assert(hasDefinition() && "ODRHash only for records with definitions"); | 
|  |  | 
|  | // Previously calculated hash is stored in DefinitionData. | 
|  | if (DefinitionData->HasODRHash) | 
|  | return DefinitionData->ODRHash; | 
|  |  | 
|  | // Only calculate hash on first call of getODRHash per record. | 
|  | ODRHash Hash; | 
|  | Hash.AddCXXRecordDecl(getDefinition()); | 
|  | DefinitionData->HasODRHash = true; | 
|  | DefinitionData->ODRHash = Hash.CalculateHash(); | 
|  |  | 
|  | return DefinitionData->ODRHash; | 
|  | } | 
|  |  | 
|  | void CXXRecordDecl::addedClassSubobject(CXXRecordDecl *Subobj) { | 
|  | // C++11 [class.copy]p11: | 
|  | //   A defaulted copy/move constructor for a class X is defined as | 
|  | //   deleted if X has: | 
|  | //    -- a direct or virtual base class B that cannot be copied/moved [...] | 
|  | //    -- a non-static data member of class type M (or array thereof) | 
|  | //       that cannot be copied or moved [...] | 
|  | if (!Subobj->hasSimpleCopyConstructor()) | 
|  | data().NeedOverloadResolutionForCopyConstructor = true; | 
|  | if (!Subobj->hasSimpleMoveConstructor()) | 
|  | data().NeedOverloadResolutionForMoveConstructor = true; | 
|  |  | 
|  | // C++11 [class.copy]p23: | 
|  | //   A defaulted copy/move assignment operator for a class X is defined as | 
|  | //   deleted if X has: | 
|  | //    -- a direct or virtual base class B that cannot be copied/moved [...] | 
|  | //    -- a non-static data member of class type M (or array thereof) | 
|  | //        that cannot be copied or moved [...] | 
|  | if (!Subobj->hasSimpleMoveAssignment()) | 
|  | data().NeedOverloadResolutionForMoveAssignment = true; | 
|  |  | 
|  | // C++11 [class.ctor]p5, C++11 [class.copy]p11, C++11 [class.dtor]p5: | 
|  | //   A defaulted [ctor or dtor] for a class X is defined as | 
|  | //   deleted if X has: | 
|  | //    -- any direct or virtual base class [...] has a type with a destructor | 
|  | //       that is deleted or inaccessible from the defaulted [ctor or dtor]. | 
|  | //    -- any non-static data member has a type with a destructor | 
|  | //       that is deleted or inaccessible from the defaulted [ctor or dtor]. | 
|  | if (!Subobj->hasSimpleDestructor()) { | 
|  | data().NeedOverloadResolutionForCopyConstructor = true; | 
|  | data().NeedOverloadResolutionForMoveConstructor = true; | 
|  | data().NeedOverloadResolutionForDestructor = true; | 
|  | } | 
|  |  | 
|  | // C++2a [dcl.constexpr]p4: | 
|  | //   The definition of a constexpr destructor [shall] satisfy the | 
|  | //   following requirement: | 
|  | //   -- for every subobject of class type or (possibly multi-dimensional) | 
|  | //      array thereof, that class type shall have a constexpr destructor | 
|  | if (!Subobj->hasConstexprDestructor()) | 
|  | data().DefaultedDestructorIsConstexpr = false; | 
|  | } | 
|  |  | 
|  | bool CXXRecordDecl::hasConstexprDestructor() const { | 
|  | auto *Dtor = getDestructor(); | 
|  | return Dtor ? Dtor->isConstexpr() : defaultedDestructorIsConstexpr(); | 
|  | } | 
|  |  | 
|  | bool CXXRecordDecl::hasAnyDependentBases() const { | 
|  | if (!isDependentContext()) | 
|  | return false; | 
|  |  | 
|  | return !forallBases([](const CXXRecordDecl *) { return true; }); | 
|  | } | 
|  |  | 
|  | bool CXXRecordDecl::isTriviallyCopyable() const { | 
|  | // C++0x [class]p5: | 
|  | //   A trivially copyable class is a class that: | 
|  | //   -- has no non-trivial copy constructors, | 
|  | if (hasNonTrivialCopyConstructor()) return false; | 
|  | //   -- has no non-trivial move constructors, | 
|  | if (hasNonTrivialMoveConstructor()) return false; | 
|  | //   -- has no non-trivial copy assignment operators, | 
|  | if (hasNonTrivialCopyAssignment()) return false; | 
|  | //   -- has no non-trivial move assignment operators, and | 
|  | if (hasNonTrivialMoveAssignment()) return false; | 
|  | //   -- has a trivial destructor. | 
|  | if (!hasTrivialDestructor()) return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void CXXRecordDecl::markedVirtualFunctionPure() { | 
|  | // C++ [class.abstract]p2: | 
|  | //   A class is abstract if it has at least one pure virtual function. | 
|  | data().Abstract = true; | 
|  | } | 
|  |  | 
|  | bool CXXRecordDecl::hasSubobjectAtOffsetZeroOfEmptyBaseType( | 
|  | ASTContext &Ctx, const CXXRecordDecl *XFirst) { | 
|  | if (!getNumBases()) | 
|  | return false; | 
|  |  | 
|  | llvm::SmallPtrSet<const CXXRecordDecl*, 8> Bases; | 
|  | llvm::SmallPtrSet<const CXXRecordDecl*, 8> M; | 
|  | SmallVector<const CXXRecordDecl*, 8> WorkList; | 
|  |  | 
|  | // Visit a type that we have determined is an element of M(S). | 
|  | auto Visit = [&](const CXXRecordDecl *RD) -> bool { | 
|  | RD = RD->getCanonicalDecl(); | 
|  |  | 
|  | // C++2a [class]p8: | 
|  | //   A class S is a standard-layout class if it [...] has no element of the | 
|  | //   set M(S) of types as a base class. | 
|  | // | 
|  | // If we find a subobject of an empty type, it might also be a base class, | 
|  | // so we'll need to walk the base classes to check. | 
|  | if (!RD->data().HasBasesWithFields) { | 
|  | // Walk the bases the first time, stopping if we find the type. Build a | 
|  | // set of them so we don't need to walk them again. | 
|  | if (Bases.empty()) { | 
|  | bool RDIsBase = !forallBases([&](const CXXRecordDecl *Base) -> bool { | 
|  | Base = Base->getCanonicalDecl(); | 
|  | if (RD == Base) | 
|  | return false; | 
|  | Bases.insert(Base); | 
|  | return true; | 
|  | }); | 
|  | if (RDIsBase) | 
|  | return true; | 
|  | } else { | 
|  | if (Bases.count(RD)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (M.insert(RD).second) | 
|  | WorkList.push_back(RD); | 
|  | return false; | 
|  | }; | 
|  |  | 
|  | if (Visit(XFirst)) | 
|  | return true; | 
|  |  | 
|  | while (!WorkList.empty()) { | 
|  | const CXXRecordDecl *X = WorkList.pop_back_val(); | 
|  |  | 
|  | // FIXME: We don't check the bases of X. That matches the standard, but | 
|  | // that sure looks like a wording bug. | 
|  |  | 
|  | //   -- If X is a non-union class type with a non-static data member | 
|  | //      [recurse to each field] that is either of zero size or is the | 
|  | //      first non-static data member of X | 
|  | //   -- If X is a union type, [recurse to union members] | 
|  | bool IsFirstField = true; | 
|  | for (auto *FD : X->fields()) { | 
|  | // FIXME: Should we really care about the type of the first non-static | 
|  | // data member of a non-union if there are preceding unnamed bit-fields? | 
|  | if (FD->isUnnamedBitfield()) | 
|  | continue; | 
|  |  | 
|  | if (!IsFirstField && !FD->isZeroSize(Ctx)) | 
|  | continue; | 
|  |  | 
|  | //   -- If X is n array type, [visit the element type] | 
|  | QualType T = Ctx.getBaseElementType(FD->getType()); | 
|  | if (auto *RD = T->getAsCXXRecordDecl()) | 
|  | if (Visit(RD)) | 
|  | return true; | 
|  |  | 
|  | if (!X->isUnion()) | 
|  | IsFirstField = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CXXRecordDecl::lambdaIsDefaultConstructibleAndAssignable() const { | 
|  | assert(isLambda() && "not a lambda"); | 
|  |  | 
|  | // C++2a [expr.prim.lambda.capture]p11: | 
|  | //   The closure type associated with a lambda-expression has no default | 
|  | //   constructor if the lambda-expression has a lambda-capture and a | 
|  | //   defaulted default constructor otherwise. It has a deleted copy | 
|  | //   assignment operator if the lambda-expression has a lambda-capture and | 
|  | //   defaulted copy and move assignment operators otherwise. | 
|  | // | 
|  | // C++17 [expr.prim.lambda]p21: | 
|  | //   The closure type associated with a lambda-expression has no default | 
|  | //   constructor and a deleted copy assignment operator. | 
|  | if (getLambdaCaptureDefault() != LCD_None || | 
|  | getLambdaData().NumCaptures != 0) | 
|  | return false; | 
|  | return getASTContext().getLangOpts().CPlusPlus2a; | 
|  | } | 
|  |  | 
|  | void CXXRecordDecl::addedMember(Decl *D) { | 
|  | if (!D->isImplicit() && | 
|  | !isa<FieldDecl>(D) && | 
|  | !isa<IndirectFieldDecl>(D) && | 
|  | (!isa<TagDecl>(D) || cast<TagDecl>(D)->getTagKind() == TTK_Class || | 
|  | cast<TagDecl>(D)->getTagKind() == TTK_Interface)) | 
|  | data().HasOnlyCMembers = false; | 
|  |  | 
|  | // Ignore friends and invalid declarations. | 
|  | if (D->getFriendObjectKind() || D->isInvalidDecl()) | 
|  | return; | 
|  |  | 
|  | auto *FunTmpl = dyn_cast<FunctionTemplateDecl>(D); | 
|  | if (FunTmpl) | 
|  | D = FunTmpl->getTemplatedDecl(); | 
|  |  | 
|  | // FIXME: Pass NamedDecl* to addedMember? | 
|  | Decl *DUnderlying = D; | 
|  | if (auto *ND = dyn_cast<NamedDecl>(DUnderlying)) { | 
|  | DUnderlying = ND->getUnderlyingDecl(); | 
|  | if (auto *UnderlyingFunTmpl = dyn_cast<FunctionTemplateDecl>(DUnderlying)) | 
|  | DUnderlying = UnderlyingFunTmpl->getTemplatedDecl(); | 
|  | } | 
|  |  | 
|  | if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { | 
|  | if (Method->isVirtual()) { | 
|  | // C++ [dcl.init.aggr]p1: | 
|  | //   An aggregate is an array or a class with [...] no virtual functions. | 
|  | data().Aggregate = false; | 
|  |  | 
|  | // C++ [class]p4: | 
|  | //   A POD-struct is an aggregate class... | 
|  | data().PlainOldData = false; | 
|  |  | 
|  | // C++14 [meta.unary.prop]p4: | 
|  | //   T is a class type [...] with [...] no virtual member functions... | 
|  | data().Empty = false; | 
|  |  | 
|  | // C++ [class.virtual]p1: | 
|  | //   A class that declares or inherits a virtual function is called a | 
|  | //   polymorphic class. | 
|  | data().Polymorphic = true; | 
|  |  | 
|  | // C++11 [class.ctor]p5, C++11 [class.copy]p12, C++11 [class.copy]p25: | 
|  | //   A [default constructor, copy/move constructor, or copy/move | 
|  | //   assignment operator for a class X] is trivial [...] if: | 
|  | //    -- class X has no virtual functions [...] | 
|  | data().HasTrivialSpecialMembers &= SMF_Destructor; | 
|  | data().HasTrivialSpecialMembersForCall &= SMF_Destructor; | 
|  |  | 
|  | // C++0x [class]p7: | 
|  | //   A standard-layout class is a class that: [...] | 
|  | //    -- has no virtual functions | 
|  | data().IsStandardLayout = false; | 
|  | data().IsCXX11StandardLayout = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Notify the listener if an implicit member was added after the definition | 
|  | // was completed. | 
|  | if (!isBeingDefined() && D->isImplicit()) | 
|  | if (ASTMutationListener *L = getASTMutationListener()) | 
|  | L->AddedCXXImplicitMember(data().Definition, D); | 
|  |  | 
|  | // The kind of special member this declaration is, if any. | 
|  | unsigned SMKind = 0; | 
|  |  | 
|  | // Handle constructors. | 
|  | if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) { | 
|  | if (!Constructor->isImplicit()) { | 
|  | // Note that we have a user-declared constructor. | 
|  | data().UserDeclaredConstructor = true; | 
|  |  | 
|  | // C++ [class]p4: | 
|  | //   A POD-struct is an aggregate class [...] | 
|  | // Since the POD bit is meant to be C++03 POD-ness, clear it even if the | 
|  | // type is technically an aggregate in C++0x since it wouldn't be in 03. | 
|  | data().PlainOldData = false; | 
|  | } | 
|  |  | 
|  | if (Constructor->isDefaultConstructor()) { | 
|  | SMKind |= SMF_DefaultConstructor; | 
|  |  | 
|  | if (Constructor->isUserProvided()) | 
|  | data().UserProvidedDefaultConstructor = true; | 
|  | if (Constructor->isConstexpr()) | 
|  | data().HasConstexprDefaultConstructor = true; | 
|  | if (Constructor->isDefaulted()) | 
|  | data().HasDefaultedDefaultConstructor = true; | 
|  | } | 
|  |  | 
|  | if (!FunTmpl) { | 
|  | unsigned Quals; | 
|  | if (Constructor->isCopyConstructor(Quals)) { | 
|  | SMKind |= SMF_CopyConstructor; | 
|  |  | 
|  | if (Quals & Qualifiers::Const) | 
|  | data().HasDeclaredCopyConstructorWithConstParam = true; | 
|  | } else if (Constructor->isMoveConstructor()) | 
|  | SMKind |= SMF_MoveConstructor; | 
|  | } | 
|  |  | 
|  | // C++11 [dcl.init.aggr]p1: DR1518 | 
|  | //   An aggregate is an array or a class with no user-provided [or] | 
|  | //   explicit [...] constructors | 
|  | // C++20 [dcl.init.aggr]p1: | 
|  | //   An aggregate is an array or a class with no user-declared [...] | 
|  | //   constructors | 
|  | if (getASTContext().getLangOpts().CPlusPlus2a | 
|  | ? !Constructor->isImplicit() | 
|  | : (Constructor->isUserProvided() || Constructor->isExplicit())) | 
|  | data().Aggregate = false; | 
|  | } | 
|  |  | 
|  | // Handle constructors, including those inherited from base classes. | 
|  | if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(DUnderlying)) { | 
|  | // Record if we see any constexpr constructors which are neither copy | 
|  | // nor move constructors. | 
|  | // C++1z [basic.types]p10: | 
|  | //   [...] has at least one constexpr constructor or constructor template | 
|  | //   (possibly inherited from a base class) that is not a copy or move | 
|  | //   constructor [...] | 
|  | if (Constructor->isConstexpr() && !Constructor->isCopyOrMoveConstructor()) | 
|  | data().HasConstexprNonCopyMoveConstructor = true; | 
|  | } | 
|  |  | 
|  | // Handle destructors. | 
|  | if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) { | 
|  | SMKind |= SMF_Destructor; | 
|  |  | 
|  | if (DD->isUserProvided()) | 
|  | data().HasIrrelevantDestructor = false; | 
|  | // If the destructor is explicitly defaulted and not trivial or not public | 
|  | // or if the destructor is deleted, we clear HasIrrelevantDestructor in | 
|  | // finishedDefaultedOrDeletedMember. | 
|  |  | 
|  | // C++11 [class.dtor]p5: | 
|  | //   A destructor is trivial if [...] the destructor is not virtual. | 
|  | if (DD->isVirtual()) { | 
|  | data().HasTrivialSpecialMembers &= ~SMF_Destructor; | 
|  | data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle member functions. | 
|  | if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { | 
|  | if (Method->isCopyAssignmentOperator()) { | 
|  | SMKind |= SMF_CopyAssignment; | 
|  |  | 
|  | const auto *ParamTy = | 
|  | Method->getParamDecl(0)->getType()->getAs<ReferenceType>(); | 
|  | if (!ParamTy || ParamTy->getPointeeType().isConstQualified()) | 
|  | data().HasDeclaredCopyAssignmentWithConstParam = true; | 
|  | } | 
|  |  | 
|  | if (Method->isMoveAssignmentOperator()) | 
|  | SMKind |= SMF_MoveAssignment; | 
|  |  | 
|  | // Keep the list of conversion functions up-to-date. | 
|  | if (auto *Conversion = dyn_cast<CXXConversionDecl>(D)) { | 
|  | // FIXME: We use the 'unsafe' accessor for the access specifier here, | 
|  | // because Sema may not have set it yet. That's really just a misdesign | 
|  | // in Sema. However, LLDB *will* have set the access specifier correctly, | 
|  | // and adds declarations after the class is technically completed, | 
|  | // so completeDefinition()'s overriding of the access specifiers doesn't | 
|  | // work. | 
|  | AccessSpecifier AS = Conversion->getAccessUnsafe(); | 
|  |  | 
|  | if (Conversion->getPrimaryTemplate()) { | 
|  | // We don't record specializations. | 
|  | } else { | 
|  | ASTContext &Ctx = getASTContext(); | 
|  | ASTUnresolvedSet &Conversions = data().Conversions.get(Ctx); | 
|  | NamedDecl *Primary = | 
|  | FunTmpl ? cast<NamedDecl>(FunTmpl) : cast<NamedDecl>(Conversion); | 
|  | if (Primary->getPreviousDecl()) | 
|  | Conversions.replace(cast<NamedDecl>(Primary->getPreviousDecl()), | 
|  | Primary, AS); | 
|  | else | 
|  | Conversions.addDecl(Ctx, Primary, AS); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SMKind) { | 
|  | // If this is the first declaration of a special member, we no longer have | 
|  | // an implicit trivial special member. | 
|  | data().HasTrivialSpecialMembers &= | 
|  | data().DeclaredSpecialMembers | ~SMKind; | 
|  | data().HasTrivialSpecialMembersForCall &= | 
|  | data().DeclaredSpecialMembers | ~SMKind; | 
|  |  | 
|  | if (!Method->isImplicit() && !Method->isUserProvided()) { | 
|  | // This method is user-declared but not user-provided. We can't work out | 
|  | // whether it's trivial yet (not until we get to the end of the class). | 
|  | // We'll handle this method in finishedDefaultedOrDeletedMember. | 
|  | } else if (Method->isTrivial()) { | 
|  | data().HasTrivialSpecialMembers |= SMKind; | 
|  | data().HasTrivialSpecialMembersForCall |= SMKind; | 
|  | } else if (Method->isTrivialForCall()) { | 
|  | data().HasTrivialSpecialMembersForCall |= SMKind; | 
|  | data().DeclaredNonTrivialSpecialMembers |= SMKind; | 
|  | } else { | 
|  | data().DeclaredNonTrivialSpecialMembers |= SMKind; | 
|  | // If this is a user-provided function, do not set | 
|  | // DeclaredNonTrivialSpecialMembersForCall here since we don't know | 
|  | // yet whether the method would be considered non-trivial for the | 
|  | // purpose of calls (attribute "trivial_abi" can be dropped from the | 
|  | // class later, which can change the special method's triviality). | 
|  | if (!Method->isUserProvided()) | 
|  | data().DeclaredNonTrivialSpecialMembersForCall |= SMKind; | 
|  | } | 
|  |  | 
|  | // Note when we have declared a declared special member, and suppress the | 
|  | // implicit declaration of this special member. | 
|  | data().DeclaredSpecialMembers |= SMKind; | 
|  |  | 
|  | if (!Method->isImplicit()) { | 
|  | data().UserDeclaredSpecialMembers |= SMKind; | 
|  |  | 
|  | // C++03 [class]p4: | 
|  | //   A POD-struct is an aggregate class that has [...] no user-defined | 
|  | //   copy assignment operator and no user-defined destructor. | 
|  | // | 
|  | // Since the POD bit is meant to be C++03 POD-ness, and in C++03, | 
|  | // aggregates could not have any constructors, clear it even for an | 
|  | // explicitly defaulted or deleted constructor. | 
|  | // type is technically an aggregate in C++0x since it wouldn't be in 03. | 
|  | // | 
|  | // Also, a user-declared move assignment operator makes a class non-POD. | 
|  | // This is an extension in C++03. | 
|  | data().PlainOldData = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Handle non-static data members. | 
|  | if (const auto *Field = dyn_cast<FieldDecl>(D)) { | 
|  | ASTContext &Context = getASTContext(); | 
|  |  | 
|  | // C++2a [class]p7: | 
|  | //   A standard-layout class is a class that: | 
|  | //    [...] | 
|  | //    -- has all non-static data members and bit-fields in the class and | 
|  | //       its base classes first declared in the same class | 
|  | if (data().HasBasesWithFields) | 
|  | data().IsStandardLayout = false; | 
|  |  | 
|  | // C++ [class.bit]p2: | 
|  | //   A declaration for a bit-field that omits the identifier declares an | 
|  | //   unnamed bit-field. Unnamed bit-fields are not members and cannot be | 
|  | //   initialized. | 
|  | if (Field->isUnnamedBitfield()) { | 
|  | // C++ [meta.unary.prop]p4: [LWG2358] | 
|  | //   T is a class type [...] with [...] no unnamed bit-fields of non-zero | 
|  | //   length | 
|  | if (data().Empty && !Field->isZeroLengthBitField(Context) && | 
|  | Context.getLangOpts().getClangABICompat() > | 
|  | LangOptions::ClangABI::Ver6) | 
|  | data().Empty = false; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // C++11 [class]p7: | 
|  | //   A standard-layout class is a class that: | 
|  | //    -- either has no non-static data members in the most derived class | 
|  | //       [...] or has no base classes with non-static data members | 
|  | if (data().HasBasesWithNonStaticDataMembers) | 
|  | data().IsCXX11StandardLayout = false; | 
|  |  | 
|  | // C++ [dcl.init.aggr]p1: | 
|  | //   An aggregate is an array or a class (clause 9) with [...] no | 
|  | //   private or protected non-static data members (clause 11). | 
|  | // | 
|  | // A POD must be an aggregate. | 
|  | if (D->getAccess() == AS_private || D->getAccess() == AS_protected) { | 
|  | data().Aggregate = false; | 
|  | data().PlainOldData = false; | 
|  | } | 
|  |  | 
|  | // Track whether this is the first field. We use this when checking | 
|  | // whether the class is standard-layout below. | 
|  | bool IsFirstField = !data().HasPrivateFields && | 
|  | !data().HasProtectedFields && !data().HasPublicFields; | 
|  |  | 
|  | // C++0x [class]p7: | 
|  | //   A standard-layout class is a class that: | 
|  | //    [...] | 
|  | //    -- has the same access control for all non-static data members, | 
|  | switch (D->getAccess()) { | 
|  | case AS_private:    data().HasPrivateFields = true;   break; | 
|  | case AS_protected:  data().HasProtectedFields = true; break; | 
|  | case AS_public:     data().HasPublicFields = true;    break; | 
|  | case AS_none:       llvm_unreachable("Invalid access specifier"); | 
|  | }; | 
|  | if ((data().HasPrivateFields + data().HasProtectedFields + | 
|  | data().HasPublicFields) > 1) { | 
|  | data().IsStandardLayout = false; | 
|  | data().IsCXX11StandardLayout = false; | 
|  | } | 
|  |  | 
|  | // Keep track of the presence of mutable fields. | 
|  | if (Field->isMutable()) { | 
|  | data().HasMutableFields = true; | 
|  | data().NeedOverloadResolutionForCopyConstructor = true; | 
|  | } | 
|  |  | 
|  | // C++11 [class.union]p8, DR1460: | 
|  | //   If X is a union, a non-static data member of X that is not an anonymous | 
|  | //   union is a variant member of X. | 
|  | if (isUnion() && !Field->isAnonymousStructOrUnion()) | 
|  | data().HasVariantMembers = true; | 
|  |  | 
|  | // C++0x [class]p9: | 
|  | //   A POD struct is a class that is both a trivial class and a | 
|  | //   standard-layout class, and has no non-static data members of type | 
|  | //   non-POD struct, non-POD union (or array of such types). | 
|  | // | 
|  | // Automatic Reference Counting: the presence of a member of Objective-C pointer type | 
|  | // that does not explicitly have no lifetime makes the class a non-POD. | 
|  | QualType T = Context.getBaseElementType(Field->getType()); | 
|  | if (T->isObjCRetainableType() || T.isObjCGCStrong()) { | 
|  | if (T.hasNonTrivialObjCLifetime()) { | 
|  | // Objective-C Automatic Reference Counting: | 
|  | //   If a class has a non-static data member of Objective-C pointer | 
|  | //   type (or array thereof), it is a non-POD type and its | 
|  | //   default constructor (if any), copy constructor, move constructor, | 
|  | //   copy assignment operator, move assignment operator, and destructor are | 
|  | //   non-trivial. | 
|  | setHasObjectMember(true); | 
|  | struct DefinitionData &Data = data(); | 
|  | Data.PlainOldData = false; | 
|  | Data.HasTrivialSpecialMembers = 0; | 
|  |  | 
|  | // __strong or __weak fields do not make special functions non-trivial | 
|  | // for the purpose of calls. | 
|  | Qualifiers::ObjCLifetime LT = T.getQualifiers().getObjCLifetime(); | 
|  | if (LT != Qualifiers::OCL_Strong && LT != Qualifiers::OCL_Weak) | 
|  | data().HasTrivialSpecialMembersForCall = 0; | 
|  |  | 
|  | // Structs with __weak fields should never be passed directly. | 
|  | if (LT == Qualifiers::OCL_Weak) | 
|  | setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); | 
|  |  | 
|  | Data.HasIrrelevantDestructor = false; | 
|  |  | 
|  | if (isUnion()) { | 
|  | data().DefaultedCopyConstructorIsDeleted = true; | 
|  | data().DefaultedMoveConstructorIsDeleted = true; | 
|  | data().DefaultedMoveAssignmentIsDeleted = true; | 
|  | data().DefaultedDestructorIsDeleted = true; | 
|  | data().NeedOverloadResolutionForCopyConstructor = true; | 
|  | data().NeedOverloadResolutionForMoveConstructor = true; | 
|  | data().NeedOverloadResolutionForMoveAssignment = true; | 
|  | data().NeedOverloadResolutionForDestructor = true; | 
|  | } | 
|  | } else if (!Context.getLangOpts().ObjCAutoRefCount) { | 
|  | setHasObjectMember(true); | 
|  | } | 
|  | } else if (!T.isCXX98PODType(Context)) | 
|  | data().PlainOldData = false; | 
|  |  | 
|  | if (T->isReferenceType()) { | 
|  | if (!Field->hasInClassInitializer()) | 
|  | data().HasUninitializedReferenceMember = true; | 
|  |  | 
|  | // C++0x [class]p7: | 
|  | //   A standard-layout class is a class that: | 
|  | //    -- has no non-static data members of type [...] reference, | 
|  | data().IsStandardLayout = false; | 
|  | data().IsCXX11StandardLayout = false; | 
|  |  | 
|  | // C++1z [class.copy.ctor]p10: | 
|  | //   A defaulted copy constructor for a class X is defined as deleted if X has: | 
|  | //    -- a non-static data member of rvalue reference type | 
|  | if (T->isRValueReferenceType()) | 
|  | data().DefaultedCopyConstructorIsDeleted = true; | 
|  | } | 
|  |  | 
|  | if (!Field->hasInClassInitializer() && !Field->isMutable()) { | 
|  | if (CXXRecordDecl *FieldType = T->getAsCXXRecordDecl()) { | 
|  | if (FieldType->hasDefinition() && !FieldType->allowConstDefaultInit()) | 
|  | data().HasUninitializedFields = true; | 
|  | } else { | 
|  | data().HasUninitializedFields = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Record if this field is the first non-literal or volatile field or base. | 
|  | if (!T->isLiteralType(Context) || T.isVolatileQualified()) | 
|  | data().HasNonLiteralTypeFieldsOrBases = true; | 
|  |  | 
|  | if (Field->hasInClassInitializer() || | 
|  | (Field->isAnonymousStructOrUnion() && | 
|  | Field->getType()->getAsCXXRecordDecl()->hasInClassInitializer())) { | 
|  | data().HasInClassInitializer = true; | 
|  |  | 
|  | // C++11 [class]p5: | 
|  | //   A default constructor is trivial if [...] no non-static data member | 
|  | //   of its class has a brace-or-equal-initializer. | 
|  | data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; | 
|  |  | 
|  | // C++11 [dcl.init.aggr]p1: | 
|  | //   An aggregate is a [...] class with [...] no | 
|  | //   brace-or-equal-initializers for non-static data members. | 
|  | // | 
|  | // This rule was removed in C++14. | 
|  | if (!getASTContext().getLangOpts().CPlusPlus14) | 
|  | data().Aggregate = false; | 
|  |  | 
|  | // C++11 [class]p10: | 
|  | //   A POD struct is [...] a trivial class. | 
|  | data().PlainOldData = false; | 
|  | } | 
|  |  | 
|  | // C++11 [class.copy]p23: | 
|  | //   A defaulted copy/move assignment operator for a class X is defined | 
|  | //   as deleted if X has: | 
|  | //    -- a non-static data member of reference type | 
|  | if (T->isReferenceType()) | 
|  | data().DefaultedMoveAssignmentIsDeleted = true; | 
|  |  | 
|  | // Bitfields of length 0 are also zero-sized, but we already bailed out for | 
|  | // those because they are always unnamed. | 
|  | bool IsZeroSize = Field->isZeroSize(Context); | 
|  |  | 
|  | if (const auto *RecordTy = T->getAs<RecordType>()) { | 
|  | auto *FieldRec = cast<CXXRecordDecl>(RecordTy->getDecl()); | 
|  | if (FieldRec->getDefinition()) { | 
|  | addedClassSubobject(FieldRec); | 
|  |  | 
|  | // We may need to perform overload resolution to determine whether a | 
|  | // field can be moved if it's const or volatile qualified. | 
|  | if (T.getCVRQualifiers() & (Qualifiers::Const | Qualifiers::Volatile)) { | 
|  | // We need to care about 'const' for the copy constructor because an | 
|  | // implicit copy constructor might be declared with a non-const | 
|  | // parameter. | 
|  | data().NeedOverloadResolutionForCopyConstructor = true; | 
|  | data().NeedOverloadResolutionForMoveConstructor = true; | 
|  | data().NeedOverloadResolutionForMoveAssignment = true; | 
|  | } | 
|  |  | 
|  | // C++11 [class.ctor]p5, C++11 [class.copy]p11: | 
|  | //   A defaulted [special member] for a class X is defined as | 
|  | //   deleted if: | 
|  | //    -- X is a union-like class that has a variant member with a | 
|  | //       non-trivial [corresponding special member] | 
|  | if (isUnion()) { | 
|  | if (FieldRec->hasNonTrivialCopyConstructor()) | 
|  | data().DefaultedCopyConstructorIsDeleted = true; | 
|  | if (FieldRec->hasNonTrivialMoveConstructor()) | 
|  | data().DefaultedMoveConstructorIsDeleted = true; | 
|  | if (FieldRec->hasNonTrivialMoveAssignment()) | 
|  | data().DefaultedMoveAssignmentIsDeleted = true; | 
|  | if (FieldRec->hasNonTrivialDestructor()) | 
|  | data().DefaultedDestructorIsDeleted = true; | 
|  | } | 
|  |  | 
|  | // For an anonymous union member, our overload resolution will perform | 
|  | // overload resolution for its members. | 
|  | if (Field->isAnonymousStructOrUnion()) { | 
|  | data().NeedOverloadResolutionForCopyConstructor |= | 
|  | FieldRec->data().NeedOverloadResolutionForCopyConstructor; | 
|  | data().NeedOverloadResolutionForMoveConstructor |= | 
|  | FieldRec->data().NeedOverloadResolutionForMoveConstructor; | 
|  | data().NeedOverloadResolutionForMoveAssignment |= | 
|  | FieldRec->data().NeedOverloadResolutionForMoveAssignment; | 
|  | data().NeedOverloadResolutionForDestructor |= | 
|  | FieldRec->data().NeedOverloadResolutionForDestructor; | 
|  | } | 
|  |  | 
|  | // C++0x [class.ctor]p5: | 
|  | //   A default constructor is trivial [...] if: | 
|  | //    -- for all the non-static data members of its class that are of | 
|  | //       class type (or array thereof), each such class has a trivial | 
|  | //       default constructor. | 
|  | if (!FieldRec->hasTrivialDefaultConstructor()) | 
|  | data().HasTrivialSpecialMembers &= ~SMF_DefaultConstructor; | 
|  |  | 
|  | // C++0x [class.copy]p13: | 
|  | //   A copy/move constructor for class X is trivial if [...] | 
|  | //    [...] | 
|  | //    -- for each non-static data member of X that is of class type (or | 
|  | //       an array thereof), the constructor selected to copy/move that | 
|  | //       member is trivial; | 
|  | if (!FieldRec->hasTrivialCopyConstructor()) | 
|  | data().HasTrivialSpecialMembers &= ~SMF_CopyConstructor; | 
|  |  | 
|  | if (!FieldRec->hasTrivialCopyConstructorForCall()) | 
|  | data().HasTrivialSpecialMembersForCall &= ~SMF_CopyConstructor; | 
|  |  | 
|  | // If the field doesn't have a simple move constructor, we'll eagerly | 
|  | // declare the move constructor for this class and we'll decide whether | 
|  | // it's trivial then. | 
|  | if (!FieldRec->hasTrivialMoveConstructor()) | 
|  | data().HasTrivialSpecialMembers &= ~SMF_MoveConstructor; | 
|  |  | 
|  | if (!FieldRec->hasTrivialMoveConstructorForCall()) | 
|  | data().HasTrivialSpecialMembersForCall &= ~SMF_MoveConstructor; | 
|  |  | 
|  | // C++0x [class.copy]p27: | 
|  | //   A copy/move assignment operator for class X is trivial if [...] | 
|  | //    [...] | 
|  | //    -- for each non-static data member of X that is of class type (or | 
|  | //       an array thereof), the assignment operator selected to | 
|  | //       copy/move that member is trivial; | 
|  | if (!FieldRec->hasTrivialCopyAssignment()) | 
|  | data().HasTrivialSpecialMembers &= ~SMF_CopyAssignment; | 
|  | // If the field doesn't have a simple move assignment, we'll eagerly | 
|  | // declare the move assignment for this class and we'll decide whether | 
|  | // it's trivial then. | 
|  | if (!FieldRec->hasTrivialMoveAssignment()) | 
|  | data().HasTrivialSpecialMembers &= ~SMF_MoveAssignment; | 
|  |  | 
|  | if (!FieldRec->hasTrivialDestructor()) | 
|  | data().HasTrivialSpecialMembers &= ~SMF_Destructor; | 
|  | if (!FieldRec->hasTrivialDestructorForCall()) | 
|  | data().HasTrivialSpecialMembersForCall &= ~SMF_Destructor; | 
|  | if (!FieldRec->hasIrrelevantDestructor()) | 
|  | data().HasIrrelevantDestructor = false; | 
|  | if (FieldRec->hasObjectMember()) | 
|  | setHasObjectMember(true); | 
|  | if (FieldRec->hasVolatileMember()) | 
|  | setHasVolatileMember(true); | 
|  | if (FieldRec->getArgPassingRestrictions() == | 
|  | RecordDecl::APK_CanNeverPassInRegs) | 
|  | setArgPassingRestrictions(RecordDecl::APK_CanNeverPassInRegs); | 
|  |  | 
|  | // C++0x [class]p7: | 
|  | //   A standard-layout class is a class that: | 
|  | //    -- has no non-static data members of type non-standard-layout | 
|  | //       class (or array of such types) [...] | 
|  | if (!FieldRec->isStandardLayout()) | 
|  | data().IsStandardLayout = false; | 
|  | if (!FieldRec->isCXX11StandardLayout()) | 
|  | data().IsCXX11StandardLayout = false; | 
|  |  | 
|  | // C++2a [class]p7: | 
|  | //   A standard-layout class is a class that: | 
|  | //    [...] | 
|  | //    -- has no element of the set M(S) of types as a base class. | 
|  | if (data().IsStandardLayout && | 
|  | (isUnion() || IsFirstField || IsZeroSize) && | 
|  | hasSubobjectAtOffsetZeroOfEmptyBaseType(Context, FieldRec)) | 
|  | data().IsStandardLayout = false; | 
|  |  | 
|  | // C++11 [class]p7: | 
|  | //   A standard-layout class is a class that: | 
|  | //    -- has no base classes of the same type as the first non-static | 
|  | //       data member | 
|  | if (data().IsCXX11StandardLayout && IsFirstField) { | 
|  | // FIXME: We should check all base classes here, not just direct | 
|  | // base classes. | 
|  | for (const auto &BI : bases()) { | 
|  | if (Context.hasSameUnqualifiedType(BI.getType(), T)) { | 
|  | data().IsCXX11StandardLayout = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Keep track of the presence of mutable fields. | 
|  | if (FieldRec->hasMutableFields()) { | 
|  | data().HasMutableFields = true; | 
|  | data().NeedOverloadResolutionForCopyConstructor = true; | 
|  | } | 
|  |  | 
|  | // C++11 [class.copy]p13: | 
|  | //   If the implicitly-defined constructor would satisfy the | 
|  | //   requirements of a constexpr constructor, the implicitly-defined | 
|  | //   constructor is constexpr. | 
|  | // C++11 [dcl.constexpr]p4: | 
|  | //    -- every constructor involved in initializing non-static data | 
|  | //       members [...] shall be a constexpr constructor | 
|  | if (!Field->hasInClassInitializer() && | 
|  | !FieldRec->hasConstexprDefaultConstructor() && !isUnion()) | 
|  | // The standard requires any in-class initializer to be a constant | 
|  | // expression. We consider this to be a defect. | 
|  | data().DefaultedDefaultConstructorIsConstexpr = false; | 
|  |  | 
|  | // C++11 [class.copy]p8: | 
|  | //   The implicitly-declared copy constructor for a class X will have | 
|  | //   the form 'X::X(const X&)' if each potentially constructed subobject | 
|  | //   of a class type M (or array thereof) has a copy constructor whose | 
|  | //   first parameter is of type 'const M&' or 'const volatile M&'. | 
|  | if (!FieldRec->hasCopyConstructorWithConstParam()) | 
|  | data().ImplicitCopyConstructorCanHaveConstParamForNonVBase = false; | 
|  |  | 
|  | // C++11 [class.copy]p18: | 
|  | //   The implicitly-declared copy assignment oeprator for a class X will | 
|  | //   have the form 'X& X::operator=(const X&)' if [...] for all the | 
|  | //   non-static data members of X that are of a class type M (or array | 
|  | //   thereof), each such class type has a copy assignment operator whose | 
|  | //   parameter is of type 'const M&', 'const volatile M&' or 'M'. | 
|  | if (!FieldRec->hasCopyAssignmentWithConstParam()) | 
|  | data().ImplicitCopyAssignmentHasConstParam = false; | 
|  |  | 
|  | if (FieldRec->hasUninitializedReferenceMember() && | 
|  | !Field->hasInClassInitializer()) | 
|  | data().HasUninitializedReferenceMember = true; | 
|  |  | 
|  | // C++11 [class.union]p8, DR1460: | 
|  | //   a non-static data member of an anonymous union that is a member of | 
|  | //   X is also a variant member of X. | 
|  | if (FieldRec->hasVariantMembers() && | 
|  | Field->isAnonymousStructOrUnion()) | 
|  | data().HasVariantMembers = true; | 
|  | } | 
|  | } else { | 
|  | // Base element type of field is a non-class type. | 
|  | if (!T->isLiteralType(Context) || | 
|  | (!Field->hasInClassInitializer() && !isUnion() && | 
|  | !Context.getLangOpts().CPlusPlus2a)) | 
|  | data().DefaultedDefaultConstructorIsConstexpr = false; | 
|  |  | 
|  | // C++11 [class.copy]p23: | 
|  | //   A defaulted copy/move assignment operator for a class X is defined | 
|  | //   as deleted if X has: | 
|  | //    -- a non-static data member of const non-class type (or array | 
|  | //       thereof) | 
|  | if (T.isConstQualified()) | 
|  | data().DefaultedMoveAssignmentIsDeleted = true; | 
|  | } | 
|  |  | 
|  | // C++14 [meta.unary.prop]p4: | 
|  | //   T is a class type [...] with [...] no non-static data members other | 
|  | //   than subobjects of zero size | 
|  | if (data().Empty && !IsZeroSize) | 
|  | data().Empty = false; | 
|  | } | 
|  |  | 
|  | // Handle using declarations of conversion functions. | 
|  | if (auto *Shadow = dyn_cast<UsingShadowDecl>(D)) { | 
|  | if (Shadow->getDeclName().getNameKind() | 
|  | == DeclarationName::CXXConversionFunctionName) { | 
|  | ASTContext &Ctx = getASTContext(); | 
|  | data().Conversions.get(Ctx).addDecl(Ctx, Shadow, Shadow->getAccess()); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (const auto *Using = dyn_cast<UsingDecl>(D)) { | 
|  | if (Using->getDeclName().getNameKind() == | 
|  | DeclarationName::CXXConstructorName) { | 
|  | data().HasInheritedConstructor = true; | 
|  | // C++1z [dcl.init.aggr]p1: | 
|  | //  An aggregate is [...] a class [...] with no inherited constructors | 
|  | data().Aggregate = false; | 
|  | } | 
|  |  | 
|  | if (Using->getDeclName().getCXXOverloadedOperator() == OO_Equal) | 
|  | data().HasInheritedAssignment = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | void CXXRecordDecl::finishedDefaultedOrDeletedMember(CXXMethodDecl *D) { | 
|  | assert(!D->isImplicit() && !D->isUserProvided()); | 
|  |  | 
|  | // The kind of special member this declaration is, if any. | 
|  | unsigned SMKind = 0; | 
|  |  | 
|  | if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) { | 
|  | if (Constructor->isDefaultConstructor()) { | 
|  | SMKind |= SMF_DefaultConstructor; | 
|  | if (Constructor->isConstexpr()) | 
|  | data().HasConstexprDefaultConstructor = true; | 
|  | } | 
|  | if (Constructor->isCopyConstructor()) | 
|  | SMKind |= SMF_CopyConstructor; | 
|  | else if (Constructor->isMoveConstructor()) | 
|  | SMKind |= SMF_MoveConstructor; | 
|  | else if (Constructor->isConstexpr()) | 
|  | // We may now know that the constructor is constexpr. | 
|  | data().HasConstexprNonCopyMoveConstructor = true; | 
|  | } else if (isa<CXXDestructorDecl>(D)) { | 
|  | SMKind |= SMF_Destructor; | 
|  | if (!D->isTrivial() || D->getAccess() != AS_public || D->isDeleted()) | 
|  | data().HasIrrelevantDestructor = false; | 
|  | } else if (D->isCopyAssignmentOperator()) | 
|  | SMKind |= SMF_CopyAssignment; | 
|  | else if (D->isMoveAssignmentOperator()) | 
|  | SMKind |= SMF_MoveAssignment; | 
|  |  | 
|  | // Update which trivial / non-trivial special members we have. | 
|  | // addedMember will have skipped this step for this member. | 
|  | if (D->isTrivial()) | 
|  | data().HasTrivialSpecialMembers |= SMKind; | 
|  | else | 
|  | data().DeclaredNonTrivialSpecialMembers |= SMKind; | 
|  | } | 
|  |  | 
|  | void CXXRecordDecl::setTrivialForCallFlags(CXXMethodDecl *D) { | 
|  | unsigned SMKind = 0; | 
|  |  | 
|  | if (const auto *Constructor = dyn_cast<CXXConstructorDecl>(D)) { | 
|  | if (Constructor->isCopyConstructor()) | 
|  | SMKind = SMF_CopyConstructor; | 
|  | else if (Constructor->isMoveConstructor()) | 
|  | SMKind = SMF_MoveConstructor; | 
|  | } else if (isa<CXXDestructorDecl>(D)) | 
|  | SMKind = SMF_Destructor; | 
|  |  | 
|  | if (D->isTrivialForCall()) | 
|  | data().HasTrivialSpecialMembersForCall |= SMKind; | 
|  | else | 
|  | data().DeclaredNonTrivialSpecialMembersForCall |= SMKind; | 
|  | } | 
|  |  | 
|  | bool CXXRecordDecl::isCLike() const { | 
|  | if (getTagKind() == TTK_Class || getTagKind() == TTK_Interface || | 
|  | !TemplateOrInstantiation.isNull()) | 
|  | return false; | 
|  | if (!hasDefinition()) | 
|  | return true; | 
|  |  | 
|  | return isPOD() && data().HasOnlyCMembers; | 
|  | } | 
|  |  | 
|  | bool CXXRecordDecl::isGenericLambda() const { | 
|  | if (!isLambda()) return false; | 
|  | return getLambdaData().IsGenericLambda; | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static bool allLookupResultsAreTheSame(const DeclContext::lookup_result &R) { | 
|  | for (auto *D : R) | 
|  | if (!declaresSameEntity(D, R.front())) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | NamedDecl* getLambdaCallOperatorHelper(const CXXRecordDecl &RD) { | 
|  | if (!RD.isLambda()) return nullptr; | 
|  | DeclarationName Name = | 
|  | RD.getASTContext().DeclarationNames.getCXXOperatorName(OO_Call); | 
|  | DeclContext::lookup_result Calls = RD.lookup(Name); | 
|  |  | 
|  | assert(!Calls.empty() && "Missing lambda call operator!"); | 
|  | assert(allLookupResultsAreTheSame(Calls) && | 
|  | "More than one lambda call operator!"); | 
|  | return Calls.front(); | 
|  | } | 
|  |  | 
|  | FunctionTemplateDecl* CXXRecordDecl::getDependentLambdaCallOperator() const { | 
|  | NamedDecl *CallOp = getLambdaCallOperatorHelper(*this); | 
|  | return  dyn_cast_or_null<FunctionTemplateDecl>(CallOp); | 
|  | } | 
|  |  | 
|  | CXXMethodDecl *CXXRecordDecl::getLambdaCallOperator() const { | 
|  | NamedDecl *CallOp = getLambdaCallOperatorHelper(*this); | 
|  |  | 
|  | if (CallOp == nullptr) | 
|  | return nullptr; | 
|  |  | 
|  | if (const auto *CallOpTmpl = dyn_cast<FunctionTemplateDecl>(CallOp)) | 
|  | return cast<CXXMethodDecl>(CallOpTmpl->getTemplatedDecl()); | 
|  |  | 
|  | return cast<CXXMethodDecl>(CallOp); | 
|  | } | 
|  |  | 
|  | CXXMethodDecl* CXXRecordDecl::getLambdaStaticInvoker() const { | 
|  | if (!isLambda()) return nullptr; | 
|  | DeclarationName Name = | 
|  | &getASTContext().Idents.get(getLambdaStaticInvokerName()); | 
|  | DeclContext::lookup_result Invoker = lookup(Name); | 
|  | if (Invoker.empty()) return nullptr; | 
|  | assert(allLookupResultsAreTheSame(Invoker) && | 
|  | "More than one static invoker operator!"); | 
|  | NamedDecl *InvokerFun = Invoker.front(); | 
|  | if (const auto *InvokerTemplate = dyn_cast<FunctionTemplateDecl>(InvokerFun)) | 
|  | return cast<CXXMethodDecl>(InvokerTemplate->getTemplatedDecl()); | 
|  |  | 
|  | return cast<CXXMethodDecl>(InvokerFun); | 
|  | } | 
|  |  | 
|  | void CXXRecordDecl::getCaptureFields( | 
|  | llvm::DenseMap<const VarDecl *, FieldDecl *> &Captures, | 
|  | FieldDecl *&ThisCapture) const { | 
|  | Captures.clear(); | 
|  | ThisCapture = nullptr; | 
|  |  | 
|  | LambdaDefinitionData &Lambda = getLambdaData(); | 
|  | RecordDecl::field_iterator Field = field_begin(); | 
|  | for (const LambdaCapture *C = Lambda.Captures, *CEnd = C + Lambda.NumCaptures; | 
|  | C != CEnd; ++C, ++Field) { | 
|  | if (C->capturesThis()) | 
|  | ThisCapture = *Field; | 
|  | else if (C->capturesVariable()) | 
|  | Captures[C->getCapturedVar()] = *Field; | 
|  | } | 
|  | assert(Field == field_end()); | 
|  | } | 
|  |  | 
|  | TemplateParameterList * | 
|  | CXXRecordDecl::getGenericLambdaTemplateParameterList() const { | 
|  | if (!isGenericLambda()) return nullptr; | 
|  | CXXMethodDecl *CallOp = getLambdaCallOperator(); | 
|  | if (FunctionTemplateDecl *Tmpl = CallOp->getDescribedFunctionTemplate()) | 
|  | return Tmpl->getTemplateParameters(); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | ArrayRef<NamedDecl *> | 
|  | CXXRecordDecl::getLambdaExplicitTemplateParameters() const { | 
|  | TemplateParameterList *List = getGenericLambdaTemplateParameterList(); | 
|  | if (!List) | 
|  | return {}; | 
|  |  | 
|  | assert(std::is_partitioned(List->begin(), List->end(), | 
|  | [](const NamedDecl *D) { return !D->isImplicit(); }) | 
|  | && "Explicit template params should be ordered before implicit ones"); | 
|  |  | 
|  | const auto ExplicitEnd = llvm::partition_point( | 
|  | *List, [](const NamedDecl *D) { return !D->isImplicit(); }); | 
|  | return llvm::makeArrayRef(List->begin(), ExplicitEnd); | 
|  | } | 
|  |  | 
|  | Decl *CXXRecordDecl::getLambdaContextDecl() const { | 
|  | assert(isLambda() && "Not a lambda closure type!"); | 
|  | ExternalASTSource *Source = getParentASTContext().getExternalSource(); | 
|  | return getLambdaData().ContextDecl.get(Source); | 
|  | } | 
|  |  | 
|  | static CanQualType GetConversionType(ASTContext &Context, NamedDecl *Conv) { | 
|  | QualType T = | 
|  | cast<CXXConversionDecl>(Conv->getUnderlyingDecl()->getAsFunction()) | 
|  | ->getConversionType(); | 
|  | return Context.getCanonicalType(T); | 
|  | } | 
|  |  | 
|  | /// Collect the visible conversions of a base class. | 
|  | /// | 
|  | /// \param Record a base class of the class we're considering | 
|  | /// \param InVirtual whether this base class is a virtual base (or a base | 
|  | ///   of a virtual base) | 
|  | /// \param Access the access along the inheritance path to this base | 
|  | /// \param ParentHiddenTypes the conversions provided by the inheritors | 
|  | ///   of this base | 
|  | /// \param Output the set to which to add conversions from non-virtual bases | 
|  | /// \param VOutput the set to which to add conversions from virtual bases | 
|  | /// \param HiddenVBaseCs the set of conversions which were hidden in a | 
|  | ///   virtual base along some inheritance path | 
|  | static void CollectVisibleConversions(ASTContext &Context, | 
|  | CXXRecordDecl *Record, | 
|  | bool InVirtual, | 
|  | AccessSpecifier Access, | 
|  | const llvm::SmallPtrSet<CanQualType, 8> &ParentHiddenTypes, | 
|  | ASTUnresolvedSet &Output, | 
|  | UnresolvedSetImpl &VOutput, | 
|  | llvm::SmallPtrSet<NamedDecl*, 8> &HiddenVBaseCs) { | 
|  | // The set of types which have conversions in this class or its | 
|  | // subclasses.  As an optimization, we don't copy the derived set | 
|  | // unless it might change. | 
|  | const llvm::SmallPtrSet<CanQualType, 8> *HiddenTypes = &ParentHiddenTypes; | 
|  | llvm::SmallPtrSet<CanQualType, 8> HiddenTypesBuffer; | 
|  |  | 
|  | // Collect the direct conversions and figure out which conversions | 
|  | // will be hidden in the subclasses. | 
|  | CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); | 
|  | CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); | 
|  | if (ConvI != ConvE) { | 
|  | HiddenTypesBuffer = ParentHiddenTypes; | 
|  | HiddenTypes = &HiddenTypesBuffer; | 
|  |  | 
|  | for (CXXRecordDecl::conversion_iterator I = ConvI; I != ConvE; ++I) { | 
|  | CanQualType ConvType(GetConversionType(Context, I.getDecl())); | 
|  | bool Hidden = ParentHiddenTypes.count(ConvType); | 
|  | if (!Hidden) | 
|  | HiddenTypesBuffer.insert(ConvType); | 
|  |  | 
|  | // If this conversion is hidden and we're in a virtual base, | 
|  | // remember that it's hidden along some inheritance path. | 
|  | if (Hidden && InVirtual) | 
|  | HiddenVBaseCs.insert(cast<NamedDecl>(I.getDecl()->getCanonicalDecl())); | 
|  |  | 
|  | // If this conversion isn't hidden, add it to the appropriate output. | 
|  | else if (!Hidden) { | 
|  | AccessSpecifier IAccess | 
|  | = CXXRecordDecl::MergeAccess(Access, I.getAccess()); | 
|  |  | 
|  | if (InVirtual) | 
|  | VOutput.addDecl(I.getDecl(), IAccess); | 
|  | else | 
|  | Output.addDecl(Context, I.getDecl(), IAccess); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Collect information recursively from any base classes. | 
|  | for (const auto &I : Record->bases()) { | 
|  | const RecordType *RT = I.getType()->getAs<RecordType>(); | 
|  | if (!RT) continue; | 
|  |  | 
|  | AccessSpecifier BaseAccess | 
|  | = CXXRecordDecl::MergeAccess(Access, I.getAccessSpecifier()); | 
|  | bool BaseInVirtual = InVirtual || I.isVirtual(); | 
|  |  | 
|  | auto *Base = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | CollectVisibleConversions(Context, Base, BaseInVirtual, BaseAccess, | 
|  | *HiddenTypes, Output, VOutput, HiddenVBaseCs); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Collect the visible conversions of a class. | 
|  | /// | 
|  | /// This would be extremely straightforward if it weren't for virtual | 
|  | /// bases.  It might be worth special-casing that, really. | 
|  | static void CollectVisibleConversions(ASTContext &Context, | 
|  | CXXRecordDecl *Record, | 
|  | ASTUnresolvedSet &Output) { | 
|  | // The collection of all conversions in virtual bases that we've | 
|  | // found.  These will be added to the output as long as they don't | 
|  | // appear in the hidden-conversions set. | 
|  | UnresolvedSet<8> VBaseCs; | 
|  |  | 
|  | // The set of conversions in virtual bases that we've determined to | 
|  | // be hidden. | 
|  | llvm::SmallPtrSet<NamedDecl*, 8> HiddenVBaseCs; | 
|  |  | 
|  | // The set of types hidden by classes derived from this one. | 
|  | llvm::SmallPtrSet<CanQualType, 8> HiddenTypes; | 
|  |  | 
|  | // Go ahead and collect the direct conversions and add them to the | 
|  | // hidden-types set. | 
|  | CXXRecordDecl::conversion_iterator ConvI = Record->conversion_begin(); | 
|  | CXXRecordDecl::conversion_iterator ConvE = Record->conversion_end(); | 
|  | Output.append(Context, ConvI, ConvE); | 
|  | for (; ConvI != ConvE; ++ConvI) | 
|  | HiddenTypes.insert(GetConversionType(Context, ConvI.getDecl())); | 
|  |  | 
|  | // Recursively collect conversions from base classes. | 
|  | for (const auto &I : Record->bases()) { | 
|  | const RecordType *RT = I.getType()->getAs<RecordType>(); | 
|  | if (!RT) continue; | 
|  |  | 
|  | CollectVisibleConversions(Context, cast<CXXRecordDecl>(RT->getDecl()), | 
|  | I.isVirtual(), I.getAccessSpecifier(), | 
|  | HiddenTypes, Output, VBaseCs, HiddenVBaseCs); | 
|  | } | 
|  |  | 
|  | // Add any unhidden conversions provided by virtual bases. | 
|  | for (UnresolvedSetIterator I = VBaseCs.begin(), E = VBaseCs.end(); | 
|  | I != E; ++I) { | 
|  | if (!HiddenVBaseCs.count(cast<NamedDecl>(I.getDecl()->getCanonicalDecl()))) | 
|  | Output.addDecl(Context, I.getDecl(), I.getAccess()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getVisibleConversionFunctions - get all conversion functions visible | 
|  | /// in current class; including conversion function templates. | 
|  | llvm::iterator_range<CXXRecordDecl::conversion_iterator> | 
|  | CXXRecordDecl::getVisibleConversionFunctions() { | 
|  | ASTContext &Ctx = getASTContext(); | 
|  |  | 
|  | ASTUnresolvedSet *Set; | 
|  | if (bases_begin() == bases_end()) { | 
|  | // If root class, all conversions are visible. | 
|  | Set = &data().Conversions.get(Ctx); | 
|  | } else { | 
|  | Set = &data().VisibleConversions.get(Ctx); | 
|  | // If visible conversion list is not evaluated, evaluate it. | 
|  | if (!data().ComputedVisibleConversions) { | 
|  | CollectVisibleConversions(Ctx, this, *Set); | 
|  | data().ComputedVisibleConversions = true; | 
|  | } | 
|  | } | 
|  | return llvm::make_range(Set->begin(), Set->end()); | 
|  | } | 
|  |  | 
|  | void CXXRecordDecl::removeConversion(const NamedDecl *ConvDecl) { | 
|  | // This operation is O(N) but extremely rare.  Sema only uses it to | 
|  | // remove UsingShadowDecls in a class that were followed by a direct | 
|  | // declaration, e.g.: | 
|  | //   class A : B { | 
|  | //     using B::operator int; | 
|  | //     operator int(); | 
|  | //   }; | 
|  | // This is uncommon by itself and even more uncommon in conjunction | 
|  | // with sufficiently large numbers of directly-declared conversions | 
|  | // that asymptotic behavior matters. | 
|  |  | 
|  | ASTUnresolvedSet &Convs = data().Conversions.get(getASTContext()); | 
|  | for (unsigned I = 0, E = Convs.size(); I != E; ++I) { | 
|  | if (Convs[I].getDecl() == ConvDecl) { | 
|  | Convs.erase(I); | 
|  | assert(llvm::find(Convs, ConvDecl) == Convs.end() && | 
|  | "conversion was found multiple times in unresolved set"); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm_unreachable("conversion not found in set!"); | 
|  | } | 
|  |  | 
|  | CXXRecordDecl *CXXRecordDecl::getInstantiatedFromMemberClass() const { | 
|  | if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) | 
|  | return cast<CXXRecordDecl>(MSInfo->getInstantiatedFrom()); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | MemberSpecializationInfo *CXXRecordDecl::getMemberSpecializationInfo() const { | 
|  | return TemplateOrInstantiation.dyn_cast<MemberSpecializationInfo *>(); | 
|  | } | 
|  |  | 
|  | void | 
|  | CXXRecordDecl::setInstantiationOfMemberClass(CXXRecordDecl *RD, | 
|  | TemplateSpecializationKind TSK) { | 
|  | assert(TemplateOrInstantiation.isNull() && | 
|  | "Previous template or instantiation?"); | 
|  | assert(!isa<ClassTemplatePartialSpecializationDecl>(this)); | 
|  | TemplateOrInstantiation | 
|  | = new (getASTContext()) MemberSpecializationInfo(RD, TSK); | 
|  | } | 
|  |  | 
|  | ClassTemplateDecl *CXXRecordDecl::getDescribedClassTemplate() const { | 
|  | return TemplateOrInstantiation.dyn_cast<ClassTemplateDecl *>(); | 
|  | } | 
|  |  | 
|  | void CXXRecordDecl::setDescribedClassTemplate(ClassTemplateDecl *Template) { | 
|  | TemplateOrInstantiation = Template; | 
|  | } | 
|  |  | 
|  | TemplateSpecializationKind CXXRecordDecl::getTemplateSpecializationKind() const{ | 
|  | if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) | 
|  | return Spec->getSpecializationKind(); | 
|  |  | 
|  | if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) | 
|  | return MSInfo->getTemplateSpecializationKind(); | 
|  |  | 
|  | return TSK_Undeclared; | 
|  | } | 
|  |  | 
|  | void | 
|  | CXXRecordDecl::setTemplateSpecializationKind(TemplateSpecializationKind TSK) { | 
|  | if (auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(this)) { | 
|  | Spec->setSpecializationKind(TSK); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { | 
|  | MSInfo->setTemplateSpecializationKind(TSK); | 
|  | return; | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Not a class template or member class specialization"); | 
|  | } | 
|  |  | 
|  | const CXXRecordDecl *CXXRecordDecl::getTemplateInstantiationPattern() const { | 
|  | auto GetDefinitionOrSelf = | 
|  | [](const CXXRecordDecl *D) -> const CXXRecordDecl * { | 
|  | if (auto *Def = D->getDefinition()) | 
|  | return Def; | 
|  | return D; | 
|  | }; | 
|  |  | 
|  | // If it's a class template specialization, find the template or partial | 
|  | // specialization from which it was instantiated. | 
|  | if (auto *TD = dyn_cast<ClassTemplateSpecializationDecl>(this)) { | 
|  | auto From = TD->getInstantiatedFrom(); | 
|  | if (auto *CTD = From.dyn_cast<ClassTemplateDecl *>()) { | 
|  | while (auto *NewCTD = CTD->getInstantiatedFromMemberTemplate()) { | 
|  | if (NewCTD->isMemberSpecialization()) | 
|  | break; | 
|  | CTD = NewCTD; | 
|  | } | 
|  | return GetDefinitionOrSelf(CTD->getTemplatedDecl()); | 
|  | } | 
|  | if (auto *CTPSD = | 
|  | From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) { | 
|  | while (auto *NewCTPSD = CTPSD->getInstantiatedFromMember()) { | 
|  | if (NewCTPSD->isMemberSpecialization()) | 
|  | break; | 
|  | CTPSD = NewCTPSD; | 
|  | } | 
|  | return GetDefinitionOrSelf(CTPSD); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MemberSpecializationInfo *MSInfo = getMemberSpecializationInfo()) { | 
|  | if (isTemplateInstantiation(MSInfo->getTemplateSpecializationKind())) { | 
|  | const CXXRecordDecl *RD = this; | 
|  | while (auto *NewRD = RD->getInstantiatedFromMemberClass()) | 
|  | RD = NewRD; | 
|  | return GetDefinitionOrSelf(RD); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(!isTemplateInstantiation(this->getTemplateSpecializationKind()) && | 
|  | "couldn't find pattern for class template instantiation"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | CXXDestructorDecl *CXXRecordDecl::getDestructor() const { | 
|  | ASTContext &Context = getASTContext(); | 
|  | QualType ClassType = Context.getTypeDeclType(this); | 
|  |  | 
|  | DeclarationName Name | 
|  | = Context.DeclarationNames.getCXXDestructorName( | 
|  | Context.getCanonicalType(ClassType)); | 
|  |  | 
|  | DeclContext::lookup_result R = lookup(Name); | 
|  |  | 
|  | return R.empty() ? nullptr : dyn_cast<CXXDestructorDecl>(R.front()); | 
|  | } | 
|  |  | 
|  | bool CXXRecordDecl::isAnyDestructorNoReturn() const { | 
|  | // Destructor is noreturn. | 
|  | if (const CXXDestructorDecl *Destructor = getDestructor()) | 
|  | if (Destructor->isNoReturn()) | 
|  | return true; | 
|  |  | 
|  | // Check base classes destructor for noreturn. | 
|  | for (const auto &Base : bases()) | 
|  | if (const CXXRecordDecl *RD = Base.getType()->getAsCXXRecordDecl()) | 
|  | if (RD->isAnyDestructorNoReturn()) | 
|  | return true; | 
|  |  | 
|  | // Check fields for noreturn. | 
|  | for (const auto *Field : fields()) | 
|  | if (const CXXRecordDecl *RD = | 
|  | Field->getType()->getBaseElementTypeUnsafe()->getAsCXXRecordDecl()) | 
|  | if (RD->isAnyDestructorNoReturn()) | 
|  | return true; | 
|  |  | 
|  | // All destructors are not noreturn. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static bool isDeclContextInNamespace(const DeclContext *DC) { | 
|  | while (!DC->isTranslationUnit()) { | 
|  | if (DC->isNamespace()) | 
|  | return true; | 
|  | DC = DC->getParent(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CXXRecordDecl::isInterfaceLike() const { | 
|  | assert(hasDefinition() && "checking for interface-like without a definition"); | 
|  | // All __interfaces are inheritently interface-like. | 
|  | if (isInterface()) | 
|  | return true; | 
|  |  | 
|  | // Interface-like types cannot have a user declared constructor, destructor, | 
|  | // friends, VBases, conversion functions, or fields.  Additionally, lambdas | 
|  | // cannot be interface types. | 
|  | if (isLambda() || hasUserDeclaredConstructor() || | 
|  | hasUserDeclaredDestructor() || !field_empty() || hasFriends() || | 
|  | getNumVBases() > 0 || conversion_end() - conversion_begin() > 0) | 
|  | return false; | 
|  |  | 
|  | // No interface-like type can have a method with a definition. | 
|  | for (const auto *const Method : methods()) | 
|  | if (Method->isDefined() && !Method->isImplicit()) | 
|  | return false; | 
|  |  | 
|  | // Check "Special" types. | 
|  | const auto *Uuid = getAttr<UuidAttr>(); | 
|  | // MS SDK declares IUnknown/IDispatch both in the root of a TU, or in an | 
|  | // extern C++ block directly in the TU.  These are only valid if in one | 
|  | // of these two situations. | 
|  | if (Uuid && isStruct() && !getDeclContext()->isExternCContext() && | 
|  | !isDeclContextInNamespace(getDeclContext()) && | 
|  | ((getName() == "IUnknown" && | 
|  | Uuid->getGuid() == "00000000-0000-0000-C000-000000000046") || | 
|  | (getName() == "IDispatch" && | 
|  | Uuid->getGuid() == "00020400-0000-0000-C000-000000000046"))) { | 
|  | if (getNumBases() > 0) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // FIXME: Any access specifiers is supposed to make this no longer interface | 
|  | // like. | 
|  |  | 
|  | // If this isn't a 'special' type, it must have a single interface-like base. | 
|  | if (getNumBases() != 1) | 
|  | return false; | 
|  |  | 
|  | const auto BaseSpec = *bases_begin(); | 
|  | if (BaseSpec.isVirtual() || BaseSpec.getAccessSpecifier() != AS_public) | 
|  | return false; | 
|  | const auto *Base = BaseSpec.getType()->getAsCXXRecordDecl(); | 
|  | if (Base->isInterface() || !Base->isInterfaceLike()) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void CXXRecordDecl::completeDefinition() { | 
|  | completeDefinition(nullptr); | 
|  | } | 
|  |  | 
|  | void CXXRecordDecl::completeDefinition(CXXFinalOverriderMap *FinalOverriders) { | 
|  | RecordDecl::completeDefinition(); | 
|  |  | 
|  | // If the class may be abstract (but hasn't been marked as such), check for | 
|  | // any pure final overriders. | 
|  | if (mayBeAbstract()) { | 
|  | CXXFinalOverriderMap MyFinalOverriders; | 
|  | if (!FinalOverriders) { | 
|  | getFinalOverriders(MyFinalOverriders); | 
|  | FinalOverriders = &MyFinalOverriders; | 
|  | } | 
|  |  | 
|  | bool Done = false; | 
|  | for (CXXFinalOverriderMap::iterator M = FinalOverriders->begin(), | 
|  | MEnd = FinalOverriders->end(); | 
|  | M != MEnd && !Done; ++M) { | 
|  | for (OverridingMethods::iterator SO = M->second.begin(), | 
|  | SOEnd = M->second.end(); | 
|  | SO != SOEnd && !Done; ++SO) { | 
|  | assert(SO->second.size() > 0 && | 
|  | "All virtual functions have overriding virtual functions"); | 
|  |  | 
|  | // C++ [class.abstract]p4: | 
|  | //   A class is abstract if it contains or inherits at least one | 
|  | //   pure virtual function for which the final overrider is pure | 
|  | //   virtual. | 
|  | if (SO->second.front().Method->isPure()) { | 
|  | data().Abstract = true; | 
|  | Done = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set access bits correctly on the directly-declared conversions. | 
|  | for (conversion_iterator I = conversion_begin(), E = conversion_end(); | 
|  | I != E; ++I) | 
|  | I.setAccess((*I)->getAccess()); | 
|  | } | 
|  |  | 
|  | bool CXXRecordDecl::mayBeAbstract() const { | 
|  | if (data().Abstract || isInvalidDecl() || !data().Polymorphic || | 
|  | isDependentContext()) | 
|  | return false; | 
|  |  | 
|  | for (const auto &B : bases()) { | 
|  | const auto *BaseDecl = | 
|  | cast<CXXRecordDecl>(B.getType()->getAs<RecordType>()->getDecl()); | 
|  | if (BaseDecl->isAbstract()) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void CXXDeductionGuideDecl::anchor() {} | 
|  |  | 
|  | bool ExplicitSpecifier::isEquivalent(const ExplicitSpecifier Other) const { | 
|  | if ((getKind() != Other.getKind() || | 
|  | getKind() == ExplicitSpecKind::Unresolved)) { | 
|  | if (getKind() == ExplicitSpecKind::Unresolved && | 
|  | Other.getKind() == ExplicitSpecKind::Unresolved) { | 
|  | ODRHash SelfHash, OtherHash; | 
|  | SelfHash.AddStmt(getExpr()); | 
|  | OtherHash.AddStmt(Other.getExpr()); | 
|  | return SelfHash.CalculateHash() == OtherHash.CalculateHash(); | 
|  | } else | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ExplicitSpecifier ExplicitSpecifier::getFromDecl(FunctionDecl *Function) { | 
|  | switch (Function->getDeclKind()) { | 
|  | case Decl::Kind::CXXConstructor: | 
|  | return cast<CXXConstructorDecl>(Function)->getExplicitSpecifier(); | 
|  | case Decl::Kind::CXXConversion: | 
|  | return cast<CXXConversionDecl>(Function)->getExplicitSpecifier(); | 
|  | case Decl::Kind::CXXDeductionGuide: | 
|  | return cast<CXXDeductionGuideDecl>(Function)->getExplicitSpecifier(); | 
|  | default: | 
|  | return {}; | 
|  | } | 
|  | } | 
|  |  | 
|  | CXXDeductionGuideDecl *CXXDeductionGuideDecl::Create( | 
|  | ASTContext &C, DeclContext *DC, SourceLocation StartLoc, | 
|  | ExplicitSpecifier ES, const DeclarationNameInfo &NameInfo, QualType T, | 
|  | TypeSourceInfo *TInfo, SourceLocation EndLocation) { | 
|  | return new (C, DC) CXXDeductionGuideDecl(C, DC, StartLoc, ES, NameInfo, T, | 
|  | TInfo, EndLocation); | 
|  | } | 
|  |  | 
|  | CXXDeductionGuideDecl *CXXDeductionGuideDecl::CreateDeserialized(ASTContext &C, | 
|  | unsigned ID) { | 
|  | return new (C, ID) CXXDeductionGuideDecl( | 
|  | C, nullptr, SourceLocation(), ExplicitSpecifier(), DeclarationNameInfo(), | 
|  | QualType(), nullptr, SourceLocation()); | 
|  | } | 
|  |  | 
|  | void CXXMethodDecl::anchor() {} | 
|  |  | 
|  | bool CXXMethodDecl::isStatic() const { | 
|  | const CXXMethodDecl *MD = getCanonicalDecl(); | 
|  |  | 
|  | if (MD->getStorageClass() == SC_Static) | 
|  | return true; | 
|  |  | 
|  | OverloadedOperatorKind OOK = getDeclName().getCXXOverloadedOperator(); | 
|  | return isStaticOverloadedOperator(OOK); | 
|  | } | 
|  |  | 
|  | static bool recursivelyOverrides(const CXXMethodDecl *DerivedMD, | 
|  | const CXXMethodDecl *BaseMD) { | 
|  | for (const CXXMethodDecl *MD : DerivedMD->overridden_methods()) { | 
|  | if (MD->getCanonicalDecl() == BaseMD->getCanonicalDecl()) | 
|  | return true; | 
|  | if (recursivelyOverrides(MD, BaseMD)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | CXXMethodDecl * | 
|  | CXXMethodDecl::getCorrespondingMethodDeclaredInClass(const CXXRecordDecl *RD, | 
|  | bool MayBeBase) { | 
|  | if (this->getParent()->getCanonicalDecl() == RD->getCanonicalDecl()) | 
|  | return this; | 
|  |  | 
|  | // Lookup doesn't work for destructors, so handle them separately. | 
|  | if (isa<CXXDestructorDecl>(this)) { | 
|  | CXXMethodDecl *MD = RD->getDestructor(); | 
|  | if (MD) { | 
|  | if (recursivelyOverrides(MD, this)) | 
|  | return MD; | 
|  | if (MayBeBase && recursivelyOverrides(this, MD)) | 
|  | return MD; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | for (auto *ND : RD->lookup(getDeclName())) { | 
|  | auto *MD = dyn_cast<CXXMethodDecl>(ND); | 
|  | if (!MD) | 
|  | continue; | 
|  | if (recursivelyOverrides(MD, this)) | 
|  | return MD; | 
|  | if (MayBeBase && recursivelyOverrides(this, MD)) | 
|  | return MD; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | CXXMethodDecl * | 
|  | CXXMethodDecl::getCorrespondingMethodInClass(const CXXRecordDecl *RD, | 
|  | bool MayBeBase) { | 
|  | if (auto *MD = getCorrespondingMethodDeclaredInClass(RD, MayBeBase)) | 
|  | return MD; | 
|  |  | 
|  | for (const auto &I : RD->bases()) { | 
|  | const RecordType *RT = I.getType()->getAs<RecordType>(); | 
|  | if (!RT) | 
|  | continue; | 
|  | const auto *Base = cast<CXXRecordDecl>(RT->getDecl()); | 
|  | CXXMethodDecl *T = this->getCorrespondingMethodInClass(Base); | 
|  | if (T) | 
|  | return T; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | CXXMethodDecl *CXXMethodDecl::Create(ASTContext &C, CXXRecordDecl *RD, | 
|  | SourceLocation StartLoc, | 
|  | const DeclarationNameInfo &NameInfo, | 
|  | QualType T, TypeSourceInfo *TInfo, | 
|  | StorageClass SC, bool isInline, | 
|  | ConstexprSpecKind ConstexprKind, | 
|  | SourceLocation EndLocation) { | 
|  | return new (C, RD) | 
|  | CXXMethodDecl(CXXMethod, C, RD, StartLoc, NameInfo, T, TInfo, SC, | 
|  | isInline, ConstexprKind, EndLocation); | 
|  | } | 
|  |  | 
|  | CXXMethodDecl *CXXMethodDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
|  | return new (C, ID) CXXMethodDecl( | 
|  | CXXMethod, C, nullptr, SourceLocation(), DeclarationNameInfo(), | 
|  | QualType(), nullptr, SC_None, false, CSK_unspecified, SourceLocation()); | 
|  | } | 
|  |  | 
|  | CXXMethodDecl *CXXMethodDecl::getDevirtualizedMethod(const Expr *Base, | 
|  | bool IsAppleKext) { | 
|  | assert(isVirtual() && "this method is expected to be virtual"); | 
|  |  | 
|  | // When building with -fapple-kext, all calls must go through the vtable since | 
|  | // the kernel linker can do runtime patching of vtables. | 
|  | if (IsAppleKext) | 
|  | return nullptr; | 
|  |  | 
|  | // If the member function is marked 'final', we know that it can't be | 
|  | // overridden and can therefore devirtualize it unless it's pure virtual. | 
|  | if (hasAttr<FinalAttr>()) | 
|  | return isPure() ? nullptr : this; | 
|  |  | 
|  | // If Base is unknown, we cannot devirtualize. | 
|  | if (!Base) | 
|  | return nullptr; | 
|  |  | 
|  | // If the base expression (after skipping derived-to-base conversions) is a | 
|  | // class prvalue, then we can devirtualize. | 
|  | Base = Base->getBestDynamicClassTypeExpr(); | 
|  | if (Base->isRValue() && Base->getType()->isRecordType()) | 
|  | return this; | 
|  |  | 
|  | // If we don't even know what we would call, we can't devirtualize. | 
|  | const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType(); | 
|  | if (!BestDynamicDecl) | 
|  | return nullptr; | 
|  |  | 
|  | // There may be a method corresponding to MD in a derived class. | 
|  | CXXMethodDecl *DevirtualizedMethod = | 
|  | getCorrespondingMethodInClass(BestDynamicDecl); | 
|  |  | 
|  | // If that method is pure virtual, we can't devirtualize. If this code is | 
|  | // reached, the result would be UB, not a direct call to the derived class | 
|  | // function, and we can't assume the derived class function is defined. | 
|  | if (DevirtualizedMethod->isPure()) | 
|  | return nullptr; | 
|  |  | 
|  | // If that method is marked final, we can devirtualize it. | 
|  | if (DevirtualizedMethod->hasAttr<FinalAttr>()) | 
|  | return DevirtualizedMethod; | 
|  |  | 
|  | // Similarly, if the class itself or its destructor is marked 'final', | 
|  | // the class can't be derived from and we can therefore devirtualize the | 
|  | // member function call. | 
|  | if (BestDynamicDecl->hasAttr<FinalAttr>()) | 
|  | return DevirtualizedMethod; | 
|  | if (const auto *dtor = BestDynamicDecl->getDestructor()) { | 
|  | if (dtor->hasAttr<FinalAttr>()) | 
|  | return DevirtualizedMethod; | 
|  | } | 
|  |  | 
|  | if (const auto *DRE = dyn_cast<DeclRefExpr>(Base)) { | 
|  | if (const auto *VD = dyn_cast<VarDecl>(DRE->getDecl())) | 
|  | if (VD->getType()->isRecordType()) | 
|  | // This is a record decl. We know the type and can devirtualize it. | 
|  | return DevirtualizedMethod; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // We can devirtualize calls on an object accessed by a class member access | 
|  | // expression, since by C++11 [basic.life]p6 we know that it can't refer to | 
|  | // a derived class object constructed in the same location. | 
|  | if (const auto *ME = dyn_cast<MemberExpr>(Base)) { | 
|  | const ValueDecl *VD = ME->getMemberDecl(); | 
|  | return VD->getType()->isRecordType() ? DevirtualizedMethod : nullptr; | 
|  | } | 
|  |  | 
|  | // Likewise for calls on an object accessed by a (non-reference) pointer to | 
|  | // member access. | 
|  | if (auto *BO = dyn_cast<BinaryOperator>(Base)) { | 
|  | if (BO->isPtrMemOp()) { | 
|  | auto *MPT = BO->getRHS()->getType()->castAs<MemberPointerType>(); | 
|  | if (MPT->getPointeeType()->isRecordType()) | 
|  | return DevirtualizedMethod; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We can't devirtualize the call. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool CXXMethodDecl::isUsualDeallocationFunction( | 
|  | SmallVectorImpl<const FunctionDecl *> &PreventedBy) const { | 
|  | assert(PreventedBy.empty() && "PreventedBy is expected to be empty"); | 
|  | if (getOverloadedOperator() != OO_Delete && | 
|  | getOverloadedOperator() != OO_Array_Delete) | 
|  | return false; | 
|  |  | 
|  | // C++ [basic.stc.dynamic.deallocation]p2: | 
|  | //   A template instance is never a usual deallocation function, | 
|  | //   regardless of its signature. | 
|  | if (getPrimaryTemplate()) | 
|  | return false; | 
|  |  | 
|  | // C++ [basic.stc.dynamic.deallocation]p2: | 
|  | //   If a class T has a member deallocation function named operator delete | 
|  | //   with exactly one parameter, then that function is a usual (non-placement) | 
|  | //   deallocation function. [...] | 
|  | if (getNumParams() == 1) | 
|  | return true; | 
|  | unsigned UsualParams = 1; | 
|  |  | 
|  | // C++ P0722: | 
|  | //   A destroying operator delete is a usual deallocation function if | 
|  | //   removing the std::destroying_delete_t parameter and changing the | 
|  | //   first parameter type from T* to void* results in the signature of | 
|  | //   a usual deallocation function. | 
|  | if (isDestroyingOperatorDelete()) | 
|  | ++UsualParams; | 
|  |  | 
|  | // C++ <=14 [basic.stc.dynamic.deallocation]p2: | 
|  | //   [...] If class T does not declare such an operator delete but does | 
|  | //   declare a member deallocation function named operator delete with | 
|  | //   exactly two parameters, the second of which has type std::size_t (18.1), | 
|  | //   then this function is a usual deallocation function. | 
|  | // | 
|  | // C++17 says a usual deallocation function is one with the signature | 
|  | //   (void* [, size_t] [, std::align_val_t] [, ...]) | 
|  | // and all such functions are usual deallocation functions. It's not clear | 
|  | // that allowing varargs functions was intentional. | 
|  | ASTContext &Context = getASTContext(); | 
|  | if (UsualParams < getNumParams() && | 
|  | Context.hasSameUnqualifiedType(getParamDecl(UsualParams)->getType(), | 
|  | Context.getSizeType())) | 
|  | ++UsualParams; | 
|  |  | 
|  | if (UsualParams < getNumParams() && | 
|  | getParamDecl(UsualParams)->getType()->isAlignValT()) | 
|  | ++UsualParams; | 
|  |  | 
|  | if (UsualParams != getNumParams()) | 
|  | return false; | 
|  |  | 
|  | // In C++17 onwards, all potential usual deallocation functions are actual | 
|  | // usual deallocation functions. Honor this behavior when post-C++14 | 
|  | // deallocation functions are offered as extensions too. | 
|  | // FIXME(EricWF): Destrying Delete should be a language option. How do we | 
|  | // handle when destroying delete is used prior to C++17? | 
|  | if (Context.getLangOpts().CPlusPlus17 || | 
|  | Context.getLangOpts().AlignedAllocation || | 
|  | isDestroyingOperatorDelete()) | 
|  | return true; | 
|  |  | 
|  | // This function is a usual deallocation function if there are no | 
|  | // single-parameter deallocation functions of the same kind. | 
|  | DeclContext::lookup_result R = getDeclContext()->lookup(getDeclName()); | 
|  | bool Result = true; | 
|  | for (const auto *D : R) { | 
|  | if (const auto *FD = dyn_cast<FunctionDecl>(D)) { | 
|  | if (FD->getNumParams() == 1) { | 
|  | PreventedBy.push_back(FD); | 
|  | Result = false; | 
|  | } | 
|  | } | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | bool CXXMethodDecl::isCopyAssignmentOperator() const { | 
|  | // C++0x [class.copy]p17: | 
|  | //  A user-declared copy assignment operator X::operator= is a non-static | 
|  | //  non-template member function of class X with exactly one parameter of | 
|  | //  type X, X&, const X&, volatile X& or const volatile X&. | 
|  | if (/*operator=*/getOverloadedOperator() != OO_Equal || | 
|  | /*non-static*/ isStatic() || | 
|  | /*non-template*/getPrimaryTemplate() || getDescribedFunctionTemplate() || | 
|  | getNumParams() != 1) | 
|  | return false; | 
|  |  | 
|  | QualType ParamType = getParamDecl(0)->getType(); | 
|  | if (const auto *Ref = ParamType->getAs<LValueReferenceType>()) | 
|  | ParamType = Ref->getPointeeType(); | 
|  |  | 
|  | ASTContext &Context = getASTContext(); | 
|  | QualType ClassType | 
|  | = Context.getCanonicalType(Context.getTypeDeclType(getParent())); | 
|  | return Context.hasSameUnqualifiedType(ClassType, ParamType); | 
|  | } | 
|  |  | 
|  | bool CXXMethodDecl::isMoveAssignmentOperator() const { | 
|  | // C++0x [class.copy]p19: | 
|  | //  A user-declared move assignment operator X::operator= is a non-static | 
|  | //  non-template member function of class X with exactly one parameter of type | 
|  | //  X&&, const X&&, volatile X&&, or const volatile X&&. | 
|  | if (getOverloadedOperator() != OO_Equal || isStatic() || | 
|  | getPrimaryTemplate() || getDescribedFunctionTemplate() || | 
|  | getNumParams() != 1) | 
|  | return false; | 
|  |  | 
|  | QualType ParamType = getParamDecl(0)->getType(); | 
|  | if (!isa<RValueReferenceType>(ParamType)) | 
|  | return false; | 
|  | ParamType = ParamType->getPointeeType(); | 
|  |  | 
|  | ASTContext &Context = getASTContext(); | 
|  | QualType ClassType | 
|  | = Context.getCanonicalType(Context.getTypeDeclType(getParent())); | 
|  | return Context.hasSameUnqualifiedType(ClassType, ParamType); | 
|  | } | 
|  |  | 
|  | void CXXMethodDecl::addOverriddenMethod(const CXXMethodDecl *MD) { | 
|  | assert(MD->isCanonicalDecl() && "Method is not canonical!"); | 
|  | assert(!MD->getParent()->isDependentContext() && | 
|  | "Can't add an overridden method to a class template!"); | 
|  | assert(MD->isVirtual() && "Method is not virtual!"); | 
|  |  | 
|  | getASTContext().addOverriddenMethod(this, MD); | 
|  | } | 
|  |  | 
|  | CXXMethodDecl::method_iterator CXXMethodDecl::begin_overridden_methods() const { | 
|  | if (isa<CXXConstructorDecl>(this)) return nullptr; | 
|  | return getASTContext().overridden_methods_begin(this); | 
|  | } | 
|  |  | 
|  | CXXMethodDecl::method_iterator CXXMethodDecl::end_overridden_methods() const { | 
|  | if (isa<CXXConstructorDecl>(this)) return nullptr; | 
|  | return getASTContext().overridden_methods_end(this); | 
|  | } | 
|  |  | 
|  | unsigned CXXMethodDecl::size_overridden_methods() const { | 
|  | if (isa<CXXConstructorDecl>(this)) return 0; | 
|  | return getASTContext().overridden_methods_size(this); | 
|  | } | 
|  |  | 
|  | CXXMethodDecl::overridden_method_range | 
|  | CXXMethodDecl::overridden_methods() const { | 
|  | if (isa<CXXConstructorDecl>(this)) | 
|  | return overridden_method_range(nullptr, nullptr); | 
|  | return getASTContext().overridden_methods(this); | 
|  | } | 
|  |  | 
|  | static QualType getThisObjectType(ASTContext &C, const FunctionProtoType *FPT, | 
|  | const CXXRecordDecl *Decl) { | 
|  | QualType ClassTy = C.getTypeDeclType(Decl); | 
|  | return C.getQualifiedType(ClassTy, FPT->getMethodQuals()); | 
|  | } | 
|  |  | 
|  | QualType CXXMethodDecl::getThisType(const FunctionProtoType *FPT, | 
|  | const CXXRecordDecl *Decl) { | 
|  | ASTContext &C = Decl->getASTContext(); | 
|  | QualType ObjectTy = ::getThisObjectType(C, FPT, Decl); | 
|  | return C.getPointerType(ObjectTy); | 
|  | } | 
|  |  | 
|  | QualType CXXMethodDecl::getThisObjectType(const FunctionProtoType *FPT, | 
|  | const CXXRecordDecl *Decl) { | 
|  | ASTContext &C = Decl->getASTContext(); | 
|  | return ::getThisObjectType(C, FPT, Decl); | 
|  | } | 
|  |  | 
|  | QualType CXXMethodDecl::getThisType() const { | 
|  | // C++ 9.3.2p1: The type of this in a member function of a class X is X*. | 
|  | // If the member function is declared const, the type of this is const X*, | 
|  | // if the member function is declared volatile, the type of this is | 
|  | // volatile X*, and if the member function is declared const volatile, | 
|  | // the type of this is const volatile X*. | 
|  | assert(isInstance() && "No 'this' for static methods!"); | 
|  |  | 
|  | return CXXMethodDecl::getThisType(getType()->getAs<FunctionProtoType>(), | 
|  | getParent()); | 
|  | } | 
|  |  | 
|  | QualType CXXMethodDecl::getThisObjectType() const { | 
|  | // Ditto getThisType. | 
|  | assert(isInstance() && "No 'this' for static methods!"); | 
|  |  | 
|  | return CXXMethodDecl::getThisObjectType(getType()->getAs<FunctionProtoType>(), | 
|  | getParent()); | 
|  | } | 
|  |  | 
|  | bool CXXMethodDecl::hasInlineBody() const { | 
|  | // If this function is a template instantiation, look at the template from | 
|  | // which it was instantiated. | 
|  | const FunctionDecl *CheckFn = getTemplateInstantiationPattern(); | 
|  | if (!CheckFn) | 
|  | CheckFn = this; | 
|  |  | 
|  | const FunctionDecl *fn; | 
|  | return CheckFn->isDefined(fn) && !fn->isOutOfLine() && | 
|  | (fn->doesThisDeclarationHaveABody() || fn->willHaveBody()); | 
|  | } | 
|  |  | 
|  | bool CXXMethodDecl::isLambdaStaticInvoker() const { | 
|  | const CXXRecordDecl *P = getParent(); | 
|  | if (P->isLambda()) { | 
|  | if (const CXXMethodDecl *StaticInvoker = P->getLambdaStaticInvoker()) { | 
|  | if (StaticInvoker == this) return true; | 
|  | if (P->isGenericLambda() && this->isFunctionTemplateSpecialization()) | 
|  | return StaticInvoker == this->getPrimaryTemplate()->getTemplatedDecl(); | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, | 
|  | TypeSourceInfo *TInfo, bool IsVirtual, | 
|  | SourceLocation L, Expr *Init, | 
|  | SourceLocation R, | 
|  | SourceLocation EllipsisLoc) | 
|  | : Initializee(TInfo), MemberOrEllipsisLocation(EllipsisLoc), Init(Init), | 
|  | LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(IsVirtual), | 
|  | IsWritten(false), SourceOrder(0) {} | 
|  |  | 
|  | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, | 
|  | FieldDecl *Member, | 
|  | SourceLocation MemberLoc, | 
|  | SourceLocation L, Expr *Init, | 
|  | SourceLocation R) | 
|  | : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), | 
|  | LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), | 
|  | IsWritten(false), SourceOrder(0) {} | 
|  |  | 
|  | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, | 
|  | IndirectFieldDecl *Member, | 
|  | SourceLocation MemberLoc, | 
|  | SourceLocation L, Expr *Init, | 
|  | SourceLocation R) | 
|  | : Initializee(Member), MemberOrEllipsisLocation(MemberLoc), Init(Init), | 
|  | LParenLoc(L), RParenLoc(R), IsDelegating(false), IsVirtual(false), | 
|  | IsWritten(false), SourceOrder(0) {} | 
|  |  | 
|  | CXXCtorInitializer::CXXCtorInitializer(ASTContext &Context, | 
|  | TypeSourceInfo *TInfo, | 
|  | SourceLocation L, Expr *Init, | 
|  | SourceLocation R) | 
|  | : Initializee(TInfo), Init(Init), LParenLoc(L), RParenLoc(R), | 
|  | IsDelegating(true), IsVirtual(false), IsWritten(false), SourceOrder(0) {} | 
|  |  | 
|  | int64_t CXXCtorInitializer::getID(const ASTContext &Context) const { | 
|  | return Context.getAllocator() | 
|  | .identifyKnownAlignedObject<CXXCtorInitializer>(this); | 
|  | } | 
|  |  | 
|  | TypeLoc CXXCtorInitializer::getBaseClassLoc() const { | 
|  | if (isBaseInitializer()) | 
|  | return Initializee.get<TypeSourceInfo*>()->getTypeLoc(); | 
|  | else | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | const Type *CXXCtorInitializer::getBaseClass() const { | 
|  | if (isBaseInitializer()) | 
|  | return Initializee.get<TypeSourceInfo*>()->getType().getTypePtr(); | 
|  | else | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | SourceLocation CXXCtorInitializer::getSourceLocation() const { | 
|  | if (isInClassMemberInitializer()) | 
|  | return getAnyMember()->getLocation(); | 
|  |  | 
|  | if (isAnyMemberInitializer()) | 
|  | return getMemberLocation(); | 
|  |  | 
|  | if (const auto *TSInfo = Initializee.get<TypeSourceInfo *>()) | 
|  | return TSInfo->getTypeLoc().getLocalSourceRange().getBegin(); | 
|  |  | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | SourceRange CXXCtorInitializer::getSourceRange() const { | 
|  | if (isInClassMemberInitializer()) { | 
|  | FieldDecl *D = getAnyMember(); | 
|  | if (Expr *I = D->getInClassInitializer()) | 
|  | return I->getSourceRange(); | 
|  | return {}; | 
|  | } | 
|  |  | 
|  | return SourceRange(getSourceLocation(), getRParenLoc()); | 
|  | } | 
|  |  | 
|  | CXXConstructorDecl::CXXConstructorDecl( | 
|  | ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, | 
|  | const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, | 
|  | ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared, | 
|  | ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited) | 
|  | : CXXMethodDecl(CXXConstructor, C, RD, StartLoc, NameInfo, T, TInfo, | 
|  | SC_None, isInline, ConstexprKind, SourceLocation()) { | 
|  | setNumCtorInitializers(0); | 
|  | setInheritingConstructor(static_cast<bool>(Inherited)); | 
|  | setImplicit(isImplicitlyDeclared); | 
|  | CXXConstructorDeclBits.HasTrailingExplicitSpecifier = ES.getExpr() ? 1 : 0; | 
|  | if (Inherited) | 
|  | *getTrailingObjects<InheritedConstructor>() = Inherited; | 
|  | setExplicitSpecifier(ES); | 
|  | } | 
|  |  | 
|  | void CXXConstructorDecl::anchor() {} | 
|  |  | 
|  | CXXConstructorDecl *CXXConstructorDecl::CreateDeserialized(ASTContext &C, | 
|  | unsigned ID, | 
|  | uint64_t AllocKind) { | 
|  | bool hasTraillingExplicit = static_cast<bool>(AllocKind & TAKHasTailExplicit); | 
|  | bool isInheritingConstructor = | 
|  | static_cast<bool>(AllocKind & TAKInheritsConstructor); | 
|  | unsigned Extra = | 
|  | additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>( | 
|  | isInheritingConstructor, hasTraillingExplicit); | 
|  | auto *Result = new (C, ID, Extra) | 
|  | CXXConstructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(), | 
|  | QualType(), nullptr, ExplicitSpecifier(), false, false, | 
|  | CSK_unspecified, InheritedConstructor()); | 
|  | Result->setInheritingConstructor(isInheritingConstructor); | 
|  | Result->CXXConstructorDeclBits.HasTrailingExplicitSpecifier = | 
|  | hasTraillingExplicit; | 
|  | Result->setExplicitSpecifier(ExplicitSpecifier()); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | CXXConstructorDecl *CXXConstructorDecl::Create( | 
|  | ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, | 
|  | const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, | 
|  | ExplicitSpecifier ES, bool isInline, bool isImplicitlyDeclared, | 
|  | ConstexprSpecKind ConstexprKind, InheritedConstructor Inherited) { | 
|  | assert(NameInfo.getName().getNameKind() | 
|  | == DeclarationName::CXXConstructorName && | 
|  | "Name must refer to a constructor"); | 
|  | unsigned Extra = | 
|  | additionalSizeToAlloc<InheritedConstructor, ExplicitSpecifier>( | 
|  | Inherited ? 1 : 0, ES.getExpr() ? 1 : 0); | 
|  | return new (C, RD, Extra) | 
|  | CXXConstructorDecl(C, RD, StartLoc, NameInfo, T, TInfo, ES, isInline, | 
|  | isImplicitlyDeclared, ConstexprKind, Inherited); | 
|  | } | 
|  |  | 
|  | CXXConstructorDecl::init_const_iterator CXXConstructorDecl::init_begin() const { | 
|  | return CtorInitializers.get(getASTContext().getExternalSource()); | 
|  | } | 
|  |  | 
|  | CXXConstructorDecl *CXXConstructorDecl::getTargetConstructor() const { | 
|  | assert(isDelegatingConstructor() && "Not a delegating constructor!"); | 
|  | Expr *E = (*init_begin())->getInit()->IgnoreImplicit(); | 
|  | if (const auto *Construct = dyn_cast<CXXConstructExpr>(E)) | 
|  | return Construct->getConstructor(); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool CXXConstructorDecl::isDefaultConstructor() const { | 
|  | // C++ [class.ctor]p5: | 
|  | //   A default constructor for a class X is a constructor of class | 
|  | //   X that can be called without an argument. | 
|  | return (getNumParams() == 0) || | 
|  | (getNumParams() > 0 && getParamDecl(0)->hasDefaultArg()); | 
|  | } | 
|  |  | 
|  | bool | 
|  | CXXConstructorDecl::isCopyConstructor(unsigned &TypeQuals) const { | 
|  | return isCopyOrMoveConstructor(TypeQuals) && | 
|  | getParamDecl(0)->getType()->isLValueReferenceType(); | 
|  | } | 
|  |  | 
|  | bool CXXConstructorDecl::isMoveConstructor(unsigned &TypeQuals) const { | 
|  | return isCopyOrMoveConstructor(TypeQuals) && | 
|  | getParamDecl(0)->getType()->isRValueReferenceType(); | 
|  | } | 
|  |  | 
|  | /// Determine whether this is a copy or move constructor. | 
|  | bool CXXConstructorDecl::isCopyOrMoveConstructor(unsigned &TypeQuals) const { | 
|  | // C++ [class.copy]p2: | 
|  | //   A non-template constructor for class X is a copy constructor | 
|  | //   if its first parameter is of type X&, const X&, volatile X& or | 
|  | //   const volatile X&, and either there are no other parameters | 
|  | //   or else all other parameters have default arguments (8.3.6). | 
|  | // C++0x [class.copy]p3: | 
|  | //   A non-template constructor for class X is a move constructor if its | 
|  | //   first parameter is of type X&&, const X&&, volatile X&&, or | 
|  | //   const volatile X&&, and either there are no other parameters or else | 
|  | //   all other parameters have default arguments. | 
|  | if ((getNumParams() < 1) || | 
|  | (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) || | 
|  | (getPrimaryTemplate() != nullptr) || | 
|  | (getDescribedFunctionTemplate() != nullptr)) | 
|  | return false; | 
|  |  | 
|  | const ParmVarDecl *Param = getParamDecl(0); | 
|  |  | 
|  | // Do we have a reference type? | 
|  | const auto *ParamRefType = Param->getType()->getAs<ReferenceType>(); | 
|  | if (!ParamRefType) | 
|  | return false; | 
|  |  | 
|  | // Is it a reference to our class type? | 
|  | ASTContext &Context = getASTContext(); | 
|  |  | 
|  | CanQualType PointeeType | 
|  | = Context.getCanonicalType(ParamRefType->getPointeeType()); | 
|  | CanQualType ClassTy | 
|  | = Context.getCanonicalType(Context.getTagDeclType(getParent())); | 
|  | if (PointeeType.getUnqualifiedType() != ClassTy) | 
|  | return false; | 
|  |  | 
|  | // FIXME: other qualifiers? | 
|  |  | 
|  | // We have a copy or move constructor. | 
|  | TypeQuals = PointeeType.getCVRQualifiers(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool CXXConstructorDecl::isConvertingConstructor(bool AllowExplicit) const { | 
|  | // C++ [class.conv.ctor]p1: | 
|  | //   A constructor declared without the function-specifier explicit | 
|  | //   that can be called with a single parameter specifies a | 
|  | //   conversion from the type of its first parameter to the type of | 
|  | //   its class. Such a constructor is called a converting | 
|  | //   constructor. | 
|  | if (isExplicit() && !AllowExplicit) | 
|  | return false; | 
|  |  | 
|  | return (getNumParams() == 0 && | 
|  | getType()->getAs<FunctionProtoType>()->isVariadic()) || | 
|  | (getNumParams() == 1) || | 
|  | (getNumParams() > 1 && | 
|  | (getParamDecl(1)->hasDefaultArg() || | 
|  | getParamDecl(1)->isParameterPack())); | 
|  | } | 
|  |  | 
|  | bool CXXConstructorDecl::isSpecializationCopyingObject() const { | 
|  | if ((getNumParams() < 1) || | 
|  | (getNumParams() > 1 && !getParamDecl(1)->hasDefaultArg()) || | 
|  | (getDescribedFunctionTemplate() != nullptr)) | 
|  | return false; | 
|  |  | 
|  | const ParmVarDecl *Param = getParamDecl(0); | 
|  |  | 
|  | ASTContext &Context = getASTContext(); | 
|  | CanQualType ParamType = Context.getCanonicalType(Param->getType()); | 
|  |  | 
|  | // Is it the same as our class type? | 
|  | CanQualType ClassTy | 
|  | = Context.getCanonicalType(Context.getTagDeclType(getParent())); | 
|  | if (ParamType.getUnqualifiedType() != ClassTy) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | void CXXDestructorDecl::anchor() {} | 
|  |  | 
|  | CXXDestructorDecl * | 
|  | CXXDestructorDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
|  | return new (C, ID) | 
|  | CXXDestructorDecl(C, nullptr, SourceLocation(), DeclarationNameInfo(), | 
|  | QualType(), nullptr, false, false, CSK_unspecified); | 
|  | } | 
|  |  | 
|  | CXXDestructorDecl *CXXDestructorDecl::Create( | 
|  | ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, | 
|  | const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, | 
|  | bool isInline, bool isImplicitlyDeclared, ConstexprSpecKind ConstexprKind) { | 
|  | assert(NameInfo.getName().getNameKind() | 
|  | == DeclarationName::CXXDestructorName && | 
|  | "Name must refer to a destructor"); | 
|  | return new (C, RD) | 
|  | CXXDestructorDecl(C, RD, StartLoc, NameInfo, T, TInfo, isInline, | 
|  | isImplicitlyDeclared, ConstexprKind); | 
|  | } | 
|  |  | 
|  | void CXXDestructorDecl::setOperatorDelete(FunctionDecl *OD, Expr *ThisArg) { | 
|  | auto *First = cast<CXXDestructorDecl>(getFirstDecl()); | 
|  | if (OD && !First->OperatorDelete) { | 
|  | First->OperatorDelete = OD; | 
|  | First->OperatorDeleteThisArg = ThisArg; | 
|  | if (auto *L = getASTMutationListener()) | 
|  | L->ResolvedOperatorDelete(First, OD, ThisArg); | 
|  | } | 
|  | } | 
|  |  | 
|  | void CXXConversionDecl::anchor() {} | 
|  |  | 
|  | CXXConversionDecl * | 
|  | CXXConversionDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
|  | return new (C, ID) CXXConversionDecl( | 
|  | C, nullptr, SourceLocation(), DeclarationNameInfo(), QualType(), nullptr, | 
|  | false, ExplicitSpecifier(), CSK_unspecified, SourceLocation()); | 
|  | } | 
|  |  | 
|  | CXXConversionDecl *CXXConversionDecl::Create( | 
|  | ASTContext &C, CXXRecordDecl *RD, SourceLocation StartLoc, | 
|  | const DeclarationNameInfo &NameInfo, QualType T, TypeSourceInfo *TInfo, | 
|  | bool isInline, ExplicitSpecifier ES, ConstexprSpecKind ConstexprKind, | 
|  | SourceLocation EndLocation) { | 
|  | assert(NameInfo.getName().getNameKind() | 
|  | == DeclarationName::CXXConversionFunctionName && | 
|  | "Name must refer to a conversion function"); | 
|  | return new (C, RD) | 
|  | CXXConversionDecl(C, RD, StartLoc, NameInfo, T, TInfo, isInline, ES, | 
|  | ConstexprKind, EndLocation); | 
|  | } | 
|  |  | 
|  | bool CXXConversionDecl::isLambdaToBlockPointerConversion() const { | 
|  | return isImplicit() && getParent()->isLambda() && | 
|  | getConversionType()->isBlockPointerType(); | 
|  | } | 
|  |  | 
|  | LinkageSpecDecl::LinkageSpecDecl(DeclContext *DC, SourceLocation ExternLoc, | 
|  | SourceLocation LangLoc, LanguageIDs lang, | 
|  | bool HasBraces) | 
|  | : Decl(LinkageSpec, DC, LangLoc), DeclContext(LinkageSpec), | 
|  | ExternLoc(ExternLoc), RBraceLoc(SourceLocation()) { | 
|  | setLanguage(lang); | 
|  | LinkageSpecDeclBits.HasBraces = HasBraces; | 
|  | } | 
|  |  | 
|  | void LinkageSpecDecl::anchor() {} | 
|  |  | 
|  | LinkageSpecDecl *LinkageSpecDecl::Create(ASTContext &C, | 
|  | DeclContext *DC, | 
|  | SourceLocation ExternLoc, | 
|  | SourceLocation LangLoc, | 
|  | LanguageIDs Lang, | 
|  | bool HasBraces) { | 
|  | return new (C, DC) LinkageSpecDecl(DC, ExternLoc, LangLoc, Lang, HasBraces); | 
|  | } | 
|  |  | 
|  | LinkageSpecDecl *LinkageSpecDecl::CreateDeserialized(ASTContext &C, | 
|  | unsigned ID) { | 
|  | return new (C, ID) LinkageSpecDecl(nullptr, SourceLocation(), | 
|  | SourceLocation(), lang_c, false); | 
|  | } | 
|  |  | 
|  | void UsingDirectiveDecl::anchor() {} | 
|  |  | 
|  | UsingDirectiveDecl *UsingDirectiveDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation L, | 
|  | SourceLocation NamespaceLoc, | 
|  | NestedNameSpecifierLoc QualifierLoc, | 
|  | SourceLocation IdentLoc, | 
|  | NamedDecl *Used, | 
|  | DeclContext *CommonAncestor) { | 
|  | if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Used)) | 
|  | Used = NS->getOriginalNamespace(); | 
|  | return new (C, DC) UsingDirectiveDecl(DC, L, NamespaceLoc, QualifierLoc, | 
|  | IdentLoc, Used, CommonAncestor); | 
|  | } | 
|  |  | 
|  | UsingDirectiveDecl *UsingDirectiveDecl::CreateDeserialized(ASTContext &C, | 
|  | unsigned ID) { | 
|  | return new (C, ID) UsingDirectiveDecl(nullptr, SourceLocation(), | 
|  | SourceLocation(), | 
|  | NestedNameSpecifierLoc(), | 
|  | SourceLocation(), nullptr, nullptr); | 
|  | } | 
|  |  | 
|  | NamespaceDecl *UsingDirectiveDecl::getNominatedNamespace() { | 
|  | if (auto *NA = dyn_cast_or_null<NamespaceAliasDecl>(NominatedNamespace)) | 
|  | return NA->getNamespace(); | 
|  | return cast_or_null<NamespaceDecl>(NominatedNamespace); | 
|  | } | 
|  |  | 
|  | NamespaceDecl::NamespaceDecl(ASTContext &C, DeclContext *DC, bool Inline, | 
|  | SourceLocation StartLoc, SourceLocation IdLoc, | 
|  | IdentifierInfo *Id, NamespaceDecl *PrevDecl) | 
|  | : NamedDecl(Namespace, DC, IdLoc, Id), DeclContext(Namespace), | 
|  | redeclarable_base(C), LocStart(StartLoc), | 
|  | AnonOrFirstNamespaceAndInline(nullptr, Inline) { | 
|  | setPreviousDecl(PrevDecl); | 
|  |  | 
|  | if (PrevDecl) | 
|  | AnonOrFirstNamespaceAndInline.setPointer(PrevDecl->getOriginalNamespace()); | 
|  | } | 
|  |  | 
|  | NamespaceDecl *NamespaceDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | bool Inline, SourceLocation StartLoc, | 
|  | SourceLocation IdLoc, IdentifierInfo *Id, | 
|  | NamespaceDecl *PrevDecl) { | 
|  | return new (C, DC) NamespaceDecl(C, DC, Inline, StartLoc, IdLoc, Id, | 
|  | PrevDecl); | 
|  | } | 
|  |  | 
|  | NamespaceDecl *NamespaceDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
|  | return new (C, ID) NamespaceDecl(C, nullptr, false, SourceLocation(), | 
|  | SourceLocation(), nullptr, nullptr); | 
|  | } | 
|  |  | 
|  | NamespaceDecl *NamespaceDecl::getOriginalNamespace() { | 
|  | if (isFirstDecl()) | 
|  | return this; | 
|  |  | 
|  | return AnonOrFirstNamespaceAndInline.getPointer(); | 
|  | } | 
|  |  | 
|  | const NamespaceDecl *NamespaceDecl::getOriginalNamespace() const { | 
|  | if (isFirstDecl()) | 
|  | return this; | 
|  |  | 
|  | return AnonOrFirstNamespaceAndInline.getPointer(); | 
|  | } | 
|  |  | 
|  | bool NamespaceDecl::isOriginalNamespace() const { return isFirstDecl(); } | 
|  |  | 
|  | NamespaceDecl *NamespaceDecl::getNextRedeclarationImpl() { | 
|  | return getNextRedeclaration(); | 
|  | } | 
|  |  | 
|  | NamespaceDecl *NamespaceDecl::getPreviousDeclImpl() { | 
|  | return getPreviousDecl(); | 
|  | } | 
|  |  | 
|  | NamespaceDecl *NamespaceDecl::getMostRecentDeclImpl() { | 
|  | return getMostRecentDecl(); | 
|  | } | 
|  |  | 
|  | void NamespaceAliasDecl::anchor() {} | 
|  |  | 
|  | NamespaceAliasDecl *NamespaceAliasDecl::getNextRedeclarationImpl() { | 
|  | return getNextRedeclaration(); | 
|  | } | 
|  |  | 
|  | NamespaceAliasDecl *NamespaceAliasDecl::getPreviousDeclImpl() { | 
|  | return getPreviousDecl(); | 
|  | } | 
|  |  | 
|  | NamespaceAliasDecl *NamespaceAliasDecl::getMostRecentDeclImpl() { | 
|  | return getMostRecentDecl(); | 
|  | } | 
|  |  | 
|  | NamespaceAliasDecl *NamespaceAliasDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation UsingLoc, | 
|  | SourceLocation AliasLoc, | 
|  | IdentifierInfo *Alias, | 
|  | NestedNameSpecifierLoc QualifierLoc, | 
|  | SourceLocation IdentLoc, | 
|  | NamedDecl *Namespace) { | 
|  | // FIXME: Preserve the aliased namespace as written. | 
|  | if (auto *NS = dyn_cast_or_null<NamespaceDecl>(Namespace)) | 
|  | Namespace = NS->getOriginalNamespace(); | 
|  | return new (C, DC) NamespaceAliasDecl(C, DC, UsingLoc, AliasLoc, Alias, | 
|  | QualifierLoc, IdentLoc, Namespace); | 
|  | } | 
|  |  | 
|  | NamespaceAliasDecl * | 
|  | NamespaceAliasDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
|  | return new (C, ID) NamespaceAliasDecl(C, nullptr, SourceLocation(), | 
|  | SourceLocation(), nullptr, | 
|  | NestedNameSpecifierLoc(), | 
|  | SourceLocation(), nullptr); | 
|  | } | 
|  |  | 
|  | void UsingShadowDecl::anchor() {} | 
|  |  | 
|  | UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, DeclContext *DC, | 
|  | SourceLocation Loc, UsingDecl *Using, | 
|  | NamedDecl *Target) | 
|  | : NamedDecl(K, DC, Loc, Using ? Using->getDeclName() : DeclarationName()), | 
|  | redeclarable_base(C), UsingOrNextShadow(cast<NamedDecl>(Using)) { | 
|  | if (Target) | 
|  | setTargetDecl(Target); | 
|  | setImplicit(); | 
|  | } | 
|  |  | 
|  | UsingShadowDecl::UsingShadowDecl(Kind K, ASTContext &C, EmptyShell Empty) | 
|  | : NamedDecl(K, nullptr, SourceLocation(), DeclarationName()), | 
|  | redeclarable_base(C) {} | 
|  |  | 
|  | UsingShadowDecl * | 
|  | UsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
|  | return new (C, ID) UsingShadowDecl(UsingShadow, C, EmptyShell()); | 
|  | } | 
|  |  | 
|  | UsingDecl *UsingShadowDecl::getUsingDecl() const { | 
|  | const UsingShadowDecl *Shadow = this; | 
|  | while (const auto *NextShadow = | 
|  | dyn_cast<UsingShadowDecl>(Shadow->UsingOrNextShadow)) | 
|  | Shadow = NextShadow; | 
|  | return cast<UsingDecl>(Shadow->UsingOrNextShadow); | 
|  | } | 
|  |  | 
|  | void ConstructorUsingShadowDecl::anchor() {} | 
|  |  | 
|  | ConstructorUsingShadowDecl * | 
|  | ConstructorUsingShadowDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation Loc, UsingDecl *Using, | 
|  | NamedDecl *Target, bool IsVirtual) { | 
|  | return new (C, DC) ConstructorUsingShadowDecl(C, DC, Loc, Using, Target, | 
|  | IsVirtual); | 
|  | } | 
|  |  | 
|  | ConstructorUsingShadowDecl * | 
|  | ConstructorUsingShadowDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
|  | return new (C, ID) ConstructorUsingShadowDecl(C, EmptyShell()); | 
|  | } | 
|  |  | 
|  | CXXRecordDecl *ConstructorUsingShadowDecl::getNominatedBaseClass() const { | 
|  | return getUsingDecl()->getQualifier()->getAsRecordDecl(); | 
|  | } | 
|  |  | 
|  | void UsingDecl::anchor() {} | 
|  |  | 
|  | void UsingDecl::addShadowDecl(UsingShadowDecl *S) { | 
|  | assert(std::find(shadow_begin(), shadow_end(), S) == shadow_end() && | 
|  | "declaration already in set"); | 
|  | assert(S->getUsingDecl() == this); | 
|  |  | 
|  | if (FirstUsingShadow.getPointer()) | 
|  | S->UsingOrNextShadow = FirstUsingShadow.getPointer(); | 
|  | FirstUsingShadow.setPointer(S); | 
|  | } | 
|  |  | 
|  | void UsingDecl::removeShadowDecl(UsingShadowDecl *S) { | 
|  | assert(std::find(shadow_begin(), shadow_end(), S) != shadow_end() && | 
|  | "declaration not in set"); | 
|  | assert(S->getUsingDecl() == this); | 
|  |  | 
|  | // Remove S from the shadow decl chain. This is O(n) but hopefully rare. | 
|  |  | 
|  | if (FirstUsingShadow.getPointer() == S) { | 
|  | FirstUsingShadow.setPointer( | 
|  | dyn_cast<UsingShadowDecl>(S->UsingOrNextShadow)); | 
|  | S->UsingOrNextShadow = this; | 
|  | return; | 
|  | } | 
|  |  | 
|  | UsingShadowDecl *Prev = FirstUsingShadow.getPointer(); | 
|  | while (Prev->UsingOrNextShadow != S) | 
|  | Prev = cast<UsingShadowDecl>(Prev->UsingOrNextShadow); | 
|  | Prev->UsingOrNextShadow = S->UsingOrNextShadow; | 
|  | S->UsingOrNextShadow = this; | 
|  | } | 
|  |  | 
|  | UsingDecl *UsingDecl::Create(ASTContext &C, DeclContext *DC, SourceLocation UL, | 
|  | NestedNameSpecifierLoc QualifierLoc, | 
|  | const DeclarationNameInfo &NameInfo, | 
|  | bool HasTypename) { | 
|  | return new (C, DC) UsingDecl(DC, UL, QualifierLoc, NameInfo, HasTypename); | 
|  | } | 
|  |  | 
|  | UsingDecl *UsingDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
|  | return new (C, ID) UsingDecl(nullptr, SourceLocation(), | 
|  | NestedNameSpecifierLoc(), DeclarationNameInfo(), | 
|  | false); | 
|  | } | 
|  |  | 
|  | SourceRange UsingDecl::getSourceRange() const { | 
|  | SourceLocation Begin = isAccessDeclaration() | 
|  | ? getQualifierLoc().getBeginLoc() : UsingLocation; | 
|  | return SourceRange(Begin, getNameInfo().getEndLoc()); | 
|  | } | 
|  |  | 
|  | void UsingPackDecl::anchor() {} | 
|  |  | 
|  | UsingPackDecl *UsingPackDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | NamedDecl *InstantiatedFrom, | 
|  | ArrayRef<NamedDecl *> UsingDecls) { | 
|  | size_t Extra = additionalSizeToAlloc<NamedDecl *>(UsingDecls.size()); | 
|  | return new (C, DC, Extra) UsingPackDecl(DC, InstantiatedFrom, UsingDecls); | 
|  | } | 
|  |  | 
|  | UsingPackDecl *UsingPackDecl::CreateDeserialized(ASTContext &C, unsigned ID, | 
|  | unsigned NumExpansions) { | 
|  | size_t Extra = additionalSizeToAlloc<NamedDecl *>(NumExpansions); | 
|  | auto *Result = new (C, ID, Extra) UsingPackDecl(nullptr, nullptr, None); | 
|  | Result->NumExpansions = NumExpansions; | 
|  | auto *Trail = Result->getTrailingObjects<NamedDecl *>(); | 
|  | for (unsigned I = 0; I != NumExpansions; ++I) | 
|  | new (Trail + I) NamedDecl*(nullptr); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void UnresolvedUsingValueDecl::anchor() {} | 
|  |  | 
|  | UnresolvedUsingValueDecl * | 
|  | UnresolvedUsingValueDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation UsingLoc, | 
|  | NestedNameSpecifierLoc QualifierLoc, | 
|  | const DeclarationNameInfo &NameInfo, | 
|  | SourceLocation EllipsisLoc) { | 
|  | return new (C, DC) UnresolvedUsingValueDecl(DC, C.DependentTy, UsingLoc, | 
|  | QualifierLoc, NameInfo, | 
|  | EllipsisLoc); | 
|  | } | 
|  |  | 
|  | UnresolvedUsingValueDecl * | 
|  | UnresolvedUsingValueDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
|  | return new (C, ID) UnresolvedUsingValueDecl(nullptr, QualType(), | 
|  | SourceLocation(), | 
|  | NestedNameSpecifierLoc(), | 
|  | DeclarationNameInfo(), | 
|  | SourceLocation()); | 
|  | } | 
|  |  | 
|  | SourceRange UnresolvedUsingValueDecl::getSourceRange() const { | 
|  | SourceLocation Begin = isAccessDeclaration() | 
|  | ? getQualifierLoc().getBeginLoc() : UsingLocation; | 
|  | return SourceRange(Begin, getNameInfo().getEndLoc()); | 
|  | } | 
|  |  | 
|  | void UnresolvedUsingTypenameDecl::anchor() {} | 
|  |  | 
|  | UnresolvedUsingTypenameDecl * | 
|  | UnresolvedUsingTypenameDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation UsingLoc, | 
|  | SourceLocation TypenameLoc, | 
|  | NestedNameSpecifierLoc QualifierLoc, | 
|  | SourceLocation TargetNameLoc, | 
|  | DeclarationName TargetName, | 
|  | SourceLocation EllipsisLoc) { | 
|  | return new (C, DC) UnresolvedUsingTypenameDecl( | 
|  | DC, UsingLoc, TypenameLoc, QualifierLoc, TargetNameLoc, | 
|  | TargetName.getAsIdentifierInfo(), EllipsisLoc); | 
|  | } | 
|  |  | 
|  | UnresolvedUsingTypenameDecl * | 
|  | UnresolvedUsingTypenameDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
|  | return new (C, ID) UnresolvedUsingTypenameDecl( | 
|  | nullptr, SourceLocation(), SourceLocation(), NestedNameSpecifierLoc(), | 
|  | SourceLocation(), nullptr, SourceLocation()); | 
|  | } | 
|  |  | 
|  | void StaticAssertDecl::anchor() {} | 
|  |  | 
|  | StaticAssertDecl *StaticAssertDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation StaticAssertLoc, | 
|  | Expr *AssertExpr, | 
|  | StringLiteral *Message, | 
|  | SourceLocation RParenLoc, | 
|  | bool Failed) { | 
|  | return new (C, DC) StaticAssertDecl(DC, StaticAssertLoc, AssertExpr, Message, | 
|  | RParenLoc, Failed); | 
|  | } | 
|  |  | 
|  | StaticAssertDecl *StaticAssertDecl::CreateDeserialized(ASTContext &C, | 
|  | unsigned ID) { | 
|  | return new (C, ID) StaticAssertDecl(nullptr, SourceLocation(), nullptr, | 
|  | nullptr, SourceLocation(), false); | 
|  | } | 
|  |  | 
|  | void BindingDecl::anchor() {} | 
|  |  | 
|  | BindingDecl *BindingDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation IdLoc, IdentifierInfo *Id) { | 
|  | return new (C, DC) BindingDecl(DC, IdLoc, Id); | 
|  | } | 
|  |  | 
|  | BindingDecl *BindingDecl::CreateDeserialized(ASTContext &C, unsigned ID) { | 
|  | return new (C, ID) BindingDecl(nullptr, SourceLocation(), nullptr); | 
|  | } | 
|  |  | 
|  | ValueDecl *BindingDecl::getDecomposedDecl() const { | 
|  | ExternalASTSource *Source = | 
|  | Decomp.isOffset() ? getASTContext().getExternalSource() : nullptr; | 
|  | return cast_or_null<ValueDecl>(Decomp.get(Source)); | 
|  | } | 
|  |  | 
|  | VarDecl *BindingDecl::getHoldingVar() const { | 
|  | Expr *B = getBinding(); | 
|  | if (!B) | 
|  | return nullptr; | 
|  | auto *DRE = dyn_cast<DeclRefExpr>(B->IgnoreImplicit()); | 
|  | if (!DRE) | 
|  | return nullptr; | 
|  |  | 
|  | auto *VD = dyn_cast<VarDecl>(DRE->getDecl()); | 
|  | assert(VD->isImplicit() && "holding var for binding decl not implicit"); | 
|  | return VD; | 
|  | } | 
|  |  | 
|  | void DecompositionDecl::anchor() {} | 
|  |  | 
|  | DecompositionDecl *DecompositionDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation StartLoc, | 
|  | SourceLocation LSquareLoc, | 
|  | QualType T, TypeSourceInfo *TInfo, | 
|  | StorageClass SC, | 
|  | ArrayRef<BindingDecl *> Bindings) { | 
|  | size_t Extra = additionalSizeToAlloc<BindingDecl *>(Bindings.size()); | 
|  | return new (C, DC, Extra) | 
|  | DecompositionDecl(C, DC, StartLoc, LSquareLoc, T, TInfo, SC, Bindings); | 
|  | } | 
|  |  | 
|  | DecompositionDecl *DecompositionDecl::CreateDeserialized(ASTContext &C, | 
|  | unsigned ID, | 
|  | unsigned NumBindings) { | 
|  | size_t Extra = additionalSizeToAlloc<BindingDecl *>(NumBindings); | 
|  | auto *Result = new (C, ID, Extra) | 
|  | DecompositionDecl(C, nullptr, SourceLocation(), SourceLocation(), | 
|  | QualType(), nullptr, StorageClass(), None); | 
|  | // Set up and clean out the bindings array. | 
|  | Result->NumBindings = NumBindings; | 
|  | auto *Trail = Result->getTrailingObjects<BindingDecl *>(); | 
|  | for (unsigned I = 0; I != NumBindings; ++I) | 
|  | new (Trail + I) BindingDecl*(nullptr); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | void DecompositionDecl::printName(llvm::raw_ostream &os) const { | 
|  | os << '['; | 
|  | bool Comma = false; | 
|  | for (const auto *B : bindings()) { | 
|  | if (Comma) | 
|  | os << ", "; | 
|  | B->printName(os); | 
|  | Comma = true; | 
|  | } | 
|  | os << ']'; | 
|  | } | 
|  |  | 
|  | void MSPropertyDecl::anchor() {} | 
|  |  | 
|  | MSPropertyDecl *MSPropertyDecl::Create(ASTContext &C, DeclContext *DC, | 
|  | SourceLocation L, DeclarationName N, | 
|  | QualType T, TypeSourceInfo *TInfo, | 
|  | SourceLocation StartL, | 
|  | IdentifierInfo *Getter, | 
|  | IdentifierInfo *Setter) { | 
|  | return new (C, DC) MSPropertyDecl(DC, L, N, T, TInfo, StartL, Getter, Setter); | 
|  | } | 
|  |  | 
|  | MSPropertyDecl *MSPropertyDecl::CreateDeserialized(ASTContext &C, | 
|  | unsigned ID) { | 
|  | return new (C, ID) MSPropertyDecl(nullptr, SourceLocation(), | 
|  | DeclarationName(), QualType(), nullptr, | 
|  | SourceLocation(), nullptr, nullptr); | 
|  | } | 
|  |  | 
|  | static const char *getAccessName(AccessSpecifier AS) { | 
|  | switch (AS) { | 
|  | case AS_none: | 
|  | llvm_unreachable("Invalid access specifier!"); | 
|  | case AS_public: | 
|  | return "public"; | 
|  | case AS_private: | 
|  | return "private"; | 
|  | case AS_protected: | 
|  | return "protected"; | 
|  | } | 
|  | llvm_unreachable("Invalid access specifier!"); | 
|  | } | 
|  |  | 
|  | const DiagnosticBuilder &clang::operator<<(const DiagnosticBuilder &DB, | 
|  | AccessSpecifier AS) { | 
|  | return DB << getAccessName(AS); | 
|  | } | 
|  |  | 
|  | const PartialDiagnostic &clang::operator<<(const PartialDiagnostic &DB, | 
|  | AccessSpecifier AS) { | 
|  | return DB << getAccessName(AS); | 
|  | } |