|  | //===-- ARMFastISel.cpp - ARM FastISel implementation ---------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the ARM-specific support for the FastISel class. Some | 
|  | // of the target-specific code is generated by tablegen in the file | 
|  | // ARMGenFastISel.inc, which is #included here. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "ARM.h" | 
|  | #include "ARMBaseRegisterInfo.h" | 
|  | #include "ARMCallingConv.h" | 
|  | #include "ARMConstantPoolValue.h" | 
|  | #include "ARMISelLowering.h" | 
|  | #include "ARMMachineFunctionInfo.h" | 
|  | #include "ARMSubtarget.h" | 
|  | #include "MCTargetDesc/ARMAddressingModes.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/CodeGen/Analysis.h" | 
|  | #include "llvm/CodeGen/FastISel.h" | 
|  | #include "llvm/CodeGen/FunctionLoweringInfo.h" | 
|  | #include "llvm/CodeGen/MachineConstantPool.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/CallingConv.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // All possible address modes, plus some. | 
|  | typedef struct Address { | 
|  | enum { | 
|  | RegBase, | 
|  | FrameIndexBase | 
|  | } BaseType; | 
|  |  | 
|  | union { | 
|  | unsigned Reg; | 
|  | int FI; | 
|  | } Base; | 
|  |  | 
|  | int Offset; | 
|  |  | 
|  | // Innocuous defaults for our address. | 
|  | Address() | 
|  | : BaseType(RegBase), Offset(0) { | 
|  | Base.Reg = 0; | 
|  | } | 
|  | } Address; | 
|  |  | 
|  | class ARMFastISel final : public FastISel { | 
|  |  | 
|  | /// Subtarget - Keep a pointer to the ARMSubtarget around so that we can | 
|  | /// make the right decision when generating code for different targets. | 
|  | const ARMSubtarget *Subtarget; | 
|  | Module &M; | 
|  | const TargetMachine &TM; | 
|  | const TargetInstrInfo &TII; | 
|  | const TargetLowering &TLI; | 
|  | ARMFunctionInfo *AFI; | 
|  |  | 
|  | // Convenience variables to avoid some queries. | 
|  | bool isThumb2; | 
|  | LLVMContext *Context; | 
|  |  | 
|  | public: | 
|  | explicit ARMFastISel(FunctionLoweringInfo &funcInfo, | 
|  | const TargetLibraryInfo *libInfo) | 
|  | : FastISel(funcInfo, libInfo), | 
|  | Subtarget( | 
|  | &static_cast<const ARMSubtarget &>(funcInfo.MF->getSubtarget())), | 
|  | M(const_cast<Module &>(*funcInfo.Fn->getParent())), | 
|  | TM(funcInfo.MF->getTarget()), TII(*Subtarget->getInstrInfo()), | 
|  | TLI(*Subtarget->getTargetLowering()) { | 
|  | AFI = funcInfo.MF->getInfo<ARMFunctionInfo>(); | 
|  | isThumb2 = AFI->isThumbFunction(); | 
|  | Context = &funcInfo.Fn->getContext(); | 
|  | } | 
|  |  | 
|  | // Code from FastISel.cpp. | 
|  | private: | 
|  | unsigned fastEmitInst_r(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, | 
|  | unsigned Op0, bool Op0IsKill); | 
|  | unsigned fastEmitInst_rr(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, | 
|  | unsigned Op0, bool Op0IsKill, | 
|  | unsigned Op1, bool Op1IsKill); | 
|  | unsigned fastEmitInst_rrr(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, | 
|  | unsigned Op0, bool Op0IsKill, | 
|  | unsigned Op1, bool Op1IsKill, | 
|  | unsigned Op2, bool Op2IsKill); | 
|  | unsigned fastEmitInst_ri(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, | 
|  | unsigned Op0, bool Op0IsKill, | 
|  | uint64_t Imm); | 
|  | unsigned fastEmitInst_rri(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, | 
|  | unsigned Op0, bool Op0IsKill, | 
|  | unsigned Op1, bool Op1IsKill, | 
|  | uint64_t Imm); | 
|  | unsigned fastEmitInst_i(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, | 
|  | uint64_t Imm); | 
|  |  | 
|  | // Backend specific FastISel code. | 
|  | private: | 
|  | bool fastSelectInstruction(const Instruction *I) override; | 
|  | unsigned fastMaterializeConstant(const Constant *C) override; | 
|  | unsigned fastMaterializeAlloca(const AllocaInst *AI) override; | 
|  | bool tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, | 
|  | const LoadInst *LI) override; | 
|  | bool fastLowerArguments() override; | 
|  | private: | 
|  | #include "ARMGenFastISel.inc" | 
|  |  | 
|  | // Instruction selection routines. | 
|  | private: | 
|  | bool SelectLoad(const Instruction *I); | 
|  | bool SelectStore(const Instruction *I); | 
|  | bool SelectBranch(const Instruction *I); | 
|  | bool SelectIndirectBr(const Instruction *I); | 
|  | bool SelectCmp(const Instruction *I); | 
|  | bool SelectFPExt(const Instruction *I); | 
|  | bool SelectFPTrunc(const Instruction *I); | 
|  | bool SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode); | 
|  | bool SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode); | 
|  | bool SelectIToFP(const Instruction *I, bool isSigned); | 
|  | bool SelectFPToI(const Instruction *I, bool isSigned); | 
|  | bool SelectDiv(const Instruction *I, bool isSigned); | 
|  | bool SelectRem(const Instruction *I, bool isSigned); | 
|  | bool SelectCall(const Instruction *I, const char *IntrMemName); | 
|  | bool SelectIntrinsicCall(const IntrinsicInst &I); | 
|  | bool SelectSelect(const Instruction *I); | 
|  | bool SelectRet(const Instruction *I); | 
|  | bool SelectTrunc(const Instruction *I); | 
|  | bool SelectIntExt(const Instruction *I); | 
|  | bool SelectShift(const Instruction *I, ARM_AM::ShiftOpc ShiftTy); | 
|  |  | 
|  | // Utility routines. | 
|  | private: | 
|  | bool isTypeLegal(Type *Ty, MVT &VT); | 
|  | bool isLoadTypeLegal(Type *Ty, MVT &VT); | 
|  | bool ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, | 
|  | bool isZExt); | 
|  | bool ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, | 
|  | unsigned Alignment = 0, bool isZExt = true, | 
|  | bool allocReg = true); | 
|  | bool ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, | 
|  | unsigned Alignment = 0); | 
|  | bool ARMComputeAddress(const Value *Obj, Address &Addr); | 
|  | void ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3); | 
|  | bool ARMIsMemCpySmall(uint64_t Len); | 
|  | bool ARMTryEmitSmallMemCpy(Address Dest, Address Src, uint64_t Len, | 
|  | unsigned Alignment); | 
|  | unsigned ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, bool isZExt); | 
|  | unsigned ARMMaterializeFP(const ConstantFP *CFP, MVT VT); | 
|  | unsigned ARMMaterializeInt(const Constant *C, MVT VT); | 
|  | unsigned ARMMaterializeGV(const GlobalValue *GV, MVT VT); | 
|  | unsigned ARMMoveToFPReg(MVT VT, unsigned SrcReg); | 
|  | unsigned ARMMoveToIntReg(MVT VT, unsigned SrcReg); | 
|  | unsigned ARMSelectCallOp(bool UseReg); | 
|  | unsigned ARMLowerPICELF(const GlobalValue *GV, unsigned Align, MVT VT); | 
|  |  | 
|  | const TargetLowering *getTargetLowering() { return &TLI; } | 
|  |  | 
|  | // Call handling routines. | 
|  | private: | 
|  | CCAssignFn *CCAssignFnForCall(CallingConv::ID CC, | 
|  | bool Return, | 
|  | bool isVarArg); | 
|  | bool ProcessCallArgs(SmallVectorImpl<Value*> &Args, | 
|  | SmallVectorImpl<unsigned> &ArgRegs, | 
|  | SmallVectorImpl<MVT> &ArgVTs, | 
|  | SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, | 
|  | SmallVectorImpl<unsigned> &RegArgs, | 
|  | CallingConv::ID CC, | 
|  | unsigned &NumBytes, | 
|  | bool isVarArg); | 
|  | unsigned getLibcallReg(const Twine &Name); | 
|  | bool FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, | 
|  | const Instruction *I, CallingConv::ID CC, | 
|  | unsigned &NumBytes, bool isVarArg); | 
|  | bool ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call); | 
|  |  | 
|  | // OptionalDef handling routines. | 
|  | private: | 
|  | bool isARMNEONPred(const MachineInstr *MI); | 
|  | bool DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR); | 
|  | const MachineInstrBuilder &AddOptionalDefs(const MachineInstrBuilder &MIB); | 
|  | void AddLoadStoreOperands(MVT VT, Address &Addr, | 
|  | const MachineInstrBuilder &MIB, | 
|  | unsigned Flags, bool useAM3); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | #include "ARMGenCallingConv.inc" | 
|  |  | 
|  | // DefinesOptionalPredicate - This is different from DefinesPredicate in that | 
|  | // we don't care about implicit defs here, just places we'll need to add a | 
|  | // default CCReg argument. Sets CPSR if we're setting CPSR instead of CCR. | 
|  | bool ARMFastISel::DefinesOptionalPredicate(MachineInstr *MI, bool *CPSR) { | 
|  | if (!MI->hasOptionalDef()) | 
|  | return false; | 
|  |  | 
|  | // Look to see if our OptionalDef is defining CPSR or CCR. | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { | 
|  | const MachineOperand &MO = MI->getOperand(i); | 
|  | if (!MO.isReg() || !MO.isDef()) continue; | 
|  | if (MO.getReg() == ARM::CPSR) | 
|  | *CPSR = true; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::isARMNEONPred(const MachineInstr *MI) { | 
|  | const MCInstrDesc &MCID = MI->getDesc(); | 
|  |  | 
|  | // If we're a thumb2 or not NEON function we'll be handled via isPredicable. | 
|  | if ((MCID.TSFlags & ARMII::DomainMask) != ARMII::DomainNEON || | 
|  | AFI->isThumb2Function()) | 
|  | return MI->isPredicable(); | 
|  |  | 
|  | for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) | 
|  | if (MCID.OpInfo[i].isPredicate()) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If the machine is predicable go ahead and add the predicate operands, if | 
|  | // it needs default CC operands add those. | 
|  | // TODO: If we want to support thumb1 then we'll need to deal with optional | 
|  | // CPSR defs that need to be added before the remaining operands. See s_cc_out | 
|  | // for descriptions why. | 
|  | const MachineInstrBuilder & | 
|  | ARMFastISel::AddOptionalDefs(const MachineInstrBuilder &MIB) { | 
|  | MachineInstr *MI = &*MIB; | 
|  |  | 
|  | // Do we use a predicate? or... | 
|  | // Are we NEON in ARM mode and have a predicate operand? If so, I know | 
|  | // we're not predicable but add it anyways. | 
|  | if (isARMNEONPred(MI)) | 
|  | AddDefaultPred(MIB); | 
|  |  | 
|  | // Do we optionally set a predicate?  Preds is size > 0 iff the predicate | 
|  | // defines CPSR. All other OptionalDefines in ARM are the CCR register. | 
|  | bool CPSR = false; | 
|  | if (DefinesOptionalPredicate(MI, &CPSR)) { | 
|  | if (CPSR) | 
|  | AddDefaultT1CC(MIB); | 
|  | else | 
|  | AddDefaultCC(MIB); | 
|  | } | 
|  | return MIB; | 
|  | } | 
|  |  | 
|  | unsigned ARMFastISel::fastEmitInst_r(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, | 
|  | unsigned Op0, bool Op0IsKill) { | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | // Make sure the input operand is sufficiently constrained to be legal | 
|  | // for this instruction. | 
|  | Op0 = constrainOperandRegClass(II, Op0, 1); | 
|  | if (II.getNumDefs() >= 1) { | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, | 
|  | ResultReg).addReg(Op0, Op0IsKill * RegState::Kill)); | 
|  | } else { | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) | 
|  | .addReg(Op0, Op0IsKill * RegState::Kill)); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), ResultReg) | 
|  | .addReg(II.ImplicitDefs[0])); | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | unsigned ARMFastISel::fastEmitInst_rr(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, | 
|  | unsigned Op0, bool Op0IsKill, | 
|  | unsigned Op1, bool Op1IsKill) { | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | // Make sure the input operands are sufficiently constrained to be legal | 
|  | // for this instruction. | 
|  | Op0 = constrainOperandRegClass(II, Op0, 1); | 
|  | Op1 = constrainOperandRegClass(II, Op1, 2); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) { | 
|  | AddOptionalDefs( | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) | 
|  | .addReg(Op0, Op0IsKill * RegState::Kill) | 
|  | .addReg(Op1, Op1IsKill * RegState::Kill)); | 
|  | } else { | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) | 
|  | .addReg(Op0, Op0IsKill * RegState::Kill) | 
|  | .addReg(Op1, Op1IsKill * RegState::Kill)); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), ResultReg) | 
|  | .addReg(II.ImplicitDefs[0])); | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | unsigned ARMFastISel::fastEmitInst_rrr(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, | 
|  | unsigned Op0, bool Op0IsKill, | 
|  | unsigned Op1, bool Op1IsKill, | 
|  | unsigned Op2, bool Op2IsKill) { | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | // Make sure the input operands are sufficiently constrained to be legal | 
|  | // for this instruction. | 
|  | Op0 = constrainOperandRegClass(II, Op0, 1); | 
|  | Op1 = constrainOperandRegClass(II, Op1, 2); | 
|  | Op2 = constrainOperandRegClass(II, Op1, 3); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) { | 
|  | AddOptionalDefs( | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) | 
|  | .addReg(Op0, Op0IsKill * RegState::Kill) | 
|  | .addReg(Op1, Op1IsKill * RegState::Kill) | 
|  | .addReg(Op2, Op2IsKill * RegState::Kill)); | 
|  | } else { | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) | 
|  | .addReg(Op0, Op0IsKill * RegState::Kill) | 
|  | .addReg(Op1, Op1IsKill * RegState::Kill) | 
|  | .addReg(Op2, Op2IsKill * RegState::Kill)); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), ResultReg) | 
|  | .addReg(II.ImplicitDefs[0])); | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | unsigned ARMFastISel::fastEmitInst_ri(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, | 
|  | unsigned Op0, bool Op0IsKill, | 
|  | uint64_t Imm) { | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | // Make sure the input operand is sufficiently constrained to be legal | 
|  | // for this instruction. | 
|  | Op0 = constrainOperandRegClass(II, Op0, 1); | 
|  | if (II.getNumDefs() >= 1) { | 
|  | AddOptionalDefs( | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) | 
|  | .addReg(Op0, Op0IsKill * RegState::Kill) | 
|  | .addImm(Imm)); | 
|  | } else { | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) | 
|  | .addReg(Op0, Op0IsKill * RegState::Kill) | 
|  | .addImm(Imm)); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), ResultReg) | 
|  | .addReg(II.ImplicitDefs[0])); | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | unsigned ARMFastISel::fastEmitInst_rri(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, | 
|  | unsigned Op0, bool Op0IsKill, | 
|  | unsigned Op1, bool Op1IsKill, | 
|  | uint64_t Imm) { | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | // Make sure the input operands are sufficiently constrained to be legal | 
|  | // for this instruction. | 
|  | Op0 = constrainOperandRegClass(II, Op0, 1); | 
|  | Op1 = constrainOperandRegClass(II, Op1, 2); | 
|  | if (II.getNumDefs() >= 1) { | 
|  | AddOptionalDefs( | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, ResultReg) | 
|  | .addReg(Op0, Op0IsKill * RegState::Kill) | 
|  | .addReg(Op1, Op1IsKill * RegState::Kill) | 
|  | .addImm(Imm)); | 
|  | } else { | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) | 
|  | .addReg(Op0, Op0IsKill * RegState::Kill) | 
|  | .addReg(Op1, Op1IsKill * RegState::Kill) | 
|  | .addImm(Imm)); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), ResultReg) | 
|  | .addReg(II.ImplicitDefs[0])); | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | unsigned ARMFastISel::fastEmitInst_i(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, | 
|  | uint64_t Imm) { | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | const MCInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) { | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II, | 
|  | ResultReg).addImm(Imm)); | 
|  | } else { | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) | 
|  | .addImm(Imm)); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), ResultReg) | 
|  | .addReg(II.ImplicitDefs[0])); | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | // TODO: Don't worry about 64-bit now, but when this is fixed remove the | 
|  | // checks from the various callers. | 
|  | unsigned ARMFastISel::ARMMoveToFPReg(MVT VT, unsigned SrcReg) { | 
|  | if (VT == MVT::f64) return 0; | 
|  |  | 
|  | unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(ARM::VMOVSR), MoveReg) | 
|  | .addReg(SrcReg)); | 
|  | return MoveReg; | 
|  | } | 
|  |  | 
|  | unsigned ARMFastISel::ARMMoveToIntReg(MVT VT, unsigned SrcReg) { | 
|  | if (VT == MVT::i64) return 0; | 
|  |  | 
|  | unsigned MoveReg = createResultReg(TLI.getRegClassFor(VT)); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(ARM::VMOVRS), MoveReg) | 
|  | .addReg(SrcReg)); | 
|  | return MoveReg; | 
|  | } | 
|  |  | 
|  | // For double width floating point we need to materialize two constants | 
|  | // (the high and the low) into integer registers then use a move to get | 
|  | // the combined constant into an FP reg. | 
|  | unsigned ARMFastISel::ARMMaterializeFP(const ConstantFP *CFP, MVT VT) { | 
|  | const APFloat Val = CFP->getValueAPF(); | 
|  | bool is64bit = VT == MVT::f64; | 
|  |  | 
|  | // This checks to see if we can use VFP3 instructions to materialize | 
|  | // a constant, otherwise we have to go through the constant pool. | 
|  | if (TLI.isFPImmLegal(Val, VT)) { | 
|  | int Imm; | 
|  | unsigned Opc; | 
|  | if (is64bit) { | 
|  | Imm = ARM_AM::getFP64Imm(Val); | 
|  | Opc = ARM::FCONSTD; | 
|  | } else { | 
|  | Imm = ARM_AM::getFP32Imm(Val); | 
|  | Opc = ARM::FCONSTS; | 
|  | } | 
|  | unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Opc), DestReg).addImm(Imm)); | 
|  | return DestReg; | 
|  | } | 
|  |  | 
|  | // Require VFP2 for loading fp constants. | 
|  | if (!Subtarget->hasVFP2()) return false; | 
|  |  | 
|  | // MachineConstantPool wants an explicit alignment. | 
|  | unsigned Align = DL.getPrefTypeAlignment(CFP->getType()); | 
|  | if (Align == 0) { | 
|  | // TODO: Figure out if this is correct. | 
|  | Align = DL.getTypeAllocSize(CFP->getType()); | 
|  | } | 
|  | unsigned Idx = MCP.getConstantPoolIndex(cast<Constant>(CFP), Align); | 
|  | unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); | 
|  | unsigned Opc = is64bit ? ARM::VLDRD : ARM::VLDRS; | 
|  |  | 
|  | // The extra reg is for addrmode5. | 
|  | AddOptionalDefs( | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) | 
|  | .addConstantPoolIndex(Idx) | 
|  | .addReg(0)); | 
|  | return DestReg; | 
|  | } | 
|  |  | 
|  | unsigned ARMFastISel::ARMMaterializeInt(const Constant *C, MVT VT) { | 
|  |  | 
|  | if (VT != MVT::i32 && VT != MVT::i16 && VT != MVT::i8 && VT != MVT::i1) | 
|  | return 0; | 
|  |  | 
|  | // If we can do this in a single instruction without a constant pool entry | 
|  | // do so now. | 
|  | const ConstantInt *CI = cast<ConstantInt>(C); | 
|  | if (Subtarget->hasV6T2Ops() && isUInt<16>(CI->getZExtValue())) { | 
|  | unsigned Opc = isThumb2 ? ARM::t2MOVi16 : ARM::MOVi16; | 
|  | const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : | 
|  | &ARM::GPRRegClass; | 
|  | unsigned ImmReg = createResultReg(RC); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Opc), ImmReg) | 
|  | .addImm(CI->getZExtValue())); | 
|  | return ImmReg; | 
|  | } | 
|  |  | 
|  | // Use MVN to emit negative constants. | 
|  | if (VT == MVT::i32 && Subtarget->hasV6T2Ops() && CI->isNegative()) { | 
|  | unsigned Imm = (unsigned)~(CI->getSExtValue()); | 
|  | bool UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : | 
|  | (ARM_AM::getSOImmVal(Imm) != -1); | 
|  | if (UseImm) { | 
|  | unsigned Opc = isThumb2 ? ARM::t2MVNi : ARM::MVNi; | 
|  | const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass : | 
|  | &ARM::GPRRegClass; | 
|  | unsigned ImmReg = createResultReg(RC); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Opc), ImmReg) | 
|  | .addImm(Imm)); | 
|  | return ImmReg; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned ResultReg = 0; | 
|  | if (Subtarget->useMovt(*FuncInfo.MF)) | 
|  | ResultReg = fastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); | 
|  |  | 
|  | if (ResultReg) | 
|  | return ResultReg; | 
|  |  | 
|  | // Load from constant pool.  For now 32-bit only. | 
|  | if (VT != MVT::i32) | 
|  | return 0; | 
|  |  | 
|  | // MachineConstantPool wants an explicit alignment. | 
|  | unsigned Align = DL.getPrefTypeAlignment(C->getType()); | 
|  | if (Align == 0) { | 
|  | // TODO: Figure out if this is correct. | 
|  | Align = DL.getTypeAllocSize(C->getType()); | 
|  | } | 
|  | unsigned Idx = MCP.getConstantPoolIndex(C, Align); | 
|  | ResultReg = createResultReg(TLI.getRegClassFor(VT)); | 
|  | if (isThumb2) | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(ARM::t2LDRpci), ResultReg) | 
|  | .addConstantPoolIndex(Idx)); | 
|  | else { | 
|  | // The extra immediate is for addrmode2. | 
|  | ResultReg = constrainOperandRegClass(TII.get(ARM::LDRcp), ResultReg, 0); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(ARM::LDRcp), ResultReg) | 
|  | .addConstantPoolIndex(Idx) | 
|  | .addImm(0)); | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | unsigned ARMFastISel::ARMMaterializeGV(const GlobalValue *GV, MVT VT) { | 
|  | // For now 32-bit only. | 
|  | if (VT != MVT::i32) return 0; | 
|  |  | 
|  | Reloc::Model RelocM = TM.getRelocationModel(); | 
|  | bool IsIndirect = Subtarget->GVIsIndirectSymbol(GV, RelocM); | 
|  | const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass | 
|  | : &ARM::GPRRegClass; | 
|  | unsigned DestReg = createResultReg(RC); | 
|  |  | 
|  | // FastISel TLS support on non-MachO is broken, punt to SelectionDAG. | 
|  | const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV); | 
|  | bool IsThreadLocal = GVar && GVar->isThreadLocal(); | 
|  | if (!Subtarget->isTargetMachO() && IsThreadLocal) return 0; | 
|  |  | 
|  | // Use movw+movt when possible, it avoids constant pool entries. | 
|  | // Non-darwin targets only support static movt relocations in FastISel. | 
|  | if (Subtarget->useMovt(*FuncInfo.MF) && | 
|  | (Subtarget->isTargetMachO() || RelocM == Reloc::Static)) { | 
|  | unsigned Opc; | 
|  | unsigned char TF = 0; | 
|  | if (Subtarget->isTargetMachO()) | 
|  | TF = ARMII::MO_NONLAZY; | 
|  |  | 
|  | switch (RelocM) { | 
|  | case Reloc::PIC_: | 
|  | Opc = isThumb2 ? ARM::t2MOV_ga_pcrel : ARM::MOV_ga_pcrel; | 
|  | break; | 
|  | default: | 
|  | Opc = isThumb2 ? ARM::t2MOVi32imm : ARM::MOVi32imm; | 
|  | break; | 
|  | } | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Opc), DestReg).addGlobalAddress(GV, 0, TF)); | 
|  | } else { | 
|  | // MachineConstantPool wants an explicit alignment. | 
|  | unsigned Align = DL.getPrefTypeAlignment(GV->getType()); | 
|  | if (Align == 0) { | 
|  | // TODO: Figure out if this is correct. | 
|  | Align = DL.getTypeAllocSize(GV->getType()); | 
|  | } | 
|  |  | 
|  | if (Subtarget->isTargetELF() && RelocM == Reloc::PIC_) | 
|  | return ARMLowerPICELF(GV, Align, VT); | 
|  |  | 
|  | // Grab index. | 
|  | unsigned PCAdj = (RelocM != Reloc::PIC_) ? 0 : | 
|  | (Subtarget->isThumb() ? 4 : 8); | 
|  | unsigned Id = AFI->createPICLabelUId(); | 
|  | ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create(GV, Id, | 
|  | ARMCP::CPValue, | 
|  | PCAdj); | 
|  | unsigned Idx = MCP.getConstantPoolIndex(CPV, Align); | 
|  |  | 
|  | // Load value. | 
|  | MachineInstrBuilder MIB; | 
|  | if (isThumb2) { | 
|  | unsigned Opc = (RelocM!=Reloc::PIC_) ? ARM::t2LDRpci : ARM::t2LDRpci_pic; | 
|  | MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), | 
|  | DestReg).addConstantPoolIndex(Idx); | 
|  | if (RelocM == Reloc::PIC_) | 
|  | MIB.addImm(Id); | 
|  | AddOptionalDefs(MIB); | 
|  | } else { | 
|  | // The extra immediate is for addrmode2. | 
|  | DestReg = constrainOperandRegClass(TII.get(ARM::LDRcp), DestReg, 0); | 
|  | MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(ARM::LDRcp), DestReg) | 
|  | .addConstantPoolIndex(Idx) | 
|  | .addImm(0); | 
|  | AddOptionalDefs(MIB); | 
|  |  | 
|  | if (RelocM == Reloc::PIC_) { | 
|  | unsigned Opc = IsIndirect ? ARM::PICLDR : ARM::PICADD; | 
|  | unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); | 
|  |  | 
|  | MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, | 
|  | DbgLoc, TII.get(Opc), NewDestReg) | 
|  | .addReg(DestReg) | 
|  | .addImm(Id); | 
|  | AddOptionalDefs(MIB); | 
|  | return NewDestReg; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (IsIndirect) { | 
|  | MachineInstrBuilder MIB; | 
|  | unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); | 
|  | if (isThumb2) | 
|  | MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(ARM::t2LDRi12), NewDestReg) | 
|  | .addReg(DestReg) | 
|  | .addImm(0); | 
|  | else | 
|  | MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(ARM::LDRi12), NewDestReg) | 
|  | .addReg(DestReg) | 
|  | .addImm(0); | 
|  | DestReg = NewDestReg; | 
|  | AddOptionalDefs(MIB); | 
|  | } | 
|  |  | 
|  | return DestReg; | 
|  | } | 
|  |  | 
|  | unsigned ARMFastISel::fastMaterializeConstant(const Constant *C) { | 
|  | EVT CEVT = TLI.getValueType(DL, C->getType(), true); | 
|  |  | 
|  | // Only handle simple types. | 
|  | if (!CEVT.isSimple()) return 0; | 
|  | MVT VT = CEVT.getSimpleVT(); | 
|  |  | 
|  | if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) | 
|  | return ARMMaterializeFP(CFP, VT); | 
|  | else if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) | 
|  | return ARMMaterializeGV(GV, VT); | 
|  | else if (isa<ConstantInt>(C)) | 
|  | return ARMMaterializeInt(C, VT); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // TODO: unsigned ARMFastISel::TargetMaterializeFloatZero(const ConstantFP *CF); | 
|  |  | 
|  | unsigned ARMFastISel::fastMaterializeAlloca(const AllocaInst *AI) { | 
|  | // Don't handle dynamic allocas. | 
|  | if (!FuncInfo.StaticAllocaMap.count(AI)) return 0; | 
|  |  | 
|  | MVT VT; | 
|  | if (!isLoadTypeLegal(AI->getType(), VT)) return 0; | 
|  |  | 
|  | DenseMap<const AllocaInst*, int>::iterator SI = | 
|  | FuncInfo.StaticAllocaMap.find(AI); | 
|  |  | 
|  | // This will get lowered later into the correct offsets and registers | 
|  | // via rewriteXFrameIndex. | 
|  | if (SI != FuncInfo.StaticAllocaMap.end()) { | 
|  | unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; | 
|  | const TargetRegisterClass* RC = TLI.getRegClassFor(VT); | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | ResultReg = constrainOperandRegClass(TII.get(Opc), ResultReg, 0); | 
|  |  | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Opc), ResultReg) | 
|  | .addFrameIndex(SI->second) | 
|  | .addImm(0)); | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::isTypeLegal(Type *Ty, MVT &VT) { | 
|  | EVT evt = TLI.getValueType(DL, Ty, true); | 
|  |  | 
|  | // Only handle simple types. | 
|  | if (evt == MVT::Other || !evt.isSimple()) return false; | 
|  | VT = evt.getSimpleVT(); | 
|  |  | 
|  | // Handle all legal types, i.e. a register that will directly hold this | 
|  | // value. | 
|  | return TLI.isTypeLegal(VT); | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::isLoadTypeLegal(Type *Ty, MVT &VT) { | 
|  | if (isTypeLegal(Ty, VT)) return true; | 
|  |  | 
|  | // If this is a type than can be sign or zero-extended to a basic operation | 
|  | // go ahead and accept it now. | 
|  | if (VT == MVT::i1 || VT == MVT::i8 || VT == MVT::i16) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Computes the address to get to an object. | 
|  | bool ARMFastISel::ARMComputeAddress(const Value *Obj, Address &Addr) { | 
|  | // Some boilerplate from the X86 FastISel. | 
|  | const User *U = nullptr; | 
|  | unsigned Opcode = Instruction::UserOp1; | 
|  | if (const Instruction *I = dyn_cast<Instruction>(Obj)) { | 
|  | // Don't walk into other basic blocks unless the object is an alloca from | 
|  | // another block, otherwise it may not have a virtual register assigned. | 
|  | if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(Obj)) || | 
|  | FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { | 
|  | Opcode = I->getOpcode(); | 
|  | U = I; | 
|  | } | 
|  | } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(Obj)) { | 
|  | Opcode = C->getOpcode(); | 
|  | U = C; | 
|  | } | 
|  |  | 
|  | if (PointerType *Ty = dyn_cast<PointerType>(Obj->getType())) | 
|  | if (Ty->getAddressSpace() > 255) | 
|  | // Fast instruction selection doesn't support the special | 
|  | // address spaces. | 
|  | return false; | 
|  |  | 
|  | switch (Opcode) { | 
|  | default: | 
|  | break; | 
|  | case Instruction::BitCast: | 
|  | // Look through bitcasts. | 
|  | return ARMComputeAddress(U->getOperand(0), Addr); | 
|  | case Instruction::IntToPtr: | 
|  | // Look past no-op inttoptrs. | 
|  | if (TLI.getValueType(DL, U->getOperand(0)->getType()) == | 
|  | TLI.getPointerTy(DL)) | 
|  | return ARMComputeAddress(U->getOperand(0), Addr); | 
|  | break; | 
|  | case Instruction::PtrToInt: | 
|  | // Look past no-op ptrtoints. | 
|  | if (TLI.getValueType(DL, U->getType()) == TLI.getPointerTy(DL)) | 
|  | return ARMComputeAddress(U->getOperand(0), Addr); | 
|  | break; | 
|  | case Instruction::GetElementPtr: { | 
|  | Address SavedAddr = Addr; | 
|  | int TmpOffset = Addr.Offset; | 
|  |  | 
|  | // Iterate through the GEP folding the constants into offsets where | 
|  | // we can. | 
|  | gep_type_iterator GTI = gep_type_begin(U); | 
|  | for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); | 
|  | i != e; ++i, ++GTI) { | 
|  | const Value *Op = *i; | 
|  | if (StructType *STy = dyn_cast<StructType>(*GTI)) { | 
|  | const StructLayout *SL = DL.getStructLayout(STy); | 
|  | unsigned Idx = cast<ConstantInt>(Op)->getZExtValue(); | 
|  | TmpOffset += SL->getElementOffset(Idx); | 
|  | } else { | 
|  | uint64_t S = DL.getTypeAllocSize(GTI.getIndexedType()); | 
|  | for (;;) { | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { | 
|  | // Constant-offset addressing. | 
|  | TmpOffset += CI->getSExtValue() * S; | 
|  | break; | 
|  | } | 
|  | if (canFoldAddIntoGEP(U, Op)) { | 
|  | // A compatible add with a constant operand. Fold the constant. | 
|  | ConstantInt *CI = | 
|  | cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); | 
|  | TmpOffset += CI->getSExtValue() * S; | 
|  | // Iterate on the other operand. | 
|  | Op = cast<AddOperator>(Op)->getOperand(0); | 
|  | continue; | 
|  | } | 
|  | // Unsupported | 
|  | goto unsupported_gep; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to grab the base operand now. | 
|  | Addr.Offset = TmpOffset; | 
|  | if (ARMComputeAddress(U->getOperand(0), Addr)) return true; | 
|  |  | 
|  | // We failed, restore everything and try the other options. | 
|  | Addr = SavedAddr; | 
|  |  | 
|  | unsupported_gep: | 
|  | break; | 
|  | } | 
|  | case Instruction::Alloca: { | 
|  | const AllocaInst *AI = cast<AllocaInst>(Obj); | 
|  | DenseMap<const AllocaInst*, int>::iterator SI = | 
|  | FuncInfo.StaticAllocaMap.find(AI); | 
|  | if (SI != FuncInfo.StaticAllocaMap.end()) { | 
|  | Addr.BaseType = Address::FrameIndexBase; | 
|  | Addr.Base.FI = SI->second; | 
|  | return true; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Try to get this in a register if nothing else has worked. | 
|  | if (Addr.Base.Reg == 0) Addr.Base.Reg = getRegForValue(Obj); | 
|  | return Addr.Base.Reg != 0; | 
|  | } | 
|  |  | 
|  | void ARMFastISel::ARMSimplifyAddress(Address &Addr, MVT VT, bool useAM3) { | 
|  | bool needsLowering = false; | 
|  | switch (VT.SimpleTy) { | 
|  | default: llvm_unreachable("Unhandled load/store type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | if (!useAM3) { | 
|  | // Integer loads/stores handle 12-bit offsets. | 
|  | needsLowering = ((Addr.Offset & 0xfff) != Addr.Offset); | 
|  | // Handle negative offsets. | 
|  | if (needsLowering && isThumb2) | 
|  | needsLowering = !(Subtarget->hasV6T2Ops() && Addr.Offset < 0 && | 
|  | Addr.Offset > -256); | 
|  | } else { | 
|  | // ARM halfword load/stores and signed byte loads use +/-imm8 offsets. | 
|  | needsLowering = (Addr.Offset > 255 || Addr.Offset < -255); | 
|  | } | 
|  | break; | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | // Floating point operands handle 8-bit offsets. | 
|  | needsLowering = ((Addr.Offset & 0xff) != Addr.Offset); | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If this is a stack pointer and the offset needs to be simplified then | 
|  | // put the alloca address into a register, set the base type back to | 
|  | // register and continue. This should almost never happen. | 
|  | if (needsLowering && Addr.BaseType == Address::FrameIndexBase) { | 
|  | const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass | 
|  | : &ARM::GPRRegClass; | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | unsigned Opc = isThumb2 ? ARM::t2ADDri : ARM::ADDri; | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Opc), ResultReg) | 
|  | .addFrameIndex(Addr.Base.FI) | 
|  | .addImm(0)); | 
|  | Addr.Base.Reg = ResultReg; | 
|  | Addr.BaseType = Address::RegBase; | 
|  | } | 
|  |  | 
|  | // Since the offset is too large for the load/store instruction | 
|  | // get the reg+offset into a register. | 
|  | if (needsLowering) { | 
|  | Addr.Base.Reg = fastEmit_ri_(MVT::i32, ISD::ADD, Addr.Base.Reg, | 
|  | /*Op0IsKill*/false, Addr.Offset, MVT::i32); | 
|  | Addr.Offset = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | void ARMFastISel::AddLoadStoreOperands(MVT VT, Address &Addr, | 
|  | const MachineInstrBuilder &MIB, | 
|  | unsigned Flags, bool useAM3) { | 
|  | // addrmode5 output depends on the selection dag addressing dividing the | 
|  | // offset by 4 that it then later multiplies. Do this here as well. | 
|  | if (VT.SimpleTy == MVT::f32 || VT.SimpleTy == MVT::f64) | 
|  | Addr.Offset /= 4; | 
|  |  | 
|  | // Frame base works a bit differently. Handle it separately. | 
|  | if (Addr.BaseType == Address::FrameIndexBase) { | 
|  | int FI = Addr.Base.FI; | 
|  | int Offset = Addr.Offset; | 
|  | MachineMemOperand *MMO = FuncInfo.MF->getMachineMemOperand( | 
|  | MachinePointerInfo::getFixedStack(*FuncInfo.MF, FI, Offset), Flags, | 
|  | MFI.getObjectSize(FI), MFI.getObjectAlignment(FI)); | 
|  | // Now add the rest of the operands. | 
|  | MIB.addFrameIndex(FI); | 
|  |  | 
|  | // ARM halfword load/stores and signed byte loads need an additional | 
|  | // operand. | 
|  | if (useAM3) { | 
|  | signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; | 
|  | MIB.addReg(0); | 
|  | MIB.addImm(Imm); | 
|  | } else { | 
|  | MIB.addImm(Addr.Offset); | 
|  | } | 
|  | MIB.addMemOperand(MMO); | 
|  | } else { | 
|  | // Now add the rest of the operands. | 
|  | MIB.addReg(Addr.Base.Reg); | 
|  |  | 
|  | // ARM halfword load/stores and signed byte loads need an additional | 
|  | // operand. | 
|  | if (useAM3) { | 
|  | signed Imm = (Addr.Offset < 0) ? (0x100 | -Addr.Offset) : Addr.Offset; | 
|  | MIB.addReg(0); | 
|  | MIB.addImm(Imm); | 
|  | } else { | 
|  | MIB.addImm(Addr.Offset); | 
|  | } | 
|  | } | 
|  | AddOptionalDefs(MIB); | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::ARMEmitLoad(MVT VT, unsigned &ResultReg, Address &Addr, | 
|  | unsigned Alignment, bool isZExt, bool allocReg) { | 
|  | unsigned Opc; | 
|  | bool useAM3 = false; | 
|  | bool needVMOV = false; | 
|  | const TargetRegisterClass *RC; | 
|  | switch (VT.SimpleTy) { | 
|  | // This is mostly going to be Neon/vector support. | 
|  | default: return false; | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | if (isThumb2) { | 
|  | if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) | 
|  | Opc = isZExt ? ARM::t2LDRBi8 : ARM::t2LDRSBi8; | 
|  | else | 
|  | Opc = isZExt ? ARM::t2LDRBi12 : ARM::t2LDRSBi12; | 
|  | } else { | 
|  | if (isZExt) { | 
|  | Opc = ARM::LDRBi12; | 
|  | } else { | 
|  | Opc = ARM::LDRSB; | 
|  | useAM3 = true; | 
|  | } | 
|  | } | 
|  | RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; | 
|  | break; | 
|  | case MVT::i16: | 
|  | if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) | 
|  | return false; | 
|  |  | 
|  | if (isThumb2) { | 
|  | if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) | 
|  | Opc = isZExt ? ARM::t2LDRHi8 : ARM::t2LDRSHi8; | 
|  | else | 
|  | Opc = isZExt ? ARM::t2LDRHi12 : ARM::t2LDRSHi12; | 
|  | } else { | 
|  | Opc = isZExt ? ARM::LDRH : ARM::LDRSH; | 
|  | useAM3 = true; | 
|  | } | 
|  | RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; | 
|  | break; | 
|  | case MVT::i32: | 
|  | if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) | 
|  | return false; | 
|  |  | 
|  | if (isThumb2) { | 
|  | if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) | 
|  | Opc = ARM::t2LDRi8; | 
|  | else | 
|  | Opc = ARM::t2LDRi12; | 
|  | } else { | 
|  | Opc = ARM::LDRi12; | 
|  | } | 
|  | RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; | 
|  | break; | 
|  | case MVT::f32: | 
|  | if (!Subtarget->hasVFP2()) return false; | 
|  | // Unaligned loads need special handling. Floats require word-alignment. | 
|  | if (Alignment && Alignment < 4) { | 
|  | needVMOV = true; | 
|  | VT = MVT::i32; | 
|  | Opc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; | 
|  | RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRnopcRegClass; | 
|  | } else { | 
|  | Opc = ARM::VLDRS; | 
|  | RC = TLI.getRegClassFor(VT); | 
|  | } | 
|  | break; | 
|  | case MVT::f64: | 
|  | if (!Subtarget->hasVFP2()) return false; | 
|  | // FIXME: Unaligned loads need special handling.  Doublewords require | 
|  | // word-alignment. | 
|  | if (Alignment && Alignment < 4) | 
|  | return false; | 
|  |  | 
|  | Opc = ARM::VLDRD; | 
|  | RC = TLI.getRegClassFor(VT); | 
|  | break; | 
|  | } | 
|  | // Simplify this down to something we can handle. | 
|  | ARMSimplifyAddress(Addr, VT, useAM3); | 
|  |  | 
|  | // Create the base instruction, then add the operands. | 
|  | if (allocReg) | 
|  | ResultReg = createResultReg(RC); | 
|  | assert (ResultReg > 255 && "Expected an allocated virtual register."); | 
|  | MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Opc), ResultReg); | 
|  | AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOLoad, useAM3); | 
|  |  | 
|  | // If we had an unaligned load of a float we've converted it to an regular | 
|  | // load.  Now we must move from the GRP to the FP register. | 
|  | if (needVMOV) { | 
|  | unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::f32)); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(ARM::VMOVSR), MoveReg) | 
|  | .addReg(ResultReg)); | 
|  | ResultReg = MoveReg; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::SelectLoad(const Instruction *I) { | 
|  | // Atomic loads need special handling. | 
|  | if (cast<LoadInst>(I)->isAtomic()) | 
|  | return false; | 
|  |  | 
|  | // Verify we have a legal type before going any further. | 
|  | MVT VT; | 
|  | if (!isLoadTypeLegal(I->getType(), VT)) | 
|  | return false; | 
|  |  | 
|  | // See if we can handle this address. | 
|  | Address Addr; | 
|  | if (!ARMComputeAddress(I->getOperand(0), Addr)) return false; | 
|  |  | 
|  | unsigned ResultReg; | 
|  | if (!ARMEmitLoad(VT, ResultReg, Addr, cast<LoadInst>(I)->getAlignment())) | 
|  | return false; | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::ARMEmitStore(MVT VT, unsigned SrcReg, Address &Addr, | 
|  | unsigned Alignment) { | 
|  | unsigned StrOpc; | 
|  | bool useAM3 = false; | 
|  | switch (VT.SimpleTy) { | 
|  | // This is mostly going to be Neon/vector support. | 
|  | default: return false; | 
|  | case MVT::i1: { | 
|  | unsigned Res = createResultReg(isThumb2 ? &ARM::tGPRRegClass | 
|  | : &ARM::GPRRegClass); | 
|  | unsigned Opc = isThumb2 ? ARM::t2ANDri : ARM::ANDri; | 
|  | SrcReg = constrainOperandRegClass(TII.get(Opc), SrcReg, 1); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Opc), Res) | 
|  | .addReg(SrcReg).addImm(1)); | 
|  | SrcReg = Res; | 
|  | } // Fallthrough here. | 
|  | case MVT::i8: | 
|  | if (isThumb2) { | 
|  | if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) | 
|  | StrOpc = ARM::t2STRBi8; | 
|  | else | 
|  | StrOpc = ARM::t2STRBi12; | 
|  | } else { | 
|  | StrOpc = ARM::STRBi12; | 
|  | } | 
|  | break; | 
|  | case MVT::i16: | 
|  | if (Alignment && Alignment < 2 && !Subtarget->allowsUnalignedMem()) | 
|  | return false; | 
|  |  | 
|  | if (isThumb2) { | 
|  | if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) | 
|  | StrOpc = ARM::t2STRHi8; | 
|  | else | 
|  | StrOpc = ARM::t2STRHi12; | 
|  | } else { | 
|  | StrOpc = ARM::STRH; | 
|  | useAM3 = true; | 
|  | } | 
|  | break; | 
|  | case MVT::i32: | 
|  | if (Alignment && Alignment < 4 && !Subtarget->allowsUnalignedMem()) | 
|  | return false; | 
|  |  | 
|  | if (isThumb2) { | 
|  | if (Addr.Offset < 0 && Addr.Offset > -256 && Subtarget->hasV6T2Ops()) | 
|  | StrOpc = ARM::t2STRi8; | 
|  | else | 
|  | StrOpc = ARM::t2STRi12; | 
|  | } else { | 
|  | StrOpc = ARM::STRi12; | 
|  | } | 
|  | break; | 
|  | case MVT::f32: | 
|  | if (!Subtarget->hasVFP2()) return false; | 
|  | // Unaligned stores need special handling. Floats require word-alignment. | 
|  | if (Alignment && Alignment < 4) { | 
|  | unsigned MoveReg = createResultReg(TLI.getRegClassFor(MVT::i32)); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(ARM::VMOVRS), MoveReg) | 
|  | .addReg(SrcReg)); | 
|  | SrcReg = MoveReg; | 
|  | VT = MVT::i32; | 
|  | StrOpc = isThumb2 ? ARM::t2STRi12 : ARM::STRi12; | 
|  | } else { | 
|  | StrOpc = ARM::VSTRS; | 
|  | } | 
|  | break; | 
|  | case MVT::f64: | 
|  | if (!Subtarget->hasVFP2()) return false; | 
|  | // FIXME: Unaligned stores need special handling.  Doublewords require | 
|  | // word-alignment. | 
|  | if (Alignment && Alignment < 4) | 
|  | return false; | 
|  |  | 
|  | StrOpc = ARM::VSTRD; | 
|  | break; | 
|  | } | 
|  | // Simplify this down to something we can handle. | 
|  | ARMSimplifyAddress(Addr, VT, useAM3); | 
|  |  | 
|  | // Create the base instruction, then add the operands. | 
|  | SrcReg = constrainOperandRegClass(TII.get(StrOpc), SrcReg, 0); | 
|  | MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(StrOpc)) | 
|  | .addReg(SrcReg); | 
|  | AddLoadStoreOperands(VT, Addr, MIB, MachineMemOperand::MOStore, useAM3); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::SelectStore(const Instruction *I) { | 
|  | Value *Op0 = I->getOperand(0); | 
|  | unsigned SrcReg = 0; | 
|  |  | 
|  | // Atomic stores need special handling. | 
|  | if (cast<StoreInst>(I)->isAtomic()) | 
|  | return false; | 
|  |  | 
|  | // Verify we have a legal type before going any further. | 
|  | MVT VT; | 
|  | if (!isLoadTypeLegal(I->getOperand(0)->getType(), VT)) | 
|  | return false; | 
|  |  | 
|  | // Get the value to be stored into a register. | 
|  | SrcReg = getRegForValue(Op0); | 
|  | if (SrcReg == 0) return false; | 
|  |  | 
|  | // See if we can handle this address. | 
|  | Address Addr; | 
|  | if (!ARMComputeAddress(I->getOperand(1), Addr)) | 
|  | return false; | 
|  |  | 
|  | if (!ARMEmitStore(VT, SrcReg, Addr, cast<StoreInst>(I)->getAlignment())) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static ARMCC::CondCodes getComparePred(CmpInst::Predicate Pred) { | 
|  | switch (Pred) { | 
|  | // Needs two compares... | 
|  | case CmpInst::FCMP_ONE: | 
|  | case CmpInst::FCMP_UEQ: | 
|  | default: | 
|  | // AL is our "false" for now. The other two need more compares. | 
|  | return ARMCC::AL; | 
|  | case CmpInst::ICMP_EQ: | 
|  | case CmpInst::FCMP_OEQ: | 
|  | return ARMCC::EQ; | 
|  | case CmpInst::ICMP_SGT: | 
|  | case CmpInst::FCMP_OGT: | 
|  | return ARMCC::GT; | 
|  | case CmpInst::ICMP_SGE: | 
|  | case CmpInst::FCMP_OGE: | 
|  | return ARMCC::GE; | 
|  | case CmpInst::ICMP_UGT: | 
|  | case CmpInst::FCMP_UGT: | 
|  | return ARMCC::HI; | 
|  | case CmpInst::FCMP_OLT: | 
|  | return ARMCC::MI; | 
|  | case CmpInst::ICMP_ULE: | 
|  | case CmpInst::FCMP_OLE: | 
|  | return ARMCC::LS; | 
|  | case CmpInst::FCMP_ORD: | 
|  | return ARMCC::VC; | 
|  | case CmpInst::FCMP_UNO: | 
|  | return ARMCC::VS; | 
|  | case CmpInst::FCMP_UGE: | 
|  | return ARMCC::PL; | 
|  | case CmpInst::ICMP_SLT: | 
|  | case CmpInst::FCMP_ULT: | 
|  | return ARMCC::LT; | 
|  | case CmpInst::ICMP_SLE: | 
|  | case CmpInst::FCMP_ULE: | 
|  | return ARMCC::LE; | 
|  | case CmpInst::FCMP_UNE: | 
|  | case CmpInst::ICMP_NE: | 
|  | return ARMCC::NE; | 
|  | case CmpInst::ICMP_UGE: | 
|  | return ARMCC::HS; | 
|  | case CmpInst::ICMP_ULT: | 
|  | return ARMCC::LO; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::SelectBranch(const Instruction *I) { | 
|  | const BranchInst *BI = cast<BranchInst>(I); | 
|  | MachineBasicBlock *TBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; | 
|  | MachineBasicBlock *FBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; | 
|  |  | 
|  | // Simple branch support. | 
|  |  | 
|  | // If we can, avoid recomputing the compare - redoing it could lead to wonky | 
|  | // behavior. | 
|  | if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { | 
|  | if (CI->hasOneUse() && (CI->getParent() == I->getParent())) { | 
|  |  | 
|  | // Get the compare predicate. | 
|  | // Try to take advantage of fallthrough opportunities. | 
|  | CmpInst::Predicate Predicate = CI->getPredicate(); | 
|  | if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { | 
|  | std::swap(TBB, FBB); | 
|  | Predicate = CmpInst::getInversePredicate(Predicate); | 
|  | } | 
|  |  | 
|  | ARMCC::CondCodes ARMPred = getComparePred(Predicate); | 
|  |  | 
|  | // We may not handle every CC for now. | 
|  | if (ARMPred == ARMCC::AL) return false; | 
|  |  | 
|  | // Emit the compare. | 
|  | if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) | 
|  | return false; | 
|  |  | 
|  | unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) | 
|  | .addMBB(TBB).addImm(ARMPred).addReg(ARM::CPSR); | 
|  | finishCondBranch(BI->getParent(), TBB, FBB); | 
|  | return true; | 
|  | } | 
|  | } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { | 
|  | MVT SourceVT; | 
|  | if (TI->hasOneUse() && TI->getParent() == I->getParent() && | 
|  | (isLoadTypeLegal(TI->getOperand(0)->getType(), SourceVT))) { | 
|  | unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; | 
|  | unsigned OpReg = getRegForValue(TI->getOperand(0)); | 
|  | OpReg = constrainOperandRegClass(TII.get(TstOpc), OpReg, 0); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TstOpc)) | 
|  | .addReg(OpReg).addImm(1)); | 
|  |  | 
|  | unsigned CCMode = ARMCC::NE; | 
|  | if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { | 
|  | std::swap(TBB, FBB); | 
|  | CCMode = ARMCC::EQ; | 
|  | } | 
|  |  | 
|  | unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) | 
|  | .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); | 
|  |  | 
|  | finishCondBranch(BI->getParent(), TBB, FBB); | 
|  | return true; | 
|  | } | 
|  | } else if (const ConstantInt *CI = | 
|  | dyn_cast<ConstantInt>(BI->getCondition())) { | 
|  | uint64_t Imm = CI->getZExtValue(); | 
|  | MachineBasicBlock *Target = (Imm == 0) ? FBB : TBB; | 
|  | fastEmitBranch(Target, DbgLoc); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned CmpReg = getRegForValue(BI->getCondition()); | 
|  | if (CmpReg == 0) return false; | 
|  |  | 
|  | // We've been divorced from our compare!  Our block was split, and | 
|  | // now our compare lives in a predecessor block.  We musn't | 
|  | // re-compare here, as the children of the compare aren't guaranteed | 
|  | // live across the block boundary (we *could* check for this). | 
|  | // Regardless, the compare has been done in the predecessor block, | 
|  | // and it left a value for us in a virtual register.  Ergo, we test | 
|  | // the one-bit value left in the virtual register. | 
|  | unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; | 
|  | CmpReg = constrainOperandRegClass(TII.get(TstOpc), CmpReg, 0); | 
|  | AddOptionalDefs( | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) | 
|  | .addReg(CmpReg) | 
|  | .addImm(1)); | 
|  |  | 
|  | unsigned CCMode = ARMCC::NE; | 
|  | if (FuncInfo.MBB->isLayoutSuccessor(TBB)) { | 
|  | std::swap(TBB, FBB); | 
|  | CCMode = ARMCC::EQ; | 
|  | } | 
|  |  | 
|  | unsigned BrOpc = isThumb2 ? ARM::t2Bcc : ARM::Bcc; | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(BrOpc)) | 
|  | .addMBB(TBB).addImm(CCMode).addReg(ARM::CPSR); | 
|  | finishCondBranch(BI->getParent(), TBB, FBB); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::SelectIndirectBr(const Instruction *I) { | 
|  | unsigned AddrReg = getRegForValue(I->getOperand(0)); | 
|  | if (AddrReg == 0) return false; | 
|  |  | 
|  | unsigned Opc = isThumb2 ? ARM::tBRIND : ARM::BX; | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Opc)).addReg(AddrReg)); | 
|  |  | 
|  | const IndirectBrInst *IB = cast<IndirectBrInst>(I); | 
|  | for (const BasicBlock *SuccBB : IB->successors()) | 
|  | FuncInfo.MBB->addSuccessor(FuncInfo.MBBMap[SuccBB]); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::ARMEmitCmp(const Value *Src1Value, const Value *Src2Value, | 
|  | bool isZExt) { | 
|  | Type *Ty = Src1Value->getType(); | 
|  | EVT SrcEVT = TLI.getValueType(DL, Ty, true); | 
|  | if (!SrcEVT.isSimple()) return false; | 
|  | MVT SrcVT = SrcEVT.getSimpleVT(); | 
|  |  | 
|  | bool isFloat = (Ty->isFloatTy() || Ty->isDoubleTy()); | 
|  | if (isFloat && !Subtarget->hasVFP2()) | 
|  | return false; | 
|  |  | 
|  | // Check to see if the 2nd operand is a constant that we can encode directly | 
|  | // in the compare. | 
|  | int Imm = 0; | 
|  | bool UseImm = false; | 
|  | bool isNegativeImm = false; | 
|  | // FIXME: At -O0 we don't have anything that canonicalizes operand order. | 
|  | // Thus, Src1Value may be a ConstantInt, but we're missing it. | 
|  | if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(Src2Value)) { | 
|  | if (SrcVT == MVT::i32 || SrcVT == MVT::i16 || SrcVT == MVT::i8 || | 
|  | SrcVT == MVT::i1) { | 
|  | const APInt &CIVal = ConstInt->getValue(); | 
|  | Imm = (isZExt) ? (int)CIVal.getZExtValue() : (int)CIVal.getSExtValue(); | 
|  | // For INT_MIN/LONG_MIN (i.e., 0x80000000) we need to use a cmp, rather | 
|  | // then a cmn, because there is no way to represent 2147483648 as a | 
|  | // signed 32-bit int. | 
|  | if (Imm < 0 && Imm != (int)0x80000000) { | 
|  | isNegativeImm = true; | 
|  | Imm = -Imm; | 
|  | } | 
|  | UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : | 
|  | (ARM_AM::getSOImmVal(Imm) != -1); | 
|  | } | 
|  | } else if (const ConstantFP *ConstFP = dyn_cast<ConstantFP>(Src2Value)) { | 
|  | if (SrcVT == MVT::f32 || SrcVT == MVT::f64) | 
|  | if (ConstFP->isZero() && !ConstFP->isNegative()) | 
|  | UseImm = true; | 
|  | } | 
|  |  | 
|  | unsigned CmpOpc; | 
|  | bool isICmp = true; | 
|  | bool needsExt = false; | 
|  | switch (SrcVT.SimpleTy) { | 
|  | default: return false; | 
|  | // TODO: Verify compares. | 
|  | case MVT::f32: | 
|  | isICmp = false; | 
|  | CmpOpc = UseImm ? ARM::VCMPEZS : ARM::VCMPES; | 
|  | break; | 
|  | case MVT::f64: | 
|  | isICmp = false; | 
|  | CmpOpc = UseImm ? ARM::VCMPEZD : ARM::VCMPED; | 
|  | break; | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | needsExt = true; | 
|  | // Intentional fall-through. | 
|  | case MVT::i32: | 
|  | if (isThumb2) { | 
|  | if (!UseImm) | 
|  | CmpOpc = ARM::t2CMPrr; | 
|  | else | 
|  | CmpOpc = isNegativeImm ? ARM::t2CMNri : ARM::t2CMPri; | 
|  | } else { | 
|  | if (!UseImm) | 
|  | CmpOpc = ARM::CMPrr; | 
|  | else | 
|  | CmpOpc = isNegativeImm ? ARM::CMNri : ARM::CMPri; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | unsigned SrcReg1 = getRegForValue(Src1Value); | 
|  | if (SrcReg1 == 0) return false; | 
|  |  | 
|  | unsigned SrcReg2 = 0; | 
|  | if (!UseImm) { | 
|  | SrcReg2 = getRegForValue(Src2Value); | 
|  | if (SrcReg2 == 0) return false; | 
|  | } | 
|  |  | 
|  | // We have i1, i8, or i16, we need to either zero extend or sign extend. | 
|  | if (needsExt) { | 
|  | SrcReg1 = ARMEmitIntExt(SrcVT, SrcReg1, MVT::i32, isZExt); | 
|  | if (SrcReg1 == 0) return false; | 
|  | if (!UseImm) { | 
|  | SrcReg2 = ARMEmitIntExt(SrcVT, SrcReg2, MVT::i32, isZExt); | 
|  | if (SrcReg2 == 0) return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | const MCInstrDesc &II = TII.get(CmpOpc); | 
|  | SrcReg1 = constrainOperandRegClass(II, SrcReg1, 0); | 
|  | if (!UseImm) { | 
|  | SrcReg2 = constrainOperandRegClass(II, SrcReg2, 1); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) | 
|  | .addReg(SrcReg1).addReg(SrcReg2)); | 
|  | } else { | 
|  | MachineInstrBuilder MIB; | 
|  | MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, II) | 
|  | .addReg(SrcReg1); | 
|  |  | 
|  | // Only add immediate for icmp as the immediate for fcmp is an implicit 0.0. | 
|  | if (isICmp) | 
|  | MIB.addImm(Imm); | 
|  | AddOptionalDefs(MIB); | 
|  | } | 
|  |  | 
|  | // For floating point we need to move the result to a comparison register | 
|  | // that we can then use for branches. | 
|  | if (Ty->isFloatTy() || Ty->isDoubleTy()) | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(ARM::FMSTAT))); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::SelectCmp(const Instruction *I) { | 
|  | const CmpInst *CI = cast<CmpInst>(I); | 
|  |  | 
|  | // Get the compare predicate. | 
|  | ARMCC::CondCodes ARMPred = getComparePred(CI->getPredicate()); | 
|  |  | 
|  | // We may not handle every CC for now. | 
|  | if (ARMPred == ARMCC::AL) return false; | 
|  |  | 
|  | // Emit the compare. | 
|  | if (!ARMEmitCmp(CI->getOperand(0), CI->getOperand(1), CI->isUnsigned())) | 
|  | return false; | 
|  |  | 
|  | // Now set a register based on the comparison. Explicitly set the predicates | 
|  | // here. | 
|  | unsigned MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; | 
|  | const TargetRegisterClass *RC = isThumb2 ? &ARM::rGPRRegClass | 
|  | : &ARM::GPRRegClass; | 
|  | unsigned DestReg = createResultReg(RC); | 
|  | Constant *Zero = ConstantInt::get(Type::getInt32Ty(*Context), 0); | 
|  | unsigned ZeroReg = fastMaterializeConstant(Zero); | 
|  | // ARMEmitCmp emits a FMSTAT when necessary, so it's always safe to use CPSR. | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), DestReg) | 
|  | .addReg(ZeroReg).addImm(1) | 
|  | .addImm(ARMPred).addReg(ARM::CPSR); | 
|  |  | 
|  | updateValueMap(I, DestReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::SelectFPExt(const Instruction *I) { | 
|  | // Make sure we have VFP and that we're extending float to double. | 
|  | if (!Subtarget->hasVFP2()) return false; | 
|  |  | 
|  | Value *V = I->getOperand(0); | 
|  | if (!I->getType()->isDoubleTy() || | 
|  | !V->getType()->isFloatTy()) return false; | 
|  |  | 
|  | unsigned Op = getRegForValue(V); | 
|  | if (Op == 0) return false; | 
|  |  | 
|  | unsigned Result = createResultReg(&ARM::DPRRegClass); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(ARM::VCVTDS), Result) | 
|  | .addReg(Op)); | 
|  | updateValueMap(I, Result); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::SelectFPTrunc(const Instruction *I) { | 
|  | // Make sure we have VFP and that we're truncating double to float. | 
|  | if (!Subtarget->hasVFP2()) return false; | 
|  |  | 
|  | Value *V = I->getOperand(0); | 
|  | if (!(I->getType()->isFloatTy() && | 
|  | V->getType()->isDoubleTy())) return false; | 
|  |  | 
|  | unsigned Op = getRegForValue(V); | 
|  | if (Op == 0) return false; | 
|  |  | 
|  | unsigned Result = createResultReg(&ARM::SPRRegClass); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(ARM::VCVTSD), Result) | 
|  | .addReg(Op)); | 
|  | updateValueMap(I, Result); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::SelectIToFP(const Instruction *I, bool isSigned) { | 
|  | // Make sure we have VFP. | 
|  | if (!Subtarget->hasVFP2()) return false; | 
|  |  | 
|  | MVT DstVT; | 
|  | Type *Ty = I->getType(); | 
|  | if (!isTypeLegal(Ty, DstVT)) | 
|  | return false; | 
|  |  | 
|  | Value *Src = I->getOperand(0); | 
|  | EVT SrcEVT = TLI.getValueType(DL, Src->getType(), true); | 
|  | if (!SrcEVT.isSimple()) | 
|  | return false; | 
|  | MVT SrcVT = SrcEVT.getSimpleVT(); | 
|  | if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) | 
|  | return false; | 
|  |  | 
|  | unsigned SrcReg = getRegForValue(Src); | 
|  | if (SrcReg == 0) return false; | 
|  |  | 
|  | // Handle sign-extension. | 
|  | if (SrcVT == MVT::i16 || SrcVT == MVT::i8) { | 
|  | SrcReg = ARMEmitIntExt(SrcVT, SrcReg, MVT::i32, | 
|  | /*isZExt*/!isSigned); | 
|  | if (SrcReg == 0) return false; | 
|  | } | 
|  |  | 
|  | // The conversion routine works on fp-reg to fp-reg and the operand above | 
|  | // was an integer, move it to the fp registers if possible. | 
|  | unsigned FP = ARMMoveToFPReg(MVT::f32, SrcReg); | 
|  | if (FP == 0) return false; | 
|  |  | 
|  | unsigned Opc; | 
|  | if (Ty->isFloatTy()) Opc = isSigned ? ARM::VSITOS : ARM::VUITOS; | 
|  | else if (Ty->isDoubleTy()) Opc = isSigned ? ARM::VSITOD : ARM::VUITOD; | 
|  | else return false; | 
|  |  | 
|  | unsigned ResultReg = createResultReg(TLI.getRegClassFor(DstVT)); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Opc), ResultReg).addReg(FP)); | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::SelectFPToI(const Instruction *I, bool isSigned) { | 
|  | // Make sure we have VFP. | 
|  | if (!Subtarget->hasVFP2()) return false; | 
|  |  | 
|  | MVT DstVT; | 
|  | Type *RetTy = I->getType(); | 
|  | if (!isTypeLegal(RetTy, DstVT)) | 
|  | return false; | 
|  |  | 
|  | unsigned Op = getRegForValue(I->getOperand(0)); | 
|  | if (Op == 0) return false; | 
|  |  | 
|  | unsigned Opc; | 
|  | Type *OpTy = I->getOperand(0)->getType(); | 
|  | if (OpTy->isFloatTy()) Opc = isSigned ? ARM::VTOSIZS : ARM::VTOUIZS; | 
|  | else if (OpTy->isDoubleTy()) Opc = isSigned ? ARM::VTOSIZD : ARM::VTOUIZD; | 
|  | else return false; | 
|  |  | 
|  | // f64->s32/u32 or f32->s32/u32 both need an intermediate f32 reg. | 
|  | unsigned ResultReg = createResultReg(TLI.getRegClassFor(MVT::f32)); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Opc), ResultReg).addReg(Op)); | 
|  |  | 
|  | // This result needs to be in an integer register, but the conversion only | 
|  | // takes place in fp-regs. | 
|  | unsigned IntReg = ARMMoveToIntReg(DstVT, ResultReg); | 
|  | if (IntReg == 0) return false; | 
|  |  | 
|  | updateValueMap(I, IntReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::SelectSelect(const Instruction *I) { | 
|  | MVT VT; | 
|  | if (!isTypeLegal(I->getType(), VT)) | 
|  | return false; | 
|  |  | 
|  | // Things need to be register sized for register moves. | 
|  | if (VT != MVT::i32) return false; | 
|  |  | 
|  | unsigned CondReg = getRegForValue(I->getOperand(0)); | 
|  | if (CondReg == 0) return false; | 
|  | unsigned Op1Reg = getRegForValue(I->getOperand(1)); | 
|  | if (Op1Reg == 0) return false; | 
|  |  | 
|  | // Check to see if we can use an immediate in the conditional move. | 
|  | int Imm = 0; | 
|  | bool UseImm = false; | 
|  | bool isNegativeImm = false; | 
|  | if (const ConstantInt *ConstInt = dyn_cast<ConstantInt>(I->getOperand(2))) { | 
|  | assert (VT == MVT::i32 && "Expecting an i32."); | 
|  | Imm = (int)ConstInt->getValue().getZExtValue(); | 
|  | if (Imm < 0) { | 
|  | isNegativeImm = true; | 
|  | Imm = ~Imm; | 
|  | } | 
|  | UseImm = isThumb2 ? (ARM_AM::getT2SOImmVal(Imm) != -1) : | 
|  | (ARM_AM::getSOImmVal(Imm) != -1); | 
|  | } | 
|  |  | 
|  | unsigned Op2Reg = 0; | 
|  | if (!UseImm) { | 
|  | Op2Reg = getRegForValue(I->getOperand(2)); | 
|  | if (Op2Reg == 0) return false; | 
|  | } | 
|  |  | 
|  | unsigned TstOpc = isThumb2 ? ARM::t2TSTri : ARM::TSTri; | 
|  | CondReg = constrainOperandRegClass(TII.get(TstOpc), CondReg, 0); | 
|  | AddOptionalDefs( | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(TstOpc)) | 
|  | .addReg(CondReg) | 
|  | .addImm(1)); | 
|  |  | 
|  | unsigned MovCCOpc; | 
|  | const TargetRegisterClass *RC; | 
|  | if (!UseImm) { | 
|  | RC = isThumb2 ? &ARM::tGPRRegClass : &ARM::GPRRegClass; | 
|  | MovCCOpc = isThumb2 ? ARM::t2MOVCCr : ARM::MOVCCr; | 
|  | } else { | 
|  | RC = isThumb2 ? &ARM::rGPRRegClass : &ARM::GPRRegClass; | 
|  | if (!isNegativeImm) | 
|  | MovCCOpc = isThumb2 ? ARM::t2MOVCCi : ARM::MOVCCi; | 
|  | else | 
|  | MovCCOpc = isThumb2 ? ARM::t2MVNCCi : ARM::MVNCCi; | 
|  | } | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | if (!UseImm) { | 
|  | Op2Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op2Reg, 1); | 
|  | Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 2); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), | 
|  | ResultReg) | 
|  | .addReg(Op2Reg) | 
|  | .addReg(Op1Reg) | 
|  | .addImm(ARMCC::NE) | 
|  | .addReg(ARM::CPSR); | 
|  | } else { | 
|  | Op1Reg = constrainOperandRegClass(TII.get(MovCCOpc), Op1Reg, 1); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(MovCCOpc), | 
|  | ResultReg) | 
|  | .addReg(Op1Reg) | 
|  | .addImm(Imm) | 
|  | .addImm(ARMCC::EQ) | 
|  | .addReg(ARM::CPSR); | 
|  | } | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::SelectDiv(const Instruction *I, bool isSigned) { | 
|  | MVT VT; | 
|  | Type *Ty = I->getType(); | 
|  | if (!isTypeLegal(Ty, VT)) | 
|  | return false; | 
|  |  | 
|  | // If we have integer div support we should have selected this automagically. | 
|  | // In case we have a real miss go ahead and return false and we'll pick | 
|  | // it up later. | 
|  | if (Subtarget->hasDivide()) return false; | 
|  |  | 
|  | // Otherwise emit a libcall. | 
|  | RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; | 
|  | if (VT == MVT::i8) | 
|  | LC = isSigned ? RTLIB::SDIV_I8 : RTLIB::UDIV_I8; | 
|  | else if (VT == MVT::i16) | 
|  | LC = isSigned ? RTLIB::SDIV_I16 : RTLIB::UDIV_I16; | 
|  | else if (VT == MVT::i32) | 
|  | LC = isSigned ? RTLIB::SDIV_I32 : RTLIB::UDIV_I32; | 
|  | else if (VT == MVT::i64) | 
|  | LC = isSigned ? RTLIB::SDIV_I64 : RTLIB::UDIV_I64; | 
|  | else if (VT == MVT::i128) | 
|  | LC = isSigned ? RTLIB::SDIV_I128 : RTLIB::UDIV_I128; | 
|  | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SDIV!"); | 
|  |  | 
|  | return ARMEmitLibcall(I, LC); | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::SelectRem(const Instruction *I, bool isSigned) { | 
|  | MVT VT; | 
|  | Type *Ty = I->getType(); | 
|  | if (!isTypeLegal(Ty, VT)) | 
|  | return false; | 
|  |  | 
|  | RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL; | 
|  | if (VT == MVT::i8) | 
|  | LC = isSigned ? RTLIB::SREM_I8 : RTLIB::UREM_I8; | 
|  | else if (VT == MVT::i16) | 
|  | LC = isSigned ? RTLIB::SREM_I16 : RTLIB::UREM_I16; | 
|  | else if (VT == MVT::i32) | 
|  | LC = isSigned ? RTLIB::SREM_I32 : RTLIB::UREM_I32; | 
|  | else if (VT == MVT::i64) | 
|  | LC = isSigned ? RTLIB::SREM_I64 : RTLIB::UREM_I64; | 
|  | else if (VT == MVT::i128) | 
|  | LC = isSigned ? RTLIB::SREM_I128 : RTLIB::UREM_I128; | 
|  | assert(LC != RTLIB::UNKNOWN_LIBCALL && "Unsupported SREM!"); | 
|  |  | 
|  | return ARMEmitLibcall(I, LC); | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::SelectBinaryIntOp(const Instruction *I, unsigned ISDOpcode) { | 
|  | EVT DestVT = TLI.getValueType(DL, I->getType(), true); | 
|  |  | 
|  | // We can get here in the case when we have a binary operation on a non-legal | 
|  | // type and the target independent selector doesn't know how to handle it. | 
|  | if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) | 
|  | return false; | 
|  |  | 
|  | unsigned Opc; | 
|  | switch (ISDOpcode) { | 
|  | default: return false; | 
|  | case ISD::ADD: | 
|  | Opc = isThumb2 ? ARM::t2ADDrr : ARM::ADDrr; | 
|  | break; | 
|  | case ISD::OR: | 
|  | Opc = isThumb2 ? ARM::t2ORRrr : ARM::ORRrr; | 
|  | break; | 
|  | case ISD::SUB: | 
|  | Opc = isThumb2 ? ARM::t2SUBrr : ARM::SUBrr; | 
|  | break; | 
|  | } | 
|  |  | 
|  | unsigned SrcReg1 = getRegForValue(I->getOperand(0)); | 
|  | if (SrcReg1 == 0) return false; | 
|  |  | 
|  | // TODO: Often the 2nd operand is an immediate, which can be encoded directly | 
|  | // in the instruction, rather then materializing the value in a register. | 
|  | unsigned SrcReg2 = getRegForValue(I->getOperand(1)); | 
|  | if (SrcReg2 == 0) return false; | 
|  |  | 
|  | unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); | 
|  | SrcReg1 = constrainOperandRegClass(TII.get(Opc), SrcReg1, 1); | 
|  | SrcReg2 = constrainOperandRegClass(TII.get(Opc), SrcReg2, 2); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Opc), ResultReg) | 
|  | .addReg(SrcReg1).addReg(SrcReg2)); | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::SelectBinaryFPOp(const Instruction *I, unsigned ISDOpcode) { | 
|  | EVT FPVT = TLI.getValueType(DL, I->getType(), true); | 
|  | if (!FPVT.isSimple()) return false; | 
|  | MVT VT = FPVT.getSimpleVT(); | 
|  |  | 
|  | // FIXME: Support vector types where possible. | 
|  | if (VT.isVector()) | 
|  | return false; | 
|  |  | 
|  | // We can get here in the case when we want to use NEON for our fp | 
|  | // operations, but can't figure out how to. Just use the vfp instructions | 
|  | // if we have them. | 
|  | // FIXME: It'd be nice to use NEON instructions. | 
|  | Type *Ty = I->getType(); | 
|  | bool isFloat = (Ty->isDoubleTy() || Ty->isFloatTy()); | 
|  | if (isFloat && !Subtarget->hasVFP2()) | 
|  | return false; | 
|  |  | 
|  | unsigned Opc; | 
|  | bool is64bit = VT == MVT::f64 || VT == MVT::i64; | 
|  | switch (ISDOpcode) { | 
|  | default: return false; | 
|  | case ISD::FADD: | 
|  | Opc = is64bit ? ARM::VADDD : ARM::VADDS; | 
|  | break; | 
|  | case ISD::FSUB: | 
|  | Opc = is64bit ? ARM::VSUBD : ARM::VSUBS; | 
|  | break; | 
|  | case ISD::FMUL: | 
|  | Opc = is64bit ? ARM::VMULD : ARM::VMULS; | 
|  | break; | 
|  | } | 
|  | unsigned Op1 = getRegForValue(I->getOperand(0)); | 
|  | if (Op1 == 0) return false; | 
|  |  | 
|  | unsigned Op2 = getRegForValue(I->getOperand(1)); | 
|  | if (Op2 == 0) return false; | 
|  |  | 
|  | unsigned ResultReg = createResultReg(TLI.getRegClassFor(VT.SimpleTy)); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Opc), ResultReg) | 
|  | .addReg(Op1).addReg(Op2)); | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Call Handling Code | 
|  |  | 
|  | // This is largely taken directly from CCAssignFnForNode | 
|  | // TODO: We may not support all of this. | 
|  | CCAssignFn *ARMFastISel::CCAssignFnForCall(CallingConv::ID CC, | 
|  | bool Return, | 
|  | bool isVarArg) { | 
|  | switch (CC) { | 
|  | default: | 
|  | llvm_unreachable("Unsupported calling convention"); | 
|  | case CallingConv::Fast: | 
|  | if (Subtarget->hasVFP2() && !isVarArg) { | 
|  | if (!Subtarget->isAAPCS_ABI()) | 
|  | return (Return ? RetFastCC_ARM_APCS : FastCC_ARM_APCS); | 
|  | // For AAPCS ABI targets, just use VFP variant of the calling convention. | 
|  | return (Return ? RetCC_ARM_AAPCS_VFP : CC_ARM_AAPCS_VFP); | 
|  | } | 
|  | // Fallthrough | 
|  | case CallingConv::C: | 
|  | // Use target triple & subtarget features to do actual dispatch. | 
|  | if (Subtarget->isAAPCS_ABI()) { | 
|  | if (Subtarget->hasVFP2() && | 
|  | TM.Options.FloatABIType == FloatABI::Hard && !isVarArg) | 
|  | return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); | 
|  | else | 
|  | return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); | 
|  | } else { | 
|  | return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); | 
|  | } | 
|  | case CallingConv::ARM_AAPCS_VFP: | 
|  | if (!isVarArg) | 
|  | return (Return ? RetCC_ARM_AAPCS_VFP: CC_ARM_AAPCS_VFP); | 
|  | // Fall through to soft float variant, variadic functions don't | 
|  | // use hard floating point ABI. | 
|  | case CallingConv::ARM_AAPCS: | 
|  | return (Return ? RetCC_ARM_AAPCS: CC_ARM_AAPCS); | 
|  | case CallingConv::ARM_APCS: | 
|  | return (Return ? RetCC_ARM_APCS: CC_ARM_APCS); | 
|  | case CallingConv::GHC: | 
|  | if (Return) | 
|  | llvm_unreachable("Can't return in GHC call convention"); | 
|  | else | 
|  | return CC_ARM_APCS_GHC; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::ProcessCallArgs(SmallVectorImpl<Value*> &Args, | 
|  | SmallVectorImpl<unsigned> &ArgRegs, | 
|  | SmallVectorImpl<MVT> &ArgVTs, | 
|  | SmallVectorImpl<ISD::ArgFlagsTy> &ArgFlags, | 
|  | SmallVectorImpl<unsigned> &RegArgs, | 
|  | CallingConv::ID CC, | 
|  | unsigned &NumBytes, | 
|  | bool isVarArg) { | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CC, isVarArg, *FuncInfo.MF, ArgLocs, *Context); | 
|  | CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, | 
|  | CCAssignFnForCall(CC, false, isVarArg)); | 
|  |  | 
|  | // Check that we can handle all of the arguments. If we can't, then bail out | 
|  | // now before we add code to the MBB. | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | MVT ArgVT = ArgVTs[VA.getValNo()]; | 
|  |  | 
|  | // We don't handle NEON/vector parameters yet. | 
|  | if (ArgVT.isVector() || ArgVT.getSizeInBits() > 64) | 
|  | return false; | 
|  |  | 
|  | // Now copy/store arg to correct locations. | 
|  | if (VA.isRegLoc() && !VA.needsCustom()) { | 
|  | continue; | 
|  | } else if (VA.needsCustom()) { | 
|  | // TODO: We need custom lowering for vector (v2f64) args. | 
|  | if (VA.getLocVT() != MVT::f64 || | 
|  | // TODO: Only handle register args for now. | 
|  | !VA.isRegLoc() || !ArgLocs[++i].isRegLoc()) | 
|  | return false; | 
|  | } else { | 
|  | switch (ArgVT.SimpleTy) { | 
|  | default: | 
|  | return false; | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | break; | 
|  | case MVT::f32: | 
|  | if (!Subtarget->hasVFP2()) | 
|  | return false; | 
|  | break; | 
|  | case MVT::f64: | 
|  | if (!Subtarget->hasVFP2()) | 
|  | return false; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // At the point, we are able to handle the call's arguments in fast isel. | 
|  |  | 
|  | // Get a count of how many bytes are to be pushed on the stack. | 
|  | NumBytes = CCInfo.getNextStackOffset(); | 
|  |  | 
|  | // Issue CALLSEQ_START | 
|  | unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(AdjStackDown)) | 
|  | .addImm(NumBytes)); | 
|  |  | 
|  | // Process the args. | 
|  | for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { | 
|  | CCValAssign &VA = ArgLocs[i]; | 
|  | const Value *ArgVal = Args[VA.getValNo()]; | 
|  | unsigned Arg = ArgRegs[VA.getValNo()]; | 
|  | MVT ArgVT = ArgVTs[VA.getValNo()]; | 
|  |  | 
|  | assert((!ArgVT.isVector() && ArgVT.getSizeInBits() <= 64) && | 
|  | "We don't handle NEON/vector parameters yet."); | 
|  |  | 
|  | // Handle arg promotion, etc. | 
|  | switch (VA.getLocInfo()) { | 
|  | case CCValAssign::Full: break; | 
|  | case CCValAssign::SExt: { | 
|  | MVT DestVT = VA.getLocVT(); | 
|  | Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/false); | 
|  | assert (Arg != 0 && "Failed to emit a sext"); | 
|  | ArgVT = DestVT; | 
|  | break; | 
|  | } | 
|  | case CCValAssign::AExt: | 
|  | // Intentional fall-through.  Handle AExt and ZExt. | 
|  | case CCValAssign::ZExt: { | 
|  | MVT DestVT = VA.getLocVT(); | 
|  | Arg = ARMEmitIntExt(ArgVT, Arg, DestVT, /*isZExt*/true); | 
|  | assert (Arg != 0 && "Failed to emit a zext"); | 
|  | ArgVT = DestVT; | 
|  | break; | 
|  | } | 
|  | case CCValAssign::BCvt: { | 
|  | unsigned BC = fastEmit_r(ArgVT, VA.getLocVT(), ISD::BITCAST, Arg, | 
|  | /*TODO: Kill=*/false); | 
|  | assert(BC != 0 && "Failed to emit a bitcast!"); | 
|  | Arg = BC; | 
|  | ArgVT = VA.getLocVT(); | 
|  | break; | 
|  | } | 
|  | default: llvm_unreachable("Unknown arg promotion!"); | 
|  | } | 
|  |  | 
|  | // Now copy/store arg to correct locations. | 
|  | if (VA.isRegLoc() && !VA.needsCustom()) { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg); | 
|  | RegArgs.push_back(VA.getLocReg()); | 
|  | } else if (VA.needsCustom()) { | 
|  | // TODO: We need custom lowering for vector (v2f64) args. | 
|  | assert(VA.getLocVT() == MVT::f64 && | 
|  | "Custom lowering for v2f64 args not available"); | 
|  |  | 
|  | CCValAssign &NextVA = ArgLocs[++i]; | 
|  |  | 
|  | assert(VA.isRegLoc() && NextVA.isRegLoc() && | 
|  | "We only handle register args!"); | 
|  |  | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(ARM::VMOVRRD), VA.getLocReg()) | 
|  | .addReg(NextVA.getLocReg(), RegState::Define) | 
|  | .addReg(Arg)); | 
|  | RegArgs.push_back(VA.getLocReg()); | 
|  | RegArgs.push_back(NextVA.getLocReg()); | 
|  | } else { | 
|  | assert(VA.isMemLoc()); | 
|  | // Need to store on the stack. | 
|  |  | 
|  | // Don't emit stores for undef values. | 
|  | if (isa<UndefValue>(ArgVal)) | 
|  | continue; | 
|  |  | 
|  | Address Addr; | 
|  | Addr.BaseType = Address::RegBase; | 
|  | Addr.Base.Reg = ARM::SP; | 
|  | Addr.Offset = VA.getLocMemOffset(); | 
|  |  | 
|  | bool EmitRet = ARMEmitStore(ArgVT, Arg, Addr); (void)EmitRet; | 
|  | assert(EmitRet && "Could not emit a store for argument!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::FinishCall(MVT RetVT, SmallVectorImpl<unsigned> &UsedRegs, | 
|  | const Instruction *I, CallingConv::ID CC, | 
|  | unsigned &NumBytes, bool isVarArg) { | 
|  | // Issue CALLSEQ_END | 
|  | unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(AdjStackUp)) | 
|  | .addImm(NumBytes).addImm(0)); | 
|  |  | 
|  | // Now the return value. | 
|  | if (RetVT != MVT::isVoid) { | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); | 
|  | CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); | 
|  |  | 
|  | // Copy all of the result registers out of their specified physreg. | 
|  | if (RVLocs.size() == 2 && RetVT == MVT::f64) { | 
|  | // For this move we copy into two registers and then move into the | 
|  | // double fp reg we want. | 
|  | MVT DestVT = RVLocs[0].getValVT(); | 
|  | const TargetRegisterClass* DstRC = TLI.getRegClassFor(DestVT); | 
|  | unsigned ResultReg = createResultReg(DstRC); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(ARM::VMOVDRR), ResultReg) | 
|  | .addReg(RVLocs[0].getLocReg()) | 
|  | .addReg(RVLocs[1].getLocReg())); | 
|  |  | 
|  | UsedRegs.push_back(RVLocs[0].getLocReg()); | 
|  | UsedRegs.push_back(RVLocs[1].getLocReg()); | 
|  |  | 
|  | // Finally update the result. | 
|  | updateValueMap(I, ResultReg); | 
|  | } else { | 
|  | assert(RVLocs.size() == 1 &&"Can't handle non-double multi-reg retvals!"); | 
|  | MVT CopyVT = RVLocs[0].getValVT(); | 
|  |  | 
|  | // Special handling for extended integers. | 
|  | if (RetVT == MVT::i1 || RetVT == MVT::i8 || RetVT == MVT::i16) | 
|  | CopyVT = MVT::i32; | 
|  |  | 
|  | const TargetRegisterClass* DstRC = TLI.getRegClassFor(CopyVT); | 
|  |  | 
|  | unsigned ResultReg = createResultReg(DstRC); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), | 
|  | ResultReg).addReg(RVLocs[0].getLocReg()); | 
|  | UsedRegs.push_back(RVLocs[0].getLocReg()); | 
|  |  | 
|  | // Finally update the result. | 
|  | updateValueMap(I, ResultReg); | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::SelectRet(const Instruction *I) { | 
|  | const ReturnInst *Ret = cast<ReturnInst>(I); | 
|  | const Function &F = *I->getParent()->getParent(); | 
|  |  | 
|  | if (!FuncInfo.CanLowerReturn) | 
|  | return false; | 
|  |  | 
|  | // Build a list of return value registers. | 
|  | SmallVector<unsigned, 4> RetRegs; | 
|  |  | 
|  | CallingConv::ID CC = F.getCallingConv(); | 
|  | if (Ret->getNumOperands() > 0) { | 
|  | SmallVector<ISD::OutputArg, 4> Outs; | 
|  | GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI, DL); | 
|  |  | 
|  | // Analyze operands of the call, assigning locations to each operand. | 
|  | SmallVector<CCValAssign, 16> ValLocs; | 
|  | CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, ValLocs, I->getContext()); | 
|  | CCInfo.AnalyzeReturn(Outs, CCAssignFnForCall(CC, true /* is Ret */, | 
|  | F.isVarArg())); | 
|  |  | 
|  | const Value *RV = Ret->getOperand(0); | 
|  | unsigned Reg = getRegForValue(RV); | 
|  | if (Reg == 0) | 
|  | return false; | 
|  |  | 
|  | // Only handle a single return value for now. | 
|  | if (ValLocs.size() != 1) | 
|  | return false; | 
|  |  | 
|  | CCValAssign &VA = ValLocs[0]; | 
|  |  | 
|  | // Don't bother handling odd stuff for now. | 
|  | if (VA.getLocInfo() != CCValAssign::Full) | 
|  | return false; | 
|  | // Only handle register returns for now. | 
|  | if (!VA.isRegLoc()) | 
|  | return false; | 
|  |  | 
|  | unsigned SrcReg = Reg + VA.getValNo(); | 
|  | EVT RVEVT = TLI.getValueType(DL, RV->getType()); | 
|  | if (!RVEVT.isSimple()) return false; | 
|  | MVT RVVT = RVEVT.getSimpleVT(); | 
|  | MVT DestVT = VA.getValVT(); | 
|  | // Special handling for extended integers. | 
|  | if (RVVT != DestVT) { | 
|  | if (RVVT != MVT::i1 && RVVT != MVT::i8 && RVVT != MVT::i16) | 
|  | return false; | 
|  |  | 
|  | assert(DestVT == MVT::i32 && "ARM should always ext to i32"); | 
|  |  | 
|  | // Perform extension if flagged as either zext or sext.  Otherwise, do | 
|  | // nothing. | 
|  | if (Outs[0].Flags.isZExt() || Outs[0].Flags.isSExt()) { | 
|  | SrcReg = ARMEmitIntExt(RVVT, SrcReg, DestVT, Outs[0].Flags.isZExt()); | 
|  | if (SrcReg == 0) return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make the copy. | 
|  | unsigned DstReg = VA.getLocReg(); | 
|  | const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); | 
|  | // Avoid a cross-class copy. This is very unlikely. | 
|  | if (!SrcRC->contains(DstReg)) | 
|  | return false; | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); | 
|  |  | 
|  | // Add register to return instruction. | 
|  | RetRegs.push_back(VA.getLocReg()); | 
|  | } | 
|  |  | 
|  | unsigned RetOpc = isThumb2 ? ARM::tBX_RET : ARM::BX_RET; | 
|  | MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(RetOpc)); | 
|  | AddOptionalDefs(MIB); | 
|  | for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) | 
|  | MIB.addReg(RetRegs[i], RegState::Implicit); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned ARMFastISel::ARMSelectCallOp(bool UseReg) { | 
|  | if (UseReg) | 
|  | return isThumb2 ? ARM::tBLXr : ARM::BLX; | 
|  | else | 
|  | return isThumb2 ? ARM::tBL : ARM::BL; | 
|  | } | 
|  |  | 
|  | unsigned ARMFastISel::getLibcallReg(const Twine &Name) { | 
|  | // Manually compute the global's type to avoid building it when unnecessary. | 
|  | Type *GVTy = Type::getInt32PtrTy(*Context, /*AS=*/0); | 
|  | EVT LCREVT = TLI.getValueType(DL, GVTy); | 
|  | if (!LCREVT.isSimple()) return 0; | 
|  |  | 
|  | GlobalValue *GV = new GlobalVariable(M, Type::getInt32Ty(*Context), false, | 
|  | GlobalValue::ExternalLinkage, nullptr, | 
|  | Name); | 
|  | assert(GV->getType() == GVTy && "We miscomputed the type for the global!"); | 
|  | return ARMMaterializeGV(GV, LCREVT.getSimpleVT()); | 
|  | } | 
|  |  | 
|  | // A quick function that will emit a call for a named libcall in F with the | 
|  | // vector of passed arguments for the Instruction in I. We can assume that we | 
|  | // can emit a call for any libcall we can produce. This is an abridged version | 
|  | // of the full call infrastructure since we won't need to worry about things | 
|  | // like computed function pointers or strange arguments at call sites. | 
|  | // TODO: Try to unify this and the normal call bits for ARM, then try to unify | 
|  | // with X86. | 
|  | bool ARMFastISel::ARMEmitLibcall(const Instruction *I, RTLIB::Libcall Call) { | 
|  | CallingConv::ID CC = TLI.getLibcallCallingConv(Call); | 
|  |  | 
|  | // Handle *simple* calls for now. | 
|  | Type *RetTy = I->getType(); | 
|  | MVT RetVT; | 
|  | if (RetTy->isVoidTy()) | 
|  | RetVT = MVT::isVoid; | 
|  | else if (!isTypeLegal(RetTy, RetVT)) | 
|  | return false; | 
|  |  | 
|  | // Can't handle non-double multi-reg retvals. | 
|  | if (RetVT != MVT::isVoid && RetVT != MVT::i32) { | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CC, false, *FuncInfo.MF, RVLocs, *Context); | 
|  | CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, false)); | 
|  | if (RVLocs.size() >= 2 && RetVT != MVT::f64) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Set up the argument vectors. | 
|  | SmallVector<Value*, 8> Args; | 
|  | SmallVector<unsigned, 8> ArgRegs; | 
|  | SmallVector<MVT, 8> ArgVTs; | 
|  | SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; | 
|  | Args.reserve(I->getNumOperands()); | 
|  | ArgRegs.reserve(I->getNumOperands()); | 
|  | ArgVTs.reserve(I->getNumOperands()); | 
|  | ArgFlags.reserve(I->getNumOperands()); | 
|  | for (unsigned i = 0; i < I->getNumOperands(); ++i) { | 
|  | Value *Op = I->getOperand(i); | 
|  | unsigned Arg = getRegForValue(Op); | 
|  | if (Arg == 0) return false; | 
|  |  | 
|  | Type *ArgTy = Op->getType(); | 
|  | MVT ArgVT; | 
|  | if (!isTypeLegal(ArgTy, ArgVT)) return false; | 
|  |  | 
|  | ISD::ArgFlagsTy Flags; | 
|  | unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); | 
|  | Flags.setOrigAlign(OriginalAlignment); | 
|  |  | 
|  | Args.push_back(Op); | 
|  | ArgRegs.push_back(Arg); | 
|  | ArgVTs.push_back(ArgVT); | 
|  | ArgFlags.push_back(Flags); | 
|  | } | 
|  |  | 
|  | // Handle the arguments now that we've gotten them. | 
|  | SmallVector<unsigned, 4> RegArgs; | 
|  | unsigned NumBytes; | 
|  | if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, | 
|  | RegArgs, CC, NumBytes, false)) | 
|  | return false; | 
|  |  | 
|  | unsigned CalleeReg = 0; | 
|  | if (Subtarget->genLongCalls()) { | 
|  | CalleeReg = getLibcallReg(TLI.getLibcallName(Call)); | 
|  | if (CalleeReg == 0) return false; | 
|  | } | 
|  |  | 
|  | // Issue the call. | 
|  | unsigned CallOpc = ARMSelectCallOp(Subtarget->genLongCalls()); | 
|  | MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, | 
|  | DbgLoc, TII.get(CallOpc)); | 
|  | // BL / BLX don't take a predicate, but tBL / tBLX do. | 
|  | if (isThumb2) | 
|  | AddDefaultPred(MIB); | 
|  | if (Subtarget->genLongCalls()) | 
|  | MIB.addReg(CalleeReg); | 
|  | else | 
|  | MIB.addExternalSymbol(TLI.getLibcallName(Call)); | 
|  |  | 
|  | // Add implicit physical register uses to the call. | 
|  | for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) | 
|  | MIB.addReg(RegArgs[i], RegState::Implicit); | 
|  |  | 
|  | // Add a register mask with the call-preserved registers. | 
|  | // Proper defs for return values will be added by setPhysRegsDeadExcept(). | 
|  | MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); | 
|  |  | 
|  | // Finish off the call including any return values. | 
|  | SmallVector<unsigned, 4> UsedRegs; | 
|  | if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, false)) return false; | 
|  |  | 
|  | // Set all unused physreg defs as dead. | 
|  | static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::SelectCall(const Instruction *I, | 
|  | const char *IntrMemName = nullptr) { | 
|  | const CallInst *CI = cast<CallInst>(I); | 
|  | const Value *Callee = CI->getCalledValue(); | 
|  |  | 
|  | // Can't handle inline asm. | 
|  | if (isa<InlineAsm>(Callee)) return false; | 
|  |  | 
|  | // Allow SelectionDAG isel to handle tail calls. | 
|  | if (CI->isTailCall()) return false; | 
|  |  | 
|  | // Check the calling convention. | 
|  | ImmutableCallSite CS(CI); | 
|  | CallingConv::ID CC = CS.getCallingConv(); | 
|  |  | 
|  | // TODO: Avoid some calling conventions? | 
|  |  | 
|  | PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); | 
|  | FunctionType *FTy = cast<FunctionType>(PT->getElementType()); | 
|  | bool isVarArg = FTy->isVarArg(); | 
|  |  | 
|  | // Handle *simple* calls for now. | 
|  | Type *RetTy = I->getType(); | 
|  | MVT RetVT; | 
|  | if (RetTy->isVoidTy()) | 
|  | RetVT = MVT::isVoid; | 
|  | else if (!isTypeLegal(RetTy, RetVT) && RetVT != MVT::i16 && | 
|  | RetVT != MVT::i8  && RetVT != MVT::i1) | 
|  | return false; | 
|  |  | 
|  | // Can't handle non-double multi-reg retvals. | 
|  | if (RetVT != MVT::isVoid && RetVT != MVT::i1 && RetVT != MVT::i8 && | 
|  | RetVT != MVT::i16 && RetVT != MVT::i32) { | 
|  | SmallVector<CCValAssign, 16> RVLocs; | 
|  | CCState CCInfo(CC, isVarArg, *FuncInfo.MF, RVLocs, *Context); | 
|  | CCInfo.AnalyzeCallResult(RetVT, CCAssignFnForCall(CC, true, isVarArg)); | 
|  | if (RVLocs.size() >= 2 && RetVT != MVT::f64) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Set up the argument vectors. | 
|  | SmallVector<Value*, 8> Args; | 
|  | SmallVector<unsigned, 8> ArgRegs; | 
|  | SmallVector<MVT, 8> ArgVTs; | 
|  | SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; | 
|  | unsigned arg_size = CS.arg_size(); | 
|  | Args.reserve(arg_size); | 
|  | ArgRegs.reserve(arg_size); | 
|  | ArgVTs.reserve(arg_size); | 
|  | ArgFlags.reserve(arg_size); | 
|  | for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); | 
|  | i != e; ++i) { | 
|  | // If we're lowering a memory intrinsic instead of a regular call, skip the | 
|  | // last two arguments, which shouldn't be passed to the underlying function. | 
|  | if (IntrMemName && e-i <= 2) | 
|  | break; | 
|  |  | 
|  | ISD::ArgFlagsTy Flags; | 
|  | unsigned AttrInd = i - CS.arg_begin() + 1; | 
|  | if (CS.paramHasAttr(AttrInd, Attribute::SExt)) | 
|  | Flags.setSExt(); | 
|  | if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) | 
|  | Flags.setZExt(); | 
|  |  | 
|  | // FIXME: Only handle *easy* calls for now. | 
|  | if (CS.paramHasAttr(AttrInd, Attribute::InReg) || | 
|  | CS.paramHasAttr(AttrInd, Attribute::StructRet) || | 
|  | CS.paramHasAttr(AttrInd, Attribute::Nest) || | 
|  | CS.paramHasAttr(AttrInd, Attribute::ByVal)) | 
|  | return false; | 
|  |  | 
|  | Type *ArgTy = (*i)->getType(); | 
|  | MVT ArgVT; | 
|  | if (!isTypeLegal(ArgTy, ArgVT) && ArgVT != MVT::i16 && ArgVT != MVT::i8 && | 
|  | ArgVT != MVT::i1) | 
|  | return false; | 
|  |  | 
|  | unsigned Arg = getRegForValue(*i); | 
|  | if (Arg == 0) | 
|  | return false; | 
|  |  | 
|  | unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); | 
|  | Flags.setOrigAlign(OriginalAlignment); | 
|  |  | 
|  | Args.push_back(*i); | 
|  | ArgRegs.push_back(Arg); | 
|  | ArgVTs.push_back(ArgVT); | 
|  | ArgFlags.push_back(Flags); | 
|  | } | 
|  |  | 
|  | // Handle the arguments now that we've gotten them. | 
|  | SmallVector<unsigned, 4> RegArgs; | 
|  | unsigned NumBytes; | 
|  | if (!ProcessCallArgs(Args, ArgRegs, ArgVTs, ArgFlags, | 
|  | RegArgs, CC, NumBytes, isVarArg)) | 
|  | return false; | 
|  |  | 
|  | bool UseReg = false; | 
|  | const GlobalValue *GV = dyn_cast<GlobalValue>(Callee); | 
|  | if (!GV || Subtarget->genLongCalls()) UseReg = true; | 
|  |  | 
|  | unsigned CalleeReg = 0; | 
|  | if (UseReg) { | 
|  | if (IntrMemName) | 
|  | CalleeReg = getLibcallReg(IntrMemName); | 
|  | else | 
|  | CalleeReg = getRegForValue(Callee); | 
|  |  | 
|  | if (CalleeReg == 0) return false; | 
|  | } | 
|  |  | 
|  | // Issue the call. | 
|  | unsigned CallOpc = ARMSelectCallOp(UseReg); | 
|  | MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, | 
|  | DbgLoc, TII.get(CallOpc)); | 
|  |  | 
|  | unsigned char OpFlags = 0; | 
|  |  | 
|  | // Add MO_PLT for global address or external symbol in the PIC relocation | 
|  | // model. | 
|  | if (Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_) | 
|  | OpFlags = ARMII::MO_PLT; | 
|  |  | 
|  | // ARM calls don't take a predicate, but tBL / tBLX do. | 
|  | if(isThumb2) | 
|  | AddDefaultPred(MIB); | 
|  | if (UseReg) | 
|  | MIB.addReg(CalleeReg); | 
|  | else if (!IntrMemName) | 
|  | MIB.addGlobalAddress(GV, 0, OpFlags); | 
|  | else | 
|  | MIB.addExternalSymbol(IntrMemName, OpFlags); | 
|  |  | 
|  | // Add implicit physical register uses to the call. | 
|  | for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) | 
|  | MIB.addReg(RegArgs[i], RegState::Implicit); | 
|  |  | 
|  | // Add a register mask with the call-preserved registers. | 
|  | // Proper defs for return values will be added by setPhysRegsDeadExcept(). | 
|  | MIB.addRegMask(TRI.getCallPreservedMask(*FuncInfo.MF, CC)); | 
|  |  | 
|  | // Finish off the call including any return values. | 
|  | SmallVector<unsigned, 4> UsedRegs; | 
|  | if (!FinishCall(RetVT, UsedRegs, I, CC, NumBytes, isVarArg)) | 
|  | return false; | 
|  |  | 
|  | // Set all unused physreg defs as dead. | 
|  | static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::ARMIsMemCpySmall(uint64_t Len) { | 
|  | return Len <= 16; | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::ARMTryEmitSmallMemCpy(Address Dest, Address Src, | 
|  | uint64_t Len, unsigned Alignment) { | 
|  | // Make sure we don't bloat code by inlining very large memcpy's. | 
|  | if (!ARMIsMemCpySmall(Len)) | 
|  | return false; | 
|  |  | 
|  | while (Len) { | 
|  | MVT VT; | 
|  | if (!Alignment || Alignment >= 4) { | 
|  | if (Len >= 4) | 
|  | VT = MVT::i32; | 
|  | else if (Len >= 2) | 
|  | VT = MVT::i16; | 
|  | else { | 
|  | assert (Len == 1 && "Expected a length of 1!"); | 
|  | VT = MVT::i8; | 
|  | } | 
|  | } else { | 
|  | // Bound based on alignment. | 
|  | if (Len >= 2 && Alignment == 2) | 
|  | VT = MVT::i16; | 
|  | else { | 
|  | VT = MVT::i8; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool RV; | 
|  | unsigned ResultReg; | 
|  | RV = ARMEmitLoad(VT, ResultReg, Src); | 
|  | assert (RV == true && "Should be able to handle this load."); | 
|  | RV = ARMEmitStore(VT, ResultReg, Dest); | 
|  | assert (RV == true && "Should be able to handle this store."); | 
|  | (void)RV; | 
|  |  | 
|  | unsigned Size = VT.getSizeInBits()/8; | 
|  | Len -= Size; | 
|  | Dest.Offset += Size; | 
|  | Src.Offset += Size; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::SelectIntrinsicCall(const IntrinsicInst &I) { | 
|  | // FIXME: Handle more intrinsics. | 
|  | switch (I.getIntrinsicID()) { | 
|  | default: return false; | 
|  | case Intrinsic::frameaddress: { | 
|  | MachineFrameInfo *MFI = FuncInfo.MF->getFrameInfo(); | 
|  | MFI->setFrameAddressIsTaken(true); | 
|  |  | 
|  | unsigned LdrOpc = isThumb2 ? ARM::t2LDRi12 : ARM::LDRi12; | 
|  | const TargetRegisterClass *RC = isThumb2 ? &ARM::tGPRRegClass | 
|  | : &ARM::GPRRegClass; | 
|  |  | 
|  | const ARMBaseRegisterInfo *RegInfo = | 
|  | static_cast<const ARMBaseRegisterInfo *>(Subtarget->getRegisterInfo()); | 
|  | unsigned FramePtr = RegInfo->getFrameRegister(*(FuncInfo.MF)); | 
|  | unsigned SrcReg = FramePtr; | 
|  |  | 
|  | // Recursively load frame address | 
|  | // ldr r0 [fp] | 
|  | // ldr r0 [r0] | 
|  | // ldr r0 [r0] | 
|  | // ... | 
|  | unsigned DestReg; | 
|  | unsigned Depth = cast<ConstantInt>(I.getOperand(0))->getZExtValue(); | 
|  | while (Depth--) { | 
|  | DestReg = createResultReg(RC); | 
|  | AddOptionalDefs(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(LdrOpc), DestReg) | 
|  | .addReg(SrcReg).addImm(0)); | 
|  | SrcReg = DestReg; | 
|  | } | 
|  | updateValueMap(&I, SrcReg); | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::memcpy: | 
|  | case Intrinsic::memmove: { | 
|  | const MemTransferInst &MTI = cast<MemTransferInst>(I); | 
|  | // Don't handle volatile. | 
|  | if (MTI.isVolatile()) | 
|  | return false; | 
|  |  | 
|  | // Disable inlining for memmove before calls to ComputeAddress.  Otherwise, | 
|  | // we would emit dead code because we don't currently handle memmoves. | 
|  | bool isMemCpy = (I.getIntrinsicID() == Intrinsic::memcpy); | 
|  | if (isa<ConstantInt>(MTI.getLength()) && isMemCpy) { | 
|  | // Small memcpy's are common enough that we want to do them without a call | 
|  | // if possible. | 
|  | uint64_t Len = cast<ConstantInt>(MTI.getLength())->getZExtValue(); | 
|  | if (ARMIsMemCpySmall(Len)) { | 
|  | Address Dest, Src; | 
|  | if (!ARMComputeAddress(MTI.getRawDest(), Dest) || | 
|  | !ARMComputeAddress(MTI.getRawSource(), Src)) | 
|  | return false; | 
|  | unsigned Alignment = MTI.getAlignment(); | 
|  | if (ARMTryEmitSmallMemCpy(Dest, Src, Len, Alignment)) | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!MTI.getLength()->getType()->isIntegerTy(32)) | 
|  | return false; | 
|  |  | 
|  | if (MTI.getSourceAddressSpace() > 255 || MTI.getDestAddressSpace() > 255) | 
|  | return false; | 
|  |  | 
|  | const char *IntrMemName = isa<MemCpyInst>(I) ? "memcpy" : "memmove"; | 
|  | return SelectCall(&I, IntrMemName); | 
|  | } | 
|  | case Intrinsic::memset: { | 
|  | const MemSetInst &MSI = cast<MemSetInst>(I); | 
|  | // Don't handle volatile. | 
|  | if (MSI.isVolatile()) | 
|  | return false; | 
|  |  | 
|  | if (!MSI.getLength()->getType()->isIntegerTy(32)) | 
|  | return false; | 
|  |  | 
|  | if (MSI.getDestAddressSpace() > 255) | 
|  | return false; | 
|  |  | 
|  | return SelectCall(&I, "memset"); | 
|  | } | 
|  | case Intrinsic::trap: { | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get( | 
|  | Subtarget->useNaClTrap() ? ARM::TRAPNaCl : ARM::TRAP)); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::SelectTrunc(const Instruction *I) { | 
|  | // The high bits for a type smaller than the register size are assumed to be | 
|  | // undefined. | 
|  | Value *Op = I->getOperand(0); | 
|  |  | 
|  | EVT SrcVT, DestVT; | 
|  | SrcVT = TLI.getValueType(DL, Op->getType(), true); | 
|  | DestVT = TLI.getValueType(DL, I->getType(), true); | 
|  |  | 
|  | if (SrcVT != MVT::i32 && SrcVT != MVT::i16 && SrcVT != MVT::i8) | 
|  | return false; | 
|  | if (DestVT != MVT::i16 && DestVT != MVT::i8 && DestVT != MVT::i1) | 
|  | return false; | 
|  |  | 
|  | unsigned SrcReg = getRegForValue(Op); | 
|  | if (!SrcReg) return false; | 
|  |  | 
|  | // Because the high bits are undefined, a truncate doesn't generate | 
|  | // any code. | 
|  | updateValueMap(I, SrcReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned ARMFastISel::ARMEmitIntExt(MVT SrcVT, unsigned SrcReg, MVT DestVT, | 
|  | bool isZExt) { | 
|  | if (DestVT != MVT::i32 && DestVT != MVT::i16 && DestVT != MVT::i8) | 
|  | return 0; | 
|  | if (SrcVT != MVT::i16 && SrcVT != MVT::i8 && SrcVT != MVT::i1) | 
|  | return 0; | 
|  |  | 
|  | // Table of which combinations can be emitted as a single instruction, | 
|  | // and which will require two. | 
|  | static const uint8_t isSingleInstrTbl[3][2][2][2] = { | 
|  | //            ARM                     Thumb | 
|  | //           !hasV6Ops  hasV6Ops     !hasV6Ops  hasV6Ops | 
|  | //    ext:     s  z      s  z          s  z      s  z | 
|  | /*  1 */ { { { 0, 1 }, { 0, 1 } }, { { 0, 0 }, { 0, 1 } } }, | 
|  | /*  8 */ { { { 0, 1 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } }, | 
|  | /* 16 */ { { { 0, 0 }, { 1, 1 } }, { { 0, 0 }, { 1, 1 } } } | 
|  | }; | 
|  |  | 
|  | // Target registers for: | 
|  | //  - For ARM can never be PC. | 
|  | //  - For 16-bit Thumb are restricted to lower 8 registers. | 
|  | //  - For 32-bit Thumb are restricted to non-SP and non-PC. | 
|  | static const TargetRegisterClass *RCTbl[2][2] = { | 
|  | // Instructions: Two                     Single | 
|  | /* ARM      */ { &ARM::GPRnopcRegClass, &ARM::GPRnopcRegClass }, | 
|  | /* Thumb    */ { &ARM::tGPRRegClass,    &ARM::rGPRRegClass    } | 
|  | }; | 
|  |  | 
|  | // Table governing the instruction(s) to be emitted. | 
|  | static const struct InstructionTable { | 
|  | uint32_t Opc   : 16; | 
|  | uint32_t hasS  :  1; // Some instructions have an S bit, always set it to 0. | 
|  | uint32_t Shift :  7; // For shift operand addressing mode, used by MOVsi. | 
|  | uint32_t Imm   :  8; // All instructions have either a shift or a mask. | 
|  | } IT[2][2][3][2] = { | 
|  | { // Two instructions (first is left shift, second is in this table). | 
|  | { // ARM                Opc           S  Shift             Imm | 
|  | /*  1 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  31 }, | 
|  | /*  1 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  31 } }, | 
|  | /*  8 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  24 }, | 
|  | /*  8 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  24 } }, | 
|  | /* 16 bit sext */ { { ARM::MOVsi  , 1, ARM_AM::asr     ,  16 }, | 
|  | /* 16 bit zext */   { ARM::MOVsi  , 1, ARM_AM::lsr     ,  16 } } | 
|  | }, | 
|  | { // Thumb              Opc           S  Shift             Imm | 
|  | /*  1 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  31 }, | 
|  | /*  1 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  31 } }, | 
|  | /*  8 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  24 }, | 
|  | /*  8 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  24 } }, | 
|  | /* 16 bit sext */ { { ARM::tASRri , 0, ARM_AM::no_shift,  16 }, | 
|  | /* 16 bit zext */   { ARM::tLSRri , 0, ARM_AM::no_shift,  16 } } | 
|  | } | 
|  | }, | 
|  | { // Single instruction. | 
|  | { // ARM                Opc           S  Shift             Imm | 
|  | /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 }, | 
|  | /*  1 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift,   1 } }, | 
|  | /*  8 bit sext */ { { ARM::SXTB   , 0, ARM_AM::no_shift,   0 }, | 
|  | /*  8 bit zext */   { ARM::ANDri  , 1, ARM_AM::no_shift, 255 } }, | 
|  | /* 16 bit sext */ { { ARM::SXTH   , 0, ARM_AM::no_shift,   0 }, | 
|  | /* 16 bit zext */   { ARM::UXTH   , 0, ARM_AM::no_shift,   0 } } | 
|  | }, | 
|  | { // Thumb              Opc           S  Shift             Imm | 
|  | /*  1 bit sext */ { { ARM::KILL   , 0, ARM_AM::no_shift,   0 }, | 
|  | /*  1 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift,   1 } }, | 
|  | /*  8 bit sext */ { { ARM::t2SXTB , 0, ARM_AM::no_shift,   0 }, | 
|  | /*  8 bit zext */   { ARM::t2ANDri, 1, ARM_AM::no_shift, 255 } }, | 
|  | /* 16 bit sext */ { { ARM::t2SXTH , 0, ARM_AM::no_shift,   0 }, | 
|  | /* 16 bit zext */   { ARM::t2UXTH , 0, ARM_AM::no_shift,   0 } } | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | unsigned SrcBits = SrcVT.getSizeInBits(); | 
|  | unsigned DestBits = DestVT.getSizeInBits(); | 
|  | (void) DestBits; | 
|  | assert((SrcBits < DestBits) && "can only extend to larger types"); | 
|  | assert((DestBits == 32 || DestBits == 16 || DestBits == 8) && | 
|  | "other sizes unimplemented"); | 
|  | assert((SrcBits == 16 || SrcBits == 8 || SrcBits == 1) && | 
|  | "other sizes unimplemented"); | 
|  |  | 
|  | bool hasV6Ops = Subtarget->hasV6Ops(); | 
|  | unsigned Bitness = SrcBits / 8;  // {1,8,16}=>{0,1,2} | 
|  | assert((Bitness < 3) && "sanity-check table bounds"); | 
|  |  | 
|  | bool isSingleInstr = isSingleInstrTbl[Bitness][isThumb2][hasV6Ops][isZExt]; | 
|  | const TargetRegisterClass *RC = RCTbl[isThumb2][isSingleInstr]; | 
|  | const InstructionTable *ITP = &IT[isSingleInstr][isThumb2][Bitness][isZExt]; | 
|  | unsigned Opc = ITP->Opc; | 
|  | assert(ARM::KILL != Opc && "Invalid table entry"); | 
|  | unsigned hasS = ITP->hasS; | 
|  | ARM_AM::ShiftOpc Shift = (ARM_AM::ShiftOpc) ITP->Shift; | 
|  | assert(((Shift == ARM_AM::no_shift) == (Opc != ARM::MOVsi)) && | 
|  | "only MOVsi has shift operand addressing mode"); | 
|  | unsigned Imm = ITP->Imm; | 
|  |  | 
|  | // 16-bit Thumb instructions always set CPSR (unless they're in an IT block). | 
|  | bool setsCPSR = &ARM::tGPRRegClass == RC; | 
|  | unsigned LSLOpc = isThumb2 ? ARM::tLSLri : ARM::MOVsi; | 
|  | unsigned ResultReg; | 
|  | // MOVsi encodes shift and immediate in shift operand addressing mode. | 
|  | // The following condition has the same value when emitting two | 
|  | // instruction sequences: both are shifts. | 
|  | bool ImmIsSO = (Shift != ARM_AM::no_shift); | 
|  |  | 
|  | // Either one or two instructions are emitted. | 
|  | // They're always of the form: | 
|  | //   dst = in OP imm | 
|  | // CPSR is set only by 16-bit Thumb instructions. | 
|  | // Predicate, if any, is AL. | 
|  | // S bit, if available, is always 0. | 
|  | // When two are emitted the first's result will feed as the second's input, | 
|  | // that value is then dead. | 
|  | unsigned NumInstrsEmitted = isSingleInstr ? 1 : 2; | 
|  | for (unsigned Instr = 0; Instr != NumInstrsEmitted; ++Instr) { | 
|  | ResultReg = createResultReg(RC); | 
|  | bool isLsl = (0 == Instr) && !isSingleInstr; | 
|  | unsigned Opcode = isLsl ? LSLOpc : Opc; | 
|  | ARM_AM::ShiftOpc ShiftAM = isLsl ? ARM_AM::lsl : Shift; | 
|  | unsigned ImmEnc = ImmIsSO ? ARM_AM::getSORegOpc(ShiftAM, Imm) : Imm; | 
|  | bool isKill = 1 == Instr; | 
|  | MachineInstrBuilder MIB = BuildMI( | 
|  | *FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opcode), ResultReg); | 
|  | if (setsCPSR) | 
|  | MIB.addReg(ARM::CPSR, RegState::Define); | 
|  | SrcReg = constrainOperandRegClass(TII.get(Opcode), SrcReg, 1 + setsCPSR); | 
|  | AddDefaultPred(MIB.addReg(SrcReg, isKill * RegState::Kill).addImm(ImmEnc)); | 
|  | if (hasS) | 
|  | AddDefaultCC(MIB); | 
|  | // Second instruction consumes the first's result. | 
|  | SrcReg = ResultReg; | 
|  | } | 
|  |  | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::SelectIntExt(const Instruction *I) { | 
|  | // On ARM, in general, integer casts don't involve legal types; this code | 
|  | // handles promotable integers. | 
|  | Type *DestTy = I->getType(); | 
|  | Value *Src = I->getOperand(0); | 
|  | Type *SrcTy = Src->getType(); | 
|  |  | 
|  | bool isZExt = isa<ZExtInst>(I); | 
|  | unsigned SrcReg = getRegForValue(Src); | 
|  | if (!SrcReg) return false; | 
|  |  | 
|  | EVT SrcEVT, DestEVT; | 
|  | SrcEVT = TLI.getValueType(DL, SrcTy, true); | 
|  | DestEVT = TLI.getValueType(DL, DestTy, true); | 
|  | if (!SrcEVT.isSimple()) return false; | 
|  | if (!DestEVT.isSimple()) return false; | 
|  |  | 
|  | MVT SrcVT = SrcEVT.getSimpleVT(); | 
|  | MVT DestVT = DestEVT.getSimpleVT(); | 
|  | unsigned ResultReg = ARMEmitIntExt(SrcVT, SrcReg, DestVT, isZExt); | 
|  | if (ResultReg == 0) return false; | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::SelectShift(const Instruction *I, | 
|  | ARM_AM::ShiftOpc ShiftTy) { | 
|  | // We handle thumb2 mode by target independent selector | 
|  | // or SelectionDAG ISel. | 
|  | if (isThumb2) | 
|  | return false; | 
|  |  | 
|  | // Only handle i32 now. | 
|  | EVT DestVT = TLI.getValueType(DL, I->getType(), true); | 
|  | if (DestVT != MVT::i32) | 
|  | return false; | 
|  |  | 
|  | unsigned Opc = ARM::MOVsr; | 
|  | unsigned ShiftImm; | 
|  | Value *Src2Value = I->getOperand(1); | 
|  | if (const ConstantInt *CI = dyn_cast<ConstantInt>(Src2Value)) { | 
|  | ShiftImm = CI->getZExtValue(); | 
|  |  | 
|  | // Fall back to selection DAG isel if the shift amount | 
|  | // is zero or greater than the width of the value type. | 
|  | if (ShiftImm == 0 || ShiftImm >=32) | 
|  | return false; | 
|  |  | 
|  | Opc = ARM::MOVsi; | 
|  | } | 
|  |  | 
|  | Value *Src1Value = I->getOperand(0); | 
|  | unsigned Reg1 = getRegForValue(Src1Value); | 
|  | if (Reg1 == 0) return false; | 
|  |  | 
|  | unsigned Reg2 = 0; | 
|  | if (Opc == ARM::MOVsr) { | 
|  | Reg2 = getRegForValue(Src2Value); | 
|  | if (Reg2 == 0) return false; | 
|  | } | 
|  |  | 
|  | unsigned ResultReg = createResultReg(&ARM::GPRnopcRegClass); | 
|  | if(ResultReg == 0) return false; | 
|  |  | 
|  | MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(Opc), ResultReg) | 
|  | .addReg(Reg1); | 
|  |  | 
|  | if (Opc == ARM::MOVsi) | 
|  | MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, ShiftImm)); | 
|  | else if (Opc == ARM::MOVsr) { | 
|  | MIB.addReg(Reg2); | 
|  | MIB.addImm(ARM_AM::getSORegOpc(ShiftTy, 0)); | 
|  | } | 
|  |  | 
|  | AddOptionalDefs(MIB); | 
|  | updateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // TODO: SoftFP support. | 
|  | bool ARMFastISel::fastSelectInstruction(const Instruction *I) { | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::Load: | 
|  | return SelectLoad(I); | 
|  | case Instruction::Store: | 
|  | return SelectStore(I); | 
|  | case Instruction::Br: | 
|  | return SelectBranch(I); | 
|  | case Instruction::IndirectBr: | 
|  | return SelectIndirectBr(I); | 
|  | case Instruction::ICmp: | 
|  | case Instruction::FCmp: | 
|  | return SelectCmp(I); | 
|  | case Instruction::FPExt: | 
|  | return SelectFPExt(I); | 
|  | case Instruction::FPTrunc: | 
|  | return SelectFPTrunc(I); | 
|  | case Instruction::SIToFP: | 
|  | return SelectIToFP(I, /*isSigned*/ true); | 
|  | case Instruction::UIToFP: | 
|  | return SelectIToFP(I, /*isSigned*/ false); | 
|  | case Instruction::FPToSI: | 
|  | return SelectFPToI(I, /*isSigned*/ true); | 
|  | case Instruction::FPToUI: | 
|  | return SelectFPToI(I, /*isSigned*/ false); | 
|  | case Instruction::Add: | 
|  | return SelectBinaryIntOp(I, ISD::ADD); | 
|  | case Instruction::Or: | 
|  | return SelectBinaryIntOp(I, ISD::OR); | 
|  | case Instruction::Sub: | 
|  | return SelectBinaryIntOp(I, ISD::SUB); | 
|  | case Instruction::FAdd: | 
|  | return SelectBinaryFPOp(I, ISD::FADD); | 
|  | case Instruction::FSub: | 
|  | return SelectBinaryFPOp(I, ISD::FSUB); | 
|  | case Instruction::FMul: | 
|  | return SelectBinaryFPOp(I, ISD::FMUL); | 
|  | case Instruction::SDiv: | 
|  | return SelectDiv(I, /*isSigned*/ true); | 
|  | case Instruction::UDiv: | 
|  | return SelectDiv(I, /*isSigned*/ false); | 
|  | case Instruction::SRem: | 
|  | return SelectRem(I, /*isSigned*/ true); | 
|  | case Instruction::URem: | 
|  | return SelectRem(I, /*isSigned*/ false); | 
|  | case Instruction::Call: | 
|  | if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) | 
|  | return SelectIntrinsicCall(*II); | 
|  | return SelectCall(I); | 
|  | case Instruction::Select: | 
|  | return SelectSelect(I); | 
|  | case Instruction::Ret: | 
|  | return SelectRet(I); | 
|  | case Instruction::Trunc: | 
|  | return SelectTrunc(I); | 
|  | case Instruction::ZExt: | 
|  | case Instruction::SExt: | 
|  | return SelectIntExt(I); | 
|  | case Instruction::Shl: | 
|  | return SelectShift(I, ARM_AM::lsl); | 
|  | case Instruction::LShr: | 
|  | return SelectShift(I, ARM_AM::lsr); | 
|  | case Instruction::AShr: | 
|  | return SelectShift(I, ARM_AM::asr); | 
|  | default: break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | // This table describes sign- and zero-extend instructions which can be | 
|  | // folded into a preceding load. All of these extends have an immediate | 
|  | // (sometimes a mask and sometimes a shift) that's applied after | 
|  | // extension. | 
|  | const struct FoldableLoadExtendsStruct { | 
|  | uint16_t Opc[2];  // ARM, Thumb. | 
|  | uint8_t ExpectedImm; | 
|  | uint8_t isZExt     : 1; | 
|  | uint8_t ExpectedVT : 7; | 
|  | } FoldableLoadExtends[] = { | 
|  | { { ARM::SXTH,  ARM::t2SXTH  },   0, 0, MVT::i16 }, | 
|  | { { ARM::UXTH,  ARM::t2UXTH  },   0, 1, MVT::i16 }, | 
|  | { { ARM::ANDri, ARM::t2ANDri }, 255, 1, MVT::i8  }, | 
|  | { { ARM::SXTB,  ARM::t2SXTB  },   0, 0, MVT::i8  }, | 
|  | { { ARM::UXTB,  ARM::t2UXTB  },   0, 1, MVT::i8  } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// \brief The specified machine instr operand is a vreg, and that | 
|  | /// vreg is being provided by the specified load instruction.  If possible, | 
|  | /// try to fold the load as an operand to the instruction, returning true if | 
|  | /// successful. | 
|  | bool ARMFastISel::tryToFoldLoadIntoMI(MachineInstr *MI, unsigned OpNo, | 
|  | const LoadInst *LI) { | 
|  | // Verify we have a legal type before going any further. | 
|  | MVT VT; | 
|  | if (!isLoadTypeLegal(LI->getType(), VT)) | 
|  | return false; | 
|  |  | 
|  | // Combine load followed by zero- or sign-extend. | 
|  | // ldrb r1, [r0]       ldrb r1, [r0] | 
|  | // uxtb r2, r1     => | 
|  | // mov  r3, r2         mov  r3, r1 | 
|  | if (MI->getNumOperands() < 3 || !MI->getOperand(2).isImm()) | 
|  | return false; | 
|  | const uint64_t Imm = MI->getOperand(2).getImm(); | 
|  |  | 
|  | bool Found = false; | 
|  | bool isZExt; | 
|  | for (unsigned i = 0, e = array_lengthof(FoldableLoadExtends); | 
|  | i != e; ++i) { | 
|  | if (FoldableLoadExtends[i].Opc[isThumb2] == MI->getOpcode() && | 
|  | (uint64_t)FoldableLoadExtends[i].ExpectedImm == Imm && | 
|  | MVT((MVT::SimpleValueType)FoldableLoadExtends[i].ExpectedVT) == VT) { | 
|  | Found = true; | 
|  | isZExt = FoldableLoadExtends[i].isZExt; | 
|  | } | 
|  | } | 
|  | if (!Found) return false; | 
|  |  | 
|  | // See if we can handle this address. | 
|  | Address Addr; | 
|  | if (!ARMComputeAddress(LI->getOperand(0), Addr)) return false; | 
|  |  | 
|  | unsigned ResultReg = MI->getOperand(0).getReg(); | 
|  | if (!ARMEmitLoad(VT, ResultReg, Addr, LI->getAlignment(), isZExt, false)) | 
|  | return false; | 
|  | MI->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned ARMFastISel::ARMLowerPICELF(const GlobalValue *GV, | 
|  | unsigned Align, MVT VT) { | 
|  | bool UseGOT_PREL = | 
|  | !(GV->hasHiddenVisibility() || GV->hasLocalLinkage()); | 
|  |  | 
|  | LLVMContext *Context = &MF->getFunction()->getContext(); | 
|  | unsigned ARMPCLabelIndex = AFI->createPICLabelUId(); | 
|  | unsigned PCAdj = Subtarget->isThumb() ? 4 : 8; | 
|  | ARMConstantPoolValue *CPV = ARMConstantPoolConstant::Create( | 
|  | GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj, | 
|  | UseGOT_PREL ? ARMCP::GOT_PREL : ARMCP::no_modifier, | 
|  | /*AddCurrentAddress=*/UseGOT_PREL); | 
|  |  | 
|  | unsigned ConstAlign = | 
|  | MF->getDataLayout().getPrefTypeAlignment(Type::getInt32PtrTy(*Context)); | 
|  | unsigned Idx = MF->getConstantPool()->getConstantPoolIndex(CPV, ConstAlign); | 
|  |  | 
|  | unsigned TempReg = MF->getRegInfo().createVirtualRegister(&ARM::rGPRRegClass); | 
|  | unsigned Opc = isThumb2 ? ARM::t2LDRpci : ARM::LDRcp; | 
|  | MachineInstrBuilder MIB = | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), TempReg) | 
|  | .addConstantPoolIndex(Idx); | 
|  | if (Opc == ARM::LDRcp) | 
|  | MIB.addImm(0); | 
|  | AddDefaultPred(MIB); | 
|  |  | 
|  | // Fix the address by adding pc. | 
|  | unsigned DestReg = createResultReg(TLI.getRegClassFor(VT)); | 
|  | Opc = Subtarget->isThumb() ? ARM::tPICADD : UseGOT_PREL ? ARM::PICLDR | 
|  | : ARM::PICADD; | 
|  | DestReg = constrainOperandRegClass(TII.get(Opc), DestReg, 0); | 
|  | MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, TII.get(Opc), DestReg) | 
|  | .addReg(TempReg) | 
|  | .addImm(ARMPCLabelIndex); | 
|  | if (!Subtarget->isThumb()) | 
|  | AddDefaultPred(MIB); | 
|  |  | 
|  | if (UseGOT_PREL && Subtarget->isThumb()) { | 
|  | unsigned NewDestReg = createResultReg(TLI.getRegClassFor(VT)); | 
|  | MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(ARM::t2LDRi12), NewDestReg) | 
|  | .addReg(DestReg) | 
|  | .addImm(0); | 
|  | DestReg = NewDestReg; | 
|  | AddOptionalDefs(MIB); | 
|  | } | 
|  | return DestReg; | 
|  | } | 
|  |  | 
|  | bool ARMFastISel::fastLowerArguments() { | 
|  | if (!FuncInfo.CanLowerReturn) | 
|  | return false; | 
|  |  | 
|  | const Function *F = FuncInfo.Fn; | 
|  | if (F->isVarArg()) | 
|  | return false; | 
|  |  | 
|  | CallingConv::ID CC = F->getCallingConv(); | 
|  | switch (CC) { | 
|  | default: | 
|  | return false; | 
|  | case CallingConv::Fast: | 
|  | case CallingConv::C: | 
|  | case CallingConv::ARM_AAPCS_VFP: | 
|  | case CallingConv::ARM_AAPCS: | 
|  | case CallingConv::ARM_APCS: | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Only handle simple cases. i.e. Up to 4 i8/i16/i32 scalar arguments | 
|  | // which are passed in r0 - r3. | 
|  | unsigned Idx = 1; | 
|  | for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); | 
|  | I != E; ++I, ++Idx) { | 
|  | if (Idx > 4) | 
|  | return false; | 
|  |  | 
|  | if (F->getAttributes().hasAttribute(Idx, Attribute::InReg) || | 
|  | F->getAttributes().hasAttribute(Idx, Attribute::StructRet) || | 
|  | F->getAttributes().hasAttribute(Idx, Attribute::ByVal)) | 
|  | return false; | 
|  |  | 
|  | Type *ArgTy = I->getType(); | 
|  | if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) | 
|  | return false; | 
|  |  | 
|  | EVT ArgVT = TLI.getValueType(DL, ArgTy); | 
|  | if (!ArgVT.isSimple()) return false; | 
|  | switch (ArgVT.getSimpleVT().SimpleTy) { | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | break; | 
|  | default: | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static const MCPhysReg GPRArgRegs[] = { | 
|  | ARM::R0, ARM::R1, ARM::R2, ARM::R3 | 
|  | }; | 
|  |  | 
|  | const TargetRegisterClass *RC = &ARM::rGPRRegClass; | 
|  | Idx = 0; | 
|  | for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); | 
|  | I != E; ++I, ++Idx) { | 
|  | unsigned SrcReg = GPRArgRegs[Idx]; | 
|  | unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); | 
|  | // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. | 
|  | // Without this, EmitLiveInCopies may eliminate the livein if its only | 
|  | // use is a bitcast (which isn't turned into an instruction). | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DbgLoc, | 
|  | TII.get(TargetOpcode::COPY), | 
|  | ResultReg).addReg(DstReg, getKillRegState(true)); | 
|  | updateValueMap(&*I, ResultReg); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  | FastISel *ARM::createFastISel(FunctionLoweringInfo &funcInfo, | 
|  | const TargetLibraryInfo *libInfo) { | 
|  | if (funcInfo.MF->getSubtarget<ARMSubtarget>().useFastISel()) | 
|  | return new ARMFastISel(funcInfo, libInfo); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  | } |