|  | //===--------------- PPCVSXFMAMutate.cpp - VSX FMA Mutation ---------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass mutates the form of VSX FMA instructions to avoid unnecessary | 
|  | // copies. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "PPCInstrInfo.h" | 
|  | #include "MCTargetDesc/PPCPredicates.h" | 
|  | #include "PPC.h" | 
|  | #include "PPCInstrBuilder.h" | 
|  | #include "PPCMachineFunctionInfo.h" | 
|  | #include "PPCTargetMachine.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/CodeGen/LiveIntervalAnalysis.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/PseudoSourceValue.h" | 
|  | #include "llvm/CodeGen/ScheduleDAG.h" | 
|  | #include "llvm/CodeGen/SlotIndexes.h" | 
|  | #include "llvm/MC/MCAsmInfo.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/TargetRegistry.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<bool> DisableVSXFMAMutate("disable-ppc-vsx-fma-mutation", | 
|  | cl::desc("Disable VSX FMA instruction mutation"), cl::Hidden); | 
|  |  | 
|  | #define DEBUG_TYPE "ppc-vsx-fma-mutate" | 
|  |  | 
|  | namespace llvm { namespace PPC { | 
|  | int getAltVSXFMAOpcode(uint16_t Opcode); | 
|  | } } | 
|  |  | 
|  | namespace { | 
|  | // PPCVSXFMAMutate pass - For copies between VSX registers and non-VSX registers | 
|  | // (Altivec and scalar floating-point registers), we need to transform the | 
|  | // copies into subregister copies with other restrictions. | 
|  | struct PPCVSXFMAMutate : public MachineFunctionPass { | 
|  | static char ID; | 
|  | PPCVSXFMAMutate() : MachineFunctionPass(ID) { | 
|  | initializePPCVSXFMAMutatePass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | LiveIntervals *LIS; | 
|  | const PPCInstrInfo *TII; | 
|  |  | 
|  | protected: | 
|  | bool processBlock(MachineBasicBlock &MBB) { | 
|  | bool Changed = false; | 
|  |  | 
|  | MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo(); | 
|  | const TargetRegisterInfo *TRI = &TII->getRegisterInfo(); | 
|  | for (MachineBasicBlock::iterator I = MBB.begin(), IE = MBB.end(); | 
|  | I != IE; ++I) { | 
|  | MachineInstr *MI = I; | 
|  |  | 
|  | // The default (A-type) VSX FMA form kills the addend (it is taken from | 
|  | // the target register, which is then updated to reflect the result of | 
|  | // the FMA). If the instruction, however, kills one of the registers | 
|  | // used for the product, then we can use the M-form instruction (which | 
|  | // will take that value from the to-be-defined register). | 
|  |  | 
|  | int AltOpc = PPC::getAltVSXFMAOpcode(MI->getOpcode()); | 
|  | if (AltOpc == -1) | 
|  | continue; | 
|  |  | 
|  | // This pass is run after register coalescing, and so we're looking for | 
|  | // a situation like this: | 
|  | //   ... | 
|  | //   %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9 | 
|  | //   %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16, | 
|  | //                         %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16 | 
|  | //   ... | 
|  | //   %vreg9<def,tied1> = XSMADDADP %vreg9<tied0>, %vreg17, %vreg19, | 
|  | //                         %RM<imp-use>; VSLRC:%vreg9,%vreg17,%vreg19 | 
|  | //   ... | 
|  | // Where we can eliminate the copy by changing from the A-type to the | 
|  | // M-type instruction. Specifically, for this example, this means: | 
|  | //   %vreg5<def,tied1> = XSMADDADP %vreg5<tied0>, %vreg17, %vreg16, | 
|  | //                         %RM<imp-use>; VSLRC:%vreg5,%vreg17,%vreg16 | 
|  | // is replaced by: | 
|  | //   %vreg16<def,tied1> = XSMADDMDP %vreg16<tied0>, %vreg18, %vreg9, | 
|  | //                         %RM<imp-use>; VSLRC:%vreg16,%vreg18,%vreg9 | 
|  | // and we remove: %vreg5<def> = COPY %vreg9; VSLRC:%vreg5,%vreg9 | 
|  |  | 
|  | SlotIndex FMAIdx = LIS->getInstructionIndex(MI); | 
|  |  | 
|  | VNInfo *AddendValNo = | 
|  | LIS->getInterval(MI->getOperand(1).getReg()).Query(FMAIdx).valueIn(); | 
|  |  | 
|  | // This can be null if the register is undef. | 
|  | if (!AddendValNo) | 
|  | continue; | 
|  |  | 
|  | MachineInstr *AddendMI = LIS->getInstructionFromIndex(AddendValNo->def); | 
|  |  | 
|  | // The addend and this instruction must be in the same block. | 
|  |  | 
|  | if (!AddendMI || AddendMI->getParent() != MI->getParent()) | 
|  | continue; | 
|  |  | 
|  | // The addend must be a full copy within the same register class. | 
|  |  | 
|  | if (!AddendMI->isFullCopy()) | 
|  | continue; | 
|  |  | 
|  | unsigned AddendSrcReg = AddendMI->getOperand(1).getReg(); | 
|  | if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg)) { | 
|  | if (MRI.getRegClass(AddendMI->getOperand(0).getReg()) != | 
|  | MRI.getRegClass(AddendSrcReg)) | 
|  | continue; | 
|  | } else { | 
|  | // If AddendSrcReg is a physical register, make sure the destination | 
|  | // register class contains it. | 
|  | if (!MRI.getRegClass(AddendMI->getOperand(0).getReg()) | 
|  | ->contains(AddendSrcReg)) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // In theory, there could be other uses of the addend copy before this | 
|  | // fma.  We could deal with this, but that would require additional | 
|  | // logic below and I suspect it will not occur in any relevant | 
|  | // situations.  Additionally, check whether the copy source is killed | 
|  | // prior to the fma.  In order to replace the addend here with the | 
|  | // source of the copy, it must still be live here.  We can't use | 
|  | // interval testing for a physical register, so as long as we're | 
|  | // walking the MIs we may as well test liveness here. | 
|  | // | 
|  | // FIXME: There is a case that occurs in practice, like this: | 
|  | //   %vreg9<def> = COPY %F1; VSSRC:%vreg9 | 
|  | //   ... | 
|  | //   %vreg6<def> = COPY %vreg9; VSSRC:%vreg6,%vreg9 | 
|  | //   %vreg7<def> = COPY %vreg9; VSSRC:%vreg7,%vreg9 | 
|  | //   %vreg9<def,tied1> = XSMADDASP %vreg9<tied0>, %vreg1, %vreg4; VSSRC: | 
|  | //   %vreg6<def,tied1> = XSMADDASP %vreg6<tied0>, %vreg1, %vreg2; VSSRC: | 
|  | //   %vreg7<def,tied1> = XSMADDASP %vreg7<tied0>, %vreg1, %vreg3; VSSRC: | 
|  | // which prevents an otherwise-profitable transformation. | 
|  | bool OtherUsers = false, KillsAddendSrc = false; | 
|  | for (auto J = std::prev(I), JE = MachineBasicBlock::iterator(AddendMI); | 
|  | J != JE; --J) { | 
|  | if (J->readsVirtualRegister(AddendMI->getOperand(0).getReg())) { | 
|  | OtherUsers = true; | 
|  | break; | 
|  | } | 
|  | if (J->modifiesRegister(AddendSrcReg, TRI) || | 
|  | J->killsRegister(AddendSrcReg, TRI)) { | 
|  | KillsAddendSrc = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (OtherUsers || KillsAddendSrc) | 
|  | continue; | 
|  |  | 
|  | // Find one of the product operands that is killed by this instruction. | 
|  |  | 
|  | unsigned KilledProdOp = 0, OtherProdOp = 0; | 
|  | if (LIS->getInterval(MI->getOperand(2).getReg()) | 
|  | .Query(FMAIdx).isKill()) { | 
|  | KilledProdOp = 2; | 
|  | OtherProdOp  = 3; | 
|  | } else if (LIS->getInterval(MI->getOperand(3).getReg()) | 
|  | .Query(FMAIdx).isKill()) { | 
|  | KilledProdOp = 3; | 
|  | OtherProdOp  = 2; | 
|  | } | 
|  |  | 
|  | // If there are no killed product operands, then this transformation is | 
|  | // likely not profitable. | 
|  | if (!KilledProdOp) | 
|  | continue; | 
|  |  | 
|  | // If the addend copy is used only by this MI, then the addend source | 
|  | // register is likely not live here. This could be fixed (based on the | 
|  | // legality checks above, the live range for the addend source register | 
|  | // could be extended), but it seems likely that such a trivial copy can | 
|  | // be coalesced away later, and thus is not worth the effort. | 
|  | if (TargetRegisterInfo::isVirtualRegister(AddendSrcReg) && | 
|  | !LIS->getInterval(AddendSrcReg).liveAt(FMAIdx)) | 
|  | continue; | 
|  |  | 
|  | // Transform: (O2 * O3) + O1 -> (O2 * O1) + O3. | 
|  |  | 
|  | unsigned KilledProdReg = MI->getOperand(KilledProdOp).getReg(); | 
|  | unsigned OtherProdReg  = MI->getOperand(OtherProdOp).getReg(); | 
|  |  | 
|  | unsigned AddSubReg = AddendMI->getOperand(1).getSubReg(); | 
|  | unsigned KilledProdSubReg = MI->getOperand(KilledProdOp).getSubReg(); | 
|  | unsigned OtherProdSubReg  = MI->getOperand(OtherProdOp).getSubReg(); | 
|  |  | 
|  | bool AddRegKill = AddendMI->getOperand(1).isKill(); | 
|  | bool KilledProdRegKill = MI->getOperand(KilledProdOp).isKill(); | 
|  | bool OtherProdRegKill  = MI->getOperand(OtherProdOp).isKill(); | 
|  |  | 
|  | bool AddRegUndef = AddendMI->getOperand(1).isUndef(); | 
|  | bool KilledProdRegUndef = MI->getOperand(KilledProdOp).isUndef(); | 
|  | bool OtherProdRegUndef  = MI->getOperand(OtherProdOp).isUndef(); | 
|  |  | 
|  | unsigned OldFMAReg = MI->getOperand(0).getReg(); | 
|  |  | 
|  | // The transformation doesn't work well with things like: | 
|  | //    %vreg5 = A-form-op %vreg5, %vreg11, %vreg5; | 
|  | // so leave such things alone. | 
|  | if (OldFMAReg == KilledProdReg) | 
|  | continue; | 
|  |  | 
|  | // If there isn't a class that fits, we can't perform the transform. | 
|  | // This is needed for correctness with a mixture of VSX and Altivec | 
|  | // instructions to make sure that a low VSX register is not assigned to | 
|  | // the Altivec instruction. | 
|  | if (!MRI.constrainRegClass(KilledProdReg, | 
|  | MRI.getRegClass(OldFMAReg))) | 
|  | continue; | 
|  |  | 
|  | assert(OldFMAReg == AddendMI->getOperand(0).getReg() && | 
|  | "Addend copy not tied to old FMA output!"); | 
|  |  | 
|  | DEBUG(dbgs() << "VSX FMA Mutation:\n    " << *MI;); | 
|  |  | 
|  | MI->getOperand(0).setReg(KilledProdReg); | 
|  | MI->getOperand(1).setReg(KilledProdReg); | 
|  | MI->getOperand(3).setReg(AddendSrcReg); | 
|  | MI->getOperand(2).setReg(OtherProdReg); | 
|  |  | 
|  | MI->getOperand(0).setSubReg(KilledProdSubReg); | 
|  | MI->getOperand(1).setSubReg(KilledProdSubReg); | 
|  | MI->getOperand(3).setSubReg(AddSubReg); | 
|  | MI->getOperand(2).setSubReg(OtherProdSubReg); | 
|  |  | 
|  | MI->getOperand(1).setIsKill(KilledProdRegKill); | 
|  | MI->getOperand(3).setIsKill(AddRegKill); | 
|  | MI->getOperand(2).setIsKill(OtherProdRegKill); | 
|  |  | 
|  | MI->getOperand(1).setIsUndef(KilledProdRegUndef); | 
|  | MI->getOperand(3).setIsUndef(AddRegUndef); | 
|  | MI->getOperand(2).setIsUndef(OtherProdRegUndef); | 
|  |  | 
|  | MI->setDesc(TII->get(AltOpc)); | 
|  |  | 
|  | DEBUG(dbgs() << " -> " << *MI); | 
|  |  | 
|  | // The killed product operand was killed here, so we can reuse it now | 
|  | // for the result of the fma. | 
|  |  | 
|  | LiveInterval &FMAInt = LIS->getInterval(OldFMAReg); | 
|  | VNInfo *FMAValNo = FMAInt.getVNInfoAt(FMAIdx.getRegSlot()); | 
|  | for (auto UI = MRI.reg_nodbg_begin(OldFMAReg), UE = MRI.reg_nodbg_end(); | 
|  | UI != UE;) { | 
|  | MachineOperand &UseMO = *UI; | 
|  | MachineInstr *UseMI = UseMO.getParent(); | 
|  | ++UI; | 
|  |  | 
|  | // Don't replace the result register of the copy we're about to erase. | 
|  | if (UseMI == AddendMI) | 
|  | continue; | 
|  |  | 
|  | UseMO.substVirtReg(KilledProdReg, KilledProdSubReg, *TRI); | 
|  | } | 
|  |  | 
|  | // Extend the live intervals of the killed product operand to hold the | 
|  | // fma result. | 
|  |  | 
|  | LiveInterval &NewFMAInt = LIS->getInterval(KilledProdReg); | 
|  | for (LiveInterval::iterator AI = FMAInt.begin(), AE = FMAInt.end(); | 
|  | AI != AE; ++AI) { | 
|  | // Don't add the segment that corresponds to the original copy. | 
|  | if (AI->valno == AddendValNo) | 
|  | continue; | 
|  |  | 
|  | VNInfo *NewFMAValNo = | 
|  | NewFMAInt.getNextValue(AI->start, | 
|  | LIS->getVNInfoAllocator()); | 
|  |  | 
|  | NewFMAInt.addSegment(LiveInterval::Segment(AI->start, AI->end, | 
|  | NewFMAValNo)); | 
|  | } | 
|  | DEBUG(dbgs() << "  extended: " << NewFMAInt << '\n'); | 
|  |  | 
|  | // Extend the live interval of the addend source (it might end at the | 
|  | // copy to be removed, or somewhere in between there and here). This | 
|  | // is necessary only if it is a physical register. | 
|  | if (!TargetRegisterInfo::isVirtualRegister(AddendSrcReg)) | 
|  | for (MCRegUnitIterator Units(AddendSrcReg, TRI); Units.isValid(); | 
|  | ++Units) { | 
|  | unsigned Unit = *Units; | 
|  |  | 
|  | LiveRange &AddendSrcRange = LIS->getRegUnit(Unit); | 
|  | AddendSrcRange.extendInBlock(LIS->getMBBStartIdx(&MBB), | 
|  | FMAIdx.getRegSlot()); | 
|  | DEBUG(dbgs() << "  extended: " << AddendSrcRange << '\n'); | 
|  | } | 
|  |  | 
|  | FMAInt.removeValNo(FMAValNo); | 
|  | DEBUG(dbgs() << "  trimmed:  " << FMAInt << '\n'); | 
|  |  | 
|  | // Remove the (now unused) copy. | 
|  |  | 
|  | DEBUG(dbgs() << "  removing: " << *AddendMI << '\n'); | 
|  | LIS->RemoveMachineInstrFromMaps(AddendMI); | 
|  | AddendMI->eraseFromParent(); | 
|  |  | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | public: | 
|  | bool runOnMachineFunction(MachineFunction &MF) override { | 
|  | // If we don't have VSX then go ahead and return without doing | 
|  | // anything. | 
|  | const PPCSubtarget &STI = MF.getSubtarget<PPCSubtarget>(); | 
|  | if (!STI.hasVSX()) | 
|  | return false; | 
|  |  | 
|  | LIS = &getAnalysis<LiveIntervals>(); | 
|  |  | 
|  | TII = STI.getInstrInfo(); | 
|  |  | 
|  | bool Changed = false; | 
|  |  | 
|  | if (DisableVSXFMAMutate) | 
|  | return Changed; | 
|  |  | 
|  | for (MachineFunction::iterator I = MF.begin(); I != MF.end();) { | 
|  | MachineBasicBlock &B = *I++; | 
|  | if (processBlock(B)) | 
|  | Changed = true; | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<LiveIntervals>(); | 
|  | AU.addPreserved<LiveIntervals>(); | 
|  | AU.addRequired<SlotIndexes>(); | 
|  | AU.addPreserved<SlotIndexes>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(PPCVSXFMAMutate, DEBUG_TYPE, | 
|  | "PowerPC VSX FMA Mutation", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(LiveIntervals) | 
|  | INITIALIZE_PASS_DEPENDENCY(SlotIndexes) | 
|  | INITIALIZE_PASS_END(PPCVSXFMAMutate, DEBUG_TYPE, | 
|  | "PowerPC VSX FMA Mutation", false, false) | 
|  |  | 
|  | char &llvm::PPCVSXFMAMutateID = PPCVSXFMAMutate::ID; | 
|  |  | 
|  | char PPCVSXFMAMutate::ID = 0; | 
|  | FunctionPass *llvm::createPPCVSXFMAMutatePass() { | 
|  | return new PPCVSXFMAMutate(); | 
|  | } |