|  | // Copyright 2007, Google Inc. | 
|  | // All rights reserved. | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are | 
|  | // met: | 
|  | // | 
|  | //     * Redistributions of source code must retain the above copyright | 
|  | // notice, this list of conditions and the following disclaimer. | 
|  | //     * Redistributions in binary form must reproduce the above | 
|  | // copyright notice, this list of conditions and the following disclaimer | 
|  | // in the documentation and/or other materials provided with the | 
|  | // distribution. | 
|  | //     * Neither the name of Google Inc. nor the names of its | 
|  | // contributors may be used to endorse or promote products derived from | 
|  | // this software without specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | // | 
|  | // Author: wan@google.com (Zhanyong Wan) | 
|  |  | 
|  | // Google Mock - a framework for writing C++ mock classes. | 
|  | // | 
|  | // This file implements some commonly used argument matchers.  More | 
|  | // matchers can be defined by the user implementing the | 
|  | // MatcherInterface<T> interface if necessary. | 
|  |  | 
|  | #ifndef GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ | 
|  | #define GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ | 
|  |  | 
|  | #include <math.h> | 
|  | #include <algorithm> | 
|  | #include <iterator> | 
|  | #include <limits> | 
|  | #include <ostream>  // NOLINT | 
|  | #include <sstream> | 
|  | #include <string> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #include "gmock/internal/gmock-internal-utils.h" | 
|  | #include "gmock/internal/gmock-port.h" | 
|  | #include "gtest/gtest.h" | 
|  |  | 
|  | #if GTEST_HAS_STD_INITIALIZER_LIST_ | 
|  | # include <initializer_list>  // NOLINT -- must be after gtest.h | 
|  | #endif | 
|  |  | 
|  | namespace testing { | 
|  |  | 
|  | // To implement a matcher Foo for type T, define: | 
|  | //   1. a class FooMatcherImpl that implements the | 
|  | //      MatcherInterface<T> interface, and | 
|  | //   2. a factory function that creates a Matcher<T> object from a | 
|  | //      FooMatcherImpl*. | 
|  | // | 
|  | // The two-level delegation design makes it possible to allow a user | 
|  | // to write "v" instead of "Eq(v)" where a Matcher is expected, which | 
|  | // is impossible if we pass matchers by pointers.  It also eases | 
|  | // ownership management as Matcher objects can now be copied like | 
|  | // plain values. | 
|  |  | 
|  | // MatchResultListener is an abstract class.  Its << operator can be | 
|  | // used by a matcher to explain why a value matches or doesn't match. | 
|  | // | 
|  | // TODO(wan@google.com): add method | 
|  | //   bool InterestedInWhy(bool result) const; | 
|  | // to indicate whether the listener is interested in why the match | 
|  | // result is 'result'. | 
|  | class MatchResultListener { | 
|  | public: | 
|  | // Creates a listener object with the given underlying ostream.  The | 
|  | // listener does not own the ostream, and does not dereference it | 
|  | // in the constructor or destructor. | 
|  | explicit MatchResultListener(::std::ostream* os) : stream_(os) {} | 
|  | virtual ~MatchResultListener() = 0;  // Makes this class abstract. | 
|  |  | 
|  | // Streams x to the underlying ostream; does nothing if the ostream | 
|  | // is NULL. | 
|  | template <typename T> | 
|  | MatchResultListener& operator<<(const T& x) { | 
|  | if (stream_ != NULL) | 
|  | *stream_ << x; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | // Returns the underlying ostream. | 
|  | ::std::ostream* stream() { return stream_; } | 
|  |  | 
|  | // Returns true iff the listener is interested in an explanation of | 
|  | // the match result.  A matcher's MatchAndExplain() method can use | 
|  | // this information to avoid generating the explanation when no one | 
|  | // intends to hear it. | 
|  | bool IsInterested() const { return stream_ != NULL; } | 
|  |  | 
|  | private: | 
|  | ::std::ostream* const stream_; | 
|  |  | 
|  | GTEST_DISALLOW_COPY_AND_ASSIGN_(MatchResultListener); | 
|  | }; | 
|  |  | 
|  | inline MatchResultListener::~MatchResultListener() { | 
|  | } | 
|  |  | 
|  | // An instance of a subclass of this knows how to describe itself as a | 
|  | // matcher. | 
|  | class MatcherDescriberInterface { | 
|  | public: | 
|  | virtual ~MatcherDescriberInterface() {} | 
|  |  | 
|  | // Describes this matcher to an ostream.  The function should print | 
|  | // a verb phrase that describes the property a value matching this | 
|  | // matcher should have.  The subject of the verb phrase is the value | 
|  | // being matched.  For example, the DescribeTo() method of the Gt(7) | 
|  | // matcher prints "is greater than 7". | 
|  | virtual void DescribeTo(::std::ostream* os) const = 0; | 
|  |  | 
|  | // Describes the negation of this matcher to an ostream.  For | 
|  | // example, if the description of this matcher is "is greater than | 
|  | // 7", the negated description could be "is not greater than 7". | 
|  | // You are not required to override this when implementing | 
|  | // MatcherInterface, but it is highly advised so that your matcher | 
|  | // can produce good error messages. | 
|  | virtual void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "not ("; | 
|  | DescribeTo(os); | 
|  | *os << ")"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // The implementation of a matcher. | 
|  | template <typename T> | 
|  | class MatcherInterface : public MatcherDescriberInterface { | 
|  | public: | 
|  | // Returns true iff the matcher matches x; also explains the match | 
|  | // result to 'listener' if necessary (see the next paragraph), in | 
|  | // the form of a non-restrictive relative clause ("which ...", | 
|  | // "whose ...", etc) that describes x.  For example, the | 
|  | // MatchAndExplain() method of the Pointee(...) matcher should | 
|  | // generate an explanation like "which points to ...". | 
|  | // | 
|  | // Implementations of MatchAndExplain() should add an explanation of | 
|  | // the match result *if and only if* they can provide additional | 
|  | // information that's not already present (or not obvious) in the | 
|  | // print-out of x and the matcher's description.  Whether the match | 
|  | // succeeds is not a factor in deciding whether an explanation is | 
|  | // needed, as sometimes the caller needs to print a failure message | 
|  | // when the match succeeds (e.g. when the matcher is used inside | 
|  | // Not()). | 
|  | // | 
|  | // For example, a "has at least 10 elements" matcher should explain | 
|  | // what the actual element count is, regardless of the match result, | 
|  | // as it is useful information to the reader; on the other hand, an | 
|  | // "is empty" matcher probably only needs to explain what the actual | 
|  | // size is when the match fails, as it's redundant to say that the | 
|  | // size is 0 when the value is already known to be empty. | 
|  | // | 
|  | // You should override this method when defining a new matcher. | 
|  | // | 
|  | // It's the responsibility of the caller (Google Mock) to guarantee | 
|  | // that 'listener' is not NULL.  This helps to simplify a matcher's | 
|  | // implementation when it doesn't care about the performance, as it | 
|  | // can talk to 'listener' without checking its validity first. | 
|  | // However, in order to implement dummy listeners efficiently, | 
|  | // listener->stream() may be NULL. | 
|  | virtual bool MatchAndExplain(T x, MatchResultListener* listener) const = 0; | 
|  |  | 
|  | // Inherits these methods from MatcherDescriberInterface: | 
|  | //   virtual void DescribeTo(::std::ostream* os) const = 0; | 
|  | //   virtual void DescribeNegationTo(::std::ostream* os) const; | 
|  | }; | 
|  |  | 
|  | // A match result listener that stores the explanation in a string. | 
|  | class StringMatchResultListener : public MatchResultListener { | 
|  | public: | 
|  | StringMatchResultListener() : MatchResultListener(&ss_) {} | 
|  |  | 
|  | // Returns the explanation accumulated so far. | 
|  | internal::string str() const { return ss_.str(); } | 
|  |  | 
|  | // Clears the explanation accumulated so far. | 
|  | void Clear() { ss_.str(""); } | 
|  |  | 
|  | private: | 
|  | ::std::stringstream ss_; | 
|  |  | 
|  | GTEST_DISALLOW_COPY_AND_ASSIGN_(StringMatchResultListener); | 
|  | }; | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | struct AnyEq { | 
|  | template <typename A, typename B> | 
|  | bool operator()(const A& a, const B& b) const { return a == b; } | 
|  | }; | 
|  | struct AnyNe { | 
|  | template <typename A, typename B> | 
|  | bool operator()(const A& a, const B& b) const { return a != b; } | 
|  | }; | 
|  | struct AnyLt { | 
|  | template <typename A, typename B> | 
|  | bool operator()(const A& a, const B& b) const { return a < b; } | 
|  | }; | 
|  | struct AnyGt { | 
|  | template <typename A, typename B> | 
|  | bool operator()(const A& a, const B& b) const { return a > b; } | 
|  | }; | 
|  | struct AnyLe { | 
|  | template <typename A, typename B> | 
|  | bool operator()(const A& a, const B& b) const { return a <= b; } | 
|  | }; | 
|  | struct AnyGe { | 
|  | template <typename A, typename B> | 
|  | bool operator()(const A& a, const B& b) const { return a >= b; } | 
|  | }; | 
|  |  | 
|  | // A match result listener that ignores the explanation. | 
|  | class DummyMatchResultListener : public MatchResultListener { | 
|  | public: | 
|  | DummyMatchResultListener() : MatchResultListener(NULL) {} | 
|  |  | 
|  | private: | 
|  | GTEST_DISALLOW_COPY_AND_ASSIGN_(DummyMatchResultListener); | 
|  | }; | 
|  |  | 
|  | // A match result listener that forwards the explanation to a given | 
|  | // ostream.  The difference between this and MatchResultListener is | 
|  | // that the former is concrete. | 
|  | class StreamMatchResultListener : public MatchResultListener { | 
|  | public: | 
|  | explicit StreamMatchResultListener(::std::ostream* os) | 
|  | : MatchResultListener(os) {} | 
|  |  | 
|  | private: | 
|  | GTEST_DISALLOW_COPY_AND_ASSIGN_(StreamMatchResultListener); | 
|  | }; | 
|  |  | 
|  | // An internal class for implementing Matcher<T>, which will derive | 
|  | // from it.  We put functionalities common to all Matcher<T> | 
|  | // specializations here to avoid code duplication. | 
|  | template <typename T> | 
|  | class MatcherBase { | 
|  | public: | 
|  | // Returns true iff the matcher matches x; also explains the match | 
|  | // result to 'listener'. | 
|  | bool MatchAndExplain(T x, MatchResultListener* listener) const { | 
|  | return impl_->MatchAndExplain(x, listener); | 
|  | } | 
|  |  | 
|  | // Returns true iff this matcher matches x. | 
|  | bool Matches(T x) const { | 
|  | DummyMatchResultListener dummy; | 
|  | return MatchAndExplain(x, &dummy); | 
|  | } | 
|  |  | 
|  | // Describes this matcher to an ostream. | 
|  | void DescribeTo(::std::ostream* os) const { impl_->DescribeTo(os); } | 
|  |  | 
|  | // Describes the negation of this matcher to an ostream. | 
|  | void DescribeNegationTo(::std::ostream* os) const { | 
|  | impl_->DescribeNegationTo(os); | 
|  | } | 
|  |  | 
|  | // Explains why x matches, or doesn't match, the matcher. | 
|  | void ExplainMatchResultTo(T x, ::std::ostream* os) const { | 
|  | StreamMatchResultListener listener(os); | 
|  | MatchAndExplain(x, &listener); | 
|  | } | 
|  |  | 
|  | // Returns the describer for this matcher object; retains ownership | 
|  | // of the describer, which is only guaranteed to be alive when | 
|  | // this matcher object is alive. | 
|  | const MatcherDescriberInterface* GetDescriber() const { | 
|  | return impl_.get(); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | MatcherBase() {} | 
|  |  | 
|  | // Constructs a matcher from its implementation. | 
|  | explicit MatcherBase(const MatcherInterface<T>* impl) | 
|  | : impl_(impl) {} | 
|  |  | 
|  | virtual ~MatcherBase() {} | 
|  |  | 
|  | private: | 
|  | // shared_ptr (util/gtl/shared_ptr.h) and linked_ptr have similar | 
|  | // interfaces.  The former dynamically allocates a chunk of memory | 
|  | // to hold the reference count, while the latter tracks all | 
|  | // references using a circular linked list without allocating | 
|  | // memory.  It has been observed that linked_ptr performs better in | 
|  | // typical scenarios.  However, shared_ptr can out-perform | 
|  | // linked_ptr when there are many more uses of the copy constructor | 
|  | // than the default constructor. | 
|  | // | 
|  | // If performance becomes a problem, we should see if using | 
|  | // shared_ptr helps. | 
|  | ::testing::internal::linked_ptr<const MatcherInterface<T> > impl_; | 
|  | }; | 
|  |  | 
|  | }  // namespace internal | 
|  |  | 
|  | // A Matcher<T> is a copyable and IMMUTABLE (except by assignment) | 
|  | // object that can check whether a value of type T matches.  The | 
|  | // implementation of Matcher<T> is just a linked_ptr to const | 
|  | // MatcherInterface<T>, so copying is fairly cheap.  Don't inherit | 
|  | // from Matcher! | 
|  | template <typename T> | 
|  | class Matcher : public internal::MatcherBase<T> { | 
|  | public: | 
|  | // Constructs a null matcher.  Needed for storing Matcher objects in STL | 
|  | // containers.  A default-constructed matcher is not yet initialized.  You | 
|  | // cannot use it until a valid value has been assigned to it. | 
|  | explicit Matcher() {}  // NOLINT | 
|  |  | 
|  | // Constructs a matcher from its implementation. | 
|  | explicit Matcher(const MatcherInterface<T>* impl) | 
|  | : internal::MatcherBase<T>(impl) {} | 
|  |  | 
|  | // Implicit constructor here allows people to write | 
|  | // EXPECT_CALL(foo, Bar(5)) instead of EXPECT_CALL(foo, Bar(Eq(5))) sometimes | 
|  | Matcher(T value);  // NOLINT | 
|  | }; | 
|  |  | 
|  | // The following two specializations allow the user to write str | 
|  | // instead of Eq(str) and "foo" instead of Eq("foo") when a string | 
|  | // matcher is expected. | 
|  | template <> | 
|  | class GTEST_API_ Matcher<const internal::string&> | 
|  | : public internal::MatcherBase<const internal::string&> { | 
|  | public: | 
|  | Matcher() {} | 
|  |  | 
|  | explicit Matcher(const MatcherInterface<const internal::string&>* impl) | 
|  | : internal::MatcherBase<const internal::string&>(impl) {} | 
|  |  | 
|  | // Allows the user to write str instead of Eq(str) sometimes, where | 
|  | // str is a string object. | 
|  | Matcher(const internal::string& s);  // NOLINT | 
|  |  | 
|  | // Allows the user to write "foo" instead of Eq("foo") sometimes. | 
|  | Matcher(const char* s);  // NOLINT | 
|  | }; | 
|  |  | 
|  | template <> | 
|  | class GTEST_API_ Matcher<internal::string> | 
|  | : public internal::MatcherBase<internal::string> { | 
|  | public: | 
|  | Matcher() {} | 
|  |  | 
|  | explicit Matcher(const MatcherInterface<internal::string>* impl) | 
|  | : internal::MatcherBase<internal::string>(impl) {} | 
|  |  | 
|  | // Allows the user to write str instead of Eq(str) sometimes, where | 
|  | // str is a string object. | 
|  | Matcher(const internal::string& s);  // NOLINT | 
|  |  | 
|  | // Allows the user to write "foo" instead of Eq("foo") sometimes. | 
|  | Matcher(const char* s);  // NOLINT | 
|  | }; | 
|  |  | 
|  | #if GTEST_HAS_STRING_PIECE_ | 
|  | // The following two specializations allow the user to write str | 
|  | // instead of Eq(str) and "foo" instead of Eq("foo") when a StringPiece | 
|  | // matcher is expected. | 
|  | template <> | 
|  | class GTEST_API_ Matcher<const StringPiece&> | 
|  | : public internal::MatcherBase<const StringPiece&> { | 
|  | public: | 
|  | Matcher() {} | 
|  |  | 
|  | explicit Matcher(const MatcherInterface<const StringPiece&>* impl) | 
|  | : internal::MatcherBase<const StringPiece&>(impl) {} | 
|  |  | 
|  | // Allows the user to write str instead of Eq(str) sometimes, where | 
|  | // str is a string object. | 
|  | Matcher(const internal::string& s);  // NOLINT | 
|  |  | 
|  | // Allows the user to write "foo" instead of Eq("foo") sometimes. | 
|  | Matcher(const char* s);  // NOLINT | 
|  |  | 
|  | // Allows the user to pass StringPieces directly. | 
|  | Matcher(StringPiece s);  // NOLINT | 
|  | }; | 
|  |  | 
|  | template <> | 
|  | class GTEST_API_ Matcher<StringPiece> | 
|  | : public internal::MatcherBase<StringPiece> { | 
|  | public: | 
|  | Matcher() {} | 
|  |  | 
|  | explicit Matcher(const MatcherInterface<StringPiece>* impl) | 
|  | : internal::MatcherBase<StringPiece>(impl) {} | 
|  |  | 
|  | // Allows the user to write str instead of Eq(str) sometimes, where | 
|  | // str is a string object. | 
|  | Matcher(const internal::string& s);  // NOLINT | 
|  |  | 
|  | // Allows the user to write "foo" instead of Eq("foo") sometimes. | 
|  | Matcher(const char* s);  // NOLINT | 
|  |  | 
|  | // Allows the user to pass StringPieces directly. | 
|  | Matcher(StringPiece s);  // NOLINT | 
|  | }; | 
|  | #endif  // GTEST_HAS_STRING_PIECE_ | 
|  |  | 
|  | // The PolymorphicMatcher class template makes it easy to implement a | 
|  | // polymorphic matcher (i.e. a matcher that can match values of more | 
|  | // than one type, e.g. Eq(n) and NotNull()). | 
|  | // | 
|  | // To define a polymorphic matcher, a user should provide an Impl | 
|  | // class that has a DescribeTo() method and a DescribeNegationTo() | 
|  | // method, and define a member function (or member function template) | 
|  | // | 
|  | //   bool MatchAndExplain(const Value& value, | 
|  | //                        MatchResultListener* listener) const; | 
|  | // | 
|  | // See the definition of NotNull() for a complete example. | 
|  | template <class Impl> | 
|  | class PolymorphicMatcher { | 
|  | public: | 
|  | explicit PolymorphicMatcher(const Impl& an_impl) : impl_(an_impl) {} | 
|  |  | 
|  | // Returns a mutable reference to the underlying matcher | 
|  | // implementation object. | 
|  | Impl& mutable_impl() { return impl_; } | 
|  |  | 
|  | // Returns an immutable reference to the underlying matcher | 
|  | // implementation object. | 
|  | const Impl& impl() const { return impl_; } | 
|  |  | 
|  | template <typename T> | 
|  | operator Matcher<T>() const { | 
|  | return Matcher<T>(new MonomorphicImpl<T>(impl_)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | template <typename T> | 
|  | class MonomorphicImpl : public MatcherInterface<T> { | 
|  | public: | 
|  | explicit MonomorphicImpl(const Impl& impl) : impl_(impl) {} | 
|  |  | 
|  | virtual void DescribeTo(::std::ostream* os) const { | 
|  | impl_.DescribeTo(os); | 
|  | } | 
|  |  | 
|  | virtual void DescribeNegationTo(::std::ostream* os) const { | 
|  | impl_.DescribeNegationTo(os); | 
|  | } | 
|  |  | 
|  | virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { | 
|  | return impl_.MatchAndExplain(x, listener); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const Impl impl_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(MonomorphicImpl); | 
|  | }; | 
|  |  | 
|  | Impl impl_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(PolymorphicMatcher); | 
|  | }; | 
|  |  | 
|  | // Creates a matcher from its implementation.  This is easier to use | 
|  | // than the Matcher<T> constructor as it doesn't require you to | 
|  | // explicitly write the template argument, e.g. | 
|  | // | 
|  | //   MakeMatcher(foo); | 
|  | // vs | 
|  | //   Matcher<const string&>(foo); | 
|  | template <typename T> | 
|  | inline Matcher<T> MakeMatcher(const MatcherInterface<T>* impl) { | 
|  | return Matcher<T>(impl); | 
|  | } | 
|  |  | 
|  | // Creates a polymorphic matcher from its implementation.  This is | 
|  | // easier to use than the PolymorphicMatcher<Impl> constructor as it | 
|  | // doesn't require you to explicitly write the template argument, e.g. | 
|  | // | 
|  | //   MakePolymorphicMatcher(foo); | 
|  | // vs | 
|  | //   PolymorphicMatcher<TypeOfFoo>(foo); | 
|  | template <class Impl> | 
|  | inline PolymorphicMatcher<Impl> MakePolymorphicMatcher(const Impl& impl) { | 
|  | return PolymorphicMatcher<Impl>(impl); | 
|  | } | 
|  |  | 
|  | // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION | 
|  | // and MUST NOT BE USED IN USER CODE!!! | 
|  | namespace internal { | 
|  |  | 
|  | // The MatcherCastImpl class template is a helper for implementing | 
|  | // MatcherCast().  We need this helper in order to partially | 
|  | // specialize the implementation of MatcherCast() (C++ allows | 
|  | // class/struct templates to be partially specialized, but not | 
|  | // function templates.). | 
|  |  | 
|  | // This general version is used when MatcherCast()'s argument is a | 
|  | // polymorphic matcher (i.e. something that can be converted to a | 
|  | // Matcher but is not one yet; for example, Eq(value)) or a value (for | 
|  | // example, "hello"). | 
|  | template <typename T, typename M> | 
|  | class MatcherCastImpl { | 
|  | public: | 
|  | static Matcher<T> Cast(const M& polymorphic_matcher_or_value) { | 
|  | // M can be a polymorhic matcher, in which case we want to use | 
|  | // its conversion operator to create Matcher<T>.  Or it can be a value | 
|  | // that should be passed to the Matcher<T>'s constructor. | 
|  | // | 
|  | // We can't call Matcher<T>(polymorphic_matcher_or_value) when M is a | 
|  | // polymorphic matcher because it'll be ambiguous if T has an implicit | 
|  | // constructor from M (this usually happens when T has an implicit | 
|  | // constructor from any type). | 
|  | // | 
|  | // It won't work to unconditionally implict_cast | 
|  | // polymorphic_matcher_or_value to Matcher<T> because it won't trigger | 
|  | // a user-defined conversion from M to T if one exists (assuming M is | 
|  | // a value). | 
|  | return CastImpl( | 
|  | polymorphic_matcher_or_value, | 
|  | BooleanConstant< | 
|  | internal::ImplicitlyConvertible<M, Matcher<T> >::value>()); | 
|  | } | 
|  |  | 
|  | private: | 
|  | static Matcher<T> CastImpl(const M& value, BooleanConstant<false>) { | 
|  | // M can't be implicitly converted to Matcher<T>, so M isn't a polymorphic | 
|  | // matcher.  It must be a value then.  Use direct initialization to create | 
|  | // a matcher. | 
|  | return Matcher<T>(ImplicitCast_<T>(value)); | 
|  | } | 
|  |  | 
|  | static Matcher<T> CastImpl(const M& polymorphic_matcher_or_value, | 
|  | BooleanConstant<true>) { | 
|  | // M is implicitly convertible to Matcher<T>, which means that either | 
|  | // M is a polymorhpic matcher or Matcher<T> has an implicit constructor | 
|  | // from M.  In both cases using the implicit conversion will produce a | 
|  | // matcher. | 
|  | // | 
|  | // Even if T has an implicit constructor from M, it won't be called because | 
|  | // creating Matcher<T> would require a chain of two user-defined conversions | 
|  | // (first to create T from M and then to create Matcher<T> from T). | 
|  | return polymorphic_matcher_or_value; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // This more specialized version is used when MatcherCast()'s argument | 
|  | // is already a Matcher.  This only compiles when type T can be | 
|  | // statically converted to type U. | 
|  | template <typename T, typename U> | 
|  | class MatcherCastImpl<T, Matcher<U> > { | 
|  | public: | 
|  | static Matcher<T> Cast(const Matcher<U>& source_matcher) { | 
|  | return Matcher<T>(new Impl(source_matcher)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | class Impl : public MatcherInterface<T> { | 
|  | public: | 
|  | explicit Impl(const Matcher<U>& source_matcher) | 
|  | : source_matcher_(source_matcher) {} | 
|  |  | 
|  | // We delegate the matching logic to the source matcher. | 
|  | virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { | 
|  | return source_matcher_.MatchAndExplain(static_cast<U>(x), listener); | 
|  | } | 
|  |  | 
|  | virtual void DescribeTo(::std::ostream* os) const { | 
|  | source_matcher_.DescribeTo(os); | 
|  | } | 
|  |  | 
|  | virtual void DescribeNegationTo(::std::ostream* os) const { | 
|  | source_matcher_.DescribeNegationTo(os); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const Matcher<U> source_matcher_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(Impl); | 
|  | }; | 
|  | }; | 
|  |  | 
|  | // This even more specialized version is used for efficiently casting | 
|  | // a matcher to its own type. | 
|  | template <typename T> | 
|  | class MatcherCastImpl<T, Matcher<T> > { | 
|  | public: | 
|  | static Matcher<T> Cast(const Matcher<T>& matcher) { return matcher; } | 
|  | }; | 
|  |  | 
|  | }  // namespace internal | 
|  |  | 
|  | // In order to be safe and clear, casting between different matcher | 
|  | // types is done explicitly via MatcherCast<T>(m), which takes a | 
|  | // matcher m and returns a Matcher<T>.  It compiles only when T can be | 
|  | // statically converted to the argument type of m. | 
|  | template <typename T, typename M> | 
|  | inline Matcher<T> MatcherCast(const M& matcher) { | 
|  | return internal::MatcherCastImpl<T, M>::Cast(matcher); | 
|  | } | 
|  |  | 
|  | // Implements SafeMatcherCast(). | 
|  | // | 
|  | // We use an intermediate class to do the actual safe casting as Nokia's | 
|  | // Symbian compiler cannot decide between | 
|  | // template <T, M> ... (M) and | 
|  | // template <T, U> ... (const Matcher<U>&) | 
|  | // for function templates but can for member function templates. | 
|  | template <typename T> | 
|  | class SafeMatcherCastImpl { | 
|  | public: | 
|  | // This overload handles polymorphic matchers and values only since | 
|  | // monomorphic matchers are handled by the next one. | 
|  | template <typename M> | 
|  | static inline Matcher<T> Cast(const M& polymorphic_matcher_or_value) { | 
|  | return internal::MatcherCastImpl<T, M>::Cast(polymorphic_matcher_or_value); | 
|  | } | 
|  |  | 
|  | // This overload handles monomorphic matchers. | 
|  | // | 
|  | // In general, if type T can be implicitly converted to type U, we can | 
|  | // safely convert a Matcher<U> to a Matcher<T> (i.e. Matcher is | 
|  | // contravariant): just keep a copy of the original Matcher<U>, convert the | 
|  | // argument from type T to U, and then pass it to the underlying Matcher<U>. | 
|  | // The only exception is when U is a reference and T is not, as the | 
|  | // underlying Matcher<U> may be interested in the argument's address, which | 
|  | // is not preserved in the conversion from T to U. | 
|  | template <typename U> | 
|  | static inline Matcher<T> Cast(const Matcher<U>& matcher) { | 
|  | // Enforce that T can be implicitly converted to U. | 
|  | GTEST_COMPILE_ASSERT_((internal::ImplicitlyConvertible<T, U>::value), | 
|  | T_must_be_implicitly_convertible_to_U); | 
|  | // Enforce that we are not converting a non-reference type T to a reference | 
|  | // type U. | 
|  | GTEST_COMPILE_ASSERT_( | 
|  | internal::is_reference<T>::value || !internal::is_reference<U>::value, | 
|  | cannot_convert_non_referentce_arg_to_reference); | 
|  | // In case both T and U are arithmetic types, enforce that the | 
|  | // conversion is not lossy. | 
|  | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(T) RawT; | 
|  | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(U) RawU; | 
|  | const bool kTIsOther = GMOCK_KIND_OF_(RawT) == internal::kOther; | 
|  | const bool kUIsOther = GMOCK_KIND_OF_(RawU) == internal::kOther; | 
|  | GTEST_COMPILE_ASSERT_( | 
|  | kTIsOther || kUIsOther || | 
|  | (internal::LosslessArithmeticConvertible<RawT, RawU>::value), | 
|  | conversion_of_arithmetic_types_must_be_lossless); | 
|  | return MatcherCast<T>(matcher); | 
|  | } | 
|  | }; | 
|  |  | 
|  | template <typename T, typename M> | 
|  | inline Matcher<T> SafeMatcherCast(const M& polymorphic_matcher) { | 
|  | return SafeMatcherCastImpl<T>::Cast(polymorphic_matcher); | 
|  | } | 
|  |  | 
|  | // A<T>() returns a matcher that matches any value of type T. | 
|  | template <typename T> | 
|  | Matcher<T> A(); | 
|  |  | 
|  | // Anything inside the 'internal' namespace IS INTERNAL IMPLEMENTATION | 
|  | // and MUST NOT BE USED IN USER CODE!!! | 
|  | namespace internal { | 
|  |  | 
|  | // If the explanation is not empty, prints it to the ostream. | 
|  | inline void PrintIfNotEmpty(const internal::string& explanation, | 
|  | ::std::ostream* os) { | 
|  | if (explanation != "" && os != NULL) { | 
|  | *os << ", " << explanation; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns true if the given type name is easy to read by a human. | 
|  | // This is used to decide whether printing the type of a value might | 
|  | // be helpful. | 
|  | inline bool IsReadableTypeName(const string& type_name) { | 
|  | // We consider a type name readable if it's short or doesn't contain | 
|  | // a template or function type. | 
|  | return (type_name.length() <= 20 || | 
|  | type_name.find_first_of("<(") == string::npos); | 
|  | } | 
|  |  | 
|  | // Matches the value against the given matcher, prints the value and explains | 
|  | // the match result to the listener. Returns the match result. | 
|  | // 'listener' must not be NULL. | 
|  | // Value cannot be passed by const reference, because some matchers take a | 
|  | // non-const argument. | 
|  | template <typename Value, typename T> | 
|  | bool MatchPrintAndExplain(Value& value, const Matcher<T>& matcher, | 
|  | MatchResultListener* listener) { | 
|  | if (!listener->IsInterested()) { | 
|  | // If the listener is not interested, we do not need to construct the | 
|  | // inner explanation. | 
|  | return matcher.Matches(value); | 
|  | } | 
|  |  | 
|  | StringMatchResultListener inner_listener; | 
|  | const bool match = matcher.MatchAndExplain(value, &inner_listener); | 
|  |  | 
|  | UniversalPrint(value, listener->stream()); | 
|  | #if GTEST_HAS_RTTI | 
|  | const string& type_name = GetTypeName<Value>(); | 
|  | if (IsReadableTypeName(type_name)) | 
|  | *listener->stream() << " (of type " << type_name << ")"; | 
|  | #endif | 
|  | PrintIfNotEmpty(inner_listener.str(), listener->stream()); | 
|  |  | 
|  | return match; | 
|  | } | 
|  |  | 
|  | // An internal helper class for doing compile-time loop on a tuple's | 
|  | // fields. | 
|  | template <size_t N> | 
|  | class TuplePrefix { | 
|  | public: | 
|  | // TuplePrefix<N>::Matches(matcher_tuple, value_tuple) returns true | 
|  | // iff the first N fields of matcher_tuple matches the first N | 
|  | // fields of value_tuple, respectively. | 
|  | template <typename MatcherTuple, typename ValueTuple> | 
|  | static bool Matches(const MatcherTuple& matcher_tuple, | 
|  | const ValueTuple& value_tuple) { | 
|  | return TuplePrefix<N - 1>::Matches(matcher_tuple, value_tuple) | 
|  | && get<N - 1>(matcher_tuple).Matches(get<N - 1>(value_tuple)); | 
|  | } | 
|  |  | 
|  | // TuplePrefix<N>::ExplainMatchFailuresTo(matchers, values, os) | 
|  | // describes failures in matching the first N fields of matchers | 
|  | // against the first N fields of values.  If there is no failure, | 
|  | // nothing will be streamed to os. | 
|  | template <typename MatcherTuple, typename ValueTuple> | 
|  | static void ExplainMatchFailuresTo(const MatcherTuple& matchers, | 
|  | const ValueTuple& values, | 
|  | ::std::ostream* os) { | 
|  | // First, describes failures in the first N - 1 fields. | 
|  | TuplePrefix<N - 1>::ExplainMatchFailuresTo(matchers, values, os); | 
|  |  | 
|  | // Then describes the failure (if any) in the (N - 1)-th (0-based) | 
|  | // field. | 
|  | typename tuple_element<N - 1, MatcherTuple>::type matcher = | 
|  | get<N - 1>(matchers); | 
|  | typedef typename tuple_element<N - 1, ValueTuple>::type Value; | 
|  | Value value = get<N - 1>(values); | 
|  | StringMatchResultListener listener; | 
|  | if (!matcher.MatchAndExplain(value, &listener)) { | 
|  | // TODO(wan): include in the message the name of the parameter | 
|  | // as used in MOCK_METHOD*() when possible. | 
|  | *os << "  Expected arg #" << N - 1 << ": "; | 
|  | get<N - 1>(matchers).DescribeTo(os); | 
|  | *os << "\n           Actual: "; | 
|  | // We remove the reference in type Value to prevent the | 
|  | // universal printer from printing the address of value, which | 
|  | // isn't interesting to the user most of the time.  The | 
|  | // matcher's MatchAndExplain() method handles the case when | 
|  | // the address is interesting. | 
|  | internal::UniversalPrint(value, os); | 
|  | PrintIfNotEmpty(listener.str(), os); | 
|  | *os << "\n"; | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | // The base case. | 
|  | template <> | 
|  | class TuplePrefix<0> { | 
|  | public: | 
|  | template <typename MatcherTuple, typename ValueTuple> | 
|  | static bool Matches(const MatcherTuple& /* matcher_tuple */, | 
|  | const ValueTuple& /* value_tuple */) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <typename MatcherTuple, typename ValueTuple> | 
|  | static void ExplainMatchFailuresTo(const MatcherTuple& /* matchers */, | 
|  | const ValueTuple& /* values */, | 
|  | ::std::ostream* /* os */) {} | 
|  | }; | 
|  |  | 
|  | // TupleMatches(matcher_tuple, value_tuple) returns true iff all | 
|  | // matchers in matcher_tuple match the corresponding fields in | 
|  | // value_tuple.  It is a compiler error if matcher_tuple and | 
|  | // value_tuple have different number of fields or incompatible field | 
|  | // types. | 
|  | template <typename MatcherTuple, typename ValueTuple> | 
|  | bool TupleMatches(const MatcherTuple& matcher_tuple, | 
|  | const ValueTuple& value_tuple) { | 
|  | // Makes sure that matcher_tuple and value_tuple have the same | 
|  | // number of fields. | 
|  | GTEST_COMPILE_ASSERT_(tuple_size<MatcherTuple>::value == | 
|  | tuple_size<ValueTuple>::value, | 
|  | matcher_and_value_have_different_numbers_of_fields); | 
|  | return TuplePrefix<tuple_size<ValueTuple>::value>:: | 
|  | Matches(matcher_tuple, value_tuple); | 
|  | } | 
|  |  | 
|  | // Describes failures in matching matchers against values.  If there | 
|  | // is no failure, nothing will be streamed to os. | 
|  | template <typename MatcherTuple, typename ValueTuple> | 
|  | void ExplainMatchFailureTupleTo(const MatcherTuple& matchers, | 
|  | const ValueTuple& values, | 
|  | ::std::ostream* os) { | 
|  | TuplePrefix<tuple_size<MatcherTuple>::value>::ExplainMatchFailuresTo( | 
|  | matchers, values, os); | 
|  | } | 
|  |  | 
|  | // TransformTupleValues and its helper. | 
|  | // | 
|  | // TransformTupleValuesHelper hides the internal machinery that | 
|  | // TransformTupleValues uses to implement a tuple traversal. | 
|  | template <typename Tuple, typename Func, typename OutIter> | 
|  | class TransformTupleValuesHelper { | 
|  | private: | 
|  | typedef ::testing::tuple_size<Tuple> TupleSize; | 
|  |  | 
|  | public: | 
|  | // For each member of tuple 't', taken in order, evaluates '*out++ = f(t)'. | 
|  | // Returns the final value of 'out' in case the caller needs it. | 
|  | static OutIter Run(Func f, const Tuple& t, OutIter out) { | 
|  | return IterateOverTuple<Tuple, TupleSize::value>()(f, t, out); | 
|  | } | 
|  |  | 
|  | private: | 
|  | template <typename Tup, size_t kRemainingSize> | 
|  | struct IterateOverTuple { | 
|  | OutIter operator() (Func f, const Tup& t, OutIter out) const { | 
|  | *out++ = f(::testing::get<TupleSize::value - kRemainingSize>(t)); | 
|  | return IterateOverTuple<Tup, kRemainingSize - 1>()(f, t, out); | 
|  | } | 
|  | }; | 
|  | template <typename Tup> | 
|  | struct IterateOverTuple<Tup, 0> { | 
|  | OutIter operator() (Func /* f */, const Tup& /* t */, OutIter out) const { | 
|  | return out; | 
|  | } | 
|  | }; | 
|  | }; | 
|  |  | 
|  | // Successively invokes 'f(element)' on each element of the tuple 't', | 
|  | // appending each result to the 'out' iterator. Returns the final value | 
|  | // of 'out'. | 
|  | template <typename Tuple, typename Func, typename OutIter> | 
|  | OutIter TransformTupleValues(Func f, const Tuple& t, OutIter out) { | 
|  | return TransformTupleValuesHelper<Tuple, Func, OutIter>::Run(f, t, out); | 
|  | } | 
|  |  | 
|  | // Implements A<T>(). | 
|  | template <typename T> | 
|  | class AnyMatcherImpl : public MatcherInterface<T> { | 
|  | public: | 
|  | virtual bool MatchAndExplain( | 
|  | T /* x */, MatchResultListener* /* listener */) const { return true; } | 
|  | virtual void DescribeTo(::std::ostream* os) const { *os << "is anything"; } | 
|  | virtual void DescribeNegationTo(::std::ostream* os) const { | 
|  | // This is mostly for completeness' safe, as it's not very useful | 
|  | // to write Not(A<bool>()).  However we cannot completely rule out | 
|  | // such a possibility, and it doesn't hurt to be prepared. | 
|  | *os << "never matches"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Implements _, a matcher that matches any value of any | 
|  | // type.  This is a polymorphic matcher, so we need a template type | 
|  | // conversion operator to make it appearing as a Matcher<T> for any | 
|  | // type T. | 
|  | class AnythingMatcher { | 
|  | public: | 
|  | template <typename T> | 
|  | operator Matcher<T>() const { return A<T>(); } | 
|  | }; | 
|  |  | 
|  | // Implements a matcher that compares a given value with a | 
|  | // pre-supplied value using one of the ==, <=, <, etc, operators.  The | 
|  | // two values being compared don't have to have the same type. | 
|  | // | 
|  | // The matcher defined here is polymorphic (for example, Eq(5) can be | 
|  | // used to match an int, a short, a double, etc).  Therefore we use | 
|  | // a template type conversion operator in the implementation. | 
|  | // | 
|  | // The following template definition assumes that the Rhs parameter is | 
|  | // a "bare" type (i.e. neither 'const T' nor 'T&'). | 
|  | template <typename D, typename Rhs, typename Op> | 
|  | class ComparisonBase { | 
|  | public: | 
|  | explicit ComparisonBase(const Rhs& rhs) : rhs_(rhs) {} | 
|  | template <typename Lhs> | 
|  | operator Matcher<Lhs>() const { | 
|  | return MakeMatcher(new Impl<Lhs>(rhs_)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | template <typename Lhs> | 
|  | class Impl : public MatcherInterface<Lhs> { | 
|  | public: | 
|  | explicit Impl(const Rhs& rhs) : rhs_(rhs) {} | 
|  | virtual bool MatchAndExplain( | 
|  | Lhs lhs, MatchResultListener* /* listener */) const { | 
|  | return Op()(lhs, rhs_); | 
|  | } | 
|  | virtual void DescribeTo(::std::ostream* os) const { | 
|  | *os << D::Desc() << " "; | 
|  | UniversalPrint(rhs_, os); | 
|  | } | 
|  | virtual void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << D::NegatedDesc() <<  " "; | 
|  | UniversalPrint(rhs_, os); | 
|  | } | 
|  | private: | 
|  | Rhs rhs_; | 
|  | GTEST_DISALLOW_ASSIGN_(Impl); | 
|  | }; | 
|  | Rhs rhs_; | 
|  | GTEST_DISALLOW_ASSIGN_(ComparisonBase); | 
|  | }; | 
|  |  | 
|  | template <typename Rhs> | 
|  | class EqMatcher : public ComparisonBase<EqMatcher<Rhs>, Rhs, AnyEq> { | 
|  | public: | 
|  | explicit EqMatcher(const Rhs& rhs) | 
|  | : ComparisonBase<EqMatcher<Rhs>, Rhs, AnyEq>(rhs) { } | 
|  | static const char* Desc() { return "is equal to"; } | 
|  | static const char* NegatedDesc() { return "isn't equal to"; } | 
|  | }; | 
|  | template <typename Rhs> | 
|  | class NeMatcher : public ComparisonBase<NeMatcher<Rhs>, Rhs, AnyNe> { | 
|  | public: | 
|  | explicit NeMatcher(const Rhs& rhs) | 
|  | : ComparisonBase<NeMatcher<Rhs>, Rhs, AnyNe>(rhs) { } | 
|  | static const char* Desc() { return "isn't equal to"; } | 
|  | static const char* NegatedDesc() { return "is equal to"; } | 
|  | }; | 
|  | template <typename Rhs> | 
|  | class LtMatcher : public ComparisonBase<LtMatcher<Rhs>, Rhs, AnyLt> { | 
|  | public: | 
|  | explicit LtMatcher(const Rhs& rhs) | 
|  | : ComparisonBase<LtMatcher<Rhs>, Rhs, AnyLt>(rhs) { } | 
|  | static const char* Desc() { return "is <"; } | 
|  | static const char* NegatedDesc() { return "isn't <"; } | 
|  | }; | 
|  | template <typename Rhs> | 
|  | class GtMatcher : public ComparisonBase<GtMatcher<Rhs>, Rhs, AnyGt> { | 
|  | public: | 
|  | explicit GtMatcher(const Rhs& rhs) | 
|  | : ComparisonBase<GtMatcher<Rhs>, Rhs, AnyGt>(rhs) { } | 
|  | static const char* Desc() { return "is >"; } | 
|  | static const char* NegatedDesc() { return "isn't >"; } | 
|  | }; | 
|  | template <typename Rhs> | 
|  | class LeMatcher : public ComparisonBase<LeMatcher<Rhs>, Rhs, AnyLe> { | 
|  | public: | 
|  | explicit LeMatcher(const Rhs& rhs) | 
|  | : ComparisonBase<LeMatcher<Rhs>, Rhs, AnyLe>(rhs) { } | 
|  | static const char* Desc() { return "is <="; } | 
|  | static const char* NegatedDesc() { return "isn't <="; } | 
|  | }; | 
|  | template <typename Rhs> | 
|  | class GeMatcher : public ComparisonBase<GeMatcher<Rhs>, Rhs, AnyGe> { | 
|  | public: | 
|  | explicit GeMatcher(const Rhs& rhs) | 
|  | : ComparisonBase<GeMatcher<Rhs>, Rhs, AnyGe>(rhs) { } | 
|  | static const char* Desc() { return "is >="; } | 
|  | static const char* NegatedDesc() { return "isn't >="; } | 
|  | }; | 
|  |  | 
|  | // Implements the polymorphic IsNull() matcher, which matches any raw or smart | 
|  | // pointer that is NULL. | 
|  | class IsNullMatcher { | 
|  | public: | 
|  | template <typename Pointer> | 
|  | bool MatchAndExplain(const Pointer& p, | 
|  | MatchResultListener* /* listener */) const { | 
|  | #if GTEST_LANG_CXX11 | 
|  | return p == nullptr; | 
|  | #else  // GTEST_LANG_CXX11 | 
|  | return GetRawPointer(p) == NULL; | 
|  | #endif  // GTEST_LANG_CXX11 | 
|  | } | 
|  |  | 
|  | void DescribeTo(::std::ostream* os) const { *os << "is NULL"; } | 
|  | void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "isn't NULL"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Implements the polymorphic NotNull() matcher, which matches any raw or smart | 
|  | // pointer that is not NULL. | 
|  | class NotNullMatcher { | 
|  | public: | 
|  | template <typename Pointer> | 
|  | bool MatchAndExplain(const Pointer& p, | 
|  | MatchResultListener* /* listener */) const { | 
|  | #if GTEST_LANG_CXX11 | 
|  | return p != nullptr; | 
|  | #else  // GTEST_LANG_CXX11 | 
|  | return GetRawPointer(p) != NULL; | 
|  | #endif  // GTEST_LANG_CXX11 | 
|  | } | 
|  |  | 
|  | void DescribeTo(::std::ostream* os) const { *os << "isn't NULL"; } | 
|  | void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "is NULL"; | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Ref(variable) matches any argument that is a reference to | 
|  | // 'variable'.  This matcher is polymorphic as it can match any | 
|  | // super type of the type of 'variable'. | 
|  | // | 
|  | // The RefMatcher template class implements Ref(variable).  It can | 
|  | // only be instantiated with a reference type.  This prevents a user | 
|  | // from mistakenly using Ref(x) to match a non-reference function | 
|  | // argument.  For example, the following will righteously cause a | 
|  | // compiler error: | 
|  | // | 
|  | //   int n; | 
|  | //   Matcher<int> m1 = Ref(n);   // This won't compile. | 
|  | //   Matcher<int&> m2 = Ref(n);  // This will compile. | 
|  | template <typename T> | 
|  | class RefMatcher; | 
|  |  | 
|  | template <typename T> | 
|  | class RefMatcher<T&> { | 
|  | // Google Mock is a generic framework and thus needs to support | 
|  | // mocking any function types, including those that take non-const | 
|  | // reference arguments.  Therefore the template parameter T (and | 
|  | // Super below) can be instantiated to either a const type or a | 
|  | // non-const type. | 
|  | public: | 
|  | // RefMatcher() takes a T& instead of const T&, as we want the | 
|  | // compiler to catch using Ref(const_value) as a matcher for a | 
|  | // non-const reference. | 
|  | explicit RefMatcher(T& x) : object_(x) {}  // NOLINT | 
|  |  | 
|  | template <typename Super> | 
|  | operator Matcher<Super&>() const { | 
|  | // By passing object_ (type T&) to Impl(), which expects a Super&, | 
|  | // we make sure that Super is a super type of T.  In particular, | 
|  | // this catches using Ref(const_value) as a matcher for a | 
|  | // non-const reference, as you cannot implicitly convert a const | 
|  | // reference to a non-const reference. | 
|  | return MakeMatcher(new Impl<Super>(object_)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | template <typename Super> | 
|  | class Impl : public MatcherInterface<Super&> { | 
|  | public: | 
|  | explicit Impl(Super& x) : object_(x) {}  // NOLINT | 
|  |  | 
|  | // MatchAndExplain() takes a Super& (as opposed to const Super&) | 
|  | // in order to match the interface MatcherInterface<Super&>. | 
|  | virtual bool MatchAndExplain( | 
|  | Super& x, MatchResultListener* listener) const { | 
|  | *listener << "which is located @" << static_cast<const void*>(&x); | 
|  | return &x == &object_; | 
|  | } | 
|  |  | 
|  | virtual void DescribeTo(::std::ostream* os) const { | 
|  | *os << "references the variable "; | 
|  | UniversalPrinter<Super&>::Print(object_, os); | 
|  | } | 
|  |  | 
|  | virtual void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "does not reference the variable "; | 
|  | UniversalPrinter<Super&>::Print(object_, os); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const Super& object_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(Impl); | 
|  | }; | 
|  |  | 
|  | T& object_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(RefMatcher); | 
|  | }; | 
|  |  | 
|  | // Polymorphic helper functions for narrow and wide string matchers. | 
|  | inline bool CaseInsensitiveCStringEquals(const char* lhs, const char* rhs) { | 
|  | return String::CaseInsensitiveCStringEquals(lhs, rhs); | 
|  | } | 
|  |  | 
|  | inline bool CaseInsensitiveCStringEquals(const wchar_t* lhs, | 
|  | const wchar_t* rhs) { | 
|  | return String::CaseInsensitiveWideCStringEquals(lhs, rhs); | 
|  | } | 
|  |  | 
|  | // String comparison for narrow or wide strings that can have embedded NUL | 
|  | // characters. | 
|  | template <typename StringType> | 
|  | bool CaseInsensitiveStringEquals(const StringType& s1, | 
|  | const StringType& s2) { | 
|  | // Are the heads equal? | 
|  | if (!CaseInsensitiveCStringEquals(s1.c_str(), s2.c_str())) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Skip the equal heads. | 
|  | const typename StringType::value_type nul = 0; | 
|  | const size_t i1 = s1.find(nul), i2 = s2.find(nul); | 
|  |  | 
|  | // Are we at the end of either s1 or s2? | 
|  | if (i1 == StringType::npos || i2 == StringType::npos) { | 
|  | return i1 == i2; | 
|  | } | 
|  |  | 
|  | // Are the tails equal? | 
|  | return CaseInsensitiveStringEquals(s1.substr(i1 + 1), s2.substr(i2 + 1)); | 
|  | } | 
|  |  | 
|  | // String matchers. | 
|  |  | 
|  | // Implements equality-based string matchers like StrEq, StrCaseNe, and etc. | 
|  | template <typename StringType> | 
|  | class StrEqualityMatcher { | 
|  | public: | 
|  | StrEqualityMatcher(const StringType& str, bool expect_eq, | 
|  | bool case_sensitive) | 
|  | : string_(str), expect_eq_(expect_eq), case_sensitive_(case_sensitive) {} | 
|  |  | 
|  | // Accepts pointer types, particularly: | 
|  | //   const char* | 
|  | //   char* | 
|  | //   const wchar_t* | 
|  | //   wchar_t* | 
|  | template <typename CharType> | 
|  | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { | 
|  | if (s == NULL) { | 
|  | return !expect_eq_; | 
|  | } | 
|  | return MatchAndExplain(StringType(s), listener); | 
|  | } | 
|  |  | 
|  | // Matches anything that can convert to StringType. | 
|  | // | 
|  | // This is a template, not just a plain function with const StringType&, | 
|  | // because StringPiece has some interfering non-explicit constructors. | 
|  | template <typename MatcheeStringType> | 
|  | bool MatchAndExplain(const MatcheeStringType& s, | 
|  | MatchResultListener* /* listener */) const { | 
|  | const StringType& s2(s); | 
|  | const bool eq = case_sensitive_ ? s2 == string_ : | 
|  | CaseInsensitiveStringEquals(s2, string_); | 
|  | return expect_eq_ == eq; | 
|  | } | 
|  |  | 
|  | void DescribeTo(::std::ostream* os) const { | 
|  | DescribeToHelper(expect_eq_, os); | 
|  | } | 
|  |  | 
|  | void DescribeNegationTo(::std::ostream* os) const { | 
|  | DescribeToHelper(!expect_eq_, os); | 
|  | } | 
|  |  | 
|  | private: | 
|  | void DescribeToHelper(bool expect_eq, ::std::ostream* os) const { | 
|  | *os << (expect_eq ? "is " : "isn't "); | 
|  | *os << "equal to "; | 
|  | if (!case_sensitive_) { | 
|  | *os << "(ignoring case) "; | 
|  | } | 
|  | UniversalPrint(string_, os); | 
|  | } | 
|  |  | 
|  | const StringType string_; | 
|  | const bool expect_eq_; | 
|  | const bool case_sensitive_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(StrEqualityMatcher); | 
|  | }; | 
|  |  | 
|  | // Implements the polymorphic HasSubstr(substring) matcher, which | 
|  | // can be used as a Matcher<T> as long as T can be converted to a | 
|  | // string. | 
|  | template <typename StringType> | 
|  | class HasSubstrMatcher { | 
|  | public: | 
|  | explicit HasSubstrMatcher(const StringType& substring) | 
|  | : substring_(substring) {} | 
|  |  | 
|  | // Accepts pointer types, particularly: | 
|  | //   const char* | 
|  | //   char* | 
|  | //   const wchar_t* | 
|  | //   wchar_t* | 
|  | template <typename CharType> | 
|  | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { | 
|  | return s != NULL && MatchAndExplain(StringType(s), listener); | 
|  | } | 
|  |  | 
|  | // Matches anything that can convert to StringType. | 
|  | // | 
|  | // This is a template, not just a plain function with const StringType&, | 
|  | // because StringPiece has some interfering non-explicit constructors. | 
|  | template <typename MatcheeStringType> | 
|  | bool MatchAndExplain(const MatcheeStringType& s, | 
|  | MatchResultListener* /* listener */) const { | 
|  | const StringType& s2(s); | 
|  | return s2.find(substring_) != StringType::npos; | 
|  | } | 
|  |  | 
|  | // Describes what this matcher matches. | 
|  | void DescribeTo(::std::ostream* os) const { | 
|  | *os << "has substring "; | 
|  | UniversalPrint(substring_, os); | 
|  | } | 
|  |  | 
|  | void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "has no substring "; | 
|  | UniversalPrint(substring_, os); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const StringType substring_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(HasSubstrMatcher); | 
|  | }; | 
|  |  | 
|  | // Implements the polymorphic StartsWith(substring) matcher, which | 
|  | // can be used as a Matcher<T> as long as T can be converted to a | 
|  | // string. | 
|  | template <typename StringType> | 
|  | class StartsWithMatcher { | 
|  | public: | 
|  | explicit StartsWithMatcher(const StringType& prefix) : prefix_(prefix) { | 
|  | } | 
|  |  | 
|  | // Accepts pointer types, particularly: | 
|  | //   const char* | 
|  | //   char* | 
|  | //   const wchar_t* | 
|  | //   wchar_t* | 
|  | template <typename CharType> | 
|  | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { | 
|  | return s != NULL && MatchAndExplain(StringType(s), listener); | 
|  | } | 
|  |  | 
|  | // Matches anything that can convert to StringType. | 
|  | // | 
|  | // This is a template, not just a plain function with const StringType&, | 
|  | // because StringPiece has some interfering non-explicit constructors. | 
|  | template <typename MatcheeStringType> | 
|  | bool MatchAndExplain(const MatcheeStringType& s, | 
|  | MatchResultListener* /* listener */) const { | 
|  | const StringType& s2(s); | 
|  | return s2.length() >= prefix_.length() && | 
|  | s2.substr(0, prefix_.length()) == prefix_; | 
|  | } | 
|  |  | 
|  | void DescribeTo(::std::ostream* os) const { | 
|  | *os << "starts with "; | 
|  | UniversalPrint(prefix_, os); | 
|  | } | 
|  |  | 
|  | void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "doesn't start with "; | 
|  | UniversalPrint(prefix_, os); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const StringType prefix_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(StartsWithMatcher); | 
|  | }; | 
|  |  | 
|  | // Implements the polymorphic EndsWith(substring) matcher, which | 
|  | // can be used as a Matcher<T> as long as T can be converted to a | 
|  | // string. | 
|  | template <typename StringType> | 
|  | class EndsWithMatcher { | 
|  | public: | 
|  | explicit EndsWithMatcher(const StringType& suffix) : suffix_(suffix) {} | 
|  |  | 
|  | // Accepts pointer types, particularly: | 
|  | //   const char* | 
|  | //   char* | 
|  | //   const wchar_t* | 
|  | //   wchar_t* | 
|  | template <typename CharType> | 
|  | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { | 
|  | return s != NULL && MatchAndExplain(StringType(s), listener); | 
|  | } | 
|  |  | 
|  | // Matches anything that can convert to StringType. | 
|  | // | 
|  | // This is a template, not just a plain function with const StringType&, | 
|  | // because StringPiece has some interfering non-explicit constructors. | 
|  | template <typename MatcheeStringType> | 
|  | bool MatchAndExplain(const MatcheeStringType& s, | 
|  | MatchResultListener* /* listener */) const { | 
|  | const StringType& s2(s); | 
|  | return s2.length() >= suffix_.length() && | 
|  | s2.substr(s2.length() - suffix_.length()) == suffix_; | 
|  | } | 
|  |  | 
|  | void DescribeTo(::std::ostream* os) const { | 
|  | *os << "ends with "; | 
|  | UniversalPrint(suffix_, os); | 
|  | } | 
|  |  | 
|  | void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "doesn't end with "; | 
|  | UniversalPrint(suffix_, os); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const StringType suffix_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(EndsWithMatcher); | 
|  | }; | 
|  |  | 
|  | // Implements polymorphic matchers MatchesRegex(regex) and | 
|  | // ContainsRegex(regex), which can be used as a Matcher<T> as long as | 
|  | // T can be converted to a string. | 
|  | class MatchesRegexMatcher { | 
|  | public: | 
|  | MatchesRegexMatcher(const RE* regex, bool full_match) | 
|  | : regex_(regex), full_match_(full_match) {} | 
|  |  | 
|  | // Accepts pointer types, particularly: | 
|  | //   const char* | 
|  | //   char* | 
|  | //   const wchar_t* | 
|  | //   wchar_t* | 
|  | template <typename CharType> | 
|  | bool MatchAndExplain(CharType* s, MatchResultListener* listener) const { | 
|  | return s != NULL && MatchAndExplain(internal::string(s), listener); | 
|  | } | 
|  |  | 
|  | // Matches anything that can convert to internal::string. | 
|  | // | 
|  | // This is a template, not just a plain function with const internal::string&, | 
|  | // because StringPiece has some interfering non-explicit constructors. | 
|  | template <class MatcheeStringType> | 
|  | bool MatchAndExplain(const MatcheeStringType& s, | 
|  | MatchResultListener* /* listener */) const { | 
|  | const internal::string& s2(s); | 
|  | return full_match_ ? RE::FullMatch(s2, *regex_) : | 
|  | RE::PartialMatch(s2, *regex_); | 
|  | } | 
|  |  | 
|  | void DescribeTo(::std::ostream* os) const { | 
|  | *os << (full_match_ ? "matches" : "contains") | 
|  | << " regular expression "; | 
|  | UniversalPrinter<internal::string>::Print(regex_->pattern(), os); | 
|  | } | 
|  |  | 
|  | void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "doesn't " << (full_match_ ? "match" : "contain") | 
|  | << " regular expression "; | 
|  | UniversalPrinter<internal::string>::Print(regex_->pattern(), os); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const internal::linked_ptr<const RE> regex_; | 
|  | const bool full_match_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(MatchesRegexMatcher); | 
|  | }; | 
|  |  | 
|  | // Implements a matcher that compares the two fields of a 2-tuple | 
|  | // using one of the ==, <=, <, etc, operators.  The two fields being | 
|  | // compared don't have to have the same type. | 
|  | // | 
|  | // The matcher defined here is polymorphic (for example, Eq() can be | 
|  | // used to match a tuple<int, short>, a tuple<const long&, double>, | 
|  | // etc).  Therefore we use a template type conversion operator in the | 
|  | // implementation. | 
|  | template <typename D, typename Op> | 
|  | class PairMatchBase { | 
|  | public: | 
|  | template <typename T1, typename T2> | 
|  | operator Matcher< ::testing::tuple<T1, T2> >() const { | 
|  | return MakeMatcher(new Impl< ::testing::tuple<T1, T2> >); | 
|  | } | 
|  | template <typename T1, typename T2> | 
|  | operator Matcher<const ::testing::tuple<T1, T2>&>() const { | 
|  | return MakeMatcher(new Impl<const ::testing::tuple<T1, T2>&>); | 
|  | } | 
|  |  | 
|  | private: | 
|  | static ::std::ostream& GetDesc(::std::ostream& os) {  // NOLINT | 
|  | return os << D::Desc(); | 
|  | } | 
|  |  | 
|  | template <typename Tuple> | 
|  | class Impl : public MatcherInterface<Tuple> { | 
|  | public: | 
|  | virtual bool MatchAndExplain( | 
|  | Tuple args, | 
|  | MatchResultListener* /* listener */) const { | 
|  | return Op()(::testing::get<0>(args), ::testing::get<1>(args)); | 
|  | } | 
|  | virtual void DescribeTo(::std::ostream* os) const { | 
|  | *os << "are " << GetDesc; | 
|  | } | 
|  | virtual void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "aren't " << GetDesc; | 
|  | } | 
|  | }; | 
|  | }; | 
|  |  | 
|  | class Eq2Matcher : public PairMatchBase<Eq2Matcher, AnyEq> { | 
|  | public: | 
|  | static const char* Desc() { return "an equal pair"; } | 
|  | }; | 
|  | class Ne2Matcher : public PairMatchBase<Ne2Matcher, AnyNe> { | 
|  | public: | 
|  | static const char* Desc() { return "an unequal pair"; } | 
|  | }; | 
|  | class Lt2Matcher : public PairMatchBase<Lt2Matcher, AnyLt> { | 
|  | public: | 
|  | static const char* Desc() { return "a pair where the first < the second"; } | 
|  | }; | 
|  | class Gt2Matcher : public PairMatchBase<Gt2Matcher, AnyGt> { | 
|  | public: | 
|  | static const char* Desc() { return "a pair where the first > the second"; } | 
|  | }; | 
|  | class Le2Matcher : public PairMatchBase<Le2Matcher, AnyLe> { | 
|  | public: | 
|  | static const char* Desc() { return "a pair where the first <= the second"; } | 
|  | }; | 
|  | class Ge2Matcher : public PairMatchBase<Ge2Matcher, AnyGe> { | 
|  | public: | 
|  | static const char* Desc() { return "a pair where the first >= the second"; } | 
|  | }; | 
|  |  | 
|  | // Implements the Not(...) matcher for a particular argument type T. | 
|  | // We do not nest it inside the NotMatcher class template, as that | 
|  | // will prevent different instantiations of NotMatcher from sharing | 
|  | // the same NotMatcherImpl<T> class. | 
|  | template <typename T> | 
|  | class NotMatcherImpl : public MatcherInterface<T> { | 
|  | public: | 
|  | explicit NotMatcherImpl(const Matcher<T>& matcher) | 
|  | : matcher_(matcher) {} | 
|  |  | 
|  | virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { | 
|  | return !matcher_.MatchAndExplain(x, listener); | 
|  | } | 
|  |  | 
|  | virtual void DescribeTo(::std::ostream* os) const { | 
|  | matcher_.DescribeNegationTo(os); | 
|  | } | 
|  |  | 
|  | virtual void DescribeNegationTo(::std::ostream* os) const { | 
|  | matcher_.DescribeTo(os); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const Matcher<T> matcher_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(NotMatcherImpl); | 
|  | }; | 
|  |  | 
|  | // Implements the Not(m) matcher, which matches a value that doesn't | 
|  | // match matcher m. | 
|  | template <typename InnerMatcher> | 
|  | class NotMatcher { | 
|  | public: | 
|  | explicit NotMatcher(InnerMatcher matcher) : matcher_(matcher) {} | 
|  |  | 
|  | // This template type conversion operator allows Not(m) to be used | 
|  | // to match any type m can match. | 
|  | template <typename T> | 
|  | operator Matcher<T>() const { | 
|  | return Matcher<T>(new NotMatcherImpl<T>(SafeMatcherCast<T>(matcher_))); | 
|  | } | 
|  |  | 
|  | private: | 
|  | InnerMatcher matcher_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(NotMatcher); | 
|  | }; | 
|  |  | 
|  | // Implements the AllOf(m1, m2) matcher for a particular argument type | 
|  | // T. We do not nest it inside the BothOfMatcher class template, as | 
|  | // that will prevent different instantiations of BothOfMatcher from | 
|  | // sharing the same BothOfMatcherImpl<T> class. | 
|  | template <typename T> | 
|  | class BothOfMatcherImpl : public MatcherInterface<T> { | 
|  | public: | 
|  | BothOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2) | 
|  | : matcher1_(matcher1), matcher2_(matcher2) {} | 
|  |  | 
|  | virtual void DescribeTo(::std::ostream* os) const { | 
|  | *os << "("; | 
|  | matcher1_.DescribeTo(os); | 
|  | *os << ") and ("; | 
|  | matcher2_.DescribeTo(os); | 
|  | *os << ")"; | 
|  | } | 
|  |  | 
|  | virtual void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "("; | 
|  | matcher1_.DescribeNegationTo(os); | 
|  | *os << ") or ("; | 
|  | matcher2_.DescribeNegationTo(os); | 
|  | *os << ")"; | 
|  | } | 
|  |  | 
|  | virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { | 
|  | // If either matcher1_ or matcher2_ doesn't match x, we only need | 
|  | // to explain why one of them fails. | 
|  | StringMatchResultListener listener1; | 
|  | if (!matcher1_.MatchAndExplain(x, &listener1)) { | 
|  | *listener << listener1.str(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | StringMatchResultListener listener2; | 
|  | if (!matcher2_.MatchAndExplain(x, &listener2)) { | 
|  | *listener << listener2.str(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Otherwise we need to explain why *both* of them match. | 
|  | const internal::string s1 = listener1.str(); | 
|  | const internal::string s2 = listener2.str(); | 
|  |  | 
|  | if (s1 == "") { | 
|  | *listener << s2; | 
|  | } else { | 
|  | *listener << s1; | 
|  | if (s2 != "") { | 
|  | *listener << ", and " << s2; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | const Matcher<T> matcher1_; | 
|  | const Matcher<T> matcher2_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(BothOfMatcherImpl); | 
|  | }; | 
|  |  | 
|  | #if GTEST_LANG_CXX11 | 
|  | // MatcherList provides mechanisms for storing a variable number of matchers in | 
|  | // a list structure (ListType) and creating a combining matcher from such a | 
|  | // list. | 
|  | // The template is defined recursively using the following template paramters: | 
|  | //   * kSize is the length of the MatcherList. | 
|  | //   * Head is the type of the first matcher of the list. | 
|  | //   * Tail denotes the types of the remaining matchers of the list. | 
|  | template <int kSize, typename Head, typename... Tail> | 
|  | struct MatcherList { | 
|  | typedef MatcherList<kSize - 1, Tail...> MatcherListTail; | 
|  | typedef ::std::pair<Head, typename MatcherListTail::ListType> ListType; | 
|  |  | 
|  | // BuildList stores variadic type values in a nested pair structure. | 
|  | // Example: | 
|  | // MatcherList<3, int, string, float>::BuildList(5, "foo", 2.0) will return | 
|  | // the corresponding result of type pair<int, pair<string, float>>. | 
|  | static ListType BuildList(const Head& matcher, const Tail&... tail) { | 
|  | return ListType(matcher, MatcherListTail::BuildList(tail...)); | 
|  | } | 
|  |  | 
|  | // CreateMatcher<T> creates a Matcher<T> from a given list of matchers (built | 
|  | // by BuildList()). CombiningMatcher<T> is used to combine the matchers of the | 
|  | // list. CombiningMatcher<T> must implement MatcherInterface<T> and have a | 
|  | // constructor taking two Matcher<T>s as input. | 
|  | template <typename T, template <typename /* T */> class CombiningMatcher> | 
|  | static Matcher<T> CreateMatcher(const ListType& matchers) { | 
|  | return Matcher<T>(new CombiningMatcher<T>( | 
|  | SafeMatcherCast<T>(matchers.first), | 
|  | MatcherListTail::template CreateMatcher<T, CombiningMatcher>( | 
|  | matchers.second))); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // The following defines the base case for the recursive definition of | 
|  | // MatcherList. | 
|  | template <typename Matcher1, typename Matcher2> | 
|  | struct MatcherList<2, Matcher1, Matcher2> { | 
|  | typedef ::std::pair<Matcher1, Matcher2> ListType; | 
|  |  | 
|  | static ListType BuildList(const Matcher1& matcher1, | 
|  | const Matcher2& matcher2) { | 
|  | return ::std::pair<Matcher1, Matcher2>(matcher1, matcher2); | 
|  | } | 
|  |  | 
|  | template <typename T, template <typename /* T */> class CombiningMatcher> | 
|  | static Matcher<T> CreateMatcher(const ListType& matchers) { | 
|  | return Matcher<T>(new CombiningMatcher<T>( | 
|  | SafeMatcherCast<T>(matchers.first), | 
|  | SafeMatcherCast<T>(matchers.second))); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // VariadicMatcher is used for the variadic implementation of | 
|  | // AllOf(m_1, m_2, ...) and AnyOf(m_1, m_2, ...). | 
|  | // CombiningMatcher<T> is used to recursively combine the provided matchers | 
|  | // (of type Args...). | 
|  | template <template <typename T> class CombiningMatcher, typename... Args> | 
|  | class VariadicMatcher { | 
|  | public: | 
|  | VariadicMatcher(const Args&... matchers)  // NOLINT | 
|  | : matchers_(MatcherListType::BuildList(matchers...)) {} | 
|  |  | 
|  | // This template type conversion operator allows an | 
|  | // VariadicMatcher<Matcher1, Matcher2...> object to match any type that | 
|  | // all of the provided matchers (Matcher1, Matcher2, ...) can match. | 
|  | template <typename T> | 
|  | operator Matcher<T>() const { | 
|  | return MatcherListType::template CreateMatcher<T, CombiningMatcher>( | 
|  | matchers_); | 
|  | } | 
|  |  | 
|  | private: | 
|  | typedef MatcherList<sizeof...(Args), Args...> MatcherListType; | 
|  |  | 
|  | const typename MatcherListType::ListType matchers_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(VariadicMatcher); | 
|  | }; | 
|  |  | 
|  | template <typename... Args> | 
|  | using AllOfMatcher = VariadicMatcher<BothOfMatcherImpl, Args...>; | 
|  |  | 
|  | #endif  // GTEST_LANG_CXX11 | 
|  |  | 
|  | // Used for implementing the AllOf(m_1, ..., m_n) matcher, which | 
|  | // matches a value that matches all of the matchers m_1, ..., and m_n. | 
|  | template <typename Matcher1, typename Matcher2> | 
|  | class BothOfMatcher { | 
|  | public: | 
|  | BothOfMatcher(Matcher1 matcher1, Matcher2 matcher2) | 
|  | : matcher1_(matcher1), matcher2_(matcher2) {} | 
|  |  | 
|  | // This template type conversion operator allows a | 
|  | // BothOfMatcher<Matcher1, Matcher2> object to match any type that | 
|  | // both Matcher1 and Matcher2 can match. | 
|  | template <typename T> | 
|  | operator Matcher<T>() const { | 
|  | return Matcher<T>(new BothOfMatcherImpl<T>(SafeMatcherCast<T>(matcher1_), | 
|  | SafeMatcherCast<T>(matcher2_))); | 
|  | } | 
|  |  | 
|  | private: | 
|  | Matcher1 matcher1_; | 
|  | Matcher2 matcher2_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(BothOfMatcher); | 
|  | }; | 
|  |  | 
|  | // Implements the AnyOf(m1, m2) matcher for a particular argument type | 
|  | // T.  We do not nest it inside the AnyOfMatcher class template, as | 
|  | // that will prevent different instantiations of AnyOfMatcher from | 
|  | // sharing the same EitherOfMatcherImpl<T> class. | 
|  | template <typename T> | 
|  | class EitherOfMatcherImpl : public MatcherInterface<T> { | 
|  | public: | 
|  | EitherOfMatcherImpl(const Matcher<T>& matcher1, const Matcher<T>& matcher2) | 
|  | : matcher1_(matcher1), matcher2_(matcher2) {} | 
|  |  | 
|  | virtual void DescribeTo(::std::ostream* os) const { | 
|  | *os << "("; | 
|  | matcher1_.DescribeTo(os); | 
|  | *os << ") or ("; | 
|  | matcher2_.DescribeTo(os); | 
|  | *os << ")"; | 
|  | } | 
|  |  | 
|  | virtual void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "("; | 
|  | matcher1_.DescribeNegationTo(os); | 
|  | *os << ") and ("; | 
|  | matcher2_.DescribeNegationTo(os); | 
|  | *os << ")"; | 
|  | } | 
|  |  | 
|  | virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { | 
|  | // If either matcher1_ or matcher2_ matches x, we just need to | 
|  | // explain why *one* of them matches. | 
|  | StringMatchResultListener listener1; | 
|  | if (matcher1_.MatchAndExplain(x, &listener1)) { | 
|  | *listener << listener1.str(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | StringMatchResultListener listener2; | 
|  | if (matcher2_.MatchAndExplain(x, &listener2)) { | 
|  | *listener << listener2.str(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise we need to explain why *both* of them fail. | 
|  | const internal::string s1 = listener1.str(); | 
|  | const internal::string s2 = listener2.str(); | 
|  |  | 
|  | if (s1 == "") { | 
|  | *listener << s2; | 
|  | } else { | 
|  | *listener << s1; | 
|  | if (s2 != "") { | 
|  | *listener << ", and " << s2; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | private: | 
|  | const Matcher<T> matcher1_; | 
|  | const Matcher<T> matcher2_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(EitherOfMatcherImpl); | 
|  | }; | 
|  |  | 
|  | #if GTEST_LANG_CXX11 | 
|  | // AnyOfMatcher is used for the variadic implementation of AnyOf(m_1, m_2, ...). | 
|  | template <typename... Args> | 
|  | using AnyOfMatcher = VariadicMatcher<EitherOfMatcherImpl, Args...>; | 
|  |  | 
|  | #endif  // GTEST_LANG_CXX11 | 
|  |  | 
|  | // Used for implementing the AnyOf(m_1, ..., m_n) matcher, which | 
|  | // matches a value that matches at least one of the matchers m_1, ..., | 
|  | // and m_n. | 
|  | template <typename Matcher1, typename Matcher2> | 
|  | class EitherOfMatcher { | 
|  | public: | 
|  | EitherOfMatcher(Matcher1 matcher1, Matcher2 matcher2) | 
|  | : matcher1_(matcher1), matcher2_(matcher2) {} | 
|  |  | 
|  | // This template type conversion operator allows a | 
|  | // EitherOfMatcher<Matcher1, Matcher2> object to match any type that | 
|  | // both Matcher1 and Matcher2 can match. | 
|  | template <typename T> | 
|  | operator Matcher<T>() const { | 
|  | return Matcher<T>(new EitherOfMatcherImpl<T>( | 
|  | SafeMatcherCast<T>(matcher1_), SafeMatcherCast<T>(matcher2_))); | 
|  | } | 
|  |  | 
|  | private: | 
|  | Matcher1 matcher1_; | 
|  | Matcher2 matcher2_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(EitherOfMatcher); | 
|  | }; | 
|  |  | 
|  | // Used for implementing Truly(pred), which turns a predicate into a | 
|  | // matcher. | 
|  | template <typename Predicate> | 
|  | class TrulyMatcher { | 
|  | public: | 
|  | explicit TrulyMatcher(Predicate pred) : predicate_(pred) {} | 
|  |  | 
|  | // This method template allows Truly(pred) to be used as a matcher | 
|  | // for type T where T is the argument type of predicate 'pred'.  The | 
|  | // argument is passed by reference as the predicate may be | 
|  | // interested in the address of the argument. | 
|  | template <typename T> | 
|  | bool MatchAndExplain(T& x,  // NOLINT | 
|  | MatchResultListener* /* listener */) const { | 
|  | // Without the if-statement, MSVC sometimes warns about converting | 
|  | // a value to bool (warning 4800). | 
|  | // | 
|  | // We cannot write 'return !!predicate_(x);' as that doesn't work | 
|  | // when predicate_(x) returns a class convertible to bool but | 
|  | // having no operator!(). | 
|  | if (predicate_(x)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void DescribeTo(::std::ostream* os) const { | 
|  | *os << "satisfies the given predicate"; | 
|  | } | 
|  |  | 
|  | void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "doesn't satisfy the given predicate"; | 
|  | } | 
|  |  | 
|  | private: | 
|  | Predicate predicate_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(TrulyMatcher); | 
|  | }; | 
|  |  | 
|  | // Used for implementing Matches(matcher), which turns a matcher into | 
|  | // a predicate. | 
|  | template <typename M> | 
|  | class MatcherAsPredicate { | 
|  | public: | 
|  | explicit MatcherAsPredicate(M matcher) : matcher_(matcher) {} | 
|  |  | 
|  | // This template operator() allows Matches(m) to be used as a | 
|  | // predicate on type T where m is a matcher on type T. | 
|  | // | 
|  | // The argument x is passed by reference instead of by value, as | 
|  | // some matcher may be interested in its address (e.g. as in | 
|  | // Matches(Ref(n))(x)). | 
|  | template <typename T> | 
|  | bool operator()(const T& x) const { | 
|  | // We let matcher_ commit to a particular type here instead of | 
|  | // when the MatcherAsPredicate object was constructed.  This | 
|  | // allows us to write Matches(m) where m is a polymorphic matcher | 
|  | // (e.g. Eq(5)). | 
|  | // | 
|  | // If we write Matcher<T>(matcher_).Matches(x) here, it won't | 
|  | // compile when matcher_ has type Matcher<const T&>; if we write | 
|  | // Matcher<const T&>(matcher_).Matches(x) here, it won't compile | 
|  | // when matcher_ has type Matcher<T>; if we just write | 
|  | // matcher_.Matches(x), it won't compile when matcher_ is | 
|  | // polymorphic, e.g. Eq(5). | 
|  | // | 
|  | // MatcherCast<const T&>() is necessary for making the code work | 
|  | // in all of the above situations. | 
|  | return MatcherCast<const T&>(matcher_).Matches(x); | 
|  | } | 
|  |  | 
|  | private: | 
|  | M matcher_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(MatcherAsPredicate); | 
|  | }; | 
|  |  | 
|  | // For implementing ASSERT_THAT() and EXPECT_THAT().  The template | 
|  | // argument M must be a type that can be converted to a matcher. | 
|  | template <typename M> | 
|  | class PredicateFormatterFromMatcher { | 
|  | public: | 
|  | explicit PredicateFormatterFromMatcher(M m) : matcher_(internal::move(m)) {} | 
|  |  | 
|  | // This template () operator allows a PredicateFormatterFromMatcher | 
|  | // object to act as a predicate-formatter suitable for using with | 
|  | // Google Test's EXPECT_PRED_FORMAT1() macro. | 
|  | template <typename T> | 
|  | AssertionResult operator()(const char* value_text, const T& x) const { | 
|  | // We convert matcher_ to a Matcher<const T&> *now* instead of | 
|  | // when the PredicateFormatterFromMatcher object was constructed, | 
|  | // as matcher_ may be polymorphic (e.g. NotNull()) and we won't | 
|  | // know which type to instantiate it to until we actually see the | 
|  | // type of x here. | 
|  | // | 
|  | // We write SafeMatcherCast<const T&>(matcher_) instead of | 
|  | // Matcher<const T&>(matcher_), as the latter won't compile when | 
|  | // matcher_ has type Matcher<T> (e.g. An<int>()). | 
|  | // We don't write MatcherCast<const T&> either, as that allows | 
|  | // potentially unsafe downcasting of the matcher argument. | 
|  | const Matcher<const T&> matcher = SafeMatcherCast<const T&>(matcher_); | 
|  | StringMatchResultListener listener; | 
|  | if (MatchPrintAndExplain(x, matcher, &listener)) | 
|  | return AssertionSuccess(); | 
|  |  | 
|  | ::std::stringstream ss; | 
|  | ss << "Value of: " << value_text << "\n" | 
|  | << "Expected: "; | 
|  | matcher.DescribeTo(&ss); | 
|  | ss << "\n  Actual: " << listener.str(); | 
|  | return AssertionFailure() << ss.str(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const M matcher_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(PredicateFormatterFromMatcher); | 
|  | }; | 
|  |  | 
|  | // A helper function for converting a matcher to a predicate-formatter | 
|  | // without the user needing to explicitly write the type.  This is | 
|  | // used for implementing ASSERT_THAT() and EXPECT_THAT(). | 
|  | // Implementation detail: 'matcher' is received by-value to force decaying. | 
|  | template <typename M> | 
|  | inline PredicateFormatterFromMatcher<M> | 
|  | MakePredicateFormatterFromMatcher(M matcher) { | 
|  | return PredicateFormatterFromMatcher<M>(internal::move(matcher)); | 
|  | } | 
|  |  | 
|  | // Implements the polymorphic floating point equality matcher, which matches | 
|  | // two float values using ULP-based approximation or, optionally, a | 
|  | // user-specified epsilon.  The template is meant to be instantiated with | 
|  | // FloatType being either float or double. | 
|  | template <typename FloatType> | 
|  | class FloatingEqMatcher { | 
|  | public: | 
|  | // Constructor for FloatingEqMatcher. | 
|  | // The matcher's input will be compared with expected.  The matcher treats two | 
|  | // NANs as equal if nan_eq_nan is true.  Otherwise, under IEEE standards, | 
|  | // equality comparisons between NANs will always return false.  We specify a | 
|  | // negative max_abs_error_ term to indicate that ULP-based approximation will | 
|  | // be used for comparison. | 
|  | FloatingEqMatcher(FloatType expected, bool nan_eq_nan) : | 
|  | expected_(expected), nan_eq_nan_(nan_eq_nan), max_abs_error_(-1) { | 
|  | } | 
|  |  | 
|  | // Constructor that supports a user-specified max_abs_error that will be used | 
|  | // for comparison instead of ULP-based approximation.  The max absolute | 
|  | // should be non-negative. | 
|  | FloatingEqMatcher(FloatType expected, bool nan_eq_nan, | 
|  | FloatType max_abs_error) | 
|  | : expected_(expected), | 
|  | nan_eq_nan_(nan_eq_nan), | 
|  | max_abs_error_(max_abs_error) { | 
|  | GTEST_CHECK_(max_abs_error >= 0) | 
|  | << ", where max_abs_error is" << max_abs_error; | 
|  | } | 
|  |  | 
|  | // Implements floating point equality matcher as a Matcher<T>. | 
|  | template <typename T> | 
|  | class Impl : public MatcherInterface<T> { | 
|  | public: | 
|  | Impl(FloatType expected, bool nan_eq_nan, FloatType max_abs_error) | 
|  | : expected_(expected), | 
|  | nan_eq_nan_(nan_eq_nan), | 
|  | max_abs_error_(max_abs_error) {} | 
|  |  | 
|  | virtual bool MatchAndExplain(T value, | 
|  | MatchResultListener* listener) const { | 
|  | const FloatingPoint<FloatType> actual(value), expected(expected_); | 
|  |  | 
|  | // Compares NaNs first, if nan_eq_nan_ is true. | 
|  | if (actual.is_nan() || expected.is_nan()) { | 
|  | if (actual.is_nan() && expected.is_nan()) { | 
|  | return nan_eq_nan_; | 
|  | } | 
|  | // One is nan; the other is not nan. | 
|  | return false; | 
|  | } | 
|  | if (HasMaxAbsError()) { | 
|  | // We perform an equality check so that inf will match inf, regardless | 
|  | // of error bounds.  If the result of value - expected_ would result in | 
|  | // overflow or if either value is inf, the default result is infinity, | 
|  | // which should only match if max_abs_error_ is also infinity. | 
|  | if (value == expected_) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | const FloatType diff = value - expected_; | 
|  | if (fabs(diff) <= max_abs_error_) { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (listener->IsInterested()) { | 
|  | *listener << "which is " << diff << " from " << expected_; | 
|  | } | 
|  | return false; | 
|  | } else { | 
|  | return actual.AlmostEquals(expected); | 
|  | } | 
|  | } | 
|  |  | 
|  | virtual void DescribeTo(::std::ostream* os) const { | 
|  | // os->precision() returns the previously set precision, which we | 
|  | // store to restore the ostream to its original configuration | 
|  | // after outputting. | 
|  | const ::std::streamsize old_precision = os->precision( | 
|  | ::std::numeric_limits<FloatType>::digits10 + 2); | 
|  | if (FloatingPoint<FloatType>(expected_).is_nan()) { | 
|  | if (nan_eq_nan_) { | 
|  | *os << "is NaN"; | 
|  | } else { | 
|  | *os << "never matches"; | 
|  | } | 
|  | } else { | 
|  | *os << "is approximately " << expected_; | 
|  | if (HasMaxAbsError()) { | 
|  | *os << " (absolute error <= " << max_abs_error_ << ")"; | 
|  | } | 
|  | } | 
|  | os->precision(old_precision); | 
|  | } | 
|  |  | 
|  | virtual void DescribeNegationTo(::std::ostream* os) const { | 
|  | // As before, get original precision. | 
|  | const ::std::streamsize old_precision = os->precision( | 
|  | ::std::numeric_limits<FloatType>::digits10 + 2); | 
|  | if (FloatingPoint<FloatType>(expected_).is_nan()) { | 
|  | if (nan_eq_nan_) { | 
|  | *os << "isn't NaN"; | 
|  | } else { | 
|  | *os << "is anything"; | 
|  | } | 
|  | } else { | 
|  | *os << "isn't approximately " << expected_; | 
|  | if (HasMaxAbsError()) { | 
|  | *os << " (absolute error > " << max_abs_error_ << ")"; | 
|  | } | 
|  | } | 
|  | // Restore original precision. | 
|  | os->precision(old_precision); | 
|  | } | 
|  |  | 
|  | private: | 
|  | bool HasMaxAbsError() const { | 
|  | return max_abs_error_ >= 0; | 
|  | } | 
|  |  | 
|  | const FloatType expected_; | 
|  | const bool nan_eq_nan_; | 
|  | // max_abs_error will be used for value comparison when >= 0. | 
|  | const FloatType max_abs_error_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(Impl); | 
|  | }; | 
|  |  | 
|  | // The following 3 type conversion operators allow FloatEq(expected) and | 
|  | // NanSensitiveFloatEq(expected) to be used as a Matcher<float>, a | 
|  | // Matcher<const float&>, or a Matcher<float&>, but nothing else. | 
|  | // (While Google's C++ coding style doesn't allow arguments passed | 
|  | // by non-const reference, we may see them in code not conforming to | 
|  | // the style.  Therefore Google Mock needs to support them.) | 
|  | operator Matcher<FloatType>() const { | 
|  | return MakeMatcher( | 
|  | new Impl<FloatType>(expected_, nan_eq_nan_, max_abs_error_)); | 
|  | } | 
|  |  | 
|  | operator Matcher<const FloatType&>() const { | 
|  | return MakeMatcher( | 
|  | new Impl<const FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); | 
|  | } | 
|  |  | 
|  | operator Matcher<FloatType&>() const { | 
|  | return MakeMatcher( | 
|  | new Impl<FloatType&>(expected_, nan_eq_nan_, max_abs_error_)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const FloatType expected_; | 
|  | const bool nan_eq_nan_; | 
|  | // max_abs_error will be used for value comparison when >= 0. | 
|  | const FloatType max_abs_error_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(FloatingEqMatcher); | 
|  | }; | 
|  |  | 
|  | // Implements the Pointee(m) matcher for matching a pointer whose | 
|  | // pointee matches matcher m.  The pointer can be either raw or smart. | 
|  | template <typename InnerMatcher> | 
|  | class PointeeMatcher { | 
|  | public: | 
|  | explicit PointeeMatcher(const InnerMatcher& matcher) : matcher_(matcher) {} | 
|  |  | 
|  | // This type conversion operator template allows Pointee(m) to be | 
|  | // used as a matcher for any pointer type whose pointee type is | 
|  | // compatible with the inner matcher, where type Pointer can be | 
|  | // either a raw pointer or a smart pointer. | 
|  | // | 
|  | // The reason we do this instead of relying on | 
|  | // MakePolymorphicMatcher() is that the latter is not flexible | 
|  | // enough for implementing the DescribeTo() method of Pointee(). | 
|  | template <typename Pointer> | 
|  | operator Matcher<Pointer>() const { | 
|  | return MakeMatcher(new Impl<Pointer>(matcher_)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | // The monomorphic implementation that works for a particular pointer type. | 
|  | template <typename Pointer> | 
|  | class Impl : public MatcherInterface<Pointer> { | 
|  | public: | 
|  | typedef typename PointeeOf<GTEST_REMOVE_CONST_(  // NOLINT | 
|  | GTEST_REMOVE_REFERENCE_(Pointer))>::type Pointee; | 
|  |  | 
|  | explicit Impl(const InnerMatcher& matcher) | 
|  | : matcher_(MatcherCast<const Pointee&>(matcher)) {} | 
|  |  | 
|  | virtual void DescribeTo(::std::ostream* os) const { | 
|  | *os << "points to a value that "; | 
|  | matcher_.DescribeTo(os); | 
|  | } | 
|  |  | 
|  | virtual void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "does not point to a value that "; | 
|  | matcher_.DescribeTo(os); | 
|  | } | 
|  |  | 
|  | virtual bool MatchAndExplain(Pointer pointer, | 
|  | MatchResultListener* listener) const { | 
|  | if (GetRawPointer(pointer) == NULL) | 
|  | return false; | 
|  |  | 
|  | *listener << "which points to "; | 
|  | return MatchPrintAndExplain(*pointer, matcher_, listener); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const Matcher<const Pointee&> matcher_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(Impl); | 
|  | }; | 
|  |  | 
|  | const InnerMatcher matcher_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(PointeeMatcher); | 
|  | }; | 
|  |  | 
|  | // Implements the WhenDynamicCastTo<T>(m) matcher that matches a pointer or | 
|  | // reference that matches inner_matcher when dynamic_cast<T> is applied. | 
|  | // The result of dynamic_cast<To> is forwarded to the inner matcher. | 
|  | // If To is a pointer and the cast fails, the inner matcher will receive NULL. | 
|  | // If To is a reference and the cast fails, this matcher returns false | 
|  | // immediately. | 
|  | template <typename To> | 
|  | class WhenDynamicCastToMatcherBase { | 
|  | public: | 
|  | explicit WhenDynamicCastToMatcherBase(const Matcher<To>& matcher) | 
|  | : matcher_(matcher) {} | 
|  |  | 
|  | void DescribeTo(::std::ostream* os) const { | 
|  | GetCastTypeDescription(os); | 
|  | matcher_.DescribeTo(os); | 
|  | } | 
|  |  | 
|  | void DescribeNegationTo(::std::ostream* os) const { | 
|  | GetCastTypeDescription(os); | 
|  | matcher_.DescribeNegationTo(os); | 
|  | } | 
|  |  | 
|  | protected: | 
|  | const Matcher<To> matcher_; | 
|  |  | 
|  | static string GetToName() { | 
|  | #if GTEST_HAS_RTTI | 
|  | return GetTypeName<To>(); | 
|  | #else  // GTEST_HAS_RTTI | 
|  | return "the target type"; | 
|  | #endif  // GTEST_HAS_RTTI | 
|  | } | 
|  |  | 
|  | private: | 
|  | static void GetCastTypeDescription(::std::ostream* os) { | 
|  | *os << "when dynamic_cast to " << GetToName() << ", "; | 
|  | } | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(WhenDynamicCastToMatcherBase); | 
|  | }; | 
|  |  | 
|  | // Primary template. | 
|  | // To is a pointer. Cast and forward the result. | 
|  | template <typename To> | 
|  | class WhenDynamicCastToMatcher : public WhenDynamicCastToMatcherBase<To> { | 
|  | public: | 
|  | explicit WhenDynamicCastToMatcher(const Matcher<To>& matcher) | 
|  | : WhenDynamicCastToMatcherBase<To>(matcher) {} | 
|  |  | 
|  | template <typename From> | 
|  | bool MatchAndExplain(From from, MatchResultListener* listener) const { | 
|  | // TODO(sbenza): Add more detail on failures. ie did the dyn_cast fail? | 
|  | To to = dynamic_cast<To>(from); | 
|  | return MatchPrintAndExplain(to, this->matcher_, listener); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Specialize for references. | 
|  | // In this case we return false if the dynamic_cast fails. | 
|  | template <typename To> | 
|  | class WhenDynamicCastToMatcher<To&> : public WhenDynamicCastToMatcherBase<To&> { | 
|  | public: | 
|  | explicit WhenDynamicCastToMatcher(const Matcher<To&>& matcher) | 
|  | : WhenDynamicCastToMatcherBase<To&>(matcher) {} | 
|  |  | 
|  | template <typename From> | 
|  | bool MatchAndExplain(From& from, MatchResultListener* listener) const { | 
|  | // We don't want an std::bad_cast here, so do the cast with pointers. | 
|  | To* to = dynamic_cast<To*>(&from); | 
|  | if (to == NULL) { | 
|  | *listener << "which cannot be dynamic_cast to " << this->GetToName(); | 
|  | return false; | 
|  | } | 
|  | return MatchPrintAndExplain(*to, this->matcher_, listener); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Implements the Field() matcher for matching a field (i.e. member | 
|  | // variable) of an object. | 
|  | template <typename Class, typename FieldType> | 
|  | class FieldMatcher { | 
|  | public: | 
|  | FieldMatcher(FieldType Class::*field, | 
|  | const Matcher<const FieldType&>& matcher) | 
|  | : field_(field), matcher_(matcher) {} | 
|  |  | 
|  | void DescribeTo(::std::ostream* os) const { | 
|  | *os << "is an object whose given field "; | 
|  | matcher_.DescribeTo(os); | 
|  | } | 
|  |  | 
|  | void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "is an object whose given field "; | 
|  | matcher_.DescribeNegationTo(os); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool MatchAndExplain(const T& value, MatchResultListener* listener) const { | 
|  | return MatchAndExplainImpl( | 
|  | typename ::testing::internal:: | 
|  | is_pointer<GTEST_REMOVE_CONST_(T)>::type(), | 
|  | value, listener); | 
|  | } | 
|  |  | 
|  | private: | 
|  | // The first argument of MatchAndExplainImpl() is needed to help | 
|  | // Symbian's C++ compiler choose which overload to use.  Its type is | 
|  | // true_type iff the Field() matcher is used to match a pointer. | 
|  | bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj, | 
|  | MatchResultListener* listener) const { | 
|  | *listener << "whose given field is "; | 
|  | return MatchPrintAndExplain(obj.*field_, matcher_, listener); | 
|  | } | 
|  |  | 
|  | bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p, | 
|  | MatchResultListener* listener) const { | 
|  | if (p == NULL) | 
|  | return false; | 
|  |  | 
|  | *listener << "which points to an object "; | 
|  | // Since *p has a field, it must be a class/struct/union type and | 
|  | // thus cannot be a pointer.  Therefore we pass false_type() as | 
|  | // the first argument. | 
|  | return MatchAndExplainImpl(false_type(), *p, listener); | 
|  | } | 
|  |  | 
|  | const FieldType Class::*field_; | 
|  | const Matcher<const FieldType&> matcher_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(FieldMatcher); | 
|  | }; | 
|  |  | 
|  | // Implements the Property() matcher for matching a property | 
|  | // (i.e. return value of a getter method) of an object. | 
|  | template <typename Class, typename PropertyType> | 
|  | class PropertyMatcher { | 
|  | public: | 
|  | // The property may have a reference type, so 'const PropertyType&' | 
|  | // may cause double references and fail to compile.  That's why we | 
|  | // need GTEST_REFERENCE_TO_CONST, which works regardless of | 
|  | // PropertyType being a reference or not. | 
|  | typedef GTEST_REFERENCE_TO_CONST_(PropertyType) RefToConstProperty; | 
|  |  | 
|  | PropertyMatcher(PropertyType (Class::*property)() const, | 
|  | const Matcher<RefToConstProperty>& matcher) | 
|  | : property_(property), matcher_(matcher) {} | 
|  |  | 
|  | void DescribeTo(::std::ostream* os) const { | 
|  | *os << "is an object whose given property "; | 
|  | matcher_.DescribeTo(os); | 
|  | } | 
|  |  | 
|  | void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "is an object whose given property "; | 
|  | matcher_.DescribeNegationTo(os); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | bool MatchAndExplain(const T&value, MatchResultListener* listener) const { | 
|  | return MatchAndExplainImpl( | 
|  | typename ::testing::internal:: | 
|  | is_pointer<GTEST_REMOVE_CONST_(T)>::type(), | 
|  | value, listener); | 
|  | } | 
|  |  | 
|  | private: | 
|  | // The first argument of MatchAndExplainImpl() is needed to help | 
|  | // Symbian's C++ compiler choose which overload to use.  Its type is | 
|  | // true_type iff the Property() matcher is used to match a pointer. | 
|  | bool MatchAndExplainImpl(false_type /* is_not_pointer */, const Class& obj, | 
|  | MatchResultListener* listener) const { | 
|  | *listener << "whose given property is "; | 
|  | // Cannot pass the return value (for example, int) to MatchPrintAndExplain, | 
|  | // which takes a non-const reference as argument. | 
|  | #if defined(_PREFAST_ ) && _MSC_VER == 1800 | 
|  | // Workaround bug in VC++ 2013's /analyze parser. | 
|  | // https://connect.microsoft.com/VisualStudio/feedback/details/1106363/internal-compiler-error-with-analyze-due-to-failure-to-infer-move | 
|  | posix::Abort();  // To make sure it is never run. | 
|  | return false; | 
|  | #else | 
|  | RefToConstProperty result = (obj.*property_)(); | 
|  | return MatchPrintAndExplain(result, matcher_, listener); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | bool MatchAndExplainImpl(true_type /* is_pointer */, const Class* p, | 
|  | MatchResultListener* listener) const { | 
|  | if (p == NULL) | 
|  | return false; | 
|  |  | 
|  | *listener << "which points to an object "; | 
|  | // Since *p has a property method, it must be a class/struct/union | 
|  | // type and thus cannot be a pointer.  Therefore we pass | 
|  | // false_type() as the first argument. | 
|  | return MatchAndExplainImpl(false_type(), *p, listener); | 
|  | } | 
|  |  | 
|  | PropertyType (Class::*property_)() const; | 
|  | const Matcher<RefToConstProperty> matcher_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(PropertyMatcher); | 
|  | }; | 
|  |  | 
|  | // Type traits specifying various features of different functors for ResultOf. | 
|  | // The default template specifies features for functor objects. | 
|  | // Functor classes have to typedef argument_type and result_type | 
|  | // to be compatible with ResultOf. | 
|  | template <typename Functor> | 
|  | struct CallableTraits { | 
|  | typedef typename Functor::result_type ResultType; | 
|  | typedef Functor StorageType; | 
|  |  | 
|  | static void CheckIsValid(Functor /* functor */) {} | 
|  | template <typename T> | 
|  | static ResultType Invoke(Functor f, T arg) { return f(arg); } | 
|  | }; | 
|  |  | 
|  | // Specialization for function pointers. | 
|  | template <typename ArgType, typename ResType> | 
|  | struct CallableTraits<ResType(*)(ArgType)> { | 
|  | typedef ResType ResultType; | 
|  | typedef ResType(*StorageType)(ArgType); | 
|  |  | 
|  | static void CheckIsValid(ResType(*f)(ArgType)) { | 
|  | GTEST_CHECK_(f != NULL) | 
|  | << "NULL function pointer is passed into ResultOf()."; | 
|  | } | 
|  | template <typename T> | 
|  | static ResType Invoke(ResType(*f)(ArgType), T arg) { | 
|  | return (*f)(arg); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Implements the ResultOf() matcher for matching a return value of a | 
|  | // unary function of an object. | 
|  | template <typename Callable> | 
|  | class ResultOfMatcher { | 
|  | public: | 
|  | typedef typename CallableTraits<Callable>::ResultType ResultType; | 
|  |  | 
|  | ResultOfMatcher(Callable callable, const Matcher<ResultType>& matcher) | 
|  | : callable_(callable), matcher_(matcher) { | 
|  | CallableTraits<Callable>::CheckIsValid(callable_); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | operator Matcher<T>() const { | 
|  | return Matcher<T>(new Impl<T>(callable_, matcher_)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | typedef typename CallableTraits<Callable>::StorageType CallableStorageType; | 
|  |  | 
|  | template <typename T> | 
|  | class Impl : public MatcherInterface<T> { | 
|  | public: | 
|  | Impl(CallableStorageType callable, const Matcher<ResultType>& matcher) | 
|  | : callable_(callable), matcher_(matcher) {} | 
|  |  | 
|  | virtual void DescribeTo(::std::ostream* os) const { | 
|  | *os << "is mapped by the given callable to a value that "; | 
|  | matcher_.DescribeTo(os); | 
|  | } | 
|  |  | 
|  | virtual void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "is mapped by the given callable to a value that "; | 
|  | matcher_.DescribeNegationTo(os); | 
|  | } | 
|  |  | 
|  | virtual bool MatchAndExplain(T obj, MatchResultListener* listener) const { | 
|  | *listener << "which is mapped by the given callable to "; | 
|  | // Cannot pass the return value (for example, int) to | 
|  | // MatchPrintAndExplain, which takes a non-const reference as argument. | 
|  | ResultType result = | 
|  | CallableTraits<Callable>::template Invoke<T>(callable_, obj); | 
|  | return MatchPrintAndExplain(result, matcher_, listener); | 
|  | } | 
|  |  | 
|  | private: | 
|  | // Functors often define operator() as non-const method even though | 
|  | // they are actualy stateless. But we need to use them even when | 
|  | // 'this' is a const pointer. It's the user's responsibility not to | 
|  | // use stateful callables with ResultOf(), which does't guarantee | 
|  | // how many times the callable will be invoked. | 
|  | mutable CallableStorageType callable_; | 
|  | const Matcher<ResultType> matcher_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(Impl); | 
|  | };  // class Impl | 
|  |  | 
|  | const CallableStorageType callable_; | 
|  | const Matcher<ResultType> matcher_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(ResultOfMatcher); | 
|  | }; | 
|  |  | 
|  | // Implements a matcher that checks the size of an STL-style container. | 
|  | template <typename SizeMatcher> | 
|  | class SizeIsMatcher { | 
|  | public: | 
|  | explicit SizeIsMatcher(const SizeMatcher& size_matcher) | 
|  | : size_matcher_(size_matcher) { | 
|  | } | 
|  |  | 
|  | template <typename Container> | 
|  | operator Matcher<Container>() const { | 
|  | return MakeMatcher(new Impl<Container>(size_matcher_)); | 
|  | } | 
|  |  | 
|  | template <typename Container> | 
|  | class Impl : public MatcherInterface<Container> { | 
|  | public: | 
|  | typedef internal::StlContainerView< | 
|  | GTEST_REMOVE_REFERENCE_AND_CONST_(Container)> ContainerView; | 
|  | typedef typename ContainerView::type::size_type SizeType; | 
|  | explicit Impl(const SizeMatcher& size_matcher) | 
|  | : size_matcher_(MatcherCast<SizeType>(size_matcher)) {} | 
|  |  | 
|  | virtual void DescribeTo(::std::ostream* os) const { | 
|  | *os << "size "; | 
|  | size_matcher_.DescribeTo(os); | 
|  | } | 
|  | virtual void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "size "; | 
|  | size_matcher_.DescribeNegationTo(os); | 
|  | } | 
|  |  | 
|  | virtual bool MatchAndExplain(Container container, | 
|  | MatchResultListener* listener) const { | 
|  | SizeType size = container.size(); | 
|  | StringMatchResultListener size_listener; | 
|  | const bool result = size_matcher_.MatchAndExplain(size, &size_listener); | 
|  | *listener | 
|  | << "whose size " << size << (result ? " matches" : " doesn't match"); | 
|  | PrintIfNotEmpty(size_listener.str(), listener->stream()); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | private: | 
|  | const Matcher<SizeType> size_matcher_; | 
|  | GTEST_DISALLOW_ASSIGN_(Impl); | 
|  | }; | 
|  |  | 
|  | private: | 
|  | const SizeMatcher size_matcher_; | 
|  | GTEST_DISALLOW_ASSIGN_(SizeIsMatcher); | 
|  | }; | 
|  |  | 
|  | // Implements a matcher that checks the begin()..end() distance of an STL-style | 
|  | // container. | 
|  | template <typename DistanceMatcher> | 
|  | class BeginEndDistanceIsMatcher { | 
|  | public: | 
|  | explicit BeginEndDistanceIsMatcher(const DistanceMatcher& distance_matcher) | 
|  | : distance_matcher_(distance_matcher) {} | 
|  |  | 
|  | template <typename Container> | 
|  | operator Matcher<Container>() const { | 
|  | return MakeMatcher(new Impl<Container>(distance_matcher_)); | 
|  | } | 
|  |  | 
|  | template <typename Container> | 
|  | class Impl : public MatcherInterface<Container> { | 
|  | public: | 
|  | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; | 
|  | typedef internal::StlContainerView<RawContainer> View; | 
|  | typedef typename View::type StlContainer; | 
|  | typedef typename View::const_reference StlContainerReference; | 
|  | typedef decltype(std::begin( | 
|  | std::declval<StlContainerReference>())) StlContainerConstIterator; | 
|  | typedef typename std::iterator_traits< | 
|  | StlContainerConstIterator>::difference_type DistanceType; | 
|  | explicit Impl(const DistanceMatcher& distance_matcher) | 
|  | : distance_matcher_(MatcherCast<DistanceType>(distance_matcher)) {} | 
|  |  | 
|  | virtual void DescribeTo(::std::ostream* os) const { | 
|  | *os << "distance between begin() and end() "; | 
|  | distance_matcher_.DescribeTo(os); | 
|  | } | 
|  | virtual void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "distance between begin() and end() "; | 
|  | distance_matcher_.DescribeNegationTo(os); | 
|  | } | 
|  |  | 
|  | virtual bool MatchAndExplain(Container container, | 
|  | MatchResultListener* listener) const { | 
|  | #if GTEST_HAS_STD_BEGIN_AND_END_ | 
|  | using std::begin; | 
|  | using std::end; | 
|  | DistanceType distance = std::distance(begin(container), end(container)); | 
|  | #else | 
|  | DistanceType distance = std::distance(container.begin(), container.end()); | 
|  | #endif | 
|  | StringMatchResultListener distance_listener; | 
|  | const bool result = | 
|  | distance_matcher_.MatchAndExplain(distance, &distance_listener); | 
|  | *listener << "whose distance between begin() and end() " << distance | 
|  | << (result ? " matches" : " doesn't match"); | 
|  | PrintIfNotEmpty(distance_listener.str(), listener->stream()); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | private: | 
|  | const Matcher<DistanceType> distance_matcher_; | 
|  | GTEST_DISALLOW_ASSIGN_(Impl); | 
|  | }; | 
|  |  | 
|  | private: | 
|  | const DistanceMatcher distance_matcher_; | 
|  | GTEST_DISALLOW_ASSIGN_(BeginEndDistanceIsMatcher); | 
|  | }; | 
|  |  | 
|  | // Implements an equality matcher for any STL-style container whose elements | 
|  | // support ==. This matcher is like Eq(), but its failure explanations provide | 
|  | // more detailed information that is useful when the container is used as a set. | 
|  | // The failure message reports elements that are in one of the operands but not | 
|  | // the other. The failure messages do not report duplicate or out-of-order | 
|  | // elements in the containers (which don't properly matter to sets, but can | 
|  | // occur if the containers are vectors or lists, for example). | 
|  | // | 
|  | // Uses the container's const_iterator, value_type, operator ==, | 
|  | // begin(), and end(). | 
|  | template <typename Container> | 
|  | class ContainerEqMatcher { | 
|  | public: | 
|  | typedef internal::StlContainerView<Container> View; | 
|  | typedef typename View::type StlContainer; | 
|  | typedef typename View::const_reference StlContainerReference; | 
|  |  | 
|  | // We make a copy of expected in case the elements in it are modified | 
|  | // after this matcher is created. | 
|  | explicit ContainerEqMatcher(const Container& expected) | 
|  | : expected_(View::Copy(expected)) { | 
|  | // Makes sure the user doesn't instantiate this class template | 
|  | // with a const or reference type. | 
|  | (void)testing::StaticAssertTypeEq<Container, | 
|  | GTEST_REMOVE_REFERENCE_AND_CONST_(Container)>(); | 
|  | } | 
|  |  | 
|  | void DescribeTo(::std::ostream* os) const { | 
|  | *os << "equals "; | 
|  | UniversalPrint(expected_, os); | 
|  | } | 
|  | void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "does not equal "; | 
|  | UniversalPrint(expected_, os); | 
|  | } | 
|  |  | 
|  | template <typename LhsContainer> | 
|  | bool MatchAndExplain(const LhsContainer& lhs, | 
|  | MatchResultListener* listener) const { | 
|  | // GTEST_REMOVE_CONST_() is needed to work around an MSVC 8.0 bug | 
|  | // that causes LhsContainer to be a const type sometimes. | 
|  | typedef internal::StlContainerView<GTEST_REMOVE_CONST_(LhsContainer)> | 
|  | LhsView; | 
|  | typedef typename LhsView::type LhsStlContainer; | 
|  | StlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); | 
|  | if (lhs_stl_container == expected_) | 
|  | return true; | 
|  |  | 
|  | ::std::ostream* const os = listener->stream(); | 
|  | if (os != NULL) { | 
|  | // Something is different. Check for extra values first. | 
|  | bool printed_header = false; | 
|  | for (typename LhsStlContainer::const_iterator it = | 
|  | lhs_stl_container.begin(); | 
|  | it != lhs_stl_container.end(); ++it) { | 
|  | if (internal::ArrayAwareFind(expected_.begin(), expected_.end(), *it) == | 
|  | expected_.end()) { | 
|  | if (printed_header) { | 
|  | *os << ", "; | 
|  | } else { | 
|  | *os << "which has these unexpected elements: "; | 
|  | printed_header = true; | 
|  | } | 
|  | UniversalPrint(*it, os); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now check for missing values. | 
|  | bool printed_header2 = false; | 
|  | for (typename StlContainer::const_iterator it = expected_.begin(); | 
|  | it != expected_.end(); ++it) { | 
|  | if (internal::ArrayAwareFind( | 
|  | lhs_stl_container.begin(), lhs_stl_container.end(), *it) == | 
|  | lhs_stl_container.end()) { | 
|  | if (printed_header2) { | 
|  | *os << ", "; | 
|  | } else { | 
|  | *os << (printed_header ? ",\nand" : "which") | 
|  | << " doesn't have these expected elements: "; | 
|  | printed_header2 = true; | 
|  | } | 
|  | UniversalPrint(*it, os); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | private: | 
|  | const StlContainer expected_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(ContainerEqMatcher); | 
|  | }; | 
|  |  | 
|  | // A comparator functor that uses the < operator to compare two values. | 
|  | struct LessComparator { | 
|  | template <typename T, typename U> | 
|  | bool operator()(const T& lhs, const U& rhs) const { return lhs < rhs; } | 
|  | }; | 
|  |  | 
|  | // Implements WhenSortedBy(comparator, container_matcher). | 
|  | template <typename Comparator, typename ContainerMatcher> | 
|  | class WhenSortedByMatcher { | 
|  | public: | 
|  | WhenSortedByMatcher(const Comparator& comparator, | 
|  | const ContainerMatcher& matcher) | 
|  | : comparator_(comparator), matcher_(matcher) {} | 
|  |  | 
|  | template <typename LhsContainer> | 
|  | operator Matcher<LhsContainer>() const { | 
|  | return MakeMatcher(new Impl<LhsContainer>(comparator_, matcher_)); | 
|  | } | 
|  |  | 
|  | template <typename LhsContainer> | 
|  | class Impl : public MatcherInterface<LhsContainer> { | 
|  | public: | 
|  | typedef internal::StlContainerView< | 
|  | GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; | 
|  | typedef typename LhsView::type LhsStlContainer; | 
|  | typedef typename LhsView::const_reference LhsStlContainerReference; | 
|  | // Transforms std::pair<const Key, Value> into std::pair<Key, Value> | 
|  | // so that we can match associative containers. | 
|  | typedef typename RemoveConstFromKey< | 
|  | typename LhsStlContainer::value_type>::type LhsValue; | 
|  |  | 
|  | Impl(const Comparator& comparator, const ContainerMatcher& matcher) | 
|  | : comparator_(comparator), matcher_(matcher) {} | 
|  |  | 
|  | virtual void DescribeTo(::std::ostream* os) const { | 
|  | *os << "(when sorted) "; | 
|  | matcher_.DescribeTo(os); | 
|  | } | 
|  |  | 
|  | virtual void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "(when sorted) "; | 
|  | matcher_.DescribeNegationTo(os); | 
|  | } | 
|  |  | 
|  | virtual bool MatchAndExplain(LhsContainer lhs, | 
|  | MatchResultListener* listener) const { | 
|  | LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); | 
|  | ::std::vector<LhsValue> sorted_container(lhs_stl_container.begin(), | 
|  | lhs_stl_container.end()); | 
|  | ::std::sort( | 
|  | sorted_container.begin(), sorted_container.end(), comparator_); | 
|  |  | 
|  | if (!listener->IsInterested()) { | 
|  | // If the listener is not interested, we do not need to | 
|  | // construct the inner explanation. | 
|  | return matcher_.Matches(sorted_container); | 
|  | } | 
|  |  | 
|  | *listener << "which is "; | 
|  | UniversalPrint(sorted_container, listener->stream()); | 
|  | *listener << " when sorted"; | 
|  |  | 
|  | StringMatchResultListener inner_listener; | 
|  | const bool match = matcher_.MatchAndExplain(sorted_container, | 
|  | &inner_listener); | 
|  | PrintIfNotEmpty(inner_listener.str(), listener->stream()); | 
|  | return match; | 
|  | } | 
|  |  | 
|  | private: | 
|  | const Comparator comparator_; | 
|  | const Matcher<const ::std::vector<LhsValue>&> matcher_; | 
|  |  | 
|  | GTEST_DISALLOW_COPY_AND_ASSIGN_(Impl); | 
|  | }; | 
|  |  | 
|  | private: | 
|  | const Comparator comparator_; | 
|  | const ContainerMatcher matcher_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(WhenSortedByMatcher); | 
|  | }; | 
|  |  | 
|  | // Implements Pointwise(tuple_matcher, rhs_container).  tuple_matcher | 
|  | // must be able to be safely cast to Matcher<tuple<const T1&, const | 
|  | // T2&> >, where T1 and T2 are the types of elements in the LHS | 
|  | // container and the RHS container respectively. | 
|  | template <typename TupleMatcher, typename RhsContainer> | 
|  | class PointwiseMatcher { | 
|  | public: | 
|  | typedef internal::StlContainerView<RhsContainer> RhsView; | 
|  | typedef typename RhsView::type RhsStlContainer; | 
|  | typedef typename RhsStlContainer::value_type RhsValue; | 
|  |  | 
|  | // Like ContainerEq, we make a copy of rhs in case the elements in | 
|  | // it are modified after this matcher is created. | 
|  | PointwiseMatcher(const TupleMatcher& tuple_matcher, const RhsContainer& rhs) | 
|  | : tuple_matcher_(tuple_matcher), rhs_(RhsView::Copy(rhs)) { | 
|  | // Makes sure the user doesn't instantiate this class template | 
|  | // with a const or reference type. | 
|  | (void)testing::StaticAssertTypeEq<RhsContainer, | 
|  | GTEST_REMOVE_REFERENCE_AND_CONST_(RhsContainer)>(); | 
|  | } | 
|  |  | 
|  | template <typename LhsContainer> | 
|  | operator Matcher<LhsContainer>() const { | 
|  | return MakeMatcher(new Impl<LhsContainer>(tuple_matcher_, rhs_)); | 
|  | } | 
|  |  | 
|  | template <typename LhsContainer> | 
|  | class Impl : public MatcherInterface<LhsContainer> { | 
|  | public: | 
|  | typedef internal::StlContainerView< | 
|  | GTEST_REMOVE_REFERENCE_AND_CONST_(LhsContainer)> LhsView; | 
|  | typedef typename LhsView::type LhsStlContainer; | 
|  | typedef typename LhsView::const_reference LhsStlContainerReference; | 
|  | typedef typename LhsStlContainer::value_type LhsValue; | 
|  | // We pass the LHS value and the RHS value to the inner matcher by | 
|  | // reference, as they may be expensive to copy.  We must use tuple | 
|  | // instead of pair here, as a pair cannot hold references (C++ 98, | 
|  | // 20.2.2 [lib.pairs]). | 
|  | typedef ::testing::tuple<const LhsValue&, const RhsValue&> InnerMatcherArg; | 
|  |  | 
|  | Impl(const TupleMatcher& tuple_matcher, const RhsStlContainer& rhs) | 
|  | // mono_tuple_matcher_ holds a monomorphic version of the tuple matcher. | 
|  | : mono_tuple_matcher_(SafeMatcherCast<InnerMatcherArg>(tuple_matcher)), | 
|  | rhs_(rhs) {} | 
|  |  | 
|  | virtual void DescribeTo(::std::ostream* os) const { | 
|  | *os << "contains " << rhs_.size() | 
|  | << " values, where each value and its corresponding value in "; | 
|  | UniversalPrinter<RhsStlContainer>::Print(rhs_, os); | 
|  | *os << " "; | 
|  | mono_tuple_matcher_.DescribeTo(os); | 
|  | } | 
|  | virtual void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "doesn't contain exactly " << rhs_.size() | 
|  | << " values, or contains a value x at some index i" | 
|  | << " where x and the i-th value of "; | 
|  | UniversalPrint(rhs_, os); | 
|  | *os << " "; | 
|  | mono_tuple_matcher_.DescribeNegationTo(os); | 
|  | } | 
|  |  | 
|  | virtual bool MatchAndExplain(LhsContainer lhs, | 
|  | MatchResultListener* listener) const { | 
|  | LhsStlContainerReference lhs_stl_container = LhsView::ConstReference(lhs); | 
|  | const size_t actual_size = lhs_stl_container.size(); | 
|  | if (actual_size != rhs_.size()) { | 
|  | *listener << "which contains " << actual_size << " values"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | typename LhsStlContainer::const_iterator left = lhs_stl_container.begin(); | 
|  | typename RhsStlContainer::const_iterator right = rhs_.begin(); | 
|  | for (size_t i = 0; i != actual_size; ++i, ++left, ++right) { | 
|  | const InnerMatcherArg value_pair(*left, *right); | 
|  |  | 
|  | if (listener->IsInterested()) { | 
|  | StringMatchResultListener inner_listener; | 
|  | if (!mono_tuple_matcher_.MatchAndExplain( | 
|  | value_pair, &inner_listener)) { | 
|  | *listener << "where the value pair ("; | 
|  | UniversalPrint(*left, listener->stream()); | 
|  | *listener << ", "; | 
|  | UniversalPrint(*right, listener->stream()); | 
|  | *listener << ") at index #" << i << " don't match"; | 
|  | PrintIfNotEmpty(inner_listener.str(), listener->stream()); | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | if (!mono_tuple_matcher_.Matches(value_pair)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | const Matcher<InnerMatcherArg> mono_tuple_matcher_; | 
|  | const RhsStlContainer rhs_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(Impl); | 
|  | }; | 
|  |  | 
|  | private: | 
|  | const TupleMatcher tuple_matcher_; | 
|  | const RhsStlContainer rhs_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(PointwiseMatcher); | 
|  | }; | 
|  |  | 
|  | // Holds the logic common to ContainsMatcherImpl and EachMatcherImpl. | 
|  | template <typename Container> | 
|  | class QuantifierMatcherImpl : public MatcherInterface<Container> { | 
|  | public: | 
|  | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; | 
|  | typedef StlContainerView<RawContainer> View; | 
|  | typedef typename View::type StlContainer; | 
|  | typedef typename View::const_reference StlContainerReference; | 
|  | typedef typename StlContainer::value_type Element; | 
|  |  | 
|  | template <typename InnerMatcher> | 
|  | explicit QuantifierMatcherImpl(InnerMatcher inner_matcher) | 
|  | : inner_matcher_( | 
|  | testing::SafeMatcherCast<const Element&>(inner_matcher)) {} | 
|  |  | 
|  | // Checks whether: | 
|  | // * All elements in the container match, if all_elements_should_match. | 
|  | // * Any element in the container matches, if !all_elements_should_match. | 
|  | bool MatchAndExplainImpl(bool all_elements_should_match, | 
|  | Container container, | 
|  | MatchResultListener* listener) const { | 
|  | StlContainerReference stl_container = View::ConstReference(container); | 
|  | size_t i = 0; | 
|  | for (typename StlContainer::const_iterator it = stl_container.begin(); | 
|  | it != stl_container.end(); ++it, ++i) { | 
|  | StringMatchResultListener inner_listener; | 
|  | const bool matches = inner_matcher_.MatchAndExplain(*it, &inner_listener); | 
|  |  | 
|  | if (matches != all_elements_should_match) { | 
|  | *listener << "whose element #" << i | 
|  | << (matches ? " matches" : " doesn't match"); | 
|  | PrintIfNotEmpty(inner_listener.str(), listener->stream()); | 
|  | return !all_elements_should_match; | 
|  | } | 
|  | } | 
|  | return all_elements_should_match; | 
|  | } | 
|  |  | 
|  | protected: | 
|  | const Matcher<const Element&> inner_matcher_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(QuantifierMatcherImpl); | 
|  | }; | 
|  |  | 
|  | // Implements Contains(element_matcher) for the given argument type Container. | 
|  | // Symmetric to EachMatcherImpl. | 
|  | template <typename Container> | 
|  | class ContainsMatcherImpl : public QuantifierMatcherImpl<Container> { | 
|  | public: | 
|  | template <typename InnerMatcher> | 
|  | explicit ContainsMatcherImpl(InnerMatcher inner_matcher) | 
|  | : QuantifierMatcherImpl<Container>(inner_matcher) {} | 
|  |  | 
|  | // Describes what this matcher does. | 
|  | virtual void DescribeTo(::std::ostream* os) const { | 
|  | *os << "contains at least one element that "; | 
|  | this->inner_matcher_.DescribeTo(os); | 
|  | } | 
|  |  | 
|  | virtual void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "doesn't contain any element that "; | 
|  | this->inner_matcher_.DescribeTo(os); | 
|  | } | 
|  |  | 
|  | virtual bool MatchAndExplain(Container container, | 
|  | MatchResultListener* listener) const { | 
|  | return this->MatchAndExplainImpl(false, container, listener); | 
|  | } | 
|  |  | 
|  | private: | 
|  | GTEST_DISALLOW_ASSIGN_(ContainsMatcherImpl); | 
|  | }; | 
|  |  | 
|  | // Implements Each(element_matcher) for the given argument type Container. | 
|  | // Symmetric to ContainsMatcherImpl. | 
|  | template <typename Container> | 
|  | class EachMatcherImpl : public QuantifierMatcherImpl<Container> { | 
|  | public: | 
|  | template <typename InnerMatcher> | 
|  | explicit EachMatcherImpl(InnerMatcher inner_matcher) | 
|  | : QuantifierMatcherImpl<Container>(inner_matcher) {} | 
|  |  | 
|  | // Describes what this matcher does. | 
|  | virtual void DescribeTo(::std::ostream* os) const { | 
|  | *os << "only contains elements that "; | 
|  | this->inner_matcher_.DescribeTo(os); | 
|  | } | 
|  |  | 
|  | virtual void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "contains some element that "; | 
|  | this->inner_matcher_.DescribeNegationTo(os); | 
|  | } | 
|  |  | 
|  | virtual bool MatchAndExplain(Container container, | 
|  | MatchResultListener* listener) const { | 
|  | return this->MatchAndExplainImpl(true, container, listener); | 
|  | } | 
|  |  | 
|  | private: | 
|  | GTEST_DISALLOW_ASSIGN_(EachMatcherImpl); | 
|  | }; | 
|  |  | 
|  | // Implements polymorphic Contains(element_matcher). | 
|  | template <typename M> | 
|  | class ContainsMatcher { | 
|  | public: | 
|  | explicit ContainsMatcher(M m) : inner_matcher_(m) {} | 
|  |  | 
|  | template <typename Container> | 
|  | operator Matcher<Container>() const { | 
|  | return MakeMatcher(new ContainsMatcherImpl<Container>(inner_matcher_)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const M inner_matcher_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(ContainsMatcher); | 
|  | }; | 
|  |  | 
|  | // Implements polymorphic Each(element_matcher). | 
|  | template <typename M> | 
|  | class EachMatcher { | 
|  | public: | 
|  | explicit EachMatcher(M m) : inner_matcher_(m) {} | 
|  |  | 
|  | template <typename Container> | 
|  | operator Matcher<Container>() const { | 
|  | return MakeMatcher(new EachMatcherImpl<Container>(inner_matcher_)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const M inner_matcher_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(EachMatcher); | 
|  | }; | 
|  |  | 
|  | // Implements Key(inner_matcher) for the given argument pair type. | 
|  | // Key(inner_matcher) matches an std::pair whose 'first' field matches | 
|  | // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an | 
|  | // std::map that contains at least one element whose key is >= 5. | 
|  | template <typename PairType> | 
|  | class KeyMatcherImpl : public MatcherInterface<PairType> { | 
|  | public: | 
|  | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; | 
|  | typedef typename RawPairType::first_type KeyType; | 
|  |  | 
|  | template <typename InnerMatcher> | 
|  | explicit KeyMatcherImpl(InnerMatcher inner_matcher) | 
|  | : inner_matcher_( | 
|  | testing::SafeMatcherCast<const KeyType&>(inner_matcher)) { | 
|  | } | 
|  |  | 
|  | // Returns true iff 'key_value.first' (the key) matches the inner matcher. | 
|  | virtual bool MatchAndExplain(PairType key_value, | 
|  | MatchResultListener* listener) const { | 
|  | StringMatchResultListener inner_listener; | 
|  | const bool match = inner_matcher_.MatchAndExplain(key_value.first, | 
|  | &inner_listener); | 
|  | const internal::string explanation = inner_listener.str(); | 
|  | if (explanation != "") { | 
|  | *listener << "whose first field is a value " << explanation; | 
|  | } | 
|  | return match; | 
|  | } | 
|  |  | 
|  | // Describes what this matcher does. | 
|  | virtual void DescribeTo(::std::ostream* os) const { | 
|  | *os << "has a key that "; | 
|  | inner_matcher_.DescribeTo(os); | 
|  | } | 
|  |  | 
|  | // Describes what the negation of this matcher does. | 
|  | virtual void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "doesn't have a key that "; | 
|  | inner_matcher_.DescribeTo(os); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const Matcher<const KeyType&> inner_matcher_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(KeyMatcherImpl); | 
|  | }; | 
|  |  | 
|  | // Implements polymorphic Key(matcher_for_key). | 
|  | template <typename M> | 
|  | class KeyMatcher { | 
|  | public: | 
|  | explicit KeyMatcher(M m) : matcher_for_key_(m) {} | 
|  |  | 
|  | template <typename PairType> | 
|  | operator Matcher<PairType>() const { | 
|  | return MakeMatcher(new KeyMatcherImpl<PairType>(matcher_for_key_)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const M matcher_for_key_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(KeyMatcher); | 
|  | }; | 
|  |  | 
|  | // Implements Pair(first_matcher, second_matcher) for the given argument pair | 
|  | // type with its two matchers. See Pair() function below. | 
|  | template <typename PairType> | 
|  | class PairMatcherImpl : public MatcherInterface<PairType> { | 
|  | public: | 
|  | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(PairType) RawPairType; | 
|  | typedef typename RawPairType::first_type FirstType; | 
|  | typedef typename RawPairType::second_type SecondType; | 
|  |  | 
|  | template <typename FirstMatcher, typename SecondMatcher> | 
|  | PairMatcherImpl(FirstMatcher first_matcher, SecondMatcher second_matcher) | 
|  | : first_matcher_( | 
|  | testing::SafeMatcherCast<const FirstType&>(first_matcher)), | 
|  | second_matcher_( | 
|  | testing::SafeMatcherCast<const SecondType&>(second_matcher)) { | 
|  | } | 
|  |  | 
|  | // Describes what this matcher does. | 
|  | virtual void DescribeTo(::std::ostream* os) const { | 
|  | *os << "has a first field that "; | 
|  | first_matcher_.DescribeTo(os); | 
|  | *os << ", and has a second field that "; | 
|  | second_matcher_.DescribeTo(os); | 
|  | } | 
|  |  | 
|  | // Describes what the negation of this matcher does. | 
|  | virtual void DescribeNegationTo(::std::ostream* os) const { | 
|  | *os << "has a first field that "; | 
|  | first_matcher_.DescribeNegationTo(os); | 
|  | *os << ", or has a second field that "; | 
|  | second_matcher_.DescribeNegationTo(os); | 
|  | } | 
|  |  | 
|  | // Returns true iff 'a_pair.first' matches first_matcher and 'a_pair.second' | 
|  | // matches second_matcher. | 
|  | virtual bool MatchAndExplain(PairType a_pair, | 
|  | MatchResultListener* listener) const { | 
|  | if (!listener->IsInterested()) { | 
|  | // If the listener is not interested, we don't need to construct the | 
|  | // explanation. | 
|  | return first_matcher_.Matches(a_pair.first) && | 
|  | second_matcher_.Matches(a_pair.second); | 
|  | } | 
|  | StringMatchResultListener first_inner_listener; | 
|  | if (!first_matcher_.MatchAndExplain(a_pair.first, | 
|  | &first_inner_listener)) { | 
|  | *listener << "whose first field does not match"; | 
|  | PrintIfNotEmpty(first_inner_listener.str(), listener->stream()); | 
|  | return false; | 
|  | } | 
|  | StringMatchResultListener second_inner_listener; | 
|  | if (!second_matcher_.MatchAndExplain(a_pair.second, | 
|  | &second_inner_listener)) { | 
|  | *listener << "whose second field does not match"; | 
|  | PrintIfNotEmpty(second_inner_listener.str(), listener->stream()); | 
|  | return false; | 
|  | } | 
|  | ExplainSuccess(first_inner_listener.str(), second_inner_listener.str(), | 
|  | listener); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | void ExplainSuccess(const internal::string& first_explanation, | 
|  | const internal::string& second_explanation, | 
|  | MatchResultListener* listener) const { | 
|  | *listener << "whose both fields match"; | 
|  | if (first_explanation != "") { | 
|  | *listener << ", where the first field is a value " << first_explanation; | 
|  | } | 
|  | if (second_explanation != "") { | 
|  | *listener << ", "; | 
|  | if (first_explanation != "") { | 
|  | *listener << "and "; | 
|  | } else { | 
|  | *listener << "where "; | 
|  | } | 
|  | *listener << "the second field is a value " << second_explanation; | 
|  | } | 
|  | } | 
|  |  | 
|  | const Matcher<const FirstType&> first_matcher_; | 
|  | const Matcher<const SecondType&> second_matcher_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(PairMatcherImpl); | 
|  | }; | 
|  |  | 
|  | // Implements polymorphic Pair(first_matcher, second_matcher). | 
|  | template <typename FirstMatcher, typename SecondMatcher> | 
|  | class PairMatcher { | 
|  | public: | 
|  | PairMatcher(FirstMatcher first_matcher, SecondMatcher second_matcher) | 
|  | : first_matcher_(first_matcher), second_matcher_(second_matcher) {} | 
|  |  | 
|  | template <typename PairType> | 
|  | operator Matcher<PairType> () const { | 
|  | return MakeMatcher( | 
|  | new PairMatcherImpl<PairType>( | 
|  | first_matcher_, second_matcher_)); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const FirstMatcher first_matcher_; | 
|  | const SecondMatcher second_matcher_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(PairMatcher); | 
|  | }; | 
|  |  | 
|  | // Implements ElementsAre() and ElementsAreArray(). | 
|  | template <typename Container> | 
|  | class ElementsAreMatcherImpl : public MatcherInterface<Container> { | 
|  | public: | 
|  | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; | 
|  | typedef internal::StlContainerView<RawContainer> View; | 
|  | typedef typename View::type StlContainer; | 
|  | typedef typename View::const_reference StlContainerReference; | 
|  | typedef decltype(std::begin( | 
|  | std::declval<StlContainerReference>())) StlContainerConstIterator; | 
|  | typedef typename std::remove_reference<decltype( | 
|  | *std::declval<StlContainerConstIterator &>())>::type Element; | 
|  |  | 
|  | // Constructs the matcher from a sequence of element values or | 
|  | // element matchers. | 
|  | template <typename InputIter> | 
|  | ElementsAreMatcherImpl(InputIter first, InputIter last) { | 
|  | while (first != last) { | 
|  | matchers_.push_back(MatcherCast<const Element&>(*first++)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Describes what this matcher does. | 
|  | virtual void DescribeTo(::std::ostream* os) const { | 
|  | if (count() == 0) { | 
|  | *os << "is empty"; | 
|  | } else if (count() == 1) { | 
|  | *os << "has 1 element that "; | 
|  | matchers_[0].DescribeTo(os); | 
|  | } else { | 
|  | *os << "has " << Elements(count()) << " where\n"; | 
|  | for (size_t i = 0; i != count(); ++i) { | 
|  | *os << "element #" << i << " "; | 
|  | matchers_[i].DescribeTo(os); | 
|  | if (i + 1 < count()) { | 
|  | *os << ",\n"; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Describes what the negation of this matcher does. | 
|  | virtual void DescribeNegationTo(::std::ostream* os) const { | 
|  | if (count() == 0) { | 
|  | *os << "isn't empty"; | 
|  | return; | 
|  | } | 
|  |  | 
|  | *os << "doesn't have " << Elements(count()) << ", or\n"; | 
|  | for (size_t i = 0; i != count(); ++i) { | 
|  | *os << "element #" << i << " "; | 
|  | matchers_[i].DescribeNegationTo(os); | 
|  | if (i + 1 < count()) { | 
|  | *os << ", or\n"; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | virtual bool MatchAndExplain(Container container, | 
|  | MatchResultListener* listener) const { | 
|  | // To work with stream-like "containers", we must only walk | 
|  | // through the elements in one pass. | 
|  |  | 
|  | const bool listener_interested = listener->IsInterested(); | 
|  |  | 
|  | // explanations[i] is the explanation of the element at index i. | 
|  | ::std::vector<internal::string> explanations(count()); | 
|  | StlContainerReference stl_container = View::ConstReference(container); | 
|  | StlContainerConstIterator it = stl_container.begin(); | 
|  | size_t exam_pos = 0; | 
|  | bool mismatch_found = false;  // Have we found a mismatched element yet? | 
|  |  | 
|  | // Go through the elements and matchers in pairs, until we reach | 
|  | // the end of either the elements or the matchers, or until we find a | 
|  | // mismatch. | 
|  | for (; it != stl_container.end() && exam_pos != count(); ++it, ++exam_pos) { | 
|  | bool match;  // Does the current element match the current matcher? | 
|  | if (listener_interested) { | 
|  | StringMatchResultListener s; | 
|  | match = matchers_[exam_pos].MatchAndExplain(*it, &s); | 
|  | explanations[exam_pos] = s.str(); | 
|  | } else { | 
|  | match = matchers_[exam_pos].Matches(*it); | 
|  | } | 
|  |  | 
|  | if (!match) { | 
|  | mismatch_found = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // If mismatch_found is true, 'exam_pos' is the index of the mismatch. | 
|  |  | 
|  | // Find how many elements the actual container has.  We avoid | 
|  | // calling size() s.t. this code works for stream-like "containers" | 
|  | // that don't define size(). | 
|  | size_t actual_count = exam_pos; | 
|  | for (; it != stl_container.end(); ++it) { | 
|  | ++actual_count; | 
|  | } | 
|  |  | 
|  | if (actual_count != count()) { | 
|  | // The element count doesn't match.  If the container is empty, | 
|  | // there's no need to explain anything as Google Mock already | 
|  | // prints the empty container.  Otherwise we just need to show | 
|  | // how many elements there actually are. | 
|  | if (listener_interested && (actual_count != 0)) { | 
|  | *listener << "which has " << Elements(actual_count); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (mismatch_found) { | 
|  | // The element count matches, but the exam_pos-th element doesn't match. | 
|  | if (listener_interested) { | 
|  | *listener << "whose element #" << exam_pos << " doesn't match"; | 
|  | PrintIfNotEmpty(explanations[exam_pos], listener->stream()); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Every element matches its expectation.  We need to explain why | 
|  | // (the obvious ones can be skipped). | 
|  | if (listener_interested) { | 
|  | bool reason_printed = false; | 
|  | for (size_t i = 0; i != count(); ++i) { | 
|  | const internal::string& s = explanations[i]; | 
|  | if (!s.empty()) { | 
|  | if (reason_printed) { | 
|  | *listener << ",\nand "; | 
|  | } | 
|  | *listener << "whose element #" << i << " matches, " << s; | 
|  | reason_printed = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | private: | 
|  | static Message Elements(size_t count) { | 
|  | return Message() << count << (count == 1 ? " element" : " elements"); | 
|  | } | 
|  |  | 
|  | size_t count() const { return matchers_.size(); } | 
|  |  | 
|  | ::std::vector<Matcher<const Element&> > matchers_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(ElementsAreMatcherImpl); | 
|  | }; | 
|  |  | 
|  | // Connectivity matrix of (elements X matchers), in element-major order. | 
|  | // Initially, there are no edges. | 
|  | // Use NextGraph() to iterate over all possible edge configurations. | 
|  | // Use Randomize() to generate a random edge configuration. | 
|  | class GTEST_API_ MatchMatrix { | 
|  | public: | 
|  | MatchMatrix(size_t num_elements, size_t num_matchers) | 
|  | : num_elements_(num_elements), | 
|  | num_matchers_(num_matchers), | 
|  | matched_(num_elements_* num_matchers_, 0) { | 
|  | } | 
|  |  | 
|  | size_t LhsSize() const { return num_elements_; } | 
|  | size_t RhsSize() const { return num_matchers_; } | 
|  | bool HasEdge(size_t ilhs, size_t irhs) const { | 
|  | return matched_[SpaceIndex(ilhs, irhs)] == 1; | 
|  | } | 
|  | void SetEdge(size_t ilhs, size_t irhs, bool b) { | 
|  | matched_[SpaceIndex(ilhs, irhs)] = b ? 1 : 0; | 
|  | } | 
|  |  | 
|  | // Treating the connectivity matrix as a (LhsSize()*RhsSize())-bit number, | 
|  | // adds 1 to that number; returns false if incrementing the graph left it | 
|  | // empty. | 
|  | bool NextGraph(); | 
|  |  | 
|  | void Randomize(); | 
|  |  | 
|  | string DebugString() const; | 
|  |  | 
|  | private: | 
|  | size_t SpaceIndex(size_t ilhs, size_t irhs) const { | 
|  | return ilhs * num_matchers_ + irhs; | 
|  | } | 
|  |  | 
|  | size_t num_elements_; | 
|  | size_t num_matchers_; | 
|  |  | 
|  | // Each element is a char interpreted as bool. They are stored as a | 
|  | // flattened array in lhs-major order, use 'SpaceIndex()' to translate | 
|  | // a (ilhs, irhs) matrix coordinate into an offset. | 
|  | ::std::vector<char> matched_; | 
|  | }; | 
|  |  | 
|  | typedef ::std::pair<size_t, size_t> ElementMatcherPair; | 
|  | typedef ::std::vector<ElementMatcherPair> ElementMatcherPairs; | 
|  |  | 
|  | // Returns a maximum bipartite matching for the specified graph 'g'. | 
|  | // The matching is represented as a vector of {element, matcher} pairs. | 
|  | GTEST_API_ ElementMatcherPairs | 
|  | FindMaxBipartiteMatching(const MatchMatrix& g); | 
|  |  | 
|  | GTEST_API_ bool FindPairing(const MatchMatrix& matrix, | 
|  | MatchResultListener* listener); | 
|  |  | 
|  | // Untyped base class for implementing UnorderedElementsAre.  By | 
|  | // putting logic that's not specific to the element type here, we | 
|  | // reduce binary bloat and increase compilation speed. | 
|  | class GTEST_API_ UnorderedElementsAreMatcherImplBase { | 
|  | protected: | 
|  | // A vector of matcher describers, one for each element matcher. | 
|  | // Does not own the describers (and thus can be used only when the | 
|  | // element matchers are alive). | 
|  | typedef ::std::vector<const MatcherDescriberInterface*> MatcherDescriberVec; | 
|  |  | 
|  | // Describes this UnorderedElementsAre matcher. | 
|  | void DescribeToImpl(::std::ostream* os) const; | 
|  |  | 
|  | // Describes the negation of this UnorderedElementsAre matcher. | 
|  | void DescribeNegationToImpl(::std::ostream* os) const; | 
|  |  | 
|  | bool VerifyAllElementsAndMatchersAreMatched( | 
|  | const ::std::vector<string>& element_printouts, | 
|  | const MatchMatrix& matrix, | 
|  | MatchResultListener* listener) const; | 
|  |  | 
|  | MatcherDescriberVec& matcher_describers() { | 
|  | return matcher_describers_; | 
|  | } | 
|  |  | 
|  | static Message Elements(size_t n) { | 
|  | return Message() << n << " element" << (n == 1 ? "" : "s"); | 
|  | } | 
|  |  | 
|  | private: | 
|  | MatcherDescriberVec matcher_describers_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImplBase); | 
|  | }; | 
|  |  | 
|  | // Implements unordered ElementsAre and unordered ElementsAreArray. | 
|  | template <typename Container> | 
|  | class UnorderedElementsAreMatcherImpl | 
|  | : public MatcherInterface<Container>, | 
|  | public UnorderedElementsAreMatcherImplBase { | 
|  | public: | 
|  | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; | 
|  | typedef internal::StlContainerView<RawContainer> View; | 
|  | typedef typename View::type StlContainer; | 
|  | typedef typename View::const_reference StlContainerReference; | 
|  | typedef decltype(std::begin( | 
|  | std::declval<StlContainerReference>())) StlContainerConstIterator; | 
|  | typedef typename std::remove_reference<decltype( | 
|  | *std::declval<StlContainerConstIterator &>())>::type Element; | 
|  |  | 
|  | // Constructs the matcher from a sequence of element values or | 
|  | // element matchers. | 
|  | template <typename InputIter> | 
|  | UnorderedElementsAreMatcherImpl(InputIter first, InputIter last) { | 
|  | for (; first != last; ++first) { | 
|  | matchers_.push_back(MatcherCast<const Element&>(*first)); | 
|  | matcher_describers().push_back(matchers_.back().GetDescriber()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Describes what this matcher does. | 
|  | virtual void DescribeTo(::std::ostream* os) const { | 
|  | return UnorderedElementsAreMatcherImplBase::DescribeToImpl(os); | 
|  | } | 
|  |  | 
|  | // Describes what the negation of this matcher does. | 
|  | virtual void DescribeNegationTo(::std::ostream* os) const { | 
|  | return UnorderedElementsAreMatcherImplBase::DescribeNegationToImpl(os); | 
|  | } | 
|  |  | 
|  | virtual bool MatchAndExplain(Container container, | 
|  | MatchResultListener* listener) const { | 
|  | StlContainerReference stl_container = View::ConstReference(container); | 
|  | ::std::vector<string> element_printouts; | 
|  | MatchMatrix matrix = AnalyzeElements(stl_container.begin(), | 
|  | stl_container.end(), | 
|  | &element_printouts, | 
|  | listener); | 
|  |  | 
|  | const size_t actual_count = matrix.LhsSize(); | 
|  | if (actual_count == 0 && matchers_.empty()) { | 
|  | return true; | 
|  | } | 
|  | if (actual_count != matchers_.size()) { | 
|  | // The element count doesn't match.  If the container is empty, | 
|  | // there's no need to explain anything as Google Mock already | 
|  | // prints the empty container. Otherwise we just need to show | 
|  | // how many elements there actually are. | 
|  | if (actual_count != 0 && listener->IsInterested()) { | 
|  | *listener << "which has " << Elements(actual_count); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return VerifyAllElementsAndMatchersAreMatched(element_printouts, | 
|  | matrix, listener) && | 
|  | FindPairing(matrix, listener); | 
|  | } | 
|  |  | 
|  | private: | 
|  | typedef ::std::vector<Matcher<const Element&> > MatcherVec; | 
|  |  | 
|  | template <typename ElementIter> | 
|  | MatchMatrix AnalyzeElements(ElementIter elem_first, ElementIter elem_last, | 
|  | ::std::vector<string>* element_printouts, | 
|  | MatchResultListener* listener) const { | 
|  | element_printouts->clear(); | 
|  | ::std::vector<char> did_match; | 
|  | size_t num_elements = 0; | 
|  | for (; elem_first != elem_last; ++num_elements, ++elem_first) { | 
|  | if (listener->IsInterested()) { | 
|  | element_printouts->push_back(PrintToString(*elem_first)); | 
|  | } | 
|  | for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { | 
|  | did_match.push_back(Matches(matchers_[irhs])(*elem_first)); | 
|  | } | 
|  | } | 
|  |  | 
|  | MatchMatrix matrix(num_elements, matchers_.size()); | 
|  | ::std::vector<char>::const_iterator did_match_iter = did_match.begin(); | 
|  | for (size_t ilhs = 0; ilhs != num_elements; ++ilhs) { | 
|  | for (size_t irhs = 0; irhs != matchers_.size(); ++irhs) { | 
|  | matrix.SetEdge(ilhs, irhs, *did_match_iter++ != 0); | 
|  | } | 
|  | } | 
|  | return matrix; | 
|  | } | 
|  |  | 
|  | MatcherVec matchers_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcherImpl); | 
|  | }; | 
|  |  | 
|  | // Functor for use in TransformTuple. | 
|  | // Performs MatcherCast<Target> on an input argument of any type. | 
|  | template <typename Target> | 
|  | struct CastAndAppendTransform { | 
|  | template <typename Arg> | 
|  | Matcher<Target> operator()(const Arg& a) const { | 
|  | return MatcherCast<Target>(a); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Implements UnorderedElementsAre. | 
|  | template <typename MatcherTuple> | 
|  | class UnorderedElementsAreMatcher { | 
|  | public: | 
|  | explicit UnorderedElementsAreMatcher(const MatcherTuple& args) | 
|  | : matchers_(args) {} | 
|  |  | 
|  | template <typename Container> | 
|  | operator Matcher<Container>() const { | 
|  | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; | 
|  | typedef internal::StlContainerView<RawContainer> View; | 
|  | typedef typename View::const_reference StlContainerReference; | 
|  | typedef decltype(std::begin( | 
|  | std::declval<StlContainerReference>())) StlContainerConstIterator; | 
|  | typedef typename std::remove_reference<decltype( | 
|  | *std::declval<StlContainerConstIterator &>())>::type Element; | 
|  | typedef ::std::vector<Matcher<const Element&> > MatcherVec; | 
|  | MatcherVec matchers; | 
|  | matchers.reserve(::testing::tuple_size<MatcherTuple>::value); | 
|  | TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, | 
|  | ::std::back_inserter(matchers)); | 
|  | return MakeMatcher(new UnorderedElementsAreMatcherImpl<Container>( | 
|  | matchers.begin(), matchers.end())); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const MatcherTuple matchers_; | 
|  | GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreMatcher); | 
|  | }; | 
|  |  | 
|  | // Implements ElementsAre. | 
|  | template <typename MatcherTuple> | 
|  | class ElementsAreMatcher { | 
|  | public: | 
|  | explicit ElementsAreMatcher(const MatcherTuple& args) : matchers_(args) {} | 
|  |  | 
|  | template <typename Container> | 
|  | operator Matcher<Container>() const { | 
|  | typedef GTEST_REMOVE_REFERENCE_AND_CONST_(Container) RawContainer; | 
|  | typedef internal::StlContainerView<RawContainer> View; | 
|  | typedef typename View::const_reference StlContainerReference; | 
|  | typedef decltype(std::begin( | 
|  | std::declval<StlContainerReference>())) StlContainerConstIterator; | 
|  | typedef typename std::remove_reference<decltype( | 
|  | *std::declval<StlContainerConstIterator &>())>::type Element; | 
|  | typedef ::std::vector<Matcher<const Element&> > MatcherVec; | 
|  | MatcherVec matchers; | 
|  | matchers.reserve(::testing::tuple_size<MatcherTuple>::value); | 
|  | TransformTupleValues(CastAndAppendTransform<const Element&>(), matchers_, | 
|  | ::std::back_inserter(matchers)); | 
|  | return MakeMatcher(new ElementsAreMatcherImpl<Container>( | 
|  | matchers.begin(), matchers.end())); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const MatcherTuple matchers_; | 
|  | GTEST_DISALLOW_ASSIGN_(ElementsAreMatcher); | 
|  | }; | 
|  |  | 
|  | // Implements UnorderedElementsAreArray(). | 
|  | template <typename T> | 
|  | class UnorderedElementsAreArrayMatcher { | 
|  | public: | 
|  | UnorderedElementsAreArrayMatcher() {} | 
|  |  | 
|  | template <typename Iter> | 
|  | UnorderedElementsAreArrayMatcher(Iter first, Iter last) | 
|  | : matchers_(first, last) {} | 
|  |  | 
|  | template <typename Container> | 
|  | operator Matcher<Container>() const { | 
|  | return MakeMatcher( | 
|  | new UnorderedElementsAreMatcherImpl<Container>(matchers_.begin(), | 
|  | matchers_.end())); | 
|  | } | 
|  |  | 
|  | private: | 
|  | ::std::vector<T> matchers_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(UnorderedElementsAreArrayMatcher); | 
|  | }; | 
|  |  | 
|  | // Implements ElementsAreArray(). | 
|  | template <typename T> | 
|  | class ElementsAreArrayMatcher { | 
|  | public: | 
|  | template <typename Iter> | 
|  | ElementsAreArrayMatcher(Iter first, Iter last) : matchers_(first, last) {} | 
|  |  | 
|  | template <typename Container> | 
|  | operator Matcher<Container>() const { | 
|  | return MakeMatcher(new ElementsAreMatcherImpl<Container>( | 
|  | matchers_.begin(), matchers_.end())); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const ::std::vector<T> matchers_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(ElementsAreArrayMatcher); | 
|  | }; | 
|  |  | 
|  | // Given a 2-tuple matcher tm of type Tuple2Matcher and a value second | 
|  | // of type Second, BoundSecondMatcher<Tuple2Matcher, Second>(tm, | 
|  | // second) is a polymorphic matcher that matches a value x iff tm | 
|  | // matches tuple (x, second).  Useful for implementing | 
|  | // UnorderedPointwise() in terms of UnorderedElementsAreArray(). | 
|  | // | 
|  | // BoundSecondMatcher is copyable and assignable, as we need to put | 
|  | // instances of this class in a vector when implementing | 
|  | // UnorderedPointwise(). | 
|  | template <typename Tuple2Matcher, typename Second> | 
|  | class BoundSecondMatcher { | 
|  | public: | 
|  | BoundSecondMatcher(const Tuple2Matcher& tm, const Second& second) | 
|  | : tuple2_matcher_(tm), second_value_(second) {} | 
|  |  | 
|  | template <typename T> | 
|  | operator Matcher<T>() const { | 
|  | return MakeMatcher(new Impl<T>(tuple2_matcher_, second_value_)); | 
|  | } | 
|  |  | 
|  | // We have to define this for UnorderedPointwise() to compile in | 
|  | // C++98 mode, as it puts BoundSecondMatcher instances in a vector, | 
|  | // which requires the elements to be assignable in C++98.  The | 
|  | // compiler cannot generate the operator= for us, as Tuple2Matcher | 
|  | // and Second may not be assignable. | 
|  | // | 
|  | // However, this should never be called, so the implementation just | 
|  | // need to assert. | 
|  | void operator=(const BoundSecondMatcher& /*rhs*/) { | 
|  | GTEST_LOG_(FATAL) << "BoundSecondMatcher should never be assigned."; | 
|  | } | 
|  |  | 
|  | private: | 
|  | template <typename T> | 
|  | class Impl : public MatcherInterface<T> { | 
|  | public: | 
|  | typedef ::testing::tuple<T, Second> ArgTuple; | 
|  |  | 
|  | Impl(const Tuple2Matcher& tm, const Second& second) | 
|  | : mono_tuple2_matcher_(SafeMatcherCast<const ArgTuple&>(tm)), | 
|  | second_value_(second) {} | 
|  |  | 
|  | virtual void DescribeTo(::std::ostream* os) const { | 
|  | *os << "and "; | 
|  | UniversalPrint(second_value_, os); | 
|  | *os << " "; | 
|  | mono_tuple2_matcher_.DescribeTo(os); | 
|  | } | 
|  |  | 
|  | virtual bool MatchAndExplain(T x, MatchResultListener* listener) const { | 
|  | return mono_tuple2_matcher_.MatchAndExplain(ArgTuple(x, second_value_), | 
|  | listener); | 
|  | } | 
|  |  | 
|  | private: | 
|  | const Matcher<const ArgTuple&> mono_tuple2_matcher_; | 
|  | const Second second_value_; | 
|  |  | 
|  | GTEST_DISALLOW_ASSIGN_(Impl); | 
|  | }; | 
|  |  | 
|  | const Tuple2Matcher tuple2_matcher_; | 
|  | const Second second_value_; | 
|  | }; | 
|  |  | 
|  | // Given a 2-tuple matcher tm and a value second, | 
|  | // MatcherBindSecond(tm, second) returns a matcher that matches a | 
|  | // value x iff tm matches tuple (x, second).  Useful for implementing | 
|  | // UnorderedPointwise() in terms of UnorderedElementsAreArray(). | 
|  | template <typename Tuple2Matcher, typename Second> | 
|  | BoundSecondMatcher<Tuple2Matcher, Second> MatcherBindSecond( | 
|  | const Tuple2Matcher& tm, const Second& second) { | 
|  | return BoundSecondMatcher<Tuple2Matcher, Second>(tm, second); | 
|  | } | 
|  |  | 
|  | // Returns the description for a matcher defined using the MATCHER*() | 
|  | // macro where the user-supplied description string is "", if | 
|  | // 'negation' is false; otherwise returns the description of the | 
|  | // negation of the matcher.  'param_values' contains a list of strings | 
|  | // that are the print-out of the matcher's parameters. | 
|  | GTEST_API_ string FormatMatcherDescription(bool negation, | 
|  | const char* matcher_name, | 
|  | const Strings& param_values); | 
|  |  | 
|  | }  // namespace internal | 
|  |  | 
|  | // ElementsAreArray(first, last) | 
|  | // ElementsAreArray(pointer, count) | 
|  | // ElementsAreArray(array) | 
|  | // ElementsAreArray(container) | 
|  | // ElementsAreArray({ e1, e2, ..., en }) | 
|  | // | 
|  | // The ElementsAreArray() functions are like ElementsAre(...), except | 
|  | // that they are given a homogeneous sequence rather than taking each | 
|  | // element as a function argument. The sequence can be specified as an | 
|  | // array, a pointer and count, a vector, an initializer list, or an | 
|  | // STL iterator range. In each of these cases, the underlying sequence | 
|  | // can be either a sequence of values or a sequence of matchers. | 
|  | // | 
|  | // All forms of ElementsAreArray() make a copy of the input matcher sequence. | 
|  |  | 
|  | template <typename Iter> | 
|  | inline internal::ElementsAreArrayMatcher< | 
|  | typename ::std::iterator_traits<Iter>::value_type> | 
|  | ElementsAreArray(Iter first, Iter last) { | 
|  | typedef typename ::std::iterator_traits<Iter>::value_type T; | 
|  | return internal::ElementsAreArrayMatcher<T>(first, last); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( | 
|  | const T* pointer, size_t count) { | 
|  | return ElementsAreArray(pointer, pointer + count); | 
|  | } | 
|  |  | 
|  | template <typename T, size_t N> | 
|  | inline internal::ElementsAreArrayMatcher<T> ElementsAreArray( | 
|  | const T (&array)[N]) { | 
|  | return ElementsAreArray(array, N); | 
|  | } | 
|  |  | 
|  | template <typename Container> | 
|  | inline internal::ElementsAreArrayMatcher<typename Container::value_type> | 
|  | ElementsAreArray(const Container& container) { | 
|  | return ElementsAreArray(container.begin(), container.end()); | 
|  | } | 
|  |  | 
|  | #if GTEST_HAS_STD_INITIALIZER_LIST_ | 
|  | template <typename T> | 
|  | inline internal::ElementsAreArrayMatcher<T> | 
|  | ElementsAreArray(::std::initializer_list<T> xs) { | 
|  | return ElementsAreArray(xs.begin(), xs.end()); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // UnorderedElementsAreArray(first, last) | 
|  | // UnorderedElementsAreArray(pointer, count) | 
|  | // UnorderedElementsAreArray(array) | 
|  | // UnorderedElementsAreArray(container) | 
|  | // UnorderedElementsAreArray({ e1, e2, ..., en }) | 
|  | // | 
|  | // The UnorderedElementsAreArray() functions are like | 
|  | // ElementsAreArray(...), but allow matching the elements in any order. | 
|  | template <typename Iter> | 
|  | inline internal::UnorderedElementsAreArrayMatcher< | 
|  | typename ::std::iterator_traits<Iter>::value_type> | 
|  | UnorderedElementsAreArray(Iter first, Iter last) { | 
|  | typedef typename ::std::iterator_traits<Iter>::value_type T; | 
|  | return internal::UnorderedElementsAreArrayMatcher<T>(first, last); | 
|  | } | 
|  |  | 
|  | template <typename T> | 
|  | inline internal::UnorderedElementsAreArrayMatcher<T> | 
|  | UnorderedElementsAreArray(const T* pointer, size_t count) { | 
|  | return UnorderedElementsAreArray(pointer, pointer + count); | 
|  | } | 
|  |  | 
|  | template <typename T, size_t N> | 
|  | inline internal::UnorderedElementsAreArrayMatcher<T> | 
|  | UnorderedElementsAreArray(const T (&array)[N]) { | 
|  | return UnorderedElementsAreArray(array, N); | 
|  | } | 
|  |  | 
|  | template <typename Container> | 
|  | inline internal::UnorderedElementsAreArrayMatcher< | 
|  | typename Container::value_type> | 
|  | UnorderedElementsAreArray(const Container& container) { | 
|  | return UnorderedElementsAreArray(container.begin(), container.end()); | 
|  | } | 
|  |  | 
|  | #if GTEST_HAS_STD_INITIALIZER_LIST_ | 
|  | template <typename T> | 
|  | inline internal::UnorderedElementsAreArrayMatcher<T> | 
|  | UnorderedElementsAreArray(::std::initializer_list<T> xs) { | 
|  | return UnorderedElementsAreArray(xs.begin(), xs.end()); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // _ is a matcher that matches anything of any type. | 
|  | // | 
|  | // This definition is fine as: | 
|  | // | 
|  | //   1. The C++ standard permits using the name _ in a namespace that | 
|  | //      is not the global namespace or ::std. | 
|  | //   2. The AnythingMatcher class has no data member or constructor, | 
|  | //      so it's OK to create global variables of this type. | 
|  | //   3. c-style has approved of using _ in this case. | 
|  | const internal::AnythingMatcher _ = {}; | 
|  | // Creates a matcher that matches any value of the given type T. | 
|  | template <typename T> | 
|  | inline Matcher<T> A() { return MakeMatcher(new internal::AnyMatcherImpl<T>()); } | 
|  |  | 
|  | // Creates a matcher that matches any value of the given type T. | 
|  | template <typename T> | 
|  | inline Matcher<T> An() { return A<T>(); } | 
|  |  | 
|  | // Creates a polymorphic matcher that matches anything equal to x. | 
|  | // Note: if the parameter of Eq() were declared as const T&, Eq("foo") | 
|  | // wouldn't compile. | 
|  | template <typename T> | 
|  | inline internal::EqMatcher<T> Eq(T x) { return internal::EqMatcher<T>(x); } | 
|  |  | 
|  | // Constructs a Matcher<T> from a 'value' of type T.  The constructed | 
|  | // matcher matches any value that's equal to 'value'. | 
|  | template <typename T> | 
|  | Matcher<T>::Matcher(T value) { *this = Eq(value); } | 
|  |  | 
|  | // Creates a monomorphic matcher that matches anything with type Lhs | 
|  | // and equal to rhs.  A user may need to use this instead of Eq(...) | 
|  | // in order to resolve an overloading ambiguity. | 
|  | // | 
|  | // TypedEq<T>(x) is just a convenient short-hand for Matcher<T>(Eq(x)) | 
|  | // or Matcher<T>(x), but more readable than the latter. | 
|  | // | 
|  | // We could define similar monomorphic matchers for other comparison | 
|  | // operations (e.g. TypedLt, TypedGe, and etc), but decided not to do | 
|  | // it yet as those are used much less than Eq() in practice.  A user | 
|  | // can always write Matcher<T>(Lt(5)) to be explicit about the type, | 
|  | // for example. | 
|  | template <typename Lhs, typename Rhs> | 
|  | inline Matcher<Lhs> TypedEq(const Rhs& rhs) { return Eq(rhs); } | 
|  |  | 
|  | // Creates a polymorphic matcher that matches anything >= x. | 
|  | template <typename Rhs> | 
|  | inline internal::GeMatcher<Rhs> Ge(Rhs x) { | 
|  | return internal::GeMatcher<Rhs>(x); | 
|  | } | 
|  |  | 
|  | // Creates a polymorphic matcher that matches anything > x. | 
|  | template <typename Rhs> | 
|  | inline internal::GtMatcher<Rhs> Gt(Rhs x) { | 
|  | return internal::GtMatcher<Rhs>(x); | 
|  | } | 
|  |  | 
|  | // Creates a polymorphic matcher that matches anything <= x. | 
|  | template <typename Rhs> | 
|  | inline internal::LeMatcher<Rhs> Le(Rhs x) { | 
|  | return internal::LeMatcher<Rhs>(x); | 
|  | } | 
|  |  | 
|  | // Creates a polymorphic matcher that matches anything < x. | 
|  | template <typename Rhs> | 
|  | inline internal::LtMatcher<Rhs> Lt(Rhs x) { | 
|  | return internal::LtMatcher<Rhs>(x); | 
|  | } | 
|  |  | 
|  | // Creates a polymorphic matcher that matches anything != x. | 
|  | template <typename Rhs> | 
|  | inline internal::NeMatcher<Rhs> Ne(Rhs x) { | 
|  | return internal::NeMatcher<Rhs>(x); | 
|  | } | 
|  |  | 
|  | // Creates a polymorphic matcher that matches any NULL pointer. | 
|  | inline PolymorphicMatcher<internal::IsNullMatcher > IsNull() { | 
|  | return MakePolymorphicMatcher(internal::IsNullMatcher()); | 
|  | } | 
|  |  | 
|  | // Creates a polymorphic matcher that matches any non-NULL pointer. | 
|  | // This is convenient as Not(NULL) doesn't compile (the compiler | 
|  | // thinks that that expression is comparing a pointer with an integer). | 
|  | inline PolymorphicMatcher<internal::NotNullMatcher > NotNull() { | 
|  | return MakePolymorphicMatcher(internal::NotNullMatcher()); | 
|  | } | 
|  |  | 
|  | // Creates a polymorphic matcher that matches any argument that | 
|  | // references variable x. | 
|  | template <typename T> | 
|  | inline internal::RefMatcher<T&> Ref(T& x) {  // NOLINT | 
|  | return internal::RefMatcher<T&>(x); | 
|  | } | 
|  |  | 
|  | // Creates a matcher that matches any double argument approximately | 
|  | // equal to rhs, where two NANs are considered unequal. | 
|  | inline internal::FloatingEqMatcher<double> DoubleEq(double rhs) { | 
|  | return internal::FloatingEqMatcher<double>(rhs, false); | 
|  | } | 
|  |  | 
|  | // Creates a matcher that matches any double argument approximately | 
|  | // equal to rhs, including NaN values when rhs is NaN. | 
|  | inline internal::FloatingEqMatcher<double> NanSensitiveDoubleEq(double rhs) { | 
|  | return internal::FloatingEqMatcher<double>(rhs, true); | 
|  | } | 
|  |  | 
|  | // Creates a matcher that matches any double argument approximately equal to | 
|  | // rhs, up to the specified max absolute error bound, where two NANs are | 
|  | // considered unequal.  The max absolute error bound must be non-negative. | 
|  | inline internal::FloatingEqMatcher<double> DoubleNear( | 
|  | double rhs, double max_abs_error) { | 
|  | return internal::FloatingEqMatcher<double>(rhs, false, max_abs_error); | 
|  | } | 
|  |  | 
|  | // Creates a matcher that matches any double argument approximately equal to | 
|  | // rhs, up to the specified max absolute error bound, including NaN values when | 
|  | // rhs is NaN.  The max absolute error bound must be non-negative. | 
|  | inline internal::FloatingEqMatcher<double> NanSensitiveDoubleNear( | 
|  | double rhs, double max_abs_error) { | 
|  | return internal::FloatingEqMatcher<double>(rhs, true, max_abs_error); | 
|  | } | 
|  |  | 
|  | // Creates a matcher that matches any float argument approximately | 
|  | // equal to rhs, where two NANs are considered unequal. | 
|  | inline internal::FloatingEqMatcher<float> FloatEq(float rhs) { | 
|  | return internal::FloatingEqMatcher<float>(rhs, false); | 
|  | } | 
|  |  | 
|  | // Creates a matcher that matches any float argument approximately | 
|  | // equal to rhs, including NaN values when rhs is NaN. | 
|  | inline internal::FloatingEqMatcher<float> NanSensitiveFloatEq(float rhs) { | 
|  | return internal::FloatingEqMatcher<float>(rhs, true); | 
|  | } | 
|  |  | 
|  | // Creates a matcher that matches any float argument approximately equal to | 
|  | // rhs, up to the specified max absolute error bound, where two NANs are | 
|  | // considered unequal.  The max absolute error bound must be non-negative. | 
|  | inline internal::FloatingEqMatcher<float> FloatNear( | 
|  | float rhs, float max_abs_error) { | 
|  | return internal::FloatingEqMatcher<float>(rhs, false, max_abs_error); | 
|  | } | 
|  |  | 
|  | // Creates a matcher that matches any float argument approximately equal to | 
|  | // rhs, up to the specified max absolute error bound, including NaN values when | 
|  | // rhs is NaN.  The max absolute error bound must be non-negative. | 
|  | inline internal::FloatingEqMatcher<float> NanSensitiveFloatNear( | 
|  | float rhs, float max_abs_error) { | 
|  | return internal::FloatingEqMatcher<float>(rhs, true, max_abs_error); | 
|  | } | 
|  |  | 
|  | // Creates a matcher that matches a pointer (raw or smart) that points | 
|  | // to a value that matches inner_matcher. | 
|  | template <typename InnerMatcher> | 
|  | inline internal::PointeeMatcher<InnerMatcher> Pointee( | 
|  | const InnerMatcher& inner_matcher) { | 
|  | return internal::PointeeMatcher<InnerMatcher>(inner_matcher); | 
|  | } | 
|  |  | 
|  | // Creates a matcher that matches a pointer or reference that matches | 
|  | // inner_matcher when dynamic_cast<To> is applied. | 
|  | // The result of dynamic_cast<To> is forwarded to the inner matcher. | 
|  | // If To is a pointer and the cast fails, the inner matcher will receive NULL. | 
|  | // If To is a reference and the cast fails, this matcher returns false | 
|  | // immediately. | 
|  | template <typename To> | 
|  | inline PolymorphicMatcher<internal::WhenDynamicCastToMatcher<To> > | 
|  | WhenDynamicCastTo(const Matcher<To>& inner_matcher) { | 
|  | return MakePolymorphicMatcher( | 
|  | internal::WhenDynamicCastToMatcher<To>(inner_matcher)); | 
|  | } | 
|  |  | 
|  | // Creates a matcher that matches an object whose given field matches | 
|  | // 'matcher'.  For example, | 
|  | //   Field(&Foo::number, Ge(5)) | 
|  | // matches a Foo object x iff x.number >= 5. | 
|  | template <typename Class, typename FieldType, typename FieldMatcher> | 
|  | inline PolymorphicMatcher< | 
|  | internal::FieldMatcher<Class, FieldType> > Field( | 
|  | FieldType Class::*field, const FieldMatcher& matcher) { | 
|  | return MakePolymorphicMatcher( | 
|  | internal::FieldMatcher<Class, FieldType>( | 
|  | field, MatcherCast<const FieldType&>(matcher))); | 
|  | // The call to MatcherCast() is required for supporting inner | 
|  | // matchers of compatible types.  For example, it allows | 
|  | //   Field(&Foo::bar, m) | 
|  | // to compile where bar is an int32 and m is a matcher for int64. | 
|  | } | 
|  |  | 
|  | // Creates a matcher that matches an object whose given property | 
|  | // matches 'matcher'.  For example, | 
|  | //   Property(&Foo::str, StartsWith("hi")) | 
|  | // matches a Foo object x iff x.str() starts with "hi". | 
|  | template <typename Class, typename PropertyType, typename PropertyMatcher> | 
|  | inline PolymorphicMatcher< | 
|  | internal::PropertyMatcher<Class, PropertyType> > Property( | 
|  | PropertyType (Class::*property)() const, const PropertyMatcher& matcher) { | 
|  | return MakePolymorphicMatcher( | 
|  | internal::PropertyMatcher<Class, PropertyType>( | 
|  | property, | 
|  | MatcherCast<GTEST_REFERENCE_TO_CONST_(PropertyType)>(matcher))); | 
|  | // The call to MatcherCast() is required for supporting inner | 
|  | // matchers of compatible types.  For example, it allows | 
|  | //   Property(&Foo::bar, m) | 
|  | // to compile where bar() returns an int32 and m is a matcher for int64. | 
|  | } | 
|  |  | 
|  | // Creates a matcher that matches an object iff the result of applying | 
|  | // a callable to x matches 'matcher'. | 
|  | // For example, | 
|  | //   ResultOf(f, StartsWith("hi")) | 
|  | // matches a Foo object x iff f(x) starts with "hi". | 
|  | // callable parameter can be a function, function pointer, or a functor. | 
|  | // Callable has to satisfy the following conditions: | 
|  | //   * It is required to keep no state affecting the results of | 
|  | //     the calls on it and make no assumptions about how many calls | 
|  | //     will be made. Any state it keeps must be protected from the | 
|  | //     concurrent access. | 
|  | //   * If it is a function object, it has to define type result_type. | 
|  | //     We recommend deriving your functor classes from std::unary_function. | 
|  | template <typename Callable, typename ResultOfMatcher> | 
|  | internal::ResultOfMatcher<Callable> ResultOf( | 
|  | Callable callable, const ResultOfMatcher& matcher) { | 
|  | return internal::ResultOfMatcher<Callable>( | 
|  | callable, | 
|  | MatcherCast<typename internal::CallableTraits<Callable>::ResultType>( | 
|  | matcher)); | 
|  | // The call to MatcherCast() is required for supporting inner | 
|  | // matchers of compatible types.  For example, it allows | 
|  | //   ResultOf(Function, m) | 
|  | // to compile where Function() returns an int32 and m is a matcher for int64. | 
|  | } | 
|  |  | 
|  | // String matchers. | 
|  |  | 
|  | // Matches a string equal to str. | 
|  | inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> > | 
|  | StrEq(const internal::string& str) { | 
|  | return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>( | 
|  | str, true, true)); | 
|  | } | 
|  |  | 
|  | // Matches a string not equal to str. | 
|  | inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> > | 
|  | StrNe(const internal::string& str) { | 
|  | return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>( | 
|  | str, false, true)); | 
|  | } | 
|  |  | 
|  | // Matches a string equal to str, ignoring case. | 
|  | inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> > | 
|  | StrCaseEq(const internal::string& str) { | 
|  | return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>( | 
|  | str, true, false)); | 
|  | } | 
|  |  | 
|  | // Matches a string not equal to str, ignoring case. | 
|  | inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::string> > | 
|  | StrCaseNe(const internal::string& str) { | 
|  | return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::string>( | 
|  | str, false, false)); | 
|  | } | 
|  |  | 
|  | // Creates a matcher that matches any string, std::string, or C string | 
|  | // that contains the given substring. | 
|  | inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::string> > | 
|  | HasSubstr(const internal::string& substring) { | 
|  | return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::string>( | 
|  | substring)); | 
|  | } | 
|  |  | 
|  | // Matches a string that starts with 'prefix' (case-sensitive). | 
|  | inline PolymorphicMatcher<internal::StartsWithMatcher<internal::string> > | 
|  | StartsWith(const internal::string& prefix) { | 
|  | return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::string>( | 
|  | prefix)); | 
|  | } | 
|  |  | 
|  | // Matches a string that ends with 'suffix' (case-sensitive). | 
|  | inline PolymorphicMatcher<internal::EndsWithMatcher<internal::string> > | 
|  | EndsWith(const internal::string& suffix) { | 
|  | return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::string>( | 
|  | suffix)); | 
|  | } | 
|  |  | 
|  | // Matches a string that fully matches regular expression 'regex'. | 
|  | // The matcher takes ownership of 'regex'. | 
|  | inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex( | 
|  | const internal::RE* regex) { | 
|  | return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, true)); | 
|  | } | 
|  | inline PolymorphicMatcher<internal::MatchesRegexMatcher> MatchesRegex( | 
|  | const internal::string& regex) { | 
|  | return MatchesRegex(new internal::RE(regex)); | 
|  | } | 
|  |  | 
|  | // Matches a string that contains regular expression 'regex'. | 
|  | // The matcher takes ownership of 'regex'. | 
|  | inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex( | 
|  | const internal::RE* regex) { | 
|  | return MakePolymorphicMatcher(internal::MatchesRegexMatcher(regex, false)); | 
|  | } | 
|  | inline PolymorphicMatcher<internal::MatchesRegexMatcher> ContainsRegex( | 
|  | const internal::string& regex) { | 
|  | return ContainsRegex(new internal::RE(regex)); | 
|  | } | 
|  |  | 
|  | #if GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING | 
|  | // Wide string matchers. | 
|  |  | 
|  | // Matches a string equal to str. | 
|  | inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> > | 
|  | StrEq(const internal::wstring& str) { | 
|  | return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>( | 
|  | str, true, true)); | 
|  | } | 
|  |  | 
|  | // Matches a string not equal to str. | 
|  | inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> > | 
|  | StrNe(const internal::wstring& str) { | 
|  | return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>( | 
|  | str, false, true)); | 
|  | } | 
|  |  | 
|  | // Matches a string equal to str, ignoring case. | 
|  | inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> > | 
|  | StrCaseEq(const internal::wstring& str) { | 
|  | return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>( | 
|  | str, true, false)); | 
|  | } | 
|  |  | 
|  | // Matches a string not equal to str, ignoring case. | 
|  | inline PolymorphicMatcher<internal::StrEqualityMatcher<internal::wstring> > | 
|  | StrCaseNe(const internal::wstring& str) { | 
|  | return MakePolymorphicMatcher(internal::StrEqualityMatcher<internal::wstring>( | 
|  | str, false, false)); | 
|  | } | 
|  |  | 
|  | // Creates a matcher that matches any wstring, std::wstring, or C wide string | 
|  | // that contains the given substring. | 
|  | inline PolymorphicMatcher<internal::HasSubstrMatcher<internal::wstring> > | 
|  | HasSubstr(const internal::wstring& substring) { | 
|  | return MakePolymorphicMatcher(internal::HasSubstrMatcher<internal::wstring>( | 
|  | substring)); | 
|  | } | 
|  |  | 
|  | // Matches a string that starts with 'prefix' (case-sensitive). | 
|  | inline PolymorphicMatcher<internal::StartsWithMatcher<internal::wstring> > | 
|  | StartsWith(const internal::wstring& prefix) { | 
|  | return MakePolymorphicMatcher(internal::StartsWithMatcher<internal::wstring>( | 
|  | prefix)); | 
|  | } | 
|  |  | 
|  | // Matches a string that ends with 'suffix' (case-sensitive). | 
|  | inline PolymorphicMatcher<internal::EndsWithMatcher<internal::wstring> > | 
|  | EndsWith(const internal::wstring& suffix) { | 
|  | return MakePolymorphicMatcher(internal::EndsWithMatcher<internal::wstring>( | 
|  | suffix)); | 
|  | } | 
|  |  | 
|  | #endif  // GTEST_HAS_GLOBAL_WSTRING || GTEST_HAS_STD_WSTRING | 
|  |  | 
|  | // Creates a polymorphic matcher that matches a 2-tuple where the | 
|  | // first field == the second field. | 
|  | inline internal::Eq2Matcher Eq() { return internal::Eq2Matcher(); } | 
|  |  | 
|  | // Creates a polymorphic matcher that matches a 2-tuple where the | 
|  | // first field >= the second field. | 
|  | inline internal::Ge2Matcher Ge() { return internal::Ge2Matcher(); } | 
|  |  | 
|  | // Creates a polymorphic matcher that matches a 2-tuple where the | 
|  | // first field > the second field. | 
|  | inline internal::Gt2Matcher Gt() { return internal::Gt2Matcher(); } | 
|  |  | 
|  | // Creates a polymorphic matcher that matches a 2-tuple where the | 
|  | // first field <= the second field. | 
|  | inline internal::Le2Matcher Le() { return internal::Le2Matcher(); } | 
|  |  | 
|  | // Creates a polymorphic matcher that matches a 2-tuple where the | 
|  | // first field < the second field. | 
|  | inline internal::Lt2Matcher Lt() { return internal::Lt2Matcher(); } | 
|  |  | 
|  | // Creates a polymorphic matcher that matches a 2-tuple where the | 
|  | // first field != the second field. | 
|  | inline internal::Ne2Matcher Ne() { return internal::Ne2Matcher(); } | 
|  |  | 
|  | // Creates a matcher that matches any value of type T that m doesn't | 
|  | // match. | 
|  | template <typename InnerMatcher> | 
|  | inline internal::NotMatcher<InnerMatcher> Not(InnerMatcher m) { | 
|  | return internal::NotMatcher<InnerMatcher>(m); | 
|  | } | 
|  |  | 
|  | // Returns a matcher that matches anything that satisfies the given | 
|  | // predicate.  The predicate can be any unary function or functor | 
|  | // whose return type can be implicitly converted to bool. | 
|  | template <typename Predicate> | 
|  | inline PolymorphicMatcher<internal::TrulyMatcher<Predicate> > | 
|  | Truly(Predicate pred) { | 
|  | return MakePolymorphicMatcher(internal::TrulyMatcher<Predicate>(pred)); | 
|  | } | 
|  |  | 
|  | // Returns a matcher that matches the container size. The container must | 
|  | // support both size() and size_type which all STL-like containers provide. | 
|  | // Note that the parameter 'size' can be a value of type size_type as well as | 
|  | // matcher. For instance: | 
|  | //   EXPECT_THAT(container, SizeIs(2));     // Checks container has 2 elements. | 
|  | //   EXPECT_THAT(container, SizeIs(Le(2));  // Checks container has at most 2. | 
|  | template <typename SizeMatcher> | 
|  | inline internal::SizeIsMatcher<SizeMatcher> | 
|  | SizeIs(const SizeMatcher& size_matcher) { | 
|  | return internal::SizeIsMatcher<SizeMatcher>(size_matcher); | 
|  | } | 
|  |  | 
|  | // Returns a matcher that matches the distance between the container's begin() | 
|  | // iterator and its end() iterator, i.e. the size of the container. This matcher | 
|  | // can be used instead of SizeIs with containers such as std::forward_list which | 
|  | // do not implement size(). The container must provide const_iterator (with | 
|  | // valid iterator_traits), begin() and end(). | 
|  | template <typename DistanceMatcher> | 
|  | inline internal::BeginEndDistanceIsMatcher<DistanceMatcher> | 
|  | BeginEndDistanceIs(const DistanceMatcher& distance_matcher) { | 
|  | return internal::BeginEndDistanceIsMatcher<DistanceMatcher>(distance_matcher); | 
|  | } | 
|  |  | 
|  | // Returns a matcher that matches an equal container. | 
|  | // This matcher behaves like Eq(), but in the event of mismatch lists the | 
|  | // values that are included in one container but not the other. (Duplicate | 
|  | // values and order differences are not explained.) | 
|  | template <typename Container> | 
|  | inline PolymorphicMatcher<internal::ContainerEqMatcher<  // NOLINT | 
|  | GTEST_REMOVE_CONST_(Container)> > | 
|  | ContainerEq(const Container& rhs) { | 
|  | // This following line is for working around a bug in MSVC 8.0, | 
|  | // which causes Container to be a const type sometimes. | 
|  | typedef GTEST_REMOVE_CONST_(Container) RawContainer; | 
|  | return MakePolymorphicMatcher( | 
|  | internal::ContainerEqMatcher<RawContainer>(rhs)); | 
|  | } | 
|  |  | 
|  | // Returns a matcher that matches a container that, when sorted using | 
|  | // the given comparator, matches container_matcher. | 
|  | template <typename Comparator, typename ContainerMatcher> | 
|  | inline internal::WhenSortedByMatcher<Comparator, ContainerMatcher> | 
|  | WhenSortedBy(const Comparator& comparator, | 
|  | const ContainerMatcher& container_matcher) { | 
|  | return internal::WhenSortedByMatcher<Comparator, ContainerMatcher>( | 
|  | comparator, container_matcher); | 
|  | } | 
|  |  | 
|  | // Returns a matcher that matches a container that, when sorted using | 
|  | // the < operator, matches container_matcher. | 
|  | template <typename ContainerMatcher> | 
|  | inline internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher> | 
|  | WhenSorted(const ContainerMatcher& container_matcher) { | 
|  | return | 
|  | internal::WhenSortedByMatcher<internal::LessComparator, ContainerMatcher>( | 
|  | internal::LessComparator(), container_matcher); | 
|  | } | 
|  |  | 
|  | // Matches an STL-style container or a native array that contains the | 
|  | // same number of elements as in rhs, where its i-th element and rhs's | 
|  | // i-th element (as a pair) satisfy the given pair matcher, for all i. | 
|  | // TupleMatcher must be able to be safely cast to Matcher<tuple<const | 
|  | // T1&, const T2&> >, where T1 and T2 are the types of elements in the | 
|  | // LHS container and the RHS container respectively. | 
|  | template <typename TupleMatcher, typename Container> | 
|  | inline internal::PointwiseMatcher<TupleMatcher, | 
|  | GTEST_REMOVE_CONST_(Container)> | 
|  | Pointwise(const TupleMatcher& tuple_matcher, const Container& rhs) { | 
|  | // This following line is for working around a bug in MSVC 8.0, | 
|  | // which causes Container to be a const type sometimes (e.g. when | 
|  | // rhs is a const int[]).. | 
|  | typedef GTEST_REMOVE_CONST_(Container) RawContainer; | 
|  | return internal::PointwiseMatcher<TupleMatcher, RawContainer>( | 
|  | tuple_matcher, rhs); | 
|  | } | 
|  |  | 
|  | #if GTEST_HAS_STD_INITIALIZER_LIST_ | 
|  |  | 
|  | // Supports the Pointwise(m, {a, b, c}) syntax. | 
|  | template <typename TupleMatcher, typename T> | 
|  | inline internal::PointwiseMatcher<TupleMatcher, std::vector<T> > Pointwise( | 
|  | const TupleMatcher& tuple_matcher, std::initializer_list<T> rhs) { | 
|  | return Pointwise(tuple_matcher, std::vector<T>(rhs)); | 
|  | } | 
|  |  | 
|  | #endif  // GTEST_HAS_STD_INITIALIZER_LIST_ | 
|  |  | 
|  | // UnorderedPointwise(pair_matcher, rhs) matches an STL-style | 
|  | // container or a native array that contains the same number of | 
|  | // elements as in rhs, where in some permutation of the container, its | 
|  | // i-th element and rhs's i-th element (as a pair) satisfy the given | 
|  | // pair matcher, for all i.  Tuple2Matcher must be able to be safely | 
|  | // cast to Matcher<tuple<const T1&, const T2&> >, where T1 and T2 are | 
|  | // the types of elements in the LHS container and the RHS container | 
|  | // respectively. | 
|  | // | 
|  | // This is like Pointwise(pair_matcher, rhs), except that the element | 
|  | // order doesn't matter. | 
|  | template <typename Tuple2Matcher, typename RhsContainer> | 
|  | inline internal::UnorderedElementsAreArrayMatcher< | 
|  | typename internal::BoundSecondMatcher< | 
|  | Tuple2Matcher, typename internal::StlContainerView<GTEST_REMOVE_CONST_( | 
|  | RhsContainer)>::type::value_type> > | 
|  | UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, | 
|  | const RhsContainer& rhs_container) { | 
|  | // This following line is for working around a bug in MSVC 8.0, | 
|  | // which causes RhsContainer to be a const type sometimes (e.g. when | 
|  | // rhs_container is a const int[]). | 
|  | typedef GTEST_REMOVE_CONST_(RhsContainer) RawRhsContainer; | 
|  |  | 
|  | // RhsView allows the same code to handle RhsContainer being a | 
|  | // STL-style container and it being a native C-style array. | 
|  | typedef typename internal::StlContainerView<RawRhsContainer> RhsView; | 
|  | typedef typename RhsView::type RhsStlContainer; | 
|  | typedef typename RhsStlContainer::value_type Second; | 
|  | const RhsStlContainer& rhs_stl_container = | 
|  | RhsView::ConstReference(rhs_container); | 
|  |  | 
|  | // Create a matcher for each element in rhs_container. | 
|  | ::std::vector<internal::BoundSecondMatcher<Tuple2Matcher, Second> > matchers; | 
|  | for (typename RhsStlContainer::const_iterator it = rhs_stl_container.begin(); | 
|  | it != rhs_stl_container.end(); ++it) { | 
|  | matchers.push_back( | 
|  | internal::MatcherBindSecond(tuple2_matcher, *it)); | 
|  | } | 
|  |  | 
|  | // Delegate the work to UnorderedElementsAreArray(). | 
|  | return UnorderedElementsAreArray(matchers); | 
|  | } | 
|  |  | 
|  | #if GTEST_HAS_STD_INITIALIZER_LIST_ | 
|  |  | 
|  | // Supports the UnorderedPointwise(m, {a, b, c}) syntax. | 
|  | template <typename Tuple2Matcher, typename T> | 
|  | inline internal::UnorderedElementsAreArrayMatcher< | 
|  | typename internal::BoundSecondMatcher<Tuple2Matcher, T> > | 
|  | UnorderedPointwise(const Tuple2Matcher& tuple2_matcher, | 
|  | std::initializer_list<T> rhs) { | 
|  | return UnorderedPointwise(tuple2_matcher, std::vector<T>(rhs)); | 
|  | } | 
|  |  | 
|  | #endif  // GTEST_HAS_STD_INITIALIZER_LIST_ | 
|  |  | 
|  | // Matches an STL-style container or a native array that contains at | 
|  | // least one element matching the given value or matcher. | 
|  | // | 
|  | // Examples: | 
|  | //   ::std::set<int> page_ids; | 
|  | //   page_ids.insert(3); | 
|  | //   page_ids.insert(1); | 
|  | //   EXPECT_THAT(page_ids, Contains(1)); | 
|  | //   EXPECT_THAT(page_ids, Contains(Gt(2))); | 
|  | //   EXPECT_THAT(page_ids, Not(Contains(4))); | 
|  | // | 
|  | //   ::std::map<int, size_t> page_lengths; | 
|  | //   page_lengths[1] = 100; | 
|  | //   EXPECT_THAT(page_lengths, | 
|  | //               Contains(::std::pair<const int, size_t>(1, 100))); | 
|  | // | 
|  | //   const char* user_ids[] = { "joe", "mike", "tom" }; | 
|  | //   EXPECT_THAT(user_ids, Contains(Eq(::std::string("tom")))); | 
|  | template <typename M> | 
|  | inline internal::ContainsMatcher<M> Contains(M matcher) { | 
|  | return internal::ContainsMatcher<M>(matcher); | 
|  | } | 
|  |  | 
|  | // Matches an STL-style container or a native array that contains only | 
|  | // elements matching the given value or matcher. | 
|  | // | 
|  | // Each(m) is semantically equivalent to Not(Contains(Not(m))). Only | 
|  | // the messages are different. | 
|  | // | 
|  | // Examples: | 
|  | //   ::std::set<int> page_ids; | 
|  | //   // Each(m) matches an empty container, regardless of what m is. | 
|  | //   EXPECT_THAT(page_ids, Each(Eq(1))); | 
|  | //   EXPECT_THAT(page_ids, Each(Eq(77))); | 
|  | // | 
|  | //   page_ids.insert(3); | 
|  | //   EXPECT_THAT(page_ids, Each(Gt(0))); | 
|  | //   EXPECT_THAT(page_ids, Not(Each(Gt(4)))); | 
|  | //   page_ids.insert(1); | 
|  | //   EXPECT_THAT(page_ids, Not(Each(Lt(2)))); | 
|  | // | 
|  | //   ::std::map<int, size_t> page_lengths; | 
|  | //   page_lengths[1] = 100; | 
|  | //   page_lengths[2] = 200; | 
|  | //   page_lengths[3] = 300; | 
|  | //   EXPECT_THAT(page_lengths, Not(Each(Pair(1, 100)))); | 
|  | //   EXPECT_THAT(page_lengths, Each(Key(Le(3)))); | 
|  | // | 
|  | //   const char* user_ids[] = { "joe", "mike", "tom" }; | 
|  | //   EXPECT_THAT(user_ids, Not(Each(Eq(::std::string("tom"))))); | 
|  | template <typename M> | 
|  | inline internal::EachMatcher<M> Each(M matcher) { | 
|  | return internal::EachMatcher<M>(matcher); | 
|  | } | 
|  |  | 
|  | // Key(inner_matcher) matches an std::pair whose 'first' field matches | 
|  | // inner_matcher.  For example, Contains(Key(Ge(5))) can be used to match an | 
|  | // std::map that contains at least one element whose key is >= 5. | 
|  | template <typename M> | 
|  | inline internal::KeyMatcher<M> Key(M inner_matcher) { | 
|  | return internal::KeyMatcher<M>(inner_matcher); | 
|  | } | 
|  |  | 
|  | // Pair(first_matcher, second_matcher) matches a std::pair whose 'first' field | 
|  | // matches first_matcher and whose 'second' field matches second_matcher.  For | 
|  | // example, EXPECT_THAT(map_type, ElementsAre(Pair(Ge(5), "foo"))) can be used | 
|  | // to match a std::map<int, string> that contains exactly one element whose key | 
|  | // is >= 5 and whose value equals "foo". | 
|  | template <typename FirstMatcher, typename SecondMatcher> | 
|  | inline internal::PairMatcher<FirstMatcher, SecondMatcher> | 
|  | Pair(FirstMatcher first_matcher, SecondMatcher second_matcher) { | 
|  | return internal::PairMatcher<FirstMatcher, SecondMatcher>( | 
|  | first_matcher, second_matcher); | 
|  | } | 
|  |  | 
|  | // Returns a predicate that is satisfied by anything that matches the | 
|  | // given matcher. | 
|  | template <typename M> | 
|  | inline internal::MatcherAsPredicate<M> Matches(M matcher) { | 
|  | return internal::MatcherAsPredicate<M>(matcher); | 
|  | } | 
|  |  | 
|  | // Returns true iff the value matches the matcher. | 
|  | template <typename T, typename M> | 
|  | inline bool Value(const T& value, M matcher) { | 
|  | return testing::Matches(matcher)(value); | 
|  | } | 
|  |  | 
|  | // Matches the value against the given matcher and explains the match | 
|  | // result to listener. | 
|  | template <typename T, typename M> | 
|  | inline bool ExplainMatchResult( | 
|  | M matcher, const T& value, MatchResultListener* listener) { | 
|  | return SafeMatcherCast<const T&>(matcher).MatchAndExplain(value, listener); | 
|  | } | 
|  |  | 
|  | #if GTEST_LANG_CXX11 | 
|  | // Define variadic matcher versions. They are overloaded in | 
|  | // gmock-generated-matchers.h for the cases supported by pre C++11 compilers. | 
|  | template <typename... Args> | 
|  | inline internal::AllOfMatcher<Args...> AllOf(const Args&... matchers) { | 
|  | return internal::AllOfMatcher<Args...>(matchers...); | 
|  | } | 
|  |  | 
|  | template <typename... Args> | 
|  | inline internal::AnyOfMatcher<Args...> AnyOf(const Args&... matchers) { | 
|  | return internal::AnyOfMatcher<Args...>(matchers...); | 
|  | } | 
|  |  | 
|  | #endif  // GTEST_LANG_CXX11 | 
|  |  | 
|  | // AllArgs(m) is a synonym of m.  This is useful in | 
|  | // | 
|  | //   EXPECT_CALL(foo, Bar(_, _)).With(AllArgs(Eq())); | 
|  | // | 
|  | // which is easier to read than | 
|  | // | 
|  | //   EXPECT_CALL(foo, Bar(_, _)).With(Eq()); | 
|  | template <typename InnerMatcher> | 
|  | inline InnerMatcher AllArgs(const InnerMatcher& matcher) { return matcher; } | 
|  |  | 
|  | // These macros allow using matchers to check values in Google Test | 
|  | // tests.  ASSERT_THAT(value, matcher) and EXPECT_THAT(value, matcher) | 
|  | // succeed iff the value matches the matcher.  If the assertion fails, | 
|  | // the value and the description of the matcher will be printed. | 
|  | #define ASSERT_THAT(value, matcher) ASSERT_PRED_FORMAT1(\ | 
|  | ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) | 
|  | #define EXPECT_THAT(value, matcher) EXPECT_PRED_FORMAT1(\ | 
|  | ::testing::internal::MakePredicateFormatterFromMatcher(matcher), value) | 
|  |  | 
|  | }  // namespace testing | 
|  |  | 
|  | // Include any custom callback matchers added by the local installation. | 
|  | // We must include this header at the end to make sure it can use the | 
|  | // declarations from this file. | 
|  | #include "gmock/internal/custom/gmock-matchers.h" | 
|  | #endif  // GMOCK_INCLUDE_GMOCK_GMOCK_MATCHERS_H_ |