|  | //===- CFLAliasAnalysis.cpp - CFL-Based Alias Analysis Implementation ------==// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements a CFL-based context-insensitive alias analysis | 
|  | // algorithm. It does not depend on types. The algorithm is a mixture of the one | 
|  | // described in "Demand-driven alias analysis for C" by Xin Zheng and Radu | 
|  | // Rugina, and "Fast algorithms for Dyck-CFL-reachability with applications to | 
|  | // Alias Analysis" by Zhang Q, Lyu M R, Yuan H, and Su Z. -- to summarize the | 
|  | // papers, we build a graph of the uses of a variable, where each node is a | 
|  | // memory location, and each edge is an action that happened on that memory | 
|  | // location.  The "actions" can be one of Dereference, Reference, or Assign. | 
|  | // | 
|  | // Two variables are considered as aliasing iff you can reach one value's node | 
|  | // from the other value's node and the language formed by concatenating all of | 
|  | // the edge labels (actions) conforms to a context-free grammar. | 
|  | // | 
|  | // Because this algorithm requires a graph search on each query, we execute the | 
|  | // algorithm outlined in "Fast algorithms..." (mentioned above) | 
|  | // in order to transform the graph into sets of variables that may alias in | 
|  | // ~nlogn time (n = number of variables.), which makes queries take constant | 
|  | // time. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Analysis/CFLAliasAnalysis.h" | 
|  | #include "StratifiedSets.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/InstVisitor.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Allocator.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <memory> | 
|  | #include <tuple> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "cfl-aa" | 
|  |  | 
|  | CFLAAResult::CFLAAResult(const TargetLibraryInfo &TLI) : AAResultBase(TLI) {} | 
|  | CFLAAResult::CFLAAResult(CFLAAResult &&Arg) : AAResultBase(std::move(Arg)) {} | 
|  |  | 
|  | // \brief Information we have about a function and would like to keep around | 
|  | struct CFLAAResult::FunctionInfo { | 
|  | StratifiedSets<Value *> Sets; | 
|  | // Lots of functions have < 4 returns. Adjust as necessary. | 
|  | SmallVector<Value *, 4> ReturnedValues; | 
|  |  | 
|  | FunctionInfo(StratifiedSets<Value *> &&S, SmallVector<Value *, 4> &&RV) | 
|  | : Sets(std::move(S)), ReturnedValues(std::move(RV)) {} | 
|  | }; | 
|  |  | 
|  | // Try to go from a Value* to a Function*. Never returns nullptr. | 
|  | static Optional<Function *> parentFunctionOfValue(Value *); | 
|  |  | 
|  | // Returns possible functions called by the Inst* into the given | 
|  | // SmallVectorImpl. Returns true if targets found, false otherwise. | 
|  | // This is templated because InvokeInst/CallInst give us the same | 
|  | // set of functions that we care about, and I don't like repeating | 
|  | // myself. | 
|  | template <typename Inst> | 
|  | static bool getPossibleTargets(Inst *, SmallVectorImpl<Function *> &); | 
|  |  | 
|  | // Some instructions need to have their users tracked. Instructions like | 
|  | // `add` require you to get the users of the Instruction* itself, other | 
|  | // instructions like `store` require you to get the users of the first | 
|  | // operand. This function gets the "proper" value to track for each | 
|  | // type of instruction we support. | 
|  | static Optional<Value *> getTargetValue(Instruction *); | 
|  |  | 
|  | // There are certain instructions (i.e. FenceInst, etc.) that we ignore. | 
|  | // This notes that we should ignore those. | 
|  | static bool hasUsefulEdges(Instruction *); | 
|  |  | 
|  | const StratifiedIndex StratifiedLink::SetSentinel = | 
|  | std::numeric_limits<StratifiedIndex>::max(); | 
|  |  | 
|  | namespace { | 
|  | // StratifiedInfo Attribute things. | 
|  | typedef unsigned StratifiedAttr; | 
|  | LLVM_CONSTEXPR unsigned MaxStratifiedAttrIndex = NumStratifiedAttrs; | 
|  | LLVM_CONSTEXPR unsigned AttrAllIndex = 0; | 
|  | LLVM_CONSTEXPR unsigned AttrGlobalIndex = 1; | 
|  | LLVM_CONSTEXPR unsigned AttrUnknownIndex = 2; | 
|  | LLVM_CONSTEXPR unsigned AttrFirstArgIndex = 3; | 
|  | LLVM_CONSTEXPR unsigned AttrLastArgIndex = MaxStratifiedAttrIndex; | 
|  | LLVM_CONSTEXPR unsigned AttrMaxNumArgs = AttrLastArgIndex - AttrFirstArgIndex; | 
|  |  | 
|  | LLVM_CONSTEXPR StratifiedAttr AttrNone = 0; | 
|  | LLVM_CONSTEXPR StratifiedAttr AttrUnknown = 1 << AttrUnknownIndex; | 
|  | LLVM_CONSTEXPR StratifiedAttr AttrAll = ~AttrNone; | 
|  |  | 
|  | // \brief StratifiedSets call for knowledge of "direction", so this is how we | 
|  | // represent that locally. | 
|  | enum class Level { Same, Above, Below }; | 
|  |  | 
|  | // \brief Edges can be one of four "weights" -- each weight must have an inverse | 
|  | // weight (Assign has Assign; Reference has Dereference). | 
|  | enum class EdgeType { | 
|  | // The weight assigned when assigning from or to a value. For example, in: | 
|  | // %b = getelementptr %a, 0 | 
|  | // ...The relationships are %b assign %a, and %a assign %b. This used to be | 
|  | // two edges, but having a distinction bought us nothing. | 
|  | Assign, | 
|  |  | 
|  | // The edge used when we have an edge going from some handle to a Value. | 
|  | // Examples of this include: | 
|  | // %b = load %a              (%b Dereference %a) | 
|  | // %b = extractelement %a, 0 (%a Dereference %b) | 
|  | Dereference, | 
|  |  | 
|  | // The edge used when our edge goes from a value to a handle that may have | 
|  | // contained it at some point. Examples: | 
|  | // %b = load %a              (%a Reference %b) | 
|  | // %b = extractelement %a, 0 (%b Reference %a) | 
|  | Reference | 
|  | }; | 
|  |  | 
|  | // \brief Encodes the notion of a "use" | 
|  | struct Edge { | 
|  | // \brief Which value the edge is coming from | 
|  | Value *From; | 
|  |  | 
|  | // \brief Which value the edge is pointing to | 
|  | Value *To; | 
|  |  | 
|  | // \brief Edge weight | 
|  | EdgeType Weight; | 
|  |  | 
|  | // \brief Whether we aliased any external values along the way that may be | 
|  | // invisible to the analysis (i.e. landingpad for exceptions, calls for | 
|  | // interprocedural analysis, etc.) | 
|  | StratifiedAttrs AdditionalAttrs; | 
|  |  | 
|  | Edge(Value *From, Value *To, EdgeType W, StratifiedAttrs A) | 
|  | : From(From), To(To), Weight(W), AdditionalAttrs(A) {} | 
|  | }; | 
|  |  | 
|  | // \brief Gets the edges our graph should have, based on an Instruction* | 
|  | class GetEdgesVisitor : public InstVisitor<GetEdgesVisitor, void> { | 
|  | CFLAAResult &AA; | 
|  | SmallVectorImpl<Edge> &Output; | 
|  |  | 
|  | public: | 
|  | GetEdgesVisitor(CFLAAResult &AA, SmallVectorImpl<Edge> &Output) | 
|  | : AA(AA), Output(Output) {} | 
|  |  | 
|  | void visitInstruction(Instruction &) { | 
|  | llvm_unreachable("Unsupported instruction encountered"); | 
|  | } | 
|  |  | 
|  | void visitPtrToIntInst(PtrToIntInst &Inst) { | 
|  | auto *Ptr = Inst.getOperand(0); | 
|  | Output.push_back(Edge(Ptr, Ptr, EdgeType::Assign, AttrUnknown)); | 
|  | } | 
|  |  | 
|  | void visitIntToPtrInst(IntToPtrInst &Inst) { | 
|  | auto *Ptr = &Inst; | 
|  | Output.push_back(Edge(Ptr, Ptr, EdgeType::Assign, AttrUnknown)); | 
|  | } | 
|  |  | 
|  | void visitCastInst(CastInst &Inst) { | 
|  | Output.push_back( | 
|  | Edge(&Inst, Inst.getOperand(0), EdgeType::Assign, AttrNone)); | 
|  | } | 
|  |  | 
|  | void visitBinaryOperator(BinaryOperator &Inst) { | 
|  | auto *Op1 = Inst.getOperand(0); | 
|  | auto *Op2 = Inst.getOperand(1); | 
|  | Output.push_back(Edge(&Inst, Op1, EdgeType::Assign, AttrNone)); | 
|  | Output.push_back(Edge(&Inst, Op2, EdgeType::Assign, AttrNone)); | 
|  | } | 
|  |  | 
|  | void visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) { | 
|  | auto *Ptr = Inst.getPointerOperand(); | 
|  | auto *Val = Inst.getNewValOperand(); | 
|  | Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone)); | 
|  | } | 
|  |  | 
|  | void visitAtomicRMWInst(AtomicRMWInst &Inst) { | 
|  | auto *Ptr = Inst.getPointerOperand(); | 
|  | auto *Val = Inst.getValOperand(); | 
|  | Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone)); | 
|  | } | 
|  |  | 
|  | void visitPHINode(PHINode &Inst) { | 
|  | for (Value *Val : Inst.incoming_values()) { | 
|  | Output.push_back(Edge(&Inst, Val, EdgeType::Assign, AttrNone)); | 
|  | } | 
|  | } | 
|  |  | 
|  | void visitGetElementPtrInst(GetElementPtrInst &Inst) { | 
|  | auto *Op = Inst.getPointerOperand(); | 
|  | Output.push_back(Edge(&Inst, Op, EdgeType::Assign, AttrNone)); | 
|  | for (auto I = Inst.idx_begin(), E = Inst.idx_end(); I != E; ++I) | 
|  | Output.push_back(Edge(&Inst, *I, EdgeType::Assign, AttrNone)); | 
|  | } | 
|  |  | 
|  | void visitSelectInst(SelectInst &Inst) { | 
|  | // Condition is not processed here (The actual statement producing | 
|  | // the condition result is processed elsewhere). For select, the | 
|  | // condition is evaluated, but not loaded, stored, or assigned | 
|  | // simply as a result of being the condition of a select. | 
|  |  | 
|  | auto *TrueVal = Inst.getTrueValue(); | 
|  | Output.push_back(Edge(&Inst, TrueVal, EdgeType::Assign, AttrNone)); | 
|  | auto *FalseVal = Inst.getFalseValue(); | 
|  | Output.push_back(Edge(&Inst, FalseVal, EdgeType::Assign, AttrNone)); | 
|  | } | 
|  |  | 
|  | void visitAllocaInst(AllocaInst &) {} | 
|  |  | 
|  | void visitLoadInst(LoadInst &Inst) { | 
|  | auto *Ptr = Inst.getPointerOperand(); | 
|  | auto *Val = &Inst; | 
|  | Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone)); | 
|  | } | 
|  |  | 
|  | void visitStoreInst(StoreInst &Inst) { | 
|  | auto *Ptr = Inst.getPointerOperand(); | 
|  | auto *Val = Inst.getValueOperand(); | 
|  | Output.push_back(Edge(Ptr, Val, EdgeType::Dereference, AttrNone)); | 
|  | } | 
|  |  | 
|  | void visitVAArgInst(VAArgInst &Inst) { | 
|  | // We can't fully model va_arg here. For *Ptr = Inst.getOperand(0), it does | 
|  | // two things: | 
|  | //  1. Loads a value from *((T*)*Ptr). | 
|  | //  2. Increments (stores to) *Ptr by some target-specific amount. | 
|  | // For now, we'll handle this like a landingpad instruction (by placing the | 
|  | // result in its own group, and having that group alias externals). | 
|  | auto *Val = &Inst; | 
|  | Output.push_back(Edge(Val, Val, EdgeType::Assign, AttrAll)); | 
|  | } | 
|  |  | 
|  | static bool isFunctionExternal(Function *Fn) { | 
|  | return Fn->isDeclaration() || !Fn->hasLocalLinkage(); | 
|  | } | 
|  |  | 
|  | // Gets whether the sets at Index1 above, below, or equal to the sets at | 
|  | // Index2. Returns None if they are not in the same set chain. | 
|  | static Optional<Level> getIndexRelation(const StratifiedSets<Value *> &Sets, | 
|  | StratifiedIndex Index1, | 
|  | StratifiedIndex Index2) { | 
|  | if (Index1 == Index2) | 
|  | return Level::Same; | 
|  |  | 
|  | const auto *Current = &Sets.getLink(Index1); | 
|  | while (Current->hasBelow()) { | 
|  | if (Current->Below == Index2) | 
|  | return Level::Below; | 
|  | Current = &Sets.getLink(Current->Below); | 
|  | } | 
|  |  | 
|  | Current = &Sets.getLink(Index1); | 
|  | while (Current->hasAbove()) { | 
|  | if (Current->Above == Index2) | 
|  | return Level::Above; | 
|  | Current = &Sets.getLink(Current->Above); | 
|  | } | 
|  |  | 
|  | return NoneType(); | 
|  | } | 
|  |  | 
|  | bool | 
|  | tryInterproceduralAnalysis(const SmallVectorImpl<Function *> &Fns, | 
|  | Value *FuncValue, | 
|  | const iterator_range<User::op_iterator> &Args) { | 
|  | const unsigned ExpectedMaxArgs = 8; | 
|  | const unsigned MaxSupportedArgs = 50; | 
|  | assert(Fns.size() > 0); | 
|  |  | 
|  | // I put this here to give us an upper bound on time taken by IPA. Is it | 
|  | // really (realistically) needed? Keep in mind that we do have an n^2 algo. | 
|  | if (std::distance(Args.begin(), Args.end()) > (int)MaxSupportedArgs) | 
|  | return false; | 
|  |  | 
|  | // Exit early if we'll fail anyway | 
|  | for (auto *Fn : Fns) { | 
|  | if (isFunctionExternal(Fn) || Fn->isVarArg()) | 
|  | return false; | 
|  | auto &MaybeInfo = AA.ensureCached(Fn); | 
|  | if (!MaybeInfo.hasValue()) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | SmallVector<Value *, ExpectedMaxArgs> Arguments(Args.begin(), Args.end()); | 
|  | SmallVector<StratifiedInfo, ExpectedMaxArgs> Parameters; | 
|  | for (auto *Fn : Fns) { | 
|  | auto &Info = *AA.ensureCached(Fn); | 
|  | auto &Sets = Info.Sets; | 
|  | auto &RetVals = Info.ReturnedValues; | 
|  |  | 
|  | Parameters.clear(); | 
|  | for (auto &Param : Fn->args()) { | 
|  | auto MaybeInfo = Sets.find(&Param); | 
|  | // Did a new parameter somehow get added to the function/slip by? | 
|  | if (!MaybeInfo.hasValue()) | 
|  | return false; | 
|  | Parameters.push_back(*MaybeInfo); | 
|  | } | 
|  |  | 
|  | // Adding an edge from argument -> return value for each parameter that | 
|  | // may alias the return value | 
|  | for (unsigned I = 0, E = Parameters.size(); I != E; ++I) { | 
|  | auto &ParamInfo = Parameters[I]; | 
|  | auto &ArgVal = Arguments[I]; | 
|  | bool AddEdge = false; | 
|  | StratifiedAttrs Externals; | 
|  | for (unsigned X = 0, XE = RetVals.size(); X != XE; ++X) { | 
|  | auto MaybeInfo = Sets.find(RetVals[X]); | 
|  | if (!MaybeInfo.hasValue()) | 
|  | return false; | 
|  |  | 
|  | auto &RetInfo = *MaybeInfo; | 
|  | auto RetAttrs = Sets.getLink(RetInfo.Index).Attrs; | 
|  | auto ParamAttrs = Sets.getLink(ParamInfo.Index).Attrs; | 
|  | auto MaybeRelation = | 
|  | getIndexRelation(Sets, ParamInfo.Index, RetInfo.Index); | 
|  | if (MaybeRelation.hasValue()) { | 
|  | AddEdge = true; | 
|  | Externals |= RetAttrs | ParamAttrs; | 
|  | } | 
|  | } | 
|  | if (AddEdge) | 
|  | Output.push_back(Edge(FuncValue, ArgVal, EdgeType::Assign, | 
|  | StratifiedAttrs().flip())); | 
|  | } | 
|  |  | 
|  | if (Parameters.size() != Arguments.size()) | 
|  | return false; | 
|  |  | 
|  | // Adding edges between arguments for arguments that may end up aliasing | 
|  | // each other. This is necessary for functions such as | 
|  | // void foo(int** a, int** b) { *a = *b; } | 
|  | // (Technically, the proper sets for this would be those below | 
|  | // Arguments[I] and Arguments[X], but our algorithm will produce | 
|  | // extremely similar, and equally correct, results either way) | 
|  | for (unsigned I = 0, E = Arguments.size(); I != E; ++I) { | 
|  | auto &MainVal = Arguments[I]; | 
|  | auto &MainInfo = Parameters[I]; | 
|  | auto &MainAttrs = Sets.getLink(MainInfo.Index).Attrs; | 
|  | for (unsigned X = I + 1; X != E; ++X) { | 
|  | auto &SubInfo = Parameters[X]; | 
|  | auto &SubVal = Arguments[X]; | 
|  | auto &SubAttrs = Sets.getLink(SubInfo.Index).Attrs; | 
|  | auto MaybeRelation = | 
|  | getIndexRelation(Sets, MainInfo.Index, SubInfo.Index); | 
|  |  | 
|  | if (!MaybeRelation.hasValue()) | 
|  | continue; | 
|  |  | 
|  | auto NewAttrs = SubAttrs | MainAttrs; | 
|  | Output.push_back(Edge(MainVal, SubVal, EdgeType::Assign, NewAttrs)); | 
|  | } | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | template <typename InstT> void visitCallLikeInst(InstT &Inst) { | 
|  | // TODO: Add support for noalias args/all the other fun function attributes | 
|  | // that we can tack on. | 
|  | SmallVector<Function *, 4> Targets; | 
|  | if (getPossibleTargets(&Inst, Targets)) { | 
|  | if (tryInterproceduralAnalysis(Targets, &Inst, Inst.arg_operands())) | 
|  | return; | 
|  | // Cleanup from interprocedural analysis | 
|  | Output.clear(); | 
|  | } | 
|  |  | 
|  | // Because the function is opaque, we need to note that anything | 
|  | // could have happened to the arguments, and that the result could alias | 
|  | // just about anything, too. | 
|  | // The goal of the loop is in part to unify many Values into one set, so we | 
|  | // don't care if the function is void there. | 
|  | for (Value *V : Inst.arg_operands()) | 
|  | Output.push_back(Edge(&Inst, V, EdgeType::Assign, AttrAll)); | 
|  | if (Inst.getNumArgOperands() == 0 && | 
|  | Inst.getType() != Type::getVoidTy(Inst.getContext())) | 
|  | Output.push_back(Edge(&Inst, &Inst, EdgeType::Assign, AttrAll)); | 
|  | } | 
|  |  | 
|  | void visitCallInst(CallInst &Inst) { visitCallLikeInst(Inst); } | 
|  |  | 
|  | void visitInvokeInst(InvokeInst &Inst) { visitCallLikeInst(Inst); } | 
|  |  | 
|  | // Because vectors/aggregates are immutable and unaddressable, | 
|  | // there's nothing we can do to coax a value out of them, other | 
|  | // than calling Extract{Element,Value}. We can effectively treat | 
|  | // them as pointers to arbitrary memory locations we can store in | 
|  | // and load from. | 
|  | void visitExtractElementInst(ExtractElementInst &Inst) { | 
|  | auto *Ptr = Inst.getVectorOperand(); | 
|  | auto *Val = &Inst; | 
|  | Output.push_back(Edge(Val, Ptr, EdgeType::Reference, AttrNone)); | 
|  | } | 
|  |  | 
|  | void visitInsertElementInst(InsertElementInst &Inst) { | 
|  | auto *Vec = Inst.getOperand(0); | 
|  | auto *Val = Inst.getOperand(1); | 
|  | Output.push_back(Edge(&Inst, Vec, EdgeType::Assign, AttrNone)); | 
|  | Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone)); | 
|  | } | 
|  |  | 
|  | void visitLandingPadInst(LandingPadInst &Inst) { | 
|  | // Exceptions come from "nowhere", from our analysis' perspective. | 
|  | // So we place the instruction its own group, noting that said group may | 
|  | // alias externals | 
|  | Output.push_back(Edge(&Inst, &Inst, EdgeType::Assign, AttrAll)); | 
|  | } | 
|  |  | 
|  | void visitInsertValueInst(InsertValueInst &Inst) { | 
|  | auto *Agg = Inst.getOperand(0); | 
|  | auto *Val = Inst.getOperand(1); | 
|  | Output.push_back(Edge(&Inst, Agg, EdgeType::Assign, AttrNone)); | 
|  | Output.push_back(Edge(&Inst, Val, EdgeType::Dereference, AttrNone)); | 
|  | } | 
|  |  | 
|  | void visitExtractValueInst(ExtractValueInst &Inst) { | 
|  | auto *Ptr = Inst.getAggregateOperand(); | 
|  | Output.push_back(Edge(&Inst, Ptr, EdgeType::Reference, AttrNone)); | 
|  | } | 
|  |  | 
|  | void visitShuffleVectorInst(ShuffleVectorInst &Inst) { | 
|  | auto *From1 = Inst.getOperand(0); | 
|  | auto *From2 = Inst.getOperand(1); | 
|  | Output.push_back(Edge(&Inst, From1, EdgeType::Assign, AttrNone)); | 
|  | Output.push_back(Edge(&Inst, From2, EdgeType::Assign, AttrNone)); | 
|  | } | 
|  |  | 
|  | void visitConstantExpr(ConstantExpr *CE) { | 
|  | switch (CE->getOpcode()) { | 
|  | default: | 
|  | llvm_unreachable("Unknown instruction type encountered!"); | 
|  | // Build the switch statement using the Instruction.def file. | 
|  | #define HANDLE_INST(NUM, OPCODE, CLASS)                                        \ | 
|  | case Instruction::OPCODE:                                                    \ | 
|  | visit##OPCODE(*(CLASS *)CE);                                               \ | 
|  | break; | 
|  | #include "llvm/IR/Instruction.def" | 
|  | } | 
|  | } | 
|  | }; | 
|  |  | 
|  | // For a given instruction, we need to know which Value* to get the | 
|  | // users of in order to build our graph. In some cases (i.e. add), | 
|  | // we simply need the Instruction*. In other cases (i.e. store), | 
|  | // finding the users of the Instruction* is useless; we need to find | 
|  | // the users of the first operand. This handles determining which | 
|  | // value to follow for us. | 
|  | // | 
|  | // Note: we *need* to keep this in sync with GetEdgesVisitor. Add | 
|  | // something to GetEdgesVisitor, add it here -- remove something from | 
|  | // GetEdgesVisitor, remove it here. | 
|  | class GetTargetValueVisitor | 
|  | : public InstVisitor<GetTargetValueVisitor, Value *> { | 
|  | public: | 
|  | Value *visitInstruction(Instruction &Inst) { return &Inst; } | 
|  |  | 
|  | Value *visitStoreInst(StoreInst &Inst) { return Inst.getPointerOperand(); } | 
|  |  | 
|  | Value *visitAtomicCmpXchgInst(AtomicCmpXchgInst &Inst) { | 
|  | return Inst.getPointerOperand(); | 
|  | } | 
|  |  | 
|  | Value *visitAtomicRMWInst(AtomicRMWInst &Inst) { | 
|  | return Inst.getPointerOperand(); | 
|  | } | 
|  |  | 
|  | Value *visitInsertElementInst(InsertElementInst &Inst) { | 
|  | return Inst.getOperand(0); | 
|  | } | 
|  |  | 
|  | Value *visitInsertValueInst(InsertValueInst &Inst) { | 
|  | return Inst.getAggregateOperand(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | // Set building requires a weighted bidirectional graph. | 
|  | template <typename EdgeTypeT> class WeightedBidirectionalGraph { | 
|  | public: | 
|  | typedef std::size_t Node; | 
|  |  | 
|  | private: | 
|  | const static Node StartNode = Node(0); | 
|  |  | 
|  | struct Edge { | 
|  | EdgeTypeT Weight; | 
|  | Node Other; | 
|  |  | 
|  | Edge(const EdgeTypeT &W, const Node &N) : Weight(W), Other(N) {} | 
|  |  | 
|  | bool operator==(const Edge &E) const { | 
|  | return Weight == E.Weight && Other == E.Other; | 
|  | } | 
|  |  | 
|  | bool operator!=(const Edge &E) const { return !operator==(E); } | 
|  | }; | 
|  |  | 
|  | struct NodeImpl { | 
|  | std::vector<Edge> Edges; | 
|  | }; | 
|  |  | 
|  | std::vector<NodeImpl> NodeImpls; | 
|  |  | 
|  | bool inbounds(Node NodeIndex) const { return NodeIndex < NodeImpls.size(); } | 
|  |  | 
|  | const NodeImpl &getNode(Node N) const { return NodeImpls[N]; } | 
|  | NodeImpl &getNode(Node N) { return NodeImpls[N]; } | 
|  |  | 
|  | public: | 
|  | // ----- Various Edge iterators for the graph ----- // | 
|  |  | 
|  | // \brief Iterator for edges. Because this graph is bidirected, we don't | 
|  | // allow modification of the edges using this iterator. Additionally, the | 
|  | // iterator becomes invalid if you add edges to or from the node you're | 
|  | // getting the edges of. | 
|  | struct EdgeIterator : public std::iterator<std::forward_iterator_tag, | 
|  | std::tuple<EdgeTypeT, Node *>> { | 
|  | EdgeIterator(const typename std::vector<Edge>::const_iterator &Iter) | 
|  | : Current(Iter) {} | 
|  |  | 
|  | EdgeIterator(NodeImpl &Impl) : Current(Impl.begin()) {} | 
|  |  | 
|  | EdgeIterator &operator++() { | 
|  | ++Current; | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | EdgeIterator operator++(int) { | 
|  | EdgeIterator Copy(Current); | 
|  | operator++(); | 
|  | return Copy; | 
|  | } | 
|  |  | 
|  | std::tuple<EdgeTypeT, Node> &operator*() { | 
|  | Store = std::make_tuple(Current->Weight, Current->Other); | 
|  | return Store; | 
|  | } | 
|  |  | 
|  | bool operator==(const EdgeIterator &Other) const { | 
|  | return Current == Other.Current; | 
|  | } | 
|  |  | 
|  | bool operator!=(const EdgeIterator &Other) const { | 
|  | return !operator==(Other); | 
|  | } | 
|  |  | 
|  | private: | 
|  | typename std::vector<Edge>::const_iterator Current; | 
|  | std::tuple<EdgeTypeT, Node> Store; | 
|  | }; | 
|  |  | 
|  | // Wrapper for EdgeIterator with begin()/end() calls. | 
|  | struct EdgeIterable { | 
|  | EdgeIterable(const std::vector<Edge> &Edges) | 
|  | : BeginIter(Edges.begin()), EndIter(Edges.end()) {} | 
|  |  | 
|  | EdgeIterator begin() { return EdgeIterator(BeginIter); } | 
|  |  | 
|  | EdgeIterator end() { return EdgeIterator(EndIter); } | 
|  |  | 
|  | private: | 
|  | typename std::vector<Edge>::const_iterator BeginIter; | 
|  | typename std::vector<Edge>::const_iterator EndIter; | 
|  | }; | 
|  |  | 
|  | // ----- Actual graph-related things ----- // | 
|  |  | 
|  | WeightedBidirectionalGraph() {} | 
|  |  | 
|  | WeightedBidirectionalGraph(WeightedBidirectionalGraph<EdgeTypeT> &&Other) | 
|  | : NodeImpls(std::move(Other.NodeImpls)) {} | 
|  |  | 
|  | WeightedBidirectionalGraph<EdgeTypeT> & | 
|  | operator=(WeightedBidirectionalGraph<EdgeTypeT> &&Other) { | 
|  | NodeImpls = std::move(Other.NodeImpls); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | Node addNode() { | 
|  | auto Index = NodeImpls.size(); | 
|  | auto NewNode = Node(Index); | 
|  | NodeImpls.push_back(NodeImpl()); | 
|  | return NewNode; | 
|  | } | 
|  |  | 
|  | void addEdge(Node From, Node To, const EdgeTypeT &Weight, | 
|  | const EdgeTypeT &ReverseWeight) { | 
|  | assert(inbounds(From)); | 
|  | assert(inbounds(To)); | 
|  | auto &FromNode = getNode(From); | 
|  | auto &ToNode = getNode(To); | 
|  | FromNode.Edges.push_back(Edge(Weight, To)); | 
|  | ToNode.Edges.push_back(Edge(ReverseWeight, From)); | 
|  | } | 
|  |  | 
|  | EdgeIterable edgesFor(const Node &N) const { | 
|  | const auto &Node = getNode(N); | 
|  | return EdgeIterable(Node.Edges); | 
|  | } | 
|  |  | 
|  | bool empty() const { return NodeImpls.empty(); } | 
|  | std::size_t size() const { return NodeImpls.size(); } | 
|  |  | 
|  | // \brief Gets an arbitrary node in the graph as a starting point for | 
|  | // traversal. | 
|  | Node getEntryNode() { | 
|  | assert(inbounds(StartNode)); | 
|  | return StartNode; | 
|  | } | 
|  | }; | 
|  |  | 
|  | typedef WeightedBidirectionalGraph<std::pair<EdgeType, StratifiedAttrs>> GraphT; | 
|  | typedef DenseMap<Value *, GraphT::Node> NodeMapT; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Function declarations that require types defined in the namespace above | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Given an argument number, returns the appropriate Attr index to set. | 
|  | static StratifiedAttr argNumberToAttrIndex(StratifiedAttr); | 
|  |  | 
|  | // Given a Value, potentially return which AttrIndex it maps to. | 
|  | static Optional<StratifiedAttr> valueToAttrIndex(Value *Val); | 
|  |  | 
|  | // Gets the inverse of a given EdgeType. | 
|  | static EdgeType flipWeight(EdgeType); | 
|  |  | 
|  | // Gets edges of the given Instruction*, writing them to the SmallVector*. | 
|  | static void argsToEdges(CFLAAResult &, Instruction *, SmallVectorImpl<Edge> &); | 
|  |  | 
|  | // Gets edges of the given ConstantExpr*, writing them to the SmallVector*. | 
|  | static void argsToEdges(CFLAAResult &, ConstantExpr *, SmallVectorImpl<Edge> &); | 
|  |  | 
|  | // Gets the "Level" that one should travel in StratifiedSets | 
|  | // given an EdgeType. | 
|  | static Level directionOfEdgeType(EdgeType); | 
|  |  | 
|  | // Builds the graph needed for constructing the StratifiedSets for the | 
|  | // given function | 
|  | static void buildGraphFrom(CFLAAResult &, Function *, | 
|  | SmallVectorImpl<Value *> &, NodeMapT &, GraphT &); | 
|  |  | 
|  | // Gets the edges of a ConstantExpr as if it was an Instruction. This | 
|  | // function also acts on any nested ConstantExprs, adding the edges | 
|  | // of those to the given SmallVector as well. | 
|  | static void constexprToEdges(CFLAAResult &, ConstantExpr &, | 
|  | SmallVectorImpl<Edge> &); | 
|  |  | 
|  | // Given an Instruction, this will add it to the graph, along with any | 
|  | // Instructions that are potentially only available from said Instruction | 
|  | // For example, given the following line: | 
|  | //   %0 = load i16* getelementptr ([1 x i16]* @a, 0, 0), align 2 | 
|  | // addInstructionToGraph would add both the `load` and `getelementptr` | 
|  | // instructions to the graph appropriately. | 
|  | static void addInstructionToGraph(CFLAAResult &, Instruction &, | 
|  | SmallVectorImpl<Value *> &, NodeMapT &, | 
|  | GraphT &); | 
|  |  | 
|  | // Notes whether it would be pointless to add the given Value to our sets. | 
|  | static bool canSkipAddingToSets(Value *Val); | 
|  |  | 
|  | static Optional<Function *> parentFunctionOfValue(Value *Val) { | 
|  | if (auto *Inst = dyn_cast<Instruction>(Val)) { | 
|  | auto *Bb = Inst->getParent(); | 
|  | return Bb->getParent(); | 
|  | } | 
|  |  | 
|  | if (auto *Arg = dyn_cast<Argument>(Val)) | 
|  | return Arg->getParent(); | 
|  | return NoneType(); | 
|  | } | 
|  |  | 
|  | template <typename Inst> | 
|  | static bool getPossibleTargets(Inst *Call, | 
|  | SmallVectorImpl<Function *> &Output) { | 
|  | if (auto *Fn = Call->getCalledFunction()) { | 
|  | Output.push_back(Fn); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // TODO: If the call is indirect, we might be able to enumerate all potential | 
|  | // targets of the call and return them, rather than just failing. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static Optional<Value *> getTargetValue(Instruction *Inst) { | 
|  | GetTargetValueVisitor V; | 
|  | return V.visit(Inst); | 
|  | } | 
|  |  | 
|  | static bool hasUsefulEdges(Instruction *Inst) { | 
|  | bool IsNonInvokeTerminator = | 
|  | isa<TerminatorInst>(Inst) && !isa<InvokeInst>(Inst); | 
|  | return !isa<CmpInst>(Inst) && !isa<FenceInst>(Inst) && !IsNonInvokeTerminator; | 
|  | } | 
|  |  | 
|  | static bool hasUsefulEdges(ConstantExpr *CE) { | 
|  | // ConstantExpr doesn't have terminators, invokes, or fences, so only needs | 
|  | // to check for compares. | 
|  | return CE->getOpcode() != Instruction::ICmp && | 
|  | CE->getOpcode() != Instruction::FCmp; | 
|  | } | 
|  |  | 
|  | static Optional<StratifiedAttr> valueToAttrIndex(Value *Val) { | 
|  | if (isa<GlobalValue>(Val)) | 
|  | return AttrGlobalIndex; | 
|  |  | 
|  | if (auto *Arg = dyn_cast<Argument>(Val)) | 
|  | // Only pointer arguments should have the argument attribute, | 
|  | // because things can't escape through scalars without us seeing a | 
|  | // cast, and thus, interaction with them doesn't matter. | 
|  | if (!Arg->hasNoAliasAttr() && Arg->getType()->isPointerTy()) | 
|  | return argNumberToAttrIndex(Arg->getArgNo()); | 
|  | return NoneType(); | 
|  | } | 
|  |  | 
|  | static StratifiedAttr argNumberToAttrIndex(unsigned ArgNum) { | 
|  | if (ArgNum >= AttrMaxNumArgs) | 
|  | return AttrAllIndex; | 
|  | return ArgNum + AttrFirstArgIndex; | 
|  | } | 
|  |  | 
|  | static EdgeType flipWeight(EdgeType Initial) { | 
|  | switch (Initial) { | 
|  | case EdgeType::Assign: | 
|  | return EdgeType::Assign; | 
|  | case EdgeType::Dereference: | 
|  | return EdgeType::Reference; | 
|  | case EdgeType::Reference: | 
|  | return EdgeType::Dereference; | 
|  | } | 
|  | llvm_unreachable("Incomplete coverage of EdgeType enum"); | 
|  | } | 
|  |  | 
|  | static void argsToEdges(CFLAAResult &Analysis, Instruction *Inst, | 
|  | SmallVectorImpl<Edge> &Output) { | 
|  | assert(hasUsefulEdges(Inst) && | 
|  | "Expected instructions to have 'useful' edges"); | 
|  | GetEdgesVisitor v(Analysis, Output); | 
|  | v.visit(Inst); | 
|  | } | 
|  |  | 
|  | static void argsToEdges(CFLAAResult &Analysis, ConstantExpr *CE, | 
|  | SmallVectorImpl<Edge> &Output) { | 
|  | assert(hasUsefulEdges(CE) && "Expected constant expr to have 'useful' edges"); | 
|  | GetEdgesVisitor v(Analysis, Output); | 
|  | v.visitConstantExpr(CE); | 
|  | } | 
|  |  | 
|  | static Level directionOfEdgeType(EdgeType Weight) { | 
|  | switch (Weight) { | 
|  | case EdgeType::Reference: | 
|  | return Level::Above; | 
|  | case EdgeType::Dereference: | 
|  | return Level::Below; | 
|  | case EdgeType::Assign: | 
|  | return Level::Same; | 
|  | } | 
|  | llvm_unreachable("Incomplete switch coverage"); | 
|  | } | 
|  |  | 
|  | static void constexprToEdges(CFLAAResult &Analysis, | 
|  | ConstantExpr &CExprToCollapse, | 
|  | SmallVectorImpl<Edge> &Results) { | 
|  | SmallVector<ConstantExpr *, 4> Worklist; | 
|  | Worklist.push_back(&CExprToCollapse); | 
|  |  | 
|  | SmallVector<Edge, 8> ConstexprEdges; | 
|  | SmallPtrSet<ConstantExpr *, 4> Visited; | 
|  | while (!Worklist.empty()) { | 
|  | auto *CExpr = Worklist.pop_back_val(); | 
|  |  | 
|  | if (!hasUsefulEdges(CExpr)) | 
|  | continue; | 
|  |  | 
|  | ConstexprEdges.clear(); | 
|  | argsToEdges(Analysis, CExpr, ConstexprEdges); | 
|  | for (auto &Edge : ConstexprEdges) { | 
|  | if (auto *Nested = dyn_cast<ConstantExpr>(Edge.From)) | 
|  | if (Visited.insert(Nested).second) | 
|  | Worklist.push_back(Nested); | 
|  |  | 
|  | if (auto *Nested = dyn_cast<ConstantExpr>(Edge.To)) | 
|  | if (Visited.insert(Nested).second) | 
|  | Worklist.push_back(Nested); | 
|  | } | 
|  |  | 
|  | Results.append(ConstexprEdges.begin(), ConstexprEdges.end()); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void addInstructionToGraph(CFLAAResult &Analysis, Instruction &Inst, | 
|  | SmallVectorImpl<Value *> &ReturnedValues, | 
|  | NodeMapT &Map, GraphT &Graph) { | 
|  | const auto findOrInsertNode = [&Map, &Graph](Value *Val) { | 
|  | auto Pair = Map.insert(std::make_pair(Val, GraphT::Node())); | 
|  | auto &Iter = Pair.first; | 
|  | if (Pair.second) { | 
|  | auto NewNode = Graph.addNode(); | 
|  | Iter->second = NewNode; | 
|  | } | 
|  | return Iter->second; | 
|  | }; | 
|  |  | 
|  | // We don't want the edges of most "return" instructions, but we *do* want | 
|  | // to know what can be returned. | 
|  | if (isa<ReturnInst>(&Inst)) | 
|  | ReturnedValues.push_back(&Inst); | 
|  |  | 
|  | if (!hasUsefulEdges(&Inst)) | 
|  | return; | 
|  |  | 
|  | SmallVector<Edge, 8> Edges; | 
|  | argsToEdges(Analysis, &Inst, Edges); | 
|  |  | 
|  | // In the case of an unused alloca (or similar), edges may be empty. Note | 
|  | // that it exists so we can potentially answer NoAlias. | 
|  | if (Edges.empty()) { | 
|  | auto MaybeVal = getTargetValue(&Inst); | 
|  | assert(MaybeVal.hasValue()); | 
|  | auto *Target = *MaybeVal; | 
|  | findOrInsertNode(Target); | 
|  | return; | 
|  | } | 
|  |  | 
|  | const auto addEdgeToGraph = [&Graph, &findOrInsertNode](const Edge &E) { | 
|  | auto To = findOrInsertNode(E.To); | 
|  | auto From = findOrInsertNode(E.From); | 
|  | auto FlippedWeight = flipWeight(E.Weight); | 
|  | auto Attrs = E.AdditionalAttrs; | 
|  | Graph.addEdge(From, To, std::make_pair(E.Weight, Attrs), | 
|  | std::make_pair(FlippedWeight, Attrs)); | 
|  | }; | 
|  |  | 
|  | SmallVector<ConstantExpr *, 4> ConstantExprs; | 
|  | for (const Edge &E : Edges) { | 
|  | addEdgeToGraph(E); | 
|  | if (auto *Constexpr = dyn_cast<ConstantExpr>(E.To)) | 
|  | ConstantExprs.push_back(Constexpr); | 
|  | if (auto *Constexpr = dyn_cast<ConstantExpr>(E.From)) | 
|  | ConstantExprs.push_back(Constexpr); | 
|  | } | 
|  |  | 
|  | for (ConstantExpr *CE : ConstantExprs) { | 
|  | Edges.clear(); | 
|  | constexprToEdges(Analysis, *CE, Edges); | 
|  | std::for_each(Edges.begin(), Edges.end(), addEdgeToGraph); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Aside: We may remove graph construction entirely, because it doesn't really | 
|  | // buy us much that we don't already have. I'd like to add interprocedural | 
|  | // analysis prior to this however, in case that somehow requires the graph | 
|  | // produced by this for efficient execution | 
|  | static void buildGraphFrom(CFLAAResult &Analysis, Function *Fn, | 
|  | SmallVectorImpl<Value *> &ReturnedValues, | 
|  | NodeMapT &Map, GraphT &Graph) { | 
|  | for (auto &Bb : Fn->getBasicBlockList()) | 
|  | for (auto &Inst : Bb.getInstList()) | 
|  | addInstructionToGraph(Analysis, Inst, ReturnedValues, Map, Graph); | 
|  | } | 
|  |  | 
|  | static bool canSkipAddingToSets(Value *Val) { | 
|  | // Constants can share instances, which may falsely unify multiple | 
|  | // sets, e.g. in | 
|  | // store i32* null, i32** %ptr1 | 
|  | // store i32* null, i32** %ptr2 | 
|  | // clearly ptr1 and ptr2 should not be unified into the same set, so | 
|  | // we should filter out the (potentially shared) instance to | 
|  | // i32* null. | 
|  | if (isa<Constant>(Val)) { | 
|  | bool Container = isa<ConstantVector>(Val) || isa<ConstantArray>(Val) || | 
|  | isa<ConstantStruct>(Val); | 
|  | // TODO: Because all of these things are constant, we can determine whether | 
|  | // the data is *actually* mutable at graph building time. This will probably | 
|  | // come for free/cheap with offset awareness. | 
|  | bool CanStoreMutableData = | 
|  | isa<GlobalValue>(Val) || isa<ConstantExpr>(Val) || Container; | 
|  | return !CanStoreMutableData; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Builds the graph + StratifiedSets for a function. | 
|  | CFLAAResult::FunctionInfo CFLAAResult::buildSetsFrom(Function *Fn) { | 
|  | NodeMapT Map; | 
|  | GraphT Graph; | 
|  | SmallVector<Value *, 4> ReturnedValues; | 
|  |  | 
|  | buildGraphFrom(*this, Fn, ReturnedValues, Map, Graph); | 
|  |  | 
|  | DenseMap<GraphT::Node, Value *> NodeValueMap; | 
|  | NodeValueMap.resize(Map.size()); | 
|  | for (const auto &Pair : Map) | 
|  | NodeValueMap.insert(std::make_pair(Pair.second, Pair.first)); | 
|  |  | 
|  | const auto findValueOrDie = [&NodeValueMap](GraphT::Node Node) { | 
|  | auto ValIter = NodeValueMap.find(Node); | 
|  | assert(ValIter != NodeValueMap.end()); | 
|  | return ValIter->second; | 
|  | }; | 
|  |  | 
|  | StratifiedSetsBuilder<Value *> Builder; | 
|  |  | 
|  | SmallVector<GraphT::Node, 16> Worklist; | 
|  | for (auto &Pair : Map) { | 
|  | Worklist.clear(); | 
|  |  | 
|  | auto *Value = Pair.first; | 
|  | Builder.add(Value); | 
|  | auto InitialNode = Pair.second; | 
|  | Worklist.push_back(InitialNode); | 
|  | while (!Worklist.empty()) { | 
|  | auto Node = Worklist.pop_back_val(); | 
|  | auto *CurValue = findValueOrDie(Node); | 
|  | if (canSkipAddingToSets(CurValue)) | 
|  | continue; | 
|  |  | 
|  | for (const auto &EdgeTuple : Graph.edgesFor(Node)) { | 
|  | auto Weight = std::get<0>(EdgeTuple); | 
|  | auto Label = Weight.first; | 
|  | auto &OtherNode = std::get<1>(EdgeTuple); | 
|  | auto *OtherValue = findValueOrDie(OtherNode); | 
|  |  | 
|  | if (canSkipAddingToSets(OtherValue)) | 
|  | continue; | 
|  |  | 
|  | bool Added; | 
|  | switch (directionOfEdgeType(Label)) { | 
|  | case Level::Above: | 
|  | Added = Builder.addAbove(CurValue, OtherValue); | 
|  | break; | 
|  | case Level::Below: | 
|  | Added = Builder.addBelow(CurValue, OtherValue); | 
|  | break; | 
|  | case Level::Same: | 
|  | Added = Builder.addWith(CurValue, OtherValue); | 
|  | break; | 
|  | } | 
|  |  | 
|  | auto Aliasing = Weight.second; | 
|  | if (auto MaybeCurIndex = valueToAttrIndex(CurValue)) | 
|  | Aliasing.set(*MaybeCurIndex); | 
|  | if (auto MaybeOtherIndex = valueToAttrIndex(OtherValue)) | 
|  | Aliasing.set(*MaybeOtherIndex); | 
|  | Builder.noteAttributes(CurValue, Aliasing); | 
|  | Builder.noteAttributes(OtherValue, Aliasing); | 
|  |  | 
|  | if (Added) | 
|  | Worklist.push_back(OtherNode); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // There are times when we end up with parameters not in our graph (i.e. if | 
|  | // it's only used as the condition of a branch). Other bits of code depend on | 
|  | // things that were present during construction being present in the graph. | 
|  | // So, we add all present arguments here. | 
|  | for (auto &Arg : Fn->args()) { | 
|  | if (!Builder.add(&Arg)) | 
|  | continue; | 
|  |  | 
|  | auto Attrs = valueToAttrIndex(&Arg); | 
|  | if (Attrs.hasValue()) | 
|  | Builder.noteAttributes(&Arg, *Attrs); | 
|  | } | 
|  |  | 
|  | return FunctionInfo(Builder.build(), std::move(ReturnedValues)); | 
|  | } | 
|  |  | 
|  | void CFLAAResult::scan(Function *Fn) { | 
|  | auto InsertPair = Cache.insert(std::make_pair(Fn, Optional<FunctionInfo>())); | 
|  | (void)InsertPair; | 
|  | assert(InsertPair.second && | 
|  | "Trying to scan a function that has already been cached"); | 
|  |  | 
|  | FunctionInfo Info(buildSetsFrom(Fn)); | 
|  | Cache[Fn] = std::move(Info); | 
|  | Handles.push_front(FunctionHandle(Fn, this)); | 
|  | } | 
|  |  | 
|  | void CFLAAResult::evict(Function *Fn) { Cache.erase(Fn); } | 
|  |  | 
|  | /// \brief Ensures that the given function is available in the cache. | 
|  | /// Returns the appropriate entry from the cache. | 
|  | const Optional<CFLAAResult::FunctionInfo> & | 
|  | CFLAAResult::ensureCached(Function *Fn) { | 
|  | auto Iter = Cache.find(Fn); | 
|  | if (Iter == Cache.end()) { | 
|  | scan(Fn); | 
|  | Iter = Cache.find(Fn); | 
|  | assert(Iter != Cache.end()); | 
|  | assert(Iter->second.hasValue()); | 
|  | } | 
|  | return Iter->second; | 
|  | } | 
|  |  | 
|  | AliasResult CFLAAResult::query(const MemoryLocation &LocA, | 
|  | const MemoryLocation &LocB) { | 
|  | auto *ValA = const_cast<Value *>(LocA.Ptr); | 
|  | auto *ValB = const_cast<Value *>(LocB.Ptr); | 
|  |  | 
|  | Function *Fn = nullptr; | 
|  | auto MaybeFnA = parentFunctionOfValue(ValA); | 
|  | auto MaybeFnB = parentFunctionOfValue(ValB); | 
|  | if (!MaybeFnA.hasValue() && !MaybeFnB.hasValue()) { | 
|  | // The only times this is known to happen are when globals + InlineAsm | 
|  | // are involved | 
|  | DEBUG(dbgs() << "CFLAA: could not extract parent function information.\n"); | 
|  | return MayAlias; | 
|  | } | 
|  |  | 
|  | if (MaybeFnA.hasValue()) { | 
|  | Fn = *MaybeFnA; | 
|  | assert((!MaybeFnB.hasValue() || *MaybeFnB == *MaybeFnA) && | 
|  | "Interprocedural queries not supported"); | 
|  | } else { | 
|  | Fn = *MaybeFnB; | 
|  | } | 
|  |  | 
|  | assert(Fn != nullptr); | 
|  | auto &MaybeInfo = ensureCached(Fn); | 
|  | assert(MaybeInfo.hasValue()); | 
|  |  | 
|  | auto &Sets = MaybeInfo->Sets; | 
|  | auto MaybeA = Sets.find(ValA); | 
|  | if (!MaybeA.hasValue()) | 
|  | return MayAlias; | 
|  |  | 
|  | auto MaybeB = Sets.find(ValB); | 
|  | if (!MaybeB.hasValue()) | 
|  | return MayAlias; | 
|  |  | 
|  | auto SetA = *MaybeA; | 
|  | auto SetB = *MaybeB; | 
|  | auto AttrsA = Sets.getLink(SetA.Index).Attrs; | 
|  | auto AttrsB = Sets.getLink(SetB.Index).Attrs; | 
|  |  | 
|  | // Stratified set attributes are used as markets to signify whether a member | 
|  | // of a StratifiedSet (or a member of a set above the current set) has | 
|  | // interacted with either arguments or globals. "Interacted with" meaning | 
|  | // its value may be different depending on the value of an argument or | 
|  | // global. The thought behind this is that, because arguments and globals | 
|  | // may alias each other, if AttrsA and AttrsB have touched args/globals, | 
|  | // we must conservatively say that they alias. However, if at least one of | 
|  | // the sets has no values that could legally be altered by changing the value | 
|  | // of an argument or global, then we don't have to be as conservative. | 
|  | if (AttrsA.any() && AttrsB.any()) | 
|  | return MayAlias; | 
|  |  | 
|  | // We currently unify things even if the accesses to them may not be in | 
|  | // bounds, so we can't return partial alias here because we don't | 
|  | // know whether the pointer is really within the object or not. | 
|  | // IE Given an out of bounds GEP and an alloca'd pointer, we may | 
|  | // unify the two. We can't return partial alias for this case. | 
|  | // Since we do not currently track enough information to | 
|  | // differentiate | 
|  |  | 
|  | if (SetA.Index == SetB.Index) | 
|  | return MayAlias; | 
|  |  | 
|  | return NoAlias; | 
|  | } | 
|  |  | 
|  | CFLAAResult CFLAA::run(Function &F, AnalysisManager<Function> *AM) { | 
|  | return CFLAAResult(AM->getResult<TargetLibraryAnalysis>(F)); | 
|  | } | 
|  |  | 
|  | char CFLAA::PassID; | 
|  |  | 
|  | char CFLAAWrapperPass::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(CFLAAWrapperPass, "cfl-aa", "CFL-Based Alias Analysis", | 
|  | false, true) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(CFLAAWrapperPass, "cfl-aa", "CFL-Based Alias Analysis", | 
|  | false, true) | 
|  |  | 
|  | ImmutablePass *llvm::createCFLAAWrapperPass() { return new CFLAAWrapperPass(); } | 
|  |  | 
|  | CFLAAWrapperPass::CFLAAWrapperPass() : ImmutablePass(ID) { | 
|  | initializeCFLAAWrapperPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool CFLAAWrapperPass::doInitialization(Module &M) { | 
|  | Result.reset( | 
|  | new CFLAAResult(getAnalysis<TargetLibraryInfoWrapperPass>().getTLI())); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool CFLAAWrapperPass::doFinalization(Module &M) { | 
|  | Result.reset(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | void CFLAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesAll(); | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | } |