|  | //===- DAGISelEmitter.cpp - Generate an instruction selector --------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file was developed by Chris Lattner and is distributed under | 
|  | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This tablegen backend emits a DAG instruction selector. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "DAGISelEmitter.h" | 
|  | #include "Record.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include <algorithm> | 
|  | #include <set> | 
|  | using namespace llvm; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Helpers for working with extended types. | 
|  |  | 
|  | /// FilterVTs - Filter a list of VT's according to a predicate. | 
|  | /// | 
|  | template<typename T> | 
|  | static std::vector<MVT::ValueType> | 
|  | FilterVTs(const std::vector<MVT::ValueType> &InVTs, T Filter) { | 
|  | std::vector<MVT::ValueType> Result; | 
|  | for (unsigned i = 0, e = InVTs.size(); i != e; ++i) | 
|  | if (Filter(InVTs[i])) | 
|  | Result.push_back(InVTs[i]); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | template<typename T> | 
|  | static std::vector<unsigned char> | 
|  | FilterEVTs(const std::vector<unsigned char> &InVTs, T Filter) { | 
|  | std::vector<unsigned char> Result; | 
|  | for (unsigned i = 0, e = InVTs.size(); i != e; ++i) | 
|  | if (Filter((MVT::ValueType)InVTs[i])) | 
|  | Result.push_back(InVTs[i]); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | static std::vector<unsigned char> | 
|  | ConvertVTs(const std::vector<MVT::ValueType> &InVTs) { | 
|  | std::vector<unsigned char> Result; | 
|  | for (unsigned i = 0, e = InVTs.size(); i != e; ++i) | 
|  | Result.push_back(InVTs[i]); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | static bool LHSIsSubsetOfRHS(const std::vector<unsigned char> &LHS, | 
|  | const std::vector<unsigned char> &RHS) { | 
|  | if (LHS.size() > RHS.size()) return false; | 
|  | for (unsigned i = 0, e = LHS.size(); i != e; ++i) | 
|  | if (std::find(RHS.begin(), RHS.end(), LHS[i]) == RHS.end()) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// isExtIntegerVT - Return true if the specified extended value type vector | 
|  | /// contains isInt or an integer value type. | 
|  | static bool isExtIntegerInVTs(const std::vector<unsigned char> &EVTs) { | 
|  | assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!"); | 
|  | return EVTs[0] == MVT::isInt || !(FilterEVTs(EVTs, MVT::isInteger).empty()); | 
|  | } | 
|  |  | 
|  | /// isExtFloatingPointVT - Return true if the specified extended value type | 
|  | /// vector contains isFP or a FP value type. | 
|  | static bool isExtFloatingPointInVTs(const std::vector<unsigned char> &EVTs) { | 
|  | assert(!EVTs.empty() && "Cannot check for integer in empty ExtVT list!"); | 
|  | return EVTs[0] == MVT::isFP || | 
|  | !(FilterEVTs(EVTs, MVT::isFloatingPoint).empty()); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // SDTypeConstraint implementation | 
|  | // | 
|  |  | 
|  | SDTypeConstraint::SDTypeConstraint(Record *R) { | 
|  | OperandNo = R->getValueAsInt("OperandNum"); | 
|  |  | 
|  | if (R->isSubClassOf("SDTCisVT")) { | 
|  | ConstraintType = SDTCisVT; | 
|  | x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); | 
|  | } else if (R->isSubClassOf("SDTCisPtrTy")) { | 
|  | ConstraintType = SDTCisPtrTy; | 
|  | } else if (R->isSubClassOf("SDTCisInt")) { | 
|  | ConstraintType = SDTCisInt; | 
|  | } else if (R->isSubClassOf("SDTCisFP")) { | 
|  | ConstraintType = SDTCisFP; | 
|  | } else if (R->isSubClassOf("SDTCisSameAs")) { | 
|  | ConstraintType = SDTCisSameAs; | 
|  | x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); | 
|  | } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { | 
|  | ConstraintType = SDTCisVTSmallerThanOp; | 
|  | x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = | 
|  | R->getValueAsInt("OtherOperandNum"); | 
|  | } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { | 
|  | ConstraintType = SDTCisOpSmallerThanOp; | 
|  | x.SDTCisOpSmallerThanOp_Info.BigOperandNum = | 
|  | R->getValueAsInt("BigOperandNum"); | 
|  | } else if (R->isSubClassOf("SDTCisIntVectorOfSameSize")) { | 
|  | ConstraintType = SDTCisIntVectorOfSameSize; | 
|  | x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum = | 
|  | R->getValueAsInt("OtherOpNum"); | 
|  | } else { | 
|  | std::cerr << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getOperandNum - Return the node corresponding to operand #OpNo in tree | 
|  | /// N, which has NumResults results. | 
|  | TreePatternNode *SDTypeConstraint::getOperandNum(unsigned OpNo, | 
|  | TreePatternNode *N, | 
|  | unsigned NumResults) const { | 
|  | assert(NumResults <= 1 && | 
|  | "We only work with nodes with zero or one result so far!"); | 
|  |  | 
|  | if (OpNo >= (NumResults + N->getNumChildren())) { | 
|  | std::cerr << "Invalid operand number " << OpNo << " "; | 
|  | N->dump(); | 
|  | std::cerr << '\n'; | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | if (OpNo < NumResults) | 
|  | return N;  // FIXME: need value # | 
|  | else | 
|  | return N->getChild(OpNo-NumResults); | 
|  | } | 
|  |  | 
|  | /// ApplyTypeConstraint - Given a node in a pattern, apply this type | 
|  | /// constraint to the nodes operands.  This returns true if it makes a | 
|  | /// change, false otherwise.  If a type contradiction is found, throw an | 
|  | /// exception. | 
|  | bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, | 
|  | const SDNodeInfo &NodeInfo, | 
|  | TreePattern &TP) const { | 
|  | unsigned NumResults = NodeInfo.getNumResults(); | 
|  | assert(NumResults <= 1 && | 
|  | "We only work with nodes with zero or one result so far!"); | 
|  |  | 
|  | // Check that the number of operands is sane.  Negative operands -> varargs. | 
|  | if (NodeInfo.getNumOperands() >= 0) { | 
|  | if (N->getNumChildren() != (unsigned)NodeInfo.getNumOperands()) | 
|  | TP.error(N->getOperator()->getName() + " node requires exactly " + | 
|  | itostr(NodeInfo.getNumOperands()) + " operands!"); | 
|  | } | 
|  |  | 
|  | const CodeGenTarget &CGT = TP.getDAGISelEmitter().getTargetInfo(); | 
|  |  | 
|  | TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NumResults); | 
|  |  | 
|  | switch (ConstraintType) { | 
|  | default: assert(0 && "Unknown constraint type!"); | 
|  | case SDTCisVT: | 
|  | // Operand must be a particular type. | 
|  | return NodeToApply->UpdateNodeType(x.SDTCisVT_Info.VT, TP); | 
|  | case SDTCisPtrTy: { | 
|  | // Operand must be same as target pointer type. | 
|  | return NodeToApply->UpdateNodeType(MVT::iPTR, TP); | 
|  | } | 
|  | case SDTCisInt: { | 
|  | // If there is only one integer type supported, this must be it. | 
|  | std::vector<MVT::ValueType> IntVTs = | 
|  | FilterVTs(CGT.getLegalValueTypes(), MVT::isInteger); | 
|  |  | 
|  | // If we found exactly one supported integer type, apply it. | 
|  | if (IntVTs.size() == 1) | 
|  | return NodeToApply->UpdateNodeType(IntVTs[0], TP); | 
|  | return NodeToApply->UpdateNodeType(MVT::isInt, TP); | 
|  | } | 
|  | case SDTCisFP: { | 
|  | // If there is only one FP type supported, this must be it. | 
|  | std::vector<MVT::ValueType> FPVTs = | 
|  | FilterVTs(CGT.getLegalValueTypes(), MVT::isFloatingPoint); | 
|  |  | 
|  | // If we found exactly one supported FP type, apply it. | 
|  | if (FPVTs.size() == 1) | 
|  | return NodeToApply->UpdateNodeType(FPVTs[0], TP); | 
|  | return NodeToApply->UpdateNodeType(MVT::isFP, TP); | 
|  | } | 
|  | case SDTCisSameAs: { | 
|  | TreePatternNode *OtherNode = | 
|  | getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NumResults); | 
|  | return NodeToApply->UpdateNodeType(OtherNode->getExtTypes(), TP) | | 
|  | OtherNode->UpdateNodeType(NodeToApply->getExtTypes(), TP); | 
|  | } | 
|  | case SDTCisVTSmallerThanOp: { | 
|  | // The NodeToApply must be a leaf node that is a VT.  OtherOperandNum must | 
|  | // have an integer type that is smaller than the VT. | 
|  | if (!NodeToApply->isLeaf() || | 
|  | !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) || | 
|  | !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() | 
|  | ->isSubClassOf("ValueType")) | 
|  | TP.error(N->getOperator()->getName() + " expects a VT operand!"); | 
|  | MVT::ValueType VT = | 
|  | getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); | 
|  | if (!MVT::isInteger(VT)) | 
|  | TP.error(N->getOperator()->getName() + " VT operand must be integer!"); | 
|  |  | 
|  | TreePatternNode *OtherNode = | 
|  | getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N,NumResults); | 
|  |  | 
|  | // It must be integer. | 
|  | bool MadeChange = false; | 
|  | MadeChange |= OtherNode->UpdateNodeType(MVT::isInt, TP); | 
|  |  | 
|  | // This code only handles nodes that have one type set.  Assert here so | 
|  | // that we can change this if we ever need to deal with multiple value | 
|  | // types at this point. | 
|  | assert(OtherNode->getExtTypes().size() == 1 && "Node has too many types!"); | 
|  | if (OtherNode->hasTypeSet() && OtherNode->getTypeNum(0) <= VT) | 
|  | OtherNode->UpdateNodeType(MVT::Other, TP);  // Throw an error. | 
|  | return false; | 
|  | } | 
|  | case SDTCisOpSmallerThanOp: { | 
|  | TreePatternNode *BigOperand = | 
|  | getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NumResults); | 
|  |  | 
|  | // Both operands must be integer or FP, but we don't care which. | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // This code does not currently handle nodes which have multiple types, | 
|  | // where some types are integer, and some are fp.  Assert that this is not | 
|  | // the case. | 
|  | assert(!(isExtIntegerInVTs(NodeToApply->getExtTypes()) && | 
|  | isExtFloatingPointInVTs(NodeToApply->getExtTypes())) && | 
|  | !(isExtIntegerInVTs(BigOperand->getExtTypes()) && | 
|  | isExtFloatingPointInVTs(BigOperand->getExtTypes())) && | 
|  | "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); | 
|  | if (isExtIntegerInVTs(NodeToApply->getExtTypes())) | 
|  | MadeChange |= BigOperand->UpdateNodeType(MVT::isInt, TP); | 
|  | else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes())) | 
|  | MadeChange |= BigOperand->UpdateNodeType(MVT::isFP, TP); | 
|  | if (isExtIntegerInVTs(BigOperand->getExtTypes())) | 
|  | MadeChange |= NodeToApply->UpdateNodeType(MVT::isInt, TP); | 
|  | else if (isExtFloatingPointInVTs(BigOperand->getExtTypes())) | 
|  | MadeChange |= NodeToApply->UpdateNodeType(MVT::isFP, TP); | 
|  |  | 
|  | std::vector<MVT::ValueType> VTs = CGT.getLegalValueTypes(); | 
|  |  | 
|  | if (isExtIntegerInVTs(NodeToApply->getExtTypes())) { | 
|  | VTs = FilterVTs(VTs, MVT::isInteger); | 
|  | } else if (isExtFloatingPointInVTs(NodeToApply->getExtTypes())) { | 
|  | VTs = FilterVTs(VTs, MVT::isFloatingPoint); | 
|  | } else { | 
|  | VTs.clear(); | 
|  | } | 
|  |  | 
|  | switch (VTs.size()) { | 
|  | default:         // Too many VT's to pick from. | 
|  | case 0: break;   // No info yet. | 
|  | case 1: | 
|  | // Only one VT of this flavor.  Cannot ever satisify the constraints. | 
|  | return NodeToApply->UpdateNodeType(MVT::Other, TP);  // throw | 
|  | case 2: | 
|  | // If we have exactly two possible types, the little operand must be the | 
|  | // small one, the big operand should be the big one.  Common with | 
|  | // float/double for example. | 
|  | assert(VTs[0] < VTs[1] && "Should be sorted!"); | 
|  | MadeChange |= NodeToApply->UpdateNodeType(VTs[0], TP); | 
|  | MadeChange |= BigOperand->UpdateNodeType(VTs[1], TP); | 
|  | break; | 
|  | } | 
|  | return MadeChange; | 
|  | } | 
|  | case SDTCisIntVectorOfSameSize: { | 
|  | TreePatternNode *OtherOperand = | 
|  | getOperandNum(x.SDTCisIntVectorOfSameSize_Info.OtherOperandNum, | 
|  | N, NumResults); | 
|  | if (OtherOperand->hasTypeSet()) { | 
|  | if (!MVT::isVector(OtherOperand->getTypeNum(0))) | 
|  | TP.error(N->getOperator()->getName() + " VT operand must be a vector!"); | 
|  | MVT::ValueType IVT = OtherOperand->getTypeNum(0); | 
|  | IVT = MVT::getIntVectorWithNumElements(MVT::getVectorNumElements(IVT)); | 
|  | return NodeToApply->UpdateNodeType(IVT, TP); | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // SDNodeInfo implementation | 
|  | // | 
|  | SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { | 
|  | EnumName    = R->getValueAsString("Opcode"); | 
|  | SDClassName = R->getValueAsString("SDClass"); | 
|  | Record *TypeProfile = R->getValueAsDef("TypeProfile"); | 
|  | NumResults = TypeProfile->getValueAsInt("NumResults"); | 
|  | NumOperands = TypeProfile->getValueAsInt("NumOperands"); | 
|  |  | 
|  | // Parse the properties. | 
|  | Properties = 0; | 
|  | std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); | 
|  | for (unsigned i = 0, e = PropList.size(); i != e; ++i) { | 
|  | if (PropList[i]->getName() == "SDNPCommutative") { | 
|  | Properties |= 1 << SDNPCommutative; | 
|  | } else if (PropList[i]->getName() == "SDNPAssociative") { | 
|  | Properties |= 1 << SDNPAssociative; | 
|  | } else if (PropList[i]->getName() == "SDNPHasChain") { | 
|  | Properties |= 1 << SDNPHasChain; | 
|  | } else if (PropList[i]->getName() == "SDNPOutFlag") { | 
|  | Properties |= 1 << SDNPOutFlag; | 
|  | } else if (PropList[i]->getName() == "SDNPInFlag") { | 
|  | Properties |= 1 << SDNPInFlag; | 
|  | } else if (PropList[i]->getName() == "SDNPOptInFlag") { | 
|  | Properties |= 1 << SDNPOptInFlag; | 
|  | } else { | 
|  | std::cerr << "Unknown SD Node property '" << PropList[i]->getName() | 
|  | << "' on node '" << R->getName() << "'!\n"; | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // Parse the type constraints. | 
|  | std::vector<Record*> ConstraintList = | 
|  | TypeProfile->getValueAsListOfDefs("Constraints"); | 
|  | TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // TreePatternNode implementation | 
|  | // | 
|  |  | 
|  | TreePatternNode::~TreePatternNode() { | 
|  | #if 0 // FIXME: implement refcounted tree nodes! | 
|  | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) | 
|  | delete getChild(i); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /// UpdateNodeType - Set the node type of N to VT if VT contains | 
|  | /// information.  If N already contains a conflicting type, then throw an | 
|  | /// exception.  This returns true if any information was updated. | 
|  | /// | 
|  | bool TreePatternNode::UpdateNodeType(const std::vector<unsigned char> &ExtVTs, | 
|  | TreePattern &TP) { | 
|  | assert(!ExtVTs.empty() && "Cannot update node type with empty type vector!"); | 
|  |  | 
|  | if (ExtVTs[0] == MVT::isUnknown || LHSIsSubsetOfRHS(getExtTypes(), ExtVTs)) | 
|  | return false; | 
|  | if (isTypeCompletelyUnknown() || LHSIsSubsetOfRHS(ExtVTs, getExtTypes())) { | 
|  | setTypes(ExtVTs); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (getExtTypeNum(0) == MVT::iPTR) { | 
|  | if (ExtVTs[0] == MVT::iPTR || ExtVTs[0] == MVT::isInt) | 
|  | return false; | 
|  | if (isExtIntegerInVTs(ExtVTs)) { | 
|  | std::vector<unsigned char> FVTs = FilterEVTs(ExtVTs, MVT::isInteger); | 
|  | if (FVTs.size()) { | 
|  | setTypes(ExtVTs); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (ExtVTs[0] == MVT::isInt && isExtIntegerInVTs(getExtTypes())) { | 
|  | assert(hasTypeSet() && "should be handled above!"); | 
|  | std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger); | 
|  | if (getExtTypes() == FVTs) | 
|  | return false; | 
|  | setTypes(FVTs); | 
|  | return true; | 
|  | } | 
|  | if (ExtVTs[0] == MVT::iPTR && isExtIntegerInVTs(getExtTypes())) { | 
|  | //assert(hasTypeSet() && "should be handled above!"); | 
|  | std::vector<unsigned char> FVTs = FilterEVTs(getExtTypes(), MVT::isInteger); | 
|  | if (getExtTypes() == FVTs) | 
|  | return false; | 
|  | if (FVTs.size()) { | 
|  | setTypes(FVTs); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | if (ExtVTs[0] == MVT::isFP  && isExtFloatingPointInVTs(getExtTypes())) { | 
|  | assert(hasTypeSet() && "should be handled above!"); | 
|  | std::vector<unsigned char> FVTs = | 
|  | FilterEVTs(getExtTypes(), MVT::isFloatingPoint); | 
|  | if (getExtTypes() == FVTs) | 
|  | return false; | 
|  | setTypes(FVTs); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If we know this is an int or fp type, and we are told it is a specific one, | 
|  | // take the advice. | 
|  | // | 
|  | // Similarly, we should probably set the type here to the intersection of | 
|  | // {isInt|isFP} and ExtVTs | 
|  | if ((getExtTypeNum(0) == MVT::isInt && isExtIntegerInVTs(ExtVTs)) || | 
|  | (getExtTypeNum(0) == MVT::isFP  && isExtFloatingPointInVTs(ExtVTs))) { | 
|  | setTypes(ExtVTs); | 
|  | return true; | 
|  | } | 
|  | if (getExtTypeNum(0) == MVT::isInt && ExtVTs[0] == MVT::iPTR) { | 
|  | setTypes(ExtVTs); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (isLeaf()) { | 
|  | dump(); | 
|  | std::cerr << " "; | 
|  | TP.error("Type inference contradiction found in node!"); | 
|  | } else { | 
|  | TP.error("Type inference contradiction found in node " + | 
|  | getOperator()->getName() + "!"); | 
|  | } | 
|  | return true; // unreachable | 
|  | } | 
|  |  | 
|  |  | 
|  | void TreePatternNode::print(std::ostream &OS) const { | 
|  | if (isLeaf()) { | 
|  | OS << *getLeafValue(); | 
|  | } else { | 
|  | OS << "(" << getOperator()->getName(); | 
|  | } | 
|  |  | 
|  | // FIXME: At some point we should handle printing all the value types for | 
|  | // nodes that are multiply typed. | 
|  | switch (getExtTypeNum(0)) { | 
|  | case MVT::Other: OS << ":Other"; break; | 
|  | case MVT::isInt: OS << ":isInt"; break; | 
|  | case MVT::isFP : OS << ":isFP"; break; | 
|  | case MVT::isUnknown: ; /*OS << ":?";*/ break; | 
|  | case MVT::iPTR:  OS << ":iPTR"; break; | 
|  | default:  OS << ":" << getTypeNum(0); break; | 
|  | } | 
|  |  | 
|  | if (!isLeaf()) { | 
|  | if (getNumChildren() != 0) { | 
|  | OS << " "; | 
|  | getChild(0)->print(OS); | 
|  | for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { | 
|  | OS << ", "; | 
|  | getChild(i)->print(OS); | 
|  | } | 
|  | } | 
|  | OS << ")"; | 
|  | } | 
|  |  | 
|  | if (!PredicateFn.empty()) | 
|  | OS << "<<P:" << PredicateFn << ">>"; | 
|  | if (TransformFn) | 
|  | OS << "<<X:" << TransformFn->getName() << ">>"; | 
|  | if (!getName().empty()) | 
|  | OS << ":$" << getName(); | 
|  |  | 
|  | } | 
|  | void TreePatternNode::dump() const { | 
|  | print(std::cerr); | 
|  | } | 
|  |  | 
|  | /// isIsomorphicTo - Return true if this node is recursively isomorphic to | 
|  | /// the specified node.  For this comparison, all of the state of the node | 
|  | /// is considered, except for the assigned name.  Nodes with differing names | 
|  | /// that are otherwise identical are considered isomorphic. | 
|  | bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N) const { | 
|  | if (N == this) return true; | 
|  | if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || | 
|  | getPredicateFn() != N->getPredicateFn() || | 
|  | getTransformFn() != N->getTransformFn()) | 
|  | return false; | 
|  |  | 
|  | if (isLeaf()) { | 
|  | if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) | 
|  | if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) | 
|  | return DI->getDef() == NDI->getDef(); | 
|  | return getLeafValue() == N->getLeafValue(); | 
|  | } | 
|  |  | 
|  | if (N->getOperator() != getOperator() || | 
|  | N->getNumChildren() != getNumChildren()) return false; | 
|  | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) | 
|  | if (!getChild(i)->isIsomorphicTo(N->getChild(i))) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// clone - Make a copy of this tree and all of its children. | 
|  | /// | 
|  | TreePatternNode *TreePatternNode::clone() const { | 
|  | TreePatternNode *New; | 
|  | if (isLeaf()) { | 
|  | New = new TreePatternNode(getLeafValue()); | 
|  | } else { | 
|  | std::vector<TreePatternNode*> CChildren; | 
|  | CChildren.reserve(Children.size()); | 
|  | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) | 
|  | CChildren.push_back(getChild(i)->clone()); | 
|  | New = new TreePatternNode(getOperator(), CChildren); | 
|  | } | 
|  | New->setName(getName()); | 
|  | New->setTypes(getExtTypes()); | 
|  | New->setPredicateFn(getPredicateFn()); | 
|  | New->setTransformFn(getTransformFn()); | 
|  | return New; | 
|  | } | 
|  |  | 
|  | /// SubstituteFormalArguments - Replace the formal arguments in this tree | 
|  | /// with actual values specified by ArgMap. | 
|  | void TreePatternNode:: | 
|  | SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { | 
|  | if (isLeaf()) return; | 
|  |  | 
|  | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { | 
|  | TreePatternNode *Child = getChild(i); | 
|  | if (Child->isLeaf()) { | 
|  | Init *Val = Child->getLeafValue(); | 
|  | if (dynamic_cast<DefInit*>(Val) && | 
|  | static_cast<DefInit*>(Val)->getDef()->getName() == "node") { | 
|  | // We found a use of a formal argument, replace it with its value. | 
|  | Child = ArgMap[Child->getName()]; | 
|  | assert(Child && "Couldn't find formal argument!"); | 
|  | setChild(i, Child); | 
|  | } | 
|  | } else { | 
|  | getChild(i)->SubstituteFormalArguments(ArgMap); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// InlinePatternFragments - If this pattern refers to any pattern | 
|  | /// fragments, inline them into place, giving us a pattern without any | 
|  | /// PatFrag references. | 
|  | TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { | 
|  | if (isLeaf()) return this;  // nothing to do. | 
|  | Record *Op = getOperator(); | 
|  |  | 
|  | if (!Op->isSubClassOf("PatFrag")) { | 
|  | // Just recursively inline children nodes. | 
|  | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) | 
|  | setChild(i, getChild(i)->InlinePatternFragments(TP)); | 
|  | return this; | 
|  | } | 
|  |  | 
|  | // Otherwise, we found a reference to a fragment.  First, look up its | 
|  | // TreePattern record. | 
|  | TreePattern *Frag = TP.getDAGISelEmitter().getPatternFragment(Op); | 
|  |  | 
|  | // Verify that we are passing the right number of operands. | 
|  | if (Frag->getNumArgs() != Children.size()) | 
|  | TP.error("'" + Op->getName() + "' fragment requires " + | 
|  | utostr(Frag->getNumArgs()) + " operands!"); | 
|  |  | 
|  | TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); | 
|  |  | 
|  | // Resolve formal arguments to their actual value. | 
|  | if (Frag->getNumArgs()) { | 
|  | // Compute the map of formal to actual arguments. | 
|  | std::map<std::string, TreePatternNode*> ArgMap; | 
|  | for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) | 
|  | ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); | 
|  |  | 
|  | FragTree->SubstituteFormalArguments(ArgMap); | 
|  | } | 
|  |  | 
|  | FragTree->setName(getName()); | 
|  | FragTree->UpdateNodeType(getExtTypes(), TP); | 
|  |  | 
|  | // Get a new copy of this fragment to stitch into here. | 
|  | //delete this;    // FIXME: implement refcounting! | 
|  | return FragTree; | 
|  | } | 
|  |  | 
|  | /// getImplicitType - Check to see if the specified record has an implicit | 
|  | /// type which should be applied to it.  This infer the type of register | 
|  | /// references from the register file information, for example. | 
|  | /// | 
|  | static std::vector<unsigned char> getImplicitType(Record *R, bool NotRegisters, | 
|  | TreePattern &TP) { | 
|  | // Some common return values | 
|  | std::vector<unsigned char> Unknown(1, MVT::isUnknown); | 
|  | std::vector<unsigned char> Other(1, MVT::Other); | 
|  |  | 
|  | // Check to see if this is a register or a register class... | 
|  | if (R->isSubClassOf("RegisterClass")) { | 
|  | if (NotRegisters) | 
|  | return Unknown; | 
|  | const CodeGenRegisterClass &RC = | 
|  | TP.getDAGISelEmitter().getTargetInfo().getRegisterClass(R); | 
|  | return ConvertVTs(RC.getValueTypes()); | 
|  | } else if (R->isSubClassOf("PatFrag")) { | 
|  | // Pattern fragment types will be resolved when they are inlined. | 
|  | return Unknown; | 
|  | } else if (R->isSubClassOf("Register")) { | 
|  | if (NotRegisters) | 
|  | return Unknown; | 
|  | const CodeGenTarget &T = TP.getDAGISelEmitter().getTargetInfo(); | 
|  | return T.getRegisterVTs(R); | 
|  | } else if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { | 
|  | // Using a VTSDNode or CondCodeSDNode. | 
|  | return Other; | 
|  | } else if (R->isSubClassOf("ComplexPattern")) { | 
|  | if (NotRegisters) | 
|  | return Unknown; | 
|  | std::vector<unsigned char> | 
|  | ComplexPat(1, TP.getDAGISelEmitter().getComplexPattern(R).getValueType()); | 
|  | return ComplexPat; | 
|  | } else if (R->getName() == "node" || R->getName() == "srcvalue") { | 
|  | // Placeholder. | 
|  | return Unknown; | 
|  | } | 
|  |  | 
|  | TP.error("Unknown node flavor used in pattern: " + R->getName()); | 
|  | return Other; | 
|  | } | 
|  |  | 
|  | /// ApplyTypeConstraints - Apply all of the type constraints relevent to | 
|  | /// this node and its children in the tree.  This returns true if it makes a | 
|  | /// change, false otherwise.  If a type contradiction is found, throw an | 
|  | /// exception. | 
|  | bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { | 
|  | DAGISelEmitter &ISE = TP.getDAGISelEmitter(); | 
|  | if (isLeaf()) { | 
|  | if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { | 
|  | // If it's a regclass or something else known, include the type. | 
|  | return UpdateNodeType(getImplicitType(DI->getDef(), NotRegisters, TP),TP); | 
|  | } else if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) { | 
|  | // Int inits are always integers. :) | 
|  | bool MadeChange = UpdateNodeType(MVT::isInt, TP); | 
|  |  | 
|  | if (hasTypeSet()) { | 
|  | // At some point, it may make sense for this tree pattern to have | 
|  | // multiple types.  Assert here that it does not, so we revisit this | 
|  | // code when appropriate. | 
|  | assert(getExtTypes().size() >= 1 && "TreePattern doesn't have a type!"); | 
|  | MVT::ValueType VT = getTypeNum(0); | 
|  | for (unsigned i = 1, e = getExtTypes().size(); i != e; ++i) | 
|  | assert(getTypeNum(i) == VT && "TreePattern has too many types!"); | 
|  |  | 
|  | VT = getTypeNum(0); | 
|  | if (VT != MVT::iPTR) { | 
|  | unsigned Size = MVT::getSizeInBits(VT); | 
|  | // Make sure that the value is representable for this type. | 
|  | if (Size < 32) { | 
|  | int Val = (II->getValue() << (32-Size)) >> (32-Size); | 
|  | if (Val != II->getValue()) | 
|  | TP.error("Sign-extended integer value '" + itostr(II->getValue())+ | 
|  | "' is out of range for type '" + | 
|  | getEnumName(getTypeNum(0)) + "'!"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // special handling for set, which isn't really an SDNode. | 
|  | if (getOperator()->getName() == "set") { | 
|  | assert (getNumChildren() == 2 && "Only handle 2 operand set's for now!"); | 
|  | bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); | 
|  | MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); | 
|  |  | 
|  | // Types of operands must match. | 
|  | MadeChange |= getChild(0)->UpdateNodeType(getChild(1)->getExtTypes(), TP); | 
|  | MadeChange |= getChild(1)->UpdateNodeType(getChild(0)->getExtTypes(), TP); | 
|  | MadeChange |= UpdateNodeType(MVT::isVoid, TP); | 
|  | return MadeChange; | 
|  | } else if (getOperator() == ISE.get_intrinsic_void_sdnode() || | 
|  | getOperator() == ISE.get_intrinsic_w_chain_sdnode() || | 
|  | getOperator() == ISE.get_intrinsic_wo_chain_sdnode()) { | 
|  | unsigned IID = | 
|  | dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue(); | 
|  | const CodeGenIntrinsic &Int = ISE.getIntrinsicInfo(IID); | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // Apply the result type to the node. | 
|  | MadeChange = UpdateNodeType(Int.ArgVTs[0], TP); | 
|  |  | 
|  | if (getNumChildren() != Int.ArgVTs.size()) | 
|  | TP.error("Intrinsic '" + Int.Name + "' expects " + | 
|  | utostr(Int.ArgVTs.size()-1) + " operands, not " + | 
|  | utostr(getNumChildren()-1) + " operands!"); | 
|  |  | 
|  | // Apply type info to the intrinsic ID. | 
|  | MadeChange |= getChild(0)->UpdateNodeType(MVT::iPTR, TP); | 
|  |  | 
|  | for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { | 
|  | MVT::ValueType OpVT = Int.ArgVTs[i]; | 
|  | MadeChange |= getChild(i)->UpdateNodeType(OpVT, TP); | 
|  | MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); | 
|  | } | 
|  | return MadeChange; | 
|  | } else if (getOperator()->isSubClassOf("SDNode")) { | 
|  | const SDNodeInfo &NI = ISE.getSDNodeInfo(getOperator()); | 
|  |  | 
|  | bool MadeChange = NI.ApplyTypeConstraints(this, TP); | 
|  | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) | 
|  | MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); | 
|  | // Branch, etc. do not produce results and top-level forms in instr pattern | 
|  | // must have void types. | 
|  | if (NI.getNumResults() == 0) | 
|  | MadeChange |= UpdateNodeType(MVT::isVoid, TP); | 
|  |  | 
|  | // If this is a vector_shuffle operation, apply types to the build_vector | 
|  | // operation.  The types of the integers don't matter, but this ensures they | 
|  | // won't get checked. | 
|  | if (getOperator()->getName() == "vector_shuffle" && | 
|  | getChild(2)->getOperator()->getName() == "build_vector") { | 
|  | TreePatternNode *BV = getChild(2); | 
|  | const std::vector<MVT::ValueType> &LegalVTs | 
|  | = ISE.getTargetInfo().getLegalValueTypes(); | 
|  | MVT::ValueType LegalIntVT = MVT::Other; | 
|  | for (unsigned i = 0, e = LegalVTs.size(); i != e; ++i) | 
|  | if (MVT::isInteger(LegalVTs[i]) && !MVT::isVector(LegalVTs[i])) { | 
|  | LegalIntVT = LegalVTs[i]; | 
|  | break; | 
|  | } | 
|  | assert(LegalIntVT != MVT::Other && "No legal integer VT?"); | 
|  |  | 
|  | for (unsigned i = 0, e = BV->getNumChildren(); i != e; ++i) | 
|  | MadeChange |= BV->getChild(i)->UpdateNodeType(LegalIntVT, TP); | 
|  | } | 
|  | return MadeChange; | 
|  | } else if (getOperator()->isSubClassOf("Instruction")) { | 
|  | const DAGInstruction &Inst = ISE.getInstruction(getOperator()); | 
|  | bool MadeChange = false; | 
|  | unsigned NumResults = Inst.getNumResults(); | 
|  |  | 
|  | assert(NumResults <= 1 && | 
|  | "Only supports zero or one result instrs!"); | 
|  | // Apply the result type to the node | 
|  | if (NumResults == 0) { | 
|  | MadeChange = UpdateNodeType(MVT::isVoid, TP); | 
|  | } else { | 
|  | Record *ResultNode = Inst.getResult(0); | 
|  | assert(ResultNode->isSubClassOf("RegisterClass") && | 
|  | "Operands should be register classes!"); | 
|  |  | 
|  | const CodeGenRegisterClass &RC = | 
|  | ISE.getTargetInfo().getRegisterClass(ResultNode); | 
|  | MadeChange = UpdateNodeType(ConvertVTs(RC.getValueTypes()), TP); | 
|  | } | 
|  |  | 
|  | if (getNumChildren() != Inst.getNumOperands()) | 
|  | TP.error("Instruction '" + getOperator()->getName() + " expects " + | 
|  | utostr(Inst.getNumOperands()) + " operands, not " + | 
|  | utostr(getNumChildren()) + " operands!"); | 
|  | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { | 
|  | Record *OperandNode = Inst.getOperand(i); | 
|  | MVT::ValueType VT; | 
|  | if (OperandNode->isSubClassOf("RegisterClass")) { | 
|  | const CodeGenRegisterClass &RC = | 
|  | ISE.getTargetInfo().getRegisterClass(OperandNode); | 
|  | //VT = RC.getValueTypeNum(0); | 
|  | MadeChange |=getChild(i)->UpdateNodeType(ConvertVTs(RC.getValueTypes()), | 
|  | TP); | 
|  | } else if (OperandNode->isSubClassOf("Operand")) { | 
|  | VT = getValueType(OperandNode->getValueAsDef("Type")); | 
|  | MadeChange |= getChild(i)->UpdateNodeType(VT, TP); | 
|  | } else { | 
|  | assert(0 && "Unknown operand type!"); | 
|  | abort(); | 
|  | } | 
|  | MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); | 
|  | } | 
|  | return MadeChange; | 
|  | } else { | 
|  | assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); | 
|  |  | 
|  | // Node transforms always take one operand. | 
|  | if (getNumChildren() != 1) | 
|  | TP.error("Node transform '" + getOperator()->getName() + | 
|  | "' requires one operand!"); | 
|  |  | 
|  | // If either the output or input of the xform does not have exact | 
|  | // type info. We assume they must be the same. Otherwise, it is perfectly | 
|  | // legal to transform from one type to a completely different type. | 
|  | if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { | 
|  | bool MadeChange = UpdateNodeType(getChild(0)->getExtTypes(), TP); | 
|  | MadeChange |= getChild(0)->UpdateNodeType(getExtTypes(), TP); | 
|  | return MadeChange; | 
|  | } | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// canPatternMatch - If it is impossible for this pattern to match on this | 
|  | /// target, fill in Reason and return false.  Otherwise, return true.  This is | 
|  | /// used as a santity check for .td files (to prevent people from writing stuff | 
|  | /// that can never possibly work), and to prevent the pattern permuter from | 
|  | /// generating stuff that is useless. | 
|  | bool TreePatternNode::canPatternMatch(std::string &Reason, DAGISelEmitter &ISE){ | 
|  | if (isLeaf()) return true; | 
|  |  | 
|  | for (unsigned i = 0, e = getNumChildren(); i != e; ++i) | 
|  | if (!getChild(i)->canPatternMatch(Reason, ISE)) | 
|  | return false; | 
|  |  | 
|  | // If this is an intrinsic, handle cases that would make it not match.  For | 
|  | // example, if an operand is required to be an immediate. | 
|  | if (getOperator()->isSubClassOf("Intrinsic")) { | 
|  | // TODO: | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If this node is a commutative operator, check that the LHS isn't an | 
|  | // immediate. | 
|  | const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(getOperator()); | 
|  | if (NodeInfo.hasProperty(SDNodeInfo::SDNPCommutative)) { | 
|  | // Scan all of the operands of the node and make sure that only the last one | 
|  | // is a constant node. | 
|  | for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) | 
|  | if (!getChild(i)->isLeaf() && | 
|  | getChild(i)->getOperator()->getName() == "imm") { | 
|  | Reason = "Immediate value must be on the RHS of commutative operators!"; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // TreePattern implementation | 
|  | // | 
|  |  | 
|  | TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, | 
|  | DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { | 
|  | isInputPattern = isInput; | 
|  | for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) | 
|  | Trees.push_back(ParseTreePattern((DagInit*)RawPat->getElement(i))); | 
|  | } | 
|  |  | 
|  | TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, | 
|  | DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { | 
|  | isInputPattern = isInput; | 
|  | Trees.push_back(ParseTreePattern(Pat)); | 
|  | } | 
|  |  | 
|  | TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, | 
|  | DAGISelEmitter &ise) : TheRecord(TheRec), ISE(ise) { | 
|  | isInputPattern = isInput; | 
|  | Trees.push_back(Pat); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | void TreePattern::error(const std::string &Msg) const { | 
|  | dump(); | 
|  | throw "In " + TheRecord->getName() + ": " + Msg; | 
|  | } | 
|  |  | 
|  | TreePatternNode *TreePattern::ParseTreePattern(DagInit *Dag) { | 
|  | DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator()); | 
|  | if (!OpDef) error("Pattern has unexpected operator type!"); | 
|  | Record *Operator = OpDef->getDef(); | 
|  |  | 
|  | if (Operator->isSubClassOf("ValueType")) { | 
|  | // If the operator is a ValueType, then this must be "type cast" of a leaf | 
|  | // node. | 
|  | if (Dag->getNumArgs() != 1) | 
|  | error("Type cast only takes one operand!"); | 
|  |  | 
|  | Init *Arg = Dag->getArg(0); | 
|  | TreePatternNode *New; | 
|  | if (DefInit *DI = dynamic_cast<DefInit*>(Arg)) { | 
|  | Record *R = DI->getDef(); | 
|  | if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { | 
|  | Dag->setArg(0, new DagInit(DI, | 
|  | std::vector<std::pair<Init*, std::string> >())); | 
|  | return ParseTreePattern(Dag); | 
|  | } | 
|  | New = new TreePatternNode(DI); | 
|  | } else if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) { | 
|  | New = ParseTreePattern(DI); | 
|  | } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) { | 
|  | New = new TreePatternNode(II); | 
|  | if (!Dag->getArgName(0).empty()) | 
|  | error("Constant int argument should not have a name!"); | 
|  | } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) { | 
|  | // Turn this into an IntInit. | 
|  | Init *II = BI->convertInitializerTo(new IntRecTy()); | 
|  | if (II == 0 || !dynamic_cast<IntInit*>(II)) | 
|  | error("Bits value must be constants!"); | 
|  |  | 
|  | New = new TreePatternNode(dynamic_cast<IntInit*>(II)); | 
|  | if (!Dag->getArgName(0).empty()) | 
|  | error("Constant int argument should not have a name!"); | 
|  | } else { | 
|  | Arg->dump(); | 
|  | error("Unknown leaf value for tree pattern!"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Apply the type cast. | 
|  | New->UpdateNodeType(getValueType(Operator), *this); | 
|  | New->setName(Dag->getArgName(0)); | 
|  | return New; | 
|  | } | 
|  |  | 
|  | // Verify that this is something that makes sense for an operator. | 
|  | if (!Operator->isSubClassOf("PatFrag") && !Operator->isSubClassOf("SDNode") && | 
|  | !Operator->isSubClassOf("Instruction") && | 
|  | !Operator->isSubClassOf("SDNodeXForm") && | 
|  | !Operator->isSubClassOf("Intrinsic") && | 
|  | Operator->getName() != "set") | 
|  | error("Unrecognized node '" + Operator->getName() + "'!"); | 
|  |  | 
|  | //  Check to see if this is something that is illegal in an input pattern. | 
|  | if (isInputPattern && (Operator->isSubClassOf("Instruction") || | 
|  | Operator->isSubClassOf("SDNodeXForm"))) | 
|  | error("Cannot use '" + Operator->getName() + "' in an input pattern!"); | 
|  |  | 
|  | std::vector<TreePatternNode*> Children; | 
|  |  | 
|  | for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) { | 
|  | Init *Arg = Dag->getArg(i); | 
|  | if (DagInit *DI = dynamic_cast<DagInit*>(Arg)) { | 
|  | Children.push_back(ParseTreePattern(DI)); | 
|  | if (Children.back()->getName().empty()) | 
|  | Children.back()->setName(Dag->getArgName(i)); | 
|  | } else if (DefInit *DefI = dynamic_cast<DefInit*>(Arg)) { | 
|  | Record *R = DefI->getDef(); | 
|  | // Direct reference to a leaf DagNode or PatFrag?  Turn it into a | 
|  | // TreePatternNode if its own. | 
|  | if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) { | 
|  | Dag->setArg(i, new DagInit(DefI, | 
|  | std::vector<std::pair<Init*, std::string> >())); | 
|  | --i;  // Revisit this node... | 
|  | } else { | 
|  | TreePatternNode *Node = new TreePatternNode(DefI); | 
|  | Node->setName(Dag->getArgName(i)); | 
|  | Children.push_back(Node); | 
|  |  | 
|  | // Input argument? | 
|  | if (R->getName() == "node") { | 
|  | if (Dag->getArgName(i).empty()) | 
|  | error("'node' argument requires a name to match with operand list"); | 
|  | Args.push_back(Dag->getArgName(i)); | 
|  | } | 
|  | } | 
|  | } else if (IntInit *II = dynamic_cast<IntInit*>(Arg)) { | 
|  | TreePatternNode *Node = new TreePatternNode(II); | 
|  | if (!Dag->getArgName(i).empty()) | 
|  | error("Constant int argument should not have a name!"); | 
|  | Children.push_back(Node); | 
|  | } else if (BitsInit *BI = dynamic_cast<BitsInit*>(Arg)) { | 
|  | // Turn this into an IntInit. | 
|  | Init *II = BI->convertInitializerTo(new IntRecTy()); | 
|  | if (II == 0 || !dynamic_cast<IntInit*>(II)) | 
|  | error("Bits value must be constants!"); | 
|  |  | 
|  | TreePatternNode *Node = new TreePatternNode(dynamic_cast<IntInit*>(II)); | 
|  | if (!Dag->getArgName(i).empty()) | 
|  | error("Constant int argument should not have a name!"); | 
|  | Children.push_back(Node); | 
|  | } else { | 
|  | std::cerr << '"'; | 
|  | Arg->dump(); | 
|  | std::cerr << "\": "; | 
|  | error("Unknown leaf value for tree pattern!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the operator is an intrinsic, then this is just syntactic sugar for for | 
|  | // (intrinsic_* <number>, ..children..).  Pick the right intrinsic node, and | 
|  | // convert the intrinsic name to a number. | 
|  | if (Operator->isSubClassOf("Intrinsic")) { | 
|  | const CodeGenIntrinsic &Int = getDAGISelEmitter().getIntrinsic(Operator); | 
|  | unsigned IID = getDAGISelEmitter().getIntrinsicID(Operator)+1; | 
|  |  | 
|  | // If this intrinsic returns void, it must have side-effects and thus a | 
|  | // chain. | 
|  | if (Int.ArgVTs[0] == MVT::isVoid) { | 
|  | Operator = getDAGISelEmitter().get_intrinsic_void_sdnode(); | 
|  | } else if (Int.ModRef != CodeGenIntrinsic::NoMem) { | 
|  | // Has side-effects, requires chain. | 
|  | Operator = getDAGISelEmitter().get_intrinsic_w_chain_sdnode(); | 
|  | } else { | 
|  | // Otherwise, no chain. | 
|  | Operator = getDAGISelEmitter().get_intrinsic_wo_chain_sdnode(); | 
|  | } | 
|  |  | 
|  | TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID)); | 
|  | Children.insert(Children.begin(), IIDNode); | 
|  | } | 
|  |  | 
|  | return new TreePatternNode(Operator, Children); | 
|  | } | 
|  |  | 
|  | /// InferAllTypes - Infer/propagate as many types throughout the expression | 
|  | /// patterns as possible.  Return true if all types are infered, false | 
|  | /// otherwise.  Throw an exception if a type contradiction is found. | 
|  | bool TreePattern::InferAllTypes() { | 
|  | bool MadeChange = true; | 
|  | while (MadeChange) { | 
|  | MadeChange = false; | 
|  | for (unsigned i = 0, e = Trees.size(); i != e; ++i) | 
|  | MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); | 
|  | } | 
|  |  | 
|  | bool HasUnresolvedTypes = false; | 
|  | for (unsigned i = 0, e = Trees.size(); i != e; ++i) | 
|  | HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); | 
|  | return !HasUnresolvedTypes; | 
|  | } | 
|  |  | 
|  | void TreePattern::print(std::ostream &OS) const { | 
|  | OS << getRecord()->getName(); | 
|  | if (!Args.empty()) { | 
|  | OS << "(" << Args[0]; | 
|  | for (unsigned i = 1, e = Args.size(); i != e; ++i) | 
|  | OS << ", " << Args[i]; | 
|  | OS << ")"; | 
|  | } | 
|  | OS << ": "; | 
|  |  | 
|  | if (Trees.size() > 1) | 
|  | OS << "[\n"; | 
|  | for (unsigned i = 0, e = Trees.size(); i != e; ++i) { | 
|  | OS << "\t"; | 
|  | Trees[i]->print(OS); | 
|  | OS << "\n"; | 
|  | } | 
|  |  | 
|  | if (Trees.size() > 1) | 
|  | OS << "]\n"; | 
|  | } | 
|  |  | 
|  | void TreePattern::dump() const { print(std::cerr); } | 
|  |  | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // DAGISelEmitter implementation | 
|  | // | 
|  |  | 
|  | // Parse all of the SDNode definitions for the target, populating SDNodes. | 
|  | void DAGISelEmitter::ParseNodeInfo() { | 
|  | std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); | 
|  | while (!Nodes.empty()) { | 
|  | SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); | 
|  | Nodes.pop_back(); | 
|  | } | 
|  |  | 
|  | // Get the buildin intrinsic nodes. | 
|  | intrinsic_void_sdnode     = getSDNodeNamed("intrinsic_void"); | 
|  | intrinsic_w_chain_sdnode  = getSDNodeNamed("intrinsic_w_chain"); | 
|  | intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); | 
|  | } | 
|  |  | 
|  | /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms | 
|  | /// map, and emit them to the file as functions. | 
|  | void DAGISelEmitter::ParseNodeTransforms(std::ostream &OS) { | 
|  | OS << "\n// Node transformations.\n"; | 
|  | std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); | 
|  | while (!Xforms.empty()) { | 
|  | Record *XFormNode = Xforms.back(); | 
|  | Record *SDNode = XFormNode->getValueAsDef("Opcode"); | 
|  | std::string Code = XFormNode->getValueAsCode("XFormFunction"); | 
|  | SDNodeXForms.insert(std::make_pair(XFormNode, | 
|  | std::make_pair(SDNode, Code))); | 
|  |  | 
|  | if (!Code.empty()) { | 
|  | std::string ClassName = getSDNodeInfo(SDNode).getSDClassName(); | 
|  | const char *C2 = ClassName == "SDNode" ? "N" : "inN"; | 
|  |  | 
|  | OS << "inline SDOperand Transform_" << XFormNode->getName() | 
|  | << "(SDNode *" << C2 << ") {\n"; | 
|  | if (ClassName != "SDNode") | 
|  | OS << "  " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; | 
|  | OS << Code << "\n}\n"; | 
|  | } | 
|  |  | 
|  | Xforms.pop_back(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void DAGISelEmitter::ParseComplexPatterns() { | 
|  | std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); | 
|  | while (!AMs.empty()) { | 
|  | ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); | 
|  | AMs.pop_back(); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td | 
|  | /// file, building up the PatternFragments map.  After we've collected them all, | 
|  | /// inline fragments together as necessary, so that there are no references left | 
|  | /// inside a pattern fragment to a pattern fragment. | 
|  | /// | 
|  | /// This also emits all of the predicate functions to the output file. | 
|  | /// | 
|  | void DAGISelEmitter::ParsePatternFragments(std::ostream &OS) { | 
|  | std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); | 
|  |  | 
|  | // First step, parse all of the fragments and emit predicate functions. | 
|  | OS << "\n// Predicate functions.\n"; | 
|  | for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { | 
|  | DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); | 
|  | TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); | 
|  | PatternFragments[Fragments[i]] = P; | 
|  |  | 
|  | // Validate the argument list, converting it to map, to discard duplicates. | 
|  | std::vector<std::string> &Args = P->getArgList(); | 
|  | std::set<std::string> OperandsMap(Args.begin(), Args.end()); | 
|  |  | 
|  | if (OperandsMap.count("")) | 
|  | P->error("Cannot have unnamed 'node' values in pattern fragment!"); | 
|  |  | 
|  | // Parse the operands list. | 
|  | DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); | 
|  | DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator()); | 
|  | if (!OpsOp || OpsOp->getDef()->getName() != "ops") | 
|  | P->error("Operands list should start with '(ops ... '!"); | 
|  |  | 
|  | // Copy over the arguments. | 
|  | Args.clear(); | 
|  | for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { | 
|  | if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) || | 
|  | static_cast<DefInit*>(OpsList->getArg(j))-> | 
|  | getDef()->getName() != "node") | 
|  | P->error("Operands list should all be 'node' values."); | 
|  | if (OpsList->getArgName(j).empty()) | 
|  | P->error("Operands list should have names for each operand!"); | 
|  | if (!OperandsMap.count(OpsList->getArgName(j))) | 
|  | P->error("'" + OpsList->getArgName(j) + | 
|  | "' does not occur in pattern or was multiply specified!"); | 
|  | OperandsMap.erase(OpsList->getArgName(j)); | 
|  | Args.push_back(OpsList->getArgName(j)); | 
|  | } | 
|  |  | 
|  | if (!OperandsMap.empty()) | 
|  | P->error("Operands list does not contain an entry for operand '" + | 
|  | *OperandsMap.begin() + "'!"); | 
|  |  | 
|  | // If there is a code init for this fragment, emit the predicate code and | 
|  | // keep track of the fact that this fragment uses it. | 
|  | std::string Code = Fragments[i]->getValueAsCode("Predicate"); | 
|  | if (!Code.empty()) { | 
|  | assert(!P->getOnlyTree()->isLeaf() && "Can't be a leaf!"); | 
|  | std::string ClassName = | 
|  | getSDNodeInfo(P->getOnlyTree()->getOperator()).getSDClassName(); | 
|  | const char *C2 = ClassName == "SDNode" ? "N" : "inN"; | 
|  |  | 
|  | OS << "inline bool Predicate_" << Fragments[i]->getName() | 
|  | << "(SDNode *" << C2 << ") {\n"; | 
|  | if (ClassName != "SDNode") | 
|  | OS << "  " << ClassName << " *N = cast<" << ClassName << ">(inN);\n"; | 
|  | OS << Code << "\n}\n"; | 
|  | P->getOnlyTree()->setPredicateFn("Predicate_"+Fragments[i]->getName()); | 
|  | } | 
|  |  | 
|  | // If there is a node transformation corresponding to this, keep track of | 
|  | // it. | 
|  | Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); | 
|  | if (!getSDNodeTransform(Transform).second.empty())    // not noop xform? | 
|  | P->getOnlyTree()->setTransformFn(Transform); | 
|  | } | 
|  |  | 
|  | OS << "\n\n"; | 
|  |  | 
|  | // Now that we've parsed all of the tree fragments, do a closure on them so | 
|  | // that there are not references to PatFrags left inside of them. | 
|  | for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(), | 
|  | E = PatternFragments.end(); I != E; ++I) { | 
|  | TreePattern *ThePat = I->second; | 
|  | ThePat->InlinePatternFragments(); | 
|  |  | 
|  | // Infer as many types as possible.  Don't worry about it if we don't infer | 
|  | // all of them, some may depend on the inputs of the pattern. | 
|  | try { | 
|  | ThePat->InferAllTypes(); | 
|  | } catch (...) { | 
|  | // If this pattern fragment is not supported by this target (no types can | 
|  | // satisfy its constraints), just ignore it.  If the bogus pattern is | 
|  | // actually used by instructions, the type consistency error will be | 
|  | // reported there. | 
|  | } | 
|  |  | 
|  | // If debugging, print out the pattern fragment result. | 
|  | DEBUG(ThePat->dump()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an | 
|  | /// instruction input.  Return true if this is a real use. | 
|  | static bool HandleUse(TreePattern *I, TreePatternNode *Pat, | 
|  | std::map<std::string, TreePatternNode*> &InstInputs, | 
|  | std::vector<Record*> &InstImpInputs) { | 
|  | // No name -> not interesting. | 
|  | if (Pat->getName().empty()) { | 
|  | if (Pat->isLeaf()) { | 
|  | DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); | 
|  | if (DI && DI->getDef()->isSubClassOf("RegisterClass")) | 
|  | I->error("Input " + DI->getDef()->getName() + " must be named!"); | 
|  | else if (DI && DI->getDef()->isSubClassOf("Register")) | 
|  | InstImpInputs.push_back(DI->getDef()); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Record *Rec; | 
|  | if (Pat->isLeaf()) { | 
|  | DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); | 
|  | if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); | 
|  | Rec = DI->getDef(); | 
|  | } else { | 
|  | assert(Pat->getNumChildren() == 0 && "can't be a use with children!"); | 
|  | Rec = Pat->getOperator(); | 
|  | } | 
|  |  | 
|  | // SRCVALUE nodes are ignored. | 
|  | if (Rec->getName() == "srcvalue") | 
|  | return false; | 
|  |  | 
|  | TreePatternNode *&Slot = InstInputs[Pat->getName()]; | 
|  | if (!Slot) { | 
|  | Slot = Pat; | 
|  | } else { | 
|  | Record *SlotRec; | 
|  | if (Slot->isLeaf()) { | 
|  | SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef(); | 
|  | } else { | 
|  | assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); | 
|  | SlotRec = Slot->getOperator(); | 
|  | } | 
|  |  | 
|  | // Ensure that the inputs agree if we've already seen this input. | 
|  | if (Rec != SlotRec) | 
|  | I->error("All $" + Pat->getName() + " inputs must agree with each other"); | 
|  | if (Slot->getExtTypes() != Pat->getExtTypes()) | 
|  | I->error("All $" + Pat->getName() + " inputs must agree with each other"); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is | 
|  | /// part of "I", the instruction), computing the set of inputs and outputs of | 
|  | /// the pattern.  Report errors if we see anything naughty. | 
|  | void DAGISelEmitter:: | 
|  | FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, | 
|  | std::map<std::string, TreePatternNode*> &InstInputs, | 
|  | std::map<std::string, TreePatternNode*>&InstResults, | 
|  | std::vector<Record*> &InstImpInputs, | 
|  | std::vector<Record*> &InstImpResults) { | 
|  | if (Pat->isLeaf()) { | 
|  | bool isUse = HandleUse(I, Pat, InstInputs, InstImpInputs); | 
|  | if (!isUse && Pat->getTransformFn()) | 
|  | I->error("Cannot specify a transform function for a non-input value!"); | 
|  | return; | 
|  | } else if (Pat->getOperator()->getName() != "set") { | 
|  | // If this is not a set, verify that the children nodes are not void typed, | 
|  | // and recurse. | 
|  | for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { | 
|  | if (Pat->getChild(i)->getExtTypeNum(0) == MVT::isVoid) | 
|  | I->error("Cannot have void nodes inside of patterns!"); | 
|  | FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, | 
|  | InstImpInputs, InstImpResults); | 
|  | } | 
|  |  | 
|  | // If this is a non-leaf node with no children, treat it basically as if | 
|  | // it were a leaf.  This handles nodes like (imm). | 
|  | bool isUse = false; | 
|  | if (Pat->getNumChildren() == 0) | 
|  | isUse = HandleUse(I, Pat, InstInputs, InstImpInputs); | 
|  |  | 
|  | if (!isUse && Pat->getTransformFn()) | 
|  | I->error("Cannot specify a transform function for a non-input value!"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, this is a set, validate and collect instruction results. | 
|  | if (Pat->getNumChildren() == 0) | 
|  | I->error("set requires operands!"); | 
|  | else if (Pat->getNumChildren() & 1) | 
|  | I->error("set requires an even number of operands"); | 
|  |  | 
|  | if (Pat->getTransformFn()) | 
|  | I->error("Cannot specify a transform function on a set node!"); | 
|  |  | 
|  | // Check the set destinations. | 
|  | unsigned NumValues = Pat->getNumChildren()/2; | 
|  | for (unsigned i = 0; i != NumValues; ++i) { | 
|  | TreePatternNode *Dest = Pat->getChild(i); | 
|  | if (!Dest->isLeaf()) | 
|  | I->error("set destination should be a register!"); | 
|  |  | 
|  | DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); | 
|  | if (!Val) | 
|  | I->error("set destination should be a register!"); | 
|  |  | 
|  | if (Val->getDef()->isSubClassOf("RegisterClass")) { | 
|  | if (Dest->getName().empty()) | 
|  | I->error("set destination must have a name!"); | 
|  | if (InstResults.count(Dest->getName())) | 
|  | I->error("cannot set '" + Dest->getName() +"' multiple times"); | 
|  | InstResults[Dest->getName()] = Dest; | 
|  | } else if (Val->getDef()->isSubClassOf("Register")) { | 
|  | InstImpResults.push_back(Val->getDef()); | 
|  | } else { | 
|  | I->error("set destination should be a register!"); | 
|  | } | 
|  |  | 
|  | // Verify and collect info from the computation. | 
|  | FindPatternInputsAndOutputs(I, Pat->getChild(i+NumValues), | 
|  | InstInputs, InstResults, | 
|  | InstImpInputs, InstImpResults); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ParseInstructions - Parse all of the instructions, inlining and resolving | 
|  | /// any fragments involved.  This populates the Instructions list with fully | 
|  | /// resolved instructions. | 
|  | void DAGISelEmitter::ParseInstructions() { | 
|  | std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); | 
|  |  | 
|  | for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { | 
|  | ListInit *LI = 0; | 
|  |  | 
|  | if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern"))) | 
|  | LI = Instrs[i]->getValueAsListInit("Pattern"); | 
|  |  | 
|  | // If there is no pattern, only collect minimal information about the | 
|  | // instruction for its operand list.  We have to assume that there is one | 
|  | // result, as we have no detailed info. | 
|  | if (!LI || LI->getSize() == 0) { | 
|  | std::vector<Record*> Results; | 
|  | std::vector<Record*> Operands; | 
|  |  | 
|  | CodeGenInstruction &InstInfo =Target.getInstruction(Instrs[i]->getName()); | 
|  |  | 
|  | if (InstInfo.OperandList.size() != 0) { | 
|  | // FIXME: temporary hack... | 
|  | if (InstInfo.noResults) { | 
|  | // These produce no results | 
|  | for (unsigned j = 0, e = InstInfo.OperandList.size(); j < e; ++j) | 
|  | Operands.push_back(InstInfo.OperandList[j].Rec); | 
|  | } else { | 
|  | // Assume the first operand is the result. | 
|  | Results.push_back(InstInfo.OperandList[0].Rec); | 
|  |  | 
|  | // The rest are inputs. | 
|  | for (unsigned j = 1, e = InstInfo.OperandList.size(); j < e; ++j) | 
|  | Operands.push_back(InstInfo.OperandList[j].Rec); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create and insert the instruction. | 
|  | std::vector<Record*> ImpResults; | 
|  | std::vector<Record*> ImpOperands; | 
|  | Instructions.insert(std::make_pair(Instrs[i], | 
|  | DAGInstruction(0, Results, Operands, ImpResults, | 
|  | ImpOperands))); | 
|  | continue;  // no pattern. | 
|  | } | 
|  |  | 
|  | // Parse the instruction. | 
|  | TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); | 
|  | // Inline pattern fragments into it. | 
|  | I->InlinePatternFragments(); | 
|  |  | 
|  | // Infer as many types as possible.  If we cannot infer all of them, we can | 
|  | // never do anything with this instruction pattern: report it to the user. | 
|  | if (!I->InferAllTypes()) | 
|  | I->error("Could not infer all types in pattern!"); | 
|  |  | 
|  | // InstInputs - Keep track of all of the inputs of the instruction, along | 
|  | // with the record they are declared as. | 
|  | std::map<std::string, TreePatternNode*> InstInputs; | 
|  |  | 
|  | // InstResults - Keep track of all the virtual registers that are 'set' | 
|  | // in the instruction, including what reg class they are. | 
|  | std::map<std::string, TreePatternNode*> InstResults; | 
|  |  | 
|  | std::vector<Record*> InstImpInputs; | 
|  | std::vector<Record*> InstImpResults; | 
|  |  | 
|  | // Verify that the top-level forms in the instruction are of void type, and | 
|  | // fill in the InstResults map. | 
|  | for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { | 
|  | TreePatternNode *Pat = I->getTree(j); | 
|  | if (Pat->getExtTypeNum(0) != MVT::isVoid) | 
|  | I->error("Top-level forms in instruction pattern should have" | 
|  | " void types"); | 
|  |  | 
|  | // Find inputs and outputs, and verify the structure of the uses/defs. | 
|  | FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, | 
|  | InstImpInputs, InstImpResults); | 
|  | } | 
|  |  | 
|  | // Now that we have inputs and outputs of the pattern, inspect the operands | 
|  | // list for the instruction.  This determines the order that operands are | 
|  | // added to the machine instruction the node corresponds to. | 
|  | unsigned NumResults = InstResults.size(); | 
|  |  | 
|  | // Parse the operands list from the (ops) list, validating it. | 
|  | std::vector<std::string> &Args = I->getArgList(); | 
|  | assert(Args.empty() && "Args list should still be empty here!"); | 
|  | CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]->getName()); | 
|  |  | 
|  | // Check that all of the results occur first in the list. | 
|  | std::vector<Record*> Results; | 
|  | TreePatternNode *Res0Node = NULL; | 
|  | for (unsigned i = 0; i != NumResults; ++i) { | 
|  | if (i == CGI.OperandList.size()) | 
|  | I->error("'" + InstResults.begin()->first + | 
|  | "' set but does not appear in operand list!"); | 
|  | const std::string &OpName = CGI.OperandList[i].Name; | 
|  |  | 
|  | // Check that it exists in InstResults. | 
|  | TreePatternNode *RNode = InstResults[OpName]; | 
|  | if (RNode == 0) | 
|  | I->error("Operand $" + OpName + " does not exist in operand list!"); | 
|  |  | 
|  | if (i == 0) | 
|  | Res0Node = RNode; | 
|  | Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef(); | 
|  | if (R == 0) | 
|  | I->error("Operand $" + OpName + " should be a set destination: all " | 
|  | "outputs must occur before inputs in operand list!"); | 
|  |  | 
|  | if (CGI.OperandList[i].Rec != R) | 
|  | I->error("Operand $" + OpName + " class mismatch!"); | 
|  |  | 
|  | // Remember the return type. | 
|  | Results.push_back(CGI.OperandList[i].Rec); | 
|  |  | 
|  | // Okay, this one checks out. | 
|  | InstResults.erase(OpName); | 
|  | } | 
|  |  | 
|  | // Loop over the inputs next.  Make a copy of InstInputs so we can destroy | 
|  | // the copy while we're checking the inputs. | 
|  | std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); | 
|  |  | 
|  | std::vector<TreePatternNode*> ResultNodeOperands; | 
|  | std::vector<Record*> Operands; | 
|  | for (unsigned i = NumResults, e = CGI.OperandList.size(); i != e; ++i) { | 
|  | const std::string &OpName = CGI.OperandList[i].Name; | 
|  | if (OpName.empty()) | 
|  | I->error("Operand #" + utostr(i) + " in operands list has no name!"); | 
|  |  | 
|  | if (!InstInputsCheck.count(OpName)) | 
|  | I->error("Operand $" + OpName + | 
|  | " does not appear in the instruction pattern"); | 
|  | TreePatternNode *InVal = InstInputsCheck[OpName]; | 
|  | InstInputsCheck.erase(OpName);   // It occurred, remove from map. | 
|  |  | 
|  | if (InVal->isLeaf() && | 
|  | dynamic_cast<DefInit*>(InVal->getLeafValue())) { | 
|  | Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); | 
|  | if (CGI.OperandList[i].Rec != InRec && | 
|  | !InRec->isSubClassOf("ComplexPattern")) | 
|  | I->error("Operand $" + OpName + "'s register class disagrees" | 
|  | " between the operand and pattern"); | 
|  | } | 
|  | Operands.push_back(CGI.OperandList[i].Rec); | 
|  |  | 
|  | // Construct the result for the dest-pattern operand list. | 
|  | TreePatternNode *OpNode = InVal->clone(); | 
|  |  | 
|  | // No predicate is useful on the result. | 
|  | OpNode->setPredicateFn(""); | 
|  |  | 
|  | // Promote the xform function to be an explicit node if set. | 
|  | if (Record *Xform = OpNode->getTransformFn()) { | 
|  | OpNode->setTransformFn(0); | 
|  | std::vector<TreePatternNode*> Children; | 
|  | Children.push_back(OpNode); | 
|  | OpNode = new TreePatternNode(Xform, Children); | 
|  | } | 
|  |  | 
|  | ResultNodeOperands.push_back(OpNode); | 
|  | } | 
|  |  | 
|  | if (!InstInputsCheck.empty()) | 
|  | I->error("Input operand $" + InstInputsCheck.begin()->first + | 
|  | " occurs in pattern but not in operands list!"); | 
|  |  | 
|  | TreePatternNode *ResultPattern = | 
|  | new TreePatternNode(I->getRecord(), ResultNodeOperands); | 
|  | // Copy fully inferred output node type to instruction result pattern. | 
|  | if (NumResults > 0) | 
|  | ResultPattern->setTypes(Res0Node->getExtTypes()); | 
|  |  | 
|  | // Create and insert the instruction. | 
|  | DAGInstruction TheInst(I, Results, Operands, InstImpResults, InstImpInputs); | 
|  | Instructions.insert(std::make_pair(I->getRecord(), TheInst)); | 
|  |  | 
|  | // Use a temporary tree pattern to infer all types and make sure that the | 
|  | // constructed result is correct.  This depends on the instruction already | 
|  | // being inserted into the Instructions map. | 
|  | TreePattern Temp(I->getRecord(), ResultPattern, false, *this); | 
|  | Temp.InferAllTypes(); | 
|  |  | 
|  | DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; | 
|  | TheInsertedInst.setResultPattern(Temp.getOnlyTree()); | 
|  |  | 
|  | DEBUG(I->dump()); | 
|  | } | 
|  |  | 
|  | // If we can, convert the instructions to be patterns that are matched! | 
|  | for (std::map<Record*, DAGInstruction>::iterator II = Instructions.begin(), | 
|  | E = Instructions.end(); II != E; ++II) { | 
|  | DAGInstruction &TheInst = II->second; | 
|  | TreePattern *I = TheInst.getPattern(); | 
|  | if (I == 0) continue;  // No pattern. | 
|  |  | 
|  | if (I->getNumTrees() != 1) { | 
|  | std::cerr << "CANNOT HANDLE: " << I->getRecord()->getName() << " yet!"; | 
|  | continue; | 
|  | } | 
|  | TreePatternNode *Pattern = I->getTree(0); | 
|  | TreePatternNode *SrcPattern; | 
|  | if (Pattern->getOperator()->getName() == "set") { | 
|  | if (Pattern->getNumChildren() != 2) | 
|  | continue;  // Not a set of a single value (not handled so far) | 
|  |  | 
|  | SrcPattern = Pattern->getChild(1)->clone(); | 
|  | } else{ | 
|  | // Not a set (store or something?) | 
|  | SrcPattern = Pattern; | 
|  | } | 
|  |  | 
|  | std::string Reason; | 
|  | if (!SrcPattern->canPatternMatch(Reason, *this)) | 
|  | I->error("Instruction can never match: " + Reason); | 
|  |  | 
|  | Record *Instr = II->first; | 
|  | TreePatternNode *DstPattern = TheInst.getResultPattern(); | 
|  | PatternsToMatch. | 
|  | push_back(PatternToMatch(Instr->getValueAsListInit("Predicates"), | 
|  | SrcPattern, DstPattern, | 
|  | Instr->getValueAsInt("AddedComplexity"))); | 
|  | } | 
|  | } | 
|  |  | 
|  | void DAGISelEmitter::ParsePatterns() { | 
|  | std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); | 
|  |  | 
|  | for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { | 
|  | DagInit *Tree = Patterns[i]->getValueAsDag("PatternToMatch"); | 
|  | TreePattern *Pattern = new TreePattern(Patterns[i], Tree, true, *this); | 
|  |  | 
|  | // Inline pattern fragments into it. | 
|  | Pattern->InlinePatternFragments(); | 
|  |  | 
|  | ListInit *LI = Patterns[i]->getValueAsListInit("ResultInstrs"); | 
|  | if (LI->getSize() == 0) continue;  // no pattern. | 
|  |  | 
|  | // Parse the instruction. | 
|  | TreePattern *Result = new TreePattern(Patterns[i], LI, false, *this); | 
|  |  | 
|  | // Inline pattern fragments into it. | 
|  | Result->InlinePatternFragments(); | 
|  |  | 
|  | if (Result->getNumTrees() != 1) | 
|  | Result->error("Cannot handle instructions producing instructions " | 
|  | "with temporaries yet!"); | 
|  |  | 
|  | bool IterateInference; | 
|  | bool InferredAllPatternTypes, InferredAllResultTypes; | 
|  | do { | 
|  | // Infer as many types as possible.  If we cannot infer all of them, we | 
|  | // can never do anything with this pattern: report it to the user. | 
|  | InferredAllPatternTypes = Pattern->InferAllTypes(); | 
|  |  | 
|  | // Infer as many types as possible.  If we cannot infer all of them, we can | 
|  | // never do anything with this pattern: report it to the user. | 
|  | InferredAllResultTypes = Result->InferAllTypes(); | 
|  |  | 
|  | // Apply the type of the result to the source pattern.  This helps us | 
|  | // resolve cases where the input type is known to be a pointer type (which | 
|  | // is considered resolved), but the result knows it needs to be 32- or | 
|  | // 64-bits.  Infer the other way for good measure. | 
|  | IterateInference = Pattern->getOnlyTree()-> | 
|  | UpdateNodeType(Result->getOnlyTree()->getExtTypes(), *Result); | 
|  | IterateInference |= Result->getOnlyTree()-> | 
|  | UpdateNodeType(Pattern->getOnlyTree()->getExtTypes(), *Result); | 
|  | } while (IterateInference); | 
|  |  | 
|  | // Verify that we inferred enough types that we can do something with the | 
|  | // pattern and result.  If these fire the user has to add type casts. | 
|  | if (!InferredAllPatternTypes) | 
|  | Pattern->error("Could not infer all types in pattern!"); | 
|  | if (!InferredAllResultTypes) | 
|  | Result->error("Could not infer all types in pattern result!"); | 
|  |  | 
|  | // Validate that the input pattern is correct. | 
|  | { | 
|  | std::map<std::string, TreePatternNode*> InstInputs; | 
|  | std::map<std::string, TreePatternNode*> InstResults; | 
|  | std::vector<Record*> InstImpInputs; | 
|  | std::vector<Record*> InstImpResults; | 
|  | FindPatternInputsAndOutputs(Pattern, Pattern->getOnlyTree(), | 
|  | InstInputs, InstResults, | 
|  | InstImpInputs, InstImpResults); | 
|  | } | 
|  |  | 
|  | // Promote the xform function to be an explicit node if set. | 
|  | std::vector<TreePatternNode*> ResultNodeOperands; | 
|  | TreePatternNode *DstPattern = Result->getOnlyTree(); | 
|  | for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { | 
|  | TreePatternNode *OpNode = DstPattern->getChild(ii); | 
|  | if (Record *Xform = OpNode->getTransformFn()) { | 
|  | OpNode->setTransformFn(0); | 
|  | std::vector<TreePatternNode*> Children; | 
|  | Children.push_back(OpNode); | 
|  | OpNode = new TreePatternNode(Xform, Children); | 
|  | } | 
|  | ResultNodeOperands.push_back(OpNode); | 
|  | } | 
|  | DstPattern = Result->getOnlyTree(); | 
|  | if (!DstPattern->isLeaf()) | 
|  | DstPattern = new TreePatternNode(DstPattern->getOperator(), | 
|  | ResultNodeOperands); | 
|  | DstPattern->setTypes(Result->getOnlyTree()->getExtTypes()); | 
|  | TreePattern Temp(Result->getRecord(), DstPattern, false, *this); | 
|  | Temp.InferAllTypes(); | 
|  |  | 
|  | std::string Reason; | 
|  | if (!Pattern->getOnlyTree()->canPatternMatch(Reason, *this)) | 
|  | Pattern->error("Pattern can never match: " + Reason); | 
|  |  | 
|  | PatternsToMatch. | 
|  | push_back(PatternToMatch(Patterns[i]->getValueAsListInit("Predicates"), | 
|  | Pattern->getOnlyTree(), | 
|  | Temp.getOnlyTree(), | 
|  | Patterns[i]->getValueAsInt("AddedComplexity"))); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// CombineChildVariants - Given a bunch of permutations of each child of the | 
|  | /// 'operator' node, put them together in all possible ways. | 
|  | static void CombineChildVariants(TreePatternNode *Orig, | 
|  | const std::vector<std::vector<TreePatternNode*> > &ChildVariants, | 
|  | std::vector<TreePatternNode*> &OutVariants, | 
|  | DAGISelEmitter &ISE) { | 
|  | // Make sure that each operand has at least one variant to choose from. | 
|  | for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) | 
|  | if (ChildVariants[i].empty()) | 
|  | return; | 
|  |  | 
|  | // The end result is an all-pairs construction of the resultant pattern. | 
|  | std::vector<unsigned> Idxs; | 
|  | Idxs.resize(ChildVariants.size()); | 
|  | bool NotDone = true; | 
|  | while (NotDone) { | 
|  | // Create the variant and add it to the output list. | 
|  | std::vector<TreePatternNode*> NewChildren; | 
|  | for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) | 
|  | NewChildren.push_back(ChildVariants[i][Idxs[i]]); | 
|  | TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren); | 
|  |  | 
|  | // Copy over properties. | 
|  | R->setName(Orig->getName()); | 
|  | R->setPredicateFn(Orig->getPredicateFn()); | 
|  | R->setTransformFn(Orig->getTransformFn()); | 
|  | R->setTypes(Orig->getExtTypes()); | 
|  |  | 
|  | // If this pattern cannot every match, do not include it as a variant. | 
|  | std::string ErrString; | 
|  | if (!R->canPatternMatch(ErrString, ISE)) { | 
|  | delete R; | 
|  | } else { | 
|  | bool AlreadyExists = false; | 
|  |  | 
|  | // Scan to see if this pattern has already been emitted.  We can get | 
|  | // duplication due to things like commuting: | 
|  | //   (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) | 
|  | // which are the same pattern.  Ignore the dups. | 
|  | for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) | 
|  | if (R->isIsomorphicTo(OutVariants[i])) { | 
|  | AlreadyExists = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (AlreadyExists) | 
|  | delete R; | 
|  | else | 
|  | OutVariants.push_back(R); | 
|  | } | 
|  |  | 
|  | // Increment indices to the next permutation. | 
|  | NotDone = false; | 
|  | // Look for something we can increment without causing a wrap-around. | 
|  | for (unsigned IdxsIdx = 0; IdxsIdx != Idxs.size(); ++IdxsIdx) { | 
|  | if (++Idxs[IdxsIdx] < ChildVariants[IdxsIdx].size()) { | 
|  | NotDone = true;   // Found something to increment. | 
|  | break; | 
|  | } | 
|  | Idxs[IdxsIdx] = 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// CombineChildVariants - A helper function for binary operators. | 
|  | /// | 
|  | static void CombineChildVariants(TreePatternNode *Orig, | 
|  | const std::vector<TreePatternNode*> &LHS, | 
|  | const std::vector<TreePatternNode*> &RHS, | 
|  | std::vector<TreePatternNode*> &OutVariants, | 
|  | DAGISelEmitter &ISE) { | 
|  | std::vector<std::vector<TreePatternNode*> > ChildVariants; | 
|  | ChildVariants.push_back(LHS); | 
|  | ChildVariants.push_back(RHS); | 
|  | CombineChildVariants(Orig, ChildVariants, OutVariants, ISE); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, | 
|  | std::vector<TreePatternNode *> &Children) { | 
|  | assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); | 
|  | Record *Operator = N->getOperator(); | 
|  |  | 
|  | // Only permit raw nodes. | 
|  | if (!N->getName().empty() || !N->getPredicateFn().empty() || | 
|  | N->getTransformFn()) { | 
|  | Children.push_back(N); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) | 
|  | Children.push_back(N->getChild(0)); | 
|  | else | 
|  | GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); | 
|  |  | 
|  | if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) | 
|  | Children.push_back(N->getChild(1)); | 
|  | else | 
|  | GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); | 
|  | } | 
|  |  | 
|  | /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of | 
|  | /// the (potentially recursive) pattern by using algebraic laws. | 
|  | /// | 
|  | static void GenerateVariantsOf(TreePatternNode *N, | 
|  | std::vector<TreePatternNode*> &OutVariants, | 
|  | DAGISelEmitter &ISE) { | 
|  | // We cannot permute leaves. | 
|  | if (N->isLeaf()) { | 
|  | OutVariants.push_back(N); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Look up interesting info about the node. | 
|  | const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(N->getOperator()); | 
|  |  | 
|  | // If this node is associative, reassociate. | 
|  | if (NodeInfo.hasProperty(SDNodeInfo::SDNPAssociative)) { | 
|  | // Reassociate by pulling together all of the linked operators | 
|  | std::vector<TreePatternNode*> MaximalChildren; | 
|  | GatherChildrenOfAssociativeOpcode(N, MaximalChildren); | 
|  |  | 
|  | // Only handle child sizes of 3.  Otherwise we'll end up trying too many | 
|  | // permutations. | 
|  | if (MaximalChildren.size() == 3) { | 
|  | // Find the variants of all of our maximal children. | 
|  | std::vector<TreePatternNode*> AVariants, BVariants, CVariants; | 
|  | GenerateVariantsOf(MaximalChildren[0], AVariants, ISE); | 
|  | GenerateVariantsOf(MaximalChildren[1], BVariants, ISE); | 
|  | GenerateVariantsOf(MaximalChildren[2], CVariants, ISE); | 
|  |  | 
|  | // There are only two ways we can permute the tree: | 
|  | //   (A op B) op C    and    A op (B op C) | 
|  | // Within these forms, we can also permute A/B/C. | 
|  |  | 
|  | // Generate legal pair permutations of A/B/C. | 
|  | std::vector<TreePatternNode*> ABVariants; | 
|  | std::vector<TreePatternNode*> BAVariants; | 
|  | std::vector<TreePatternNode*> ACVariants; | 
|  | std::vector<TreePatternNode*> CAVariants; | 
|  | std::vector<TreePatternNode*> BCVariants; | 
|  | std::vector<TreePatternNode*> CBVariants; | 
|  | CombineChildVariants(N, AVariants, BVariants, ABVariants, ISE); | 
|  | CombineChildVariants(N, BVariants, AVariants, BAVariants, ISE); | 
|  | CombineChildVariants(N, AVariants, CVariants, ACVariants, ISE); | 
|  | CombineChildVariants(N, CVariants, AVariants, CAVariants, ISE); | 
|  | CombineChildVariants(N, BVariants, CVariants, BCVariants, ISE); | 
|  | CombineChildVariants(N, CVariants, BVariants, CBVariants, ISE); | 
|  |  | 
|  | // Combine those into the result: (x op x) op x | 
|  | CombineChildVariants(N, ABVariants, CVariants, OutVariants, ISE); | 
|  | CombineChildVariants(N, BAVariants, CVariants, OutVariants, ISE); | 
|  | CombineChildVariants(N, ACVariants, BVariants, OutVariants, ISE); | 
|  | CombineChildVariants(N, CAVariants, BVariants, OutVariants, ISE); | 
|  | CombineChildVariants(N, BCVariants, AVariants, OutVariants, ISE); | 
|  | CombineChildVariants(N, CBVariants, AVariants, OutVariants, ISE); | 
|  |  | 
|  | // Combine those into the result: x op (x op x) | 
|  | CombineChildVariants(N, CVariants, ABVariants, OutVariants, ISE); | 
|  | CombineChildVariants(N, CVariants, BAVariants, OutVariants, ISE); | 
|  | CombineChildVariants(N, BVariants, ACVariants, OutVariants, ISE); | 
|  | CombineChildVariants(N, BVariants, CAVariants, OutVariants, ISE); | 
|  | CombineChildVariants(N, AVariants, BCVariants, OutVariants, ISE); | 
|  | CombineChildVariants(N, AVariants, CBVariants, OutVariants, ISE); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Compute permutations of all children. | 
|  | std::vector<std::vector<TreePatternNode*> > ChildVariants; | 
|  | ChildVariants.resize(N->getNumChildren()); | 
|  | for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) | 
|  | GenerateVariantsOf(N->getChild(i), ChildVariants[i], ISE); | 
|  |  | 
|  | // Build all permutations based on how the children were formed. | 
|  | CombineChildVariants(N, ChildVariants, OutVariants, ISE); | 
|  |  | 
|  | // If this node is commutative, consider the commuted order. | 
|  | if (NodeInfo.hasProperty(SDNodeInfo::SDNPCommutative)) { | 
|  | assert(N->getNumChildren()==2 &&"Commutative but doesn't have 2 children!"); | 
|  | // Consider the commuted order. | 
|  | CombineChildVariants(N, ChildVariants[1], ChildVariants[0], | 
|  | OutVariants, ISE); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // GenerateVariants - Generate variants.  For example, commutative patterns can | 
|  | // match multiple ways.  Add them to PatternsToMatch as well. | 
|  | void DAGISelEmitter::GenerateVariants() { | 
|  |  | 
|  | DEBUG(std::cerr << "Generating instruction variants.\n"); | 
|  |  | 
|  | // Loop over all of the patterns we've collected, checking to see if we can | 
|  | // generate variants of the instruction, through the exploitation of | 
|  | // identities.  This permits the target to provide agressive matching without | 
|  | // the .td file having to contain tons of variants of instructions. | 
|  | // | 
|  | // Note that this loop adds new patterns to the PatternsToMatch list, but we | 
|  | // intentionally do not reconsider these.  Any variants of added patterns have | 
|  | // already been added. | 
|  | // | 
|  | for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { | 
|  | std::vector<TreePatternNode*> Variants; | 
|  | GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this); | 
|  |  | 
|  | assert(!Variants.empty() && "Must create at least original variant!"); | 
|  | Variants.erase(Variants.begin());  // Remove the original pattern. | 
|  |  | 
|  | if (Variants.empty())  // No variants for this pattern. | 
|  | continue; | 
|  |  | 
|  | DEBUG(std::cerr << "FOUND VARIANTS OF: "; | 
|  | PatternsToMatch[i].getSrcPattern()->dump(); | 
|  | std::cerr << "\n"); | 
|  |  | 
|  | for (unsigned v = 0, e = Variants.size(); v != e; ++v) { | 
|  | TreePatternNode *Variant = Variants[v]; | 
|  |  | 
|  | DEBUG(std::cerr << "  VAR#" << v <<  ": "; | 
|  | Variant->dump(); | 
|  | std::cerr << "\n"); | 
|  |  | 
|  | // Scan to see if an instruction or explicit pattern already matches this. | 
|  | bool AlreadyExists = false; | 
|  | for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { | 
|  | // Check to see if this variant already exists. | 
|  | if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern())) { | 
|  | DEBUG(std::cerr << "  *** ALREADY EXISTS, ignoring variant.\n"); | 
|  | AlreadyExists = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // If we already have it, ignore the variant. | 
|  | if (AlreadyExists) continue; | 
|  |  | 
|  | // Otherwise, add it to the list of patterns we have. | 
|  | PatternsToMatch. | 
|  | push_back(PatternToMatch(PatternsToMatch[i].getPredicates(), | 
|  | Variant, PatternsToMatch[i].getDstPattern(), | 
|  | PatternsToMatch[i].getAddedComplexity())); | 
|  | } | 
|  |  | 
|  | DEBUG(std::cerr << "\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // NodeIsComplexPattern - return true if N is a leaf node and a subclass of | 
|  | // ComplexPattern. | 
|  | static bool NodeIsComplexPattern(TreePatternNode *N) | 
|  | { | 
|  | return (N->isLeaf() && | 
|  | dynamic_cast<DefInit*>(N->getLeafValue()) && | 
|  | static_cast<DefInit*>(N->getLeafValue())->getDef()-> | 
|  | isSubClassOf("ComplexPattern")); | 
|  | } | 
|  |  | 
|  | // NodeGetComplexPattern - return the pointer to the ComplexPattern if N | 
|  | // is a leaf node and a subclass of ComplexPattern, else it returns NULL. | 
|  | static const ComplexPattern *NodeGetComplexPattern(TreePatternNode *N, | 
|  | DAGISelEmitter &ISE) | 
|  | { | 
|  | if (N->isLeaf() && | 
|  | dynamic_cast<DefInit*>(N->getLeafValue()) && | 
|  | static_cast<DefInit*>(N->getLeafValue())->getDef()-> | 
|  | isSubClassOf("ComplexPattern")) { | 
|  | return &ISE.getComplexPattern(static_cast<DefInit*>(N->getLeafValue()) | 
|  | ->getDef()); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /// getPatternSize - Return the 'size' of this pattern.  We want to match large | 
|  | /// patterns before small ones.  This is used to determine the size of a | 
|  | /// pattern. | 
|  | static unsigned getPatternSize(TreePatternNode *P, DAGISelEmitter &ISE) { | 
|  | assert((isExtIntegerInVTs(P->getExtTypes()) || | 
|  | isExtFloatingPointInVTs(P->getExtTypes()) || | 
|  | P->getExtTypeNum(0) == MVT::isVoid || | 
|  | P->getExtTypeNum(0) == MVT::Flag || | 
|  | P->getExtTypeNum(0) == MVT::iPTR) && | 
|  | "Not a valid pattern node to size!"); | 
|  | unsigned Size = 2;  // The node itself. | 
|  | // If the root node is a ConstantSDNode, increases its size. | 
|  | // e.g. (set R32:$dst, 0). | 
|  | if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue())) | 
|  | Size++; | 
|  |  | 
|  | // FIXME: This is a hack to statically increase the priority of patterns | 
|  | // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. | 
|  | // Later we can allow complexity / cost for each pattern to be (optionally) | 
|  | // specified. To get best possible pattern match we'll need to dynamically | 
|  | // calculate the complexity of all patterns a dag can potentially map to. | 
|  | const ComplexPattern *AM = NodeGetComplexPattern(P, ISE); | 
|  | if (AM) | 
|  | Size += AM->getNumOperands() * 2; | 
|  |  | 
|  | // If this node has some predicate function that must match, it adds to the | 
|  | // complexity of this node. | 
|  | if (!P->getPredicateFn().empty()) | 
|  | ++Size; | 
|  |  | 
|  | // Count children in the count if they are also nodes. | 
|  | for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { | 
|  | TreePatternNode *Child = P->getChild(i); | 
|  | if (!Child->isLeaf() && Child->getExtTypeNum(0) != MVT::Other) | 
|  | Size += getPatternSize(Child, ISE); | 
|  | else if (Child->isLeaf()) { | 
|  | if (dynamic_cast<IntInit*>(Child->getLeafValue())) | 
|  | Size += 3;  // Matches a ConstantSDNode (+2) and a specific value (+1). | 
|  | else if (NodeIsComplexPattern(Child)) | 
|  | Size += getPatternSize(Child, ISE); | 
|  | else if (!Child->getPredicateFn().empty()) | 
|  | ++Size; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Size; | 
|  | } | 
|  |  | 
|  | /// getResultPatternCost - Compute the number of instructions for this pattern. | 
|  | /// This is a temporary hack.  We should really include the instruction | 
|  | /// latencies in this calculation. | 
|  | static unsigned getResultPatternCost(TreePatternNode *P, DAGISelEmitter &ISE) { | 
|  | if (P->isLeaf()) return 0; | 
|  |  | 
|  | unsigned Cost = 0; | 
|  | Record *Op = P->getOperator(); | 
|  | if (Op->isSubClassOf("Instruction")) { | 
|  | Cost++; | 
|  | CodeGenInstruction &II = ISE.getTargetInfo().getInstruction(Op->getName()); | 
|  | if (II.usesCustomDAGSchedInserter) | 
|  | Cost += 10; | 
|  | } | 
|  | for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) | 
|  | Cost += getResultPatternCost(P->getChild(i), ISE); | 
|  | return Cost; | 
|  | } | 
|  |  | 
|  | // PatternSortingPredicate - return true if we prefer to match LHS before RHS. | 
|  | // In particular, we want to match maximal patterns first and lowest cost within | 
|  | // a particular complexity first. | 
|  | struct PatternSortingPredicate { | 
|  | PatternSortingPredicate(DAGISelEmitter &ise) : ISE(ise) {}; | 
|  | DAGISelEmitter &ISE; | 
|  |  | 
|  | bool operator()(PatternToMatch *LHS, | 
|  | PatternToMatch *RHS) { | 
|  | unsigned LHSSize = getPatternSize(LHS->getSrcPattern(), ISE); | 
|  | unsigned RHSSize = getPatternSize(RHS->getSrcPattern(), ISE); | 
|  | LHSSize += LHS->getAddedComplexity(); | 
|  | RHSSize += RHS->getAddedComplexity(); | 
|  | if (LHSSize > RHSSize) return true;   // LHS -> bigger -> less cost | 
|  | if (LHSSize < RHSSize) return false; | 
|  |  | 
|  | // If the patterns have equal complexity, compare generated instruction cost | 
|  | return getResultPatternCost(LHS->getDstPattern(), ISE) < | 
|  | getResultPatternCost(RHS->getDstPattern(), ISE); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// getRegisterValueType - Look up and return the first ValueType of specified | 
|  | /// RegisterClass record | 
|  | static MVT::ValueType getRegisterValueType(Record *R, const CodeGenTarget &T) { | 
|  | if (const CodeGenRegisterClass *RC = T.getRegisterClassForRegister(R)) | 
|  | return RC->getValueTypeNum(0); | 
|  | return MVT::Other; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// RemoveAllTypes - A quick recursive walk over a pattern which removes all | 
|  | /// type information from it. | 
|  | static void RemoveAllTypes(TreePatternNode *N) { | 
|  | N->removeTypes(); | 
|  | if (!N->isLeaf()) | 
|  | for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) | 
|  | RemoveAllTypes(N->getChild(i)); | 
|  | } | 
|  |  | 
|  | Record *DAGISelEmitter::getSDNodeNamed(const std::string &Name) const { | 
|  | Record *N = Records.getDef(Name); | 
|  | if (!N || !N->isSubClassOf("SDNode")) { | 
|  | std::cerr << "Error getting SDNode '" << Name << "'!\n"; | 
|  | exit(1); | 
|  | } | 
|  | return N; | 
|  | } | 
|  |  | 
|  | /// NodeHasProperty - return true if TreePatternNode has the specified | 
|  | /// property. | 
|  | static bool NodeHasProperty(TreePatternNode *N, SDNodeInfo::SDNP Property, | 
|  | DAGISelEmitter &ISE) | 
|  | { | 
|  | if (N->isLeaf()) return false; | 
|  | Record *Operator = N->getOperator(); | 
|  | if (!Operator->isSubClassOf("SDNode")) return false; | 
|  |  | 
|  | const SDNodeInfo &NodeInfo = ISE.getSDNodeInfo(Operator); | 
|  | return NodeInfo.hasProperty(Property); | 
|  | } | 
|  |  | 
|  | static bool PatternHasProperty(TreePatternNode *N, SDNodeInfo::SDNP Property, | 
|  | DAGISelEmitter &ISE) | 
|  | { | 
|  | if (NodeHasProperty(N, Property, ISE)) | 
|  | return true; | 
|  |  | 
|  | for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { | 
|  | TreePatternNode *Child = N->getChild(i); | 
|  | if (PatternHasProperty(Child, Property, ISE)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | class PatternCodeEmitter { | 
|  | private: | 
|  | DAGISelEmitter &ISE; | 
|  |  | 
|  | // Predicates. | 
|  | ListInit *Predicates; | 
|  | // Pattern cost. | 
|  | unsigned Cost; | 
|  | // Instruction selector pattern. | 
|  | TreePatternNode *Pattern; | 
|  | // Matched instruction. | 
|  | TreePatternNode *Instruction; | 
|  |  | 
|  | // Node to name mapping | 
|  | std::map<std::string, std::string> VariableMap; | 
|  | // Node to operator mapping | 
|  | std::map<std::string, Record*> OperatorMap; | 
|  | // Names of all the folded nodes which produce chains. | 
|  | std::vector<std::pair<std::string, unsigned> > FoldedChains; | 
|  | std::set<std::string> Duplicates; | 
|  | /// These nodes are being marked "in-flight" so they cannot be folded. | 
|  | std::vector<std::string> InflightNodes; | 
|  |  | 
|  | /// GeneratedCode - This is the buffer that we emit code to.  The first bool | 
|  | /// indicates whether this is an exit predicate (something that should be | 
|  | /// tested, and if true, the match fails) [when true] or normal code to emit | 
|  | /// [when false]. | 
|  | std::vector<std::pair<bool, std::string> > &GeneratedCode; | 
|  | /// GeneratedDecl - This is the set of all SDOperand declarations needed for | 
|  | /// the set of patterns for each top-level opcode. | 
|  | std::set<std::pair<bool, std::string> > &GeneratedDecl; | 
|  |  | 
|  | std::string ChainName; | 
|  | bool NewTF; | 
|  | bool DoReplace; | 
|  | unsigned TmpNo; | 
|  |  | 
|  | void emitCheck(const std::string &S) { | 
|  | if (!S.empty()) | 
|  | GeneratedCode.push_back(std::make_pair(true, S)); | 
|  | } | 
|  | void emitCode(const std::string &S) { | 
|  | if (!S.empty()) | 
|  | GeneratedCode.push_back(std::make_pair(false, S)); | 
|  | } | 
|  | void emitDecl(const std::string &S, bool isSDNode=false) { | 
|  | assert(!S.empty() && "Invalid declaration"); | 
|  | GeneratedDecl.insert(std::make_pair(isSDNode, S)); | 
|  | } | 
|  | public: | 
|  | PatternCodeEmitter(DAGISelEmitter &ise, ListInit *preds, | 
|  | TreePatternNode *pattern, TreePatternNode *instr, | 
|  | std::vector<std::pair<bool, std::string> > &gc, | 
|  | std::set<std::pair<bool, std::string> > &gd, | 
|  | bool dorep) | 
|  | : ISE(ise), Predicates(preds), Pattern(pattern), Instruction(instr), | 
|  | GeneratedCode(gc), GeneratedDecl(gd), | 
|  | NewTF(false), DoReplace(dorep), TmpNo(0) {} | 
|  |  | 
|  | /// EmitMatchCode - Emit a matcher for N, going to the label for PatternNo | 
|  | /// if the match fails. At this point, we already know that the opcode for N | 
|  | /// matches, and the SDNode for the result has the RootName specified name. | 
|  | void EmitMatchCode(TreePatternNode *N, TreePatternNode *P, | 
|  | const std::string &RootName, const std::string &ParentName, | 
|  | const std::string &ChainSuffix, bool &FoundChain) { | 
|  | bool isRoot = (P == NULL); | 
|  | // Emit instruction predicates. Each predicate is just a string for now. | 
|  | if (isRoot) { | 
|  | std::string PredicateCheck; | 
|  | for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { | 
|  | if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) { | 
|  | Record *Def = Pred->getDef(); | 
|  | if (!Def->isSubClassOf("Predicate")) { | 
|  | Def->dump(); | 
|  | assert(0 && "Unknown predicate type!"); | 
|  | } | 
|  | if (!PredicateCheck.empty()) | 
|  | PredicateCheck += " || "; | 
|  | PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; | 
|  | } | 
|  | } | 
|  |  | 
|  | emitCheck(PredicateCheck); | 
|  | } | 
|  |  | 
|  | if (N->isLeaf()) { | 
|  | if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) { | 
|  | emitCheck("cast<ConstantSDNode>(" + RootName + | 
|  | ")->getSignExtended() == " + itostr(II->getValue())); | 
|  | return; | 
|  | } else if (!NodeIsComplexPattern(N)) { | 
|  | assert(0 && "Cannot match this as a leaf value!"); | 
|  | abort(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this node has a name associated with it, capture it in VariableMap. If | 
|  | // we already saw this in the pattern, emit code to verify dagness. | 
|  | if (!N->getName().empty()) { | 
|  | std::string &VarMapEntry = VariableMap[N->getName()]; | 
|  | if (VarMapEntry.empty()) { | 
|  | VarMapEntry = RootName; | 
|  | } else { | 
|  | // If we get here, this is a second reference to a specific name.  Since | 
|  | // we already have checked that the first reference is valid, we don't | 
|  | // have to recursively match it, just check that it's the same as the | 
|  | // previously named thing. | 
|  | emitCheck(VarMapEntry + " == " + RootName); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!N->isLeaf()) | 
|  | OperatorMap[N->getName()] = N->getOperator(); | 
|  | } | 
|  |  | 
|  |  | 
|  | // Emit code to load the child nodes and match their contents recursively. | 
|  | unsigned OpNo = 0; | 
|  | bool NodeHasChain = NodeHasProperty   (N, SDNodeInfo::SDNPHasChain, ISE); | 
|  | bool HasChain     = PatternHasProperty(N, SDNodeInfo::SDNPHasChain, ISE); | 
|  | bool HasOutFlag   = PatternHasProperty(N, SDNodeInfo::SDNPOutFlag,  ISE); | 
|  | bool EmittedUseCheck = false; | 
|  | bool EmittedSlctedCheck = false; | 
|  | if (HasChain) { | 
|  | if (NodeHasChain) | 
|  | OpNo = 1; | 
|  | if (!isRoot) { | 
|  | const SDNodeInfo &CInfo = ISE.getSDNodeInfo(N->getOperator()); | 
|  | // Not in flight? | 
|  | emitCheck("InFlightSet.count(" + RootName + ".Val) == 0"); | 
|  | // Multiple uses of actual result? | 
|  | emitCheck(RootName + ".hasOneUse()"); | 
|  | EmittedUseCheck = true; | 
|  | // hasOneUse() check is not strong enough. If the original node has | 
|  | // already been selected, it may have been replaced with another. | 
|  | for (unsigned j = 0; j != CInfo.getNumResults(); j++) | 
|  | emitCheck("!CodeGenMap.count(" + RootName + ".getValue(" + utostr(j) + | 
|  | "))"); | 
|  |  | 
|  | EmittedSlctedCheck = true; | 
|  | if (NodeHasChain) { | 
|  | // FIXME: Don't fold if 1) the parent node writes a flag, 2) the node | 
|  | // has a chain use. | 
|  | // This a workaround for this problem: | 
|  | // | 
|  | //          [ch, r : ld] | 
|  | //             ^ ^ | 
|  | //             | | | 
|  | //      [XX]--/   \- [flag : cmp] | 
|  | //       ^             ^ | 
|  | //       |             | | 
|  | //       \---[br flag]- | 
|  | // | 
|  | // cmp + br should be considered as a single node as they are flagged | 
|  | // together. So, if the ld is folded into the cmp, the XX node in the | 
|  | // graph is now both an operand and a use of the ld/cmp/br node. | 
|  | if (NodeHasProperty(P, SDNodeInfo::SDNPOutFlag, ISE)) | 
|  | emitCheck(ParentName + ".Val->isOnlyUse(" +  RootName + ".Val)"); | 
|  |  | 
|  | // If the immediate use can somehow reach this node through another | 
|  | // path, then can't fold it either or it will create a cycle. | 
|  | // e.g. In the following diagram, XX can reach ld through YY. If | 
|  | // ld is folded into XX, then YY is both a predecessor and a successor | 
|  | // of XX. | 
|  | // | 
|  | //         [ld] | 
|  | //         ^  ^ | 
|  | //         |  | | 
|  | //        /   \--- | 
|  | //      /        [YY] | 
|  | //      |         ^ | 
|  | //     [XX]-------| | 
|  | const SDNodeInfo &PInfo = ISE.getSDNodeInfo(P->getOperator()); | 
|  | if (PInfo.getNumOperands() > 1 || | 
|  | PInfo.hasProperty(SDNodeInfo::SDNPHasChain) || | 
|  | PInfo.hasProperty(SDNodeInfo::SDNPInFlag) || | 
|  | PInfo.hasProperty(SDNodeInfo::SDNPOptInFlag)) | 
|  | if (PInfo.getNumOperands() > 1) { | 
|  | emitCheck("!isNonImmUse(" + ParentName + ".Val, " + RootName + | 
|  | ".Val)"); | 
|  | } else { | 
|  | emitCheck("(" + ParentName + ".getNumOperands() == 1 || !" + | 
|  | "isNonImmUse(" + ParentName + ".Val, " + RootName + | 
|  | ".Val))"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NodeHasChain) { | 
|  | ChainName = "Chain" + ChainSuffix; | 
|  | emitDecl(ChainName); | 
|  | if (FoundChain) { | 
|  | // FIXME: temporary workaround for a common case where chain | 
|  | // is a TokenFactor and the previous "inner" chain is an operand. | 
|  | NewTF = true; | 
|  | emitDecl("OldTF", true); | 
|  | emitCheck("(" + ChainName + " = UpdateFoldedChain(CurDAG, " + | 
|  | RootName + ".Val, Chain.Val, OldTF)).Val"); | 
|  | } else { | 
|  | FoundChain = true; | 
|  | emitCode(ChainName + " = " + RootName + ".getOperand(0);"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Don't fold any node which reads or writes a flag and has multiple uses. | 
|  | // FIXME: We really need to separate the concepts of flag and "glue". Those | 
|  | // real flag results, e.g. X86CMP output, can have multiple uses. | 
|  | // FIXME: If the optional incoming flag does not exist. Then it is ok to | 
|  | // fold it. | 
|  | if (!isRoot && | 
|  | (PatternHasProperty(N, SDNodeInfo::SDNPInFlag, ISE) || | 
|  | PatternHasProperty(N, SDNodeInfo::SDNPOptInFlag, ISE) || | 
|  | PatternHasProperty(N, SDNodeInfo::SDNPOutFlag, ISE))) { | 
|  | const SDNodeInfo &CInfo = ISE.getSDNodeInfo(N->getOperator()); | 
|  | if (!EmittedUseCheck) { | 
|  | // Multiple uses of actual result? | 
|  | emitCheck(RootName + ".hasOneUse()"); | 
|  | } | 
|  | if (!EmittedSlctedCheck) | 
|  | // hasOneUse() check is not strong enough. If the original node has | 
|  | // already been selected, it may have been replaced with another. | 
|  | for (unsigned j = 0; j < CInfo.getNumResults(); j++) | 
|  | emitCheck("!CodeGenMap.count(" + RootName + ".getValue(" + utostr(j) + | 
|  | "))"); | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { | 
|  | emitDecl(RootName + utostr(OpNo)); | 
|  | emitCode(RootName + utostr(OpNo) + " = " + | 
|  | RootName + ".getOperand(" +utostr(OpNo) + ");"); | 
|  | TreePatternNode *Child = N->getChild(i); | 
|  |  | 
|  | if (!Child->isLeaf()) { | 
|  | // If it's not a leaf, recursively match. | 
|  | const SDNodeInfo &CInfo = ISE.getSDNodeInfo(Child->getOperator()); | 
|  | emitCheck(RootName + utostr(OpNo) + ".getOpcode() == " + | 
|  | CInfo.getEnumName()); | 
|  | EmitMatchCode(Child, N, RootName + utostr(OpNo), RootName, | 
|  | ChainSuffix + utostr(OpNo), FoundChain); | 
|  | if (NodeHasProperty(Child, SDNodeInfo::SDNPHasChain, ISE)) | 
|  | FoldedChains.push_back(std::make_pair(RootName + utostr(OpNo), | 
|  | CInfo.getNumResults())); | 
|  | } else { | 
|  | // If this child has a name associated with it, capture it in VarMap. If | 
|  | // we already saw this in the pattern, emit code to verify dagness. | 
|  | if (!Child->getName().empty()) { | 
|  | std::string &VarMapEntry = VariableMap[Child->getName()]; | 
|  | if (VarMapEntry.empty()) { | 
|  | VarMapEntry = RootName + utostr(OpNo); | 
|  | } else { | 
|  | // If we get here, this is a second reference to a specific name. | 
|  | // Since we already have checked that the first reference is valid, | 
|  | // we don't have to recursively match it, just check that it's the | 
|  | // same as the previously named thing. | 
|  | emitCheck(VarMapEntry + " == " + RootName + utostr(OpNo)); | 
|  | Duplicates.insert(RootName + utostr(OpNo)); | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle leaves of various types. | 
|  | if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { | 
|  | Record *LeafRec = DI->getDef(); | 
|  | if (LeafRec->isSubClassOf("RegisterClass")) { | 
|  | // Handle register references.  Nothing to do here. | 
|  | } else if (LeafRec->isSubClassOf("Register")) { | 
|  | // Handle register references. | 
|  | } else if (LeafRec->isSubClassOf("ComplexPattern")) { | 
|  | // Handle complex pattern. Nothing to do here. | 
|  | } else if (LeafRec->getName() == "srcvalue") { | 
|  | // Place holder for SRCVALUE nodes. Nothing to do here. | 
|  | } else if (LeafRec->isSubClassOf("ValueType")) { | 
|  | // Make sure this is the specified value type. | 
|  | emitCheck("cast<VTSDNode>(" + RootName + utostr(OpNo) + | 
|  | ")->getVT() == MVT::" + LeafRec->getName()); | 
|  | } else if (LeafRec->isSubClassOf("CondCode")) { | 
|  | // Make sure this is the specified cond code. | 
|  | emitCheck("cast<CondCodeSDNode>(" + RootName + utostr(OpNo) + | 
|  | ")->get() == ISD::" + LeafRec->getName()); | 
|  | } else { | 
|  | Child->dump(); | 
|  | std::cerr << " "; | 
|  | assert(0 && "Unknown leaf type!"); | 
|  | } | 
|  | } else if (IntInit *II = | 
|  | dynamic_cast<IntInit*>(Child->getLeafValue())) { | 
|  | emitCheck("isa<ConstantSDNode>(" + RootName + utostr(OpNo) + ")"); | 
|  | unsigned CTmp = TmpNo++; | 
|  | emitCode("int64_t CN"+utostr(CTmp)+" = cast<ConstantSDNode>("+ | 
|  | RootName + utostr(OpNo) + ")->getSignExtended();"); | 
|  |  | 
|  | emitCheck("CN" + utostr(CTmp) + " == " +itostr(II->getValue())); | 
|  | } else { | 
|  | Child->dump(); | 
|  | assert(0 && "Unknown leaf type!"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there is a node predicate for this, emit the call. | 
|  | if (!N->getPredicateFn().empty()) | 
|  | emitCheck(N->getPredicateFn() + "(" + RootName + ".Val)"); | 
|  | } | 
|  |  | 
|  | /// EmitResultCode - Emit the action for a pattern.  Now that it has matched | 
|  | /// we actually have to build a DAG! | 
|  | std::pair<unsigned, unsigned> | 
|  | EmitResultCode(TreePatternNode *N, bool LikeLeaf = false, | 
|  | bool isRoot = false) { | 
|  | // This is something selected from the pattern we matched. | 
|  | if (!N->getName().empty()) { | 
|  | std::string &Val = VariableMap[N->getName()]; | 
|  | assert(!Val.empty() && | 
|  | "Variable referenced but not defined and not caught earlier!"); | 
|  | if (Val[0] == 'T' && Val[1] == 'm' && Val[2] == 'p') { | 
|  | // Already selected this operand, just return the tmpval. | 
|  | return std::make_pair(1, atoi(Val.c_str()+3)); | 
|  | } | 
|  |  | 
|  | const ComplexPattern *CP; | 
|  | unsigned ResNo = TmpNo++; | 
|  | unsigned NumRes = 1; | 
|  | if (!N->isLeaf() && N->getOperator()->getName() == "imm") { | 
|  | assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); | 
|  | std::string CastType; | 
|  | switch (N->getTypeNum(0)) { | 
|  | default: assert(0 && "Unknown type for constant node!"); | 
|  | case MVT::i1:  CastType = "bool"; break; | 
|  | case MVT::i8:  CastType = "unsigned char"; break; | 
|  | case MVT::i16: CastType = "unsigned short"; break; | 
|  | case MVT::i32: CastType = "unsigned"; break; | 
|  | case MVT::i64: CastType = "uint64_t"; break; | 
|  | } | 
|  | emitCode(CastType + " Tmp" + utostr(ResNo) + "C = (" + CastType + | 
|  | ")cast<ConstantSDNode>(" + Val + ")->getValue();"); | 
|  | emitDecl("Tmp" + utostr(ResNo)); | 
|  | emitCode("Tmp" + utostr(ResNo) + | 
|  | " = CurDAG->getTargetConstant(Tmp" + utostr(ResNo) + | 
|  | "C, " + getEnumName(N->getTypeNum(0)) + ");"); | 
|  | } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){ | 
|  | Record *Op = OperatorMap[N->getName()]; | 
|  | // Transform ExternalSymbol to TargetExternalSymbol | 
|  | if (Op && Op->getName() == "externalsym") { | 
|  | emitDecl("Tmp" + utostr(ResNo)); | 
|  | emitCode("Tmp" + utostr(ResNo) + " = CurDAG->getTarget" | 
|  | "ExternalSymbol(cast<ExternalSymbolSDNode>(" + | 
|  | Val + ")->getSymbol(), " + | 
|  | getEnumName(N->getTypeNum(0)) + ");"); | 
|  | } else { | 
|  | emitDecl("Tmp" + utostr(ResNo)); | 
|  | emitCode("Tmp" + utostr(ResNo) + " = " + Val + ";"); | 
|  | } | 
|  | } else if (!N->isLeaf() && N->getOperator()->getName() == "tglobaladdr") { | 
|  | Record *Op = OperatorMap[N->getName()]; | 
|  | // Transform GlobalAddress to TargetGlobalAddress | 
|  | if (Op && Op->getName() == "globaladdr") { | 
|  | emitDecl("Tmp" + utostr(ResNo)); | 
|  | emitCode("Tmp" + utostr(ResNo) + " = CurDAG->getTarget" | 
|  | "GlobalAddress(cast<GlobalAddressSDNode>(" + Val + | 
|  | ")->getGlobal(), " + getEnumName(N->getTypeNum(0)) + | 
|  | ");"); | 
|  | } else { | 
|  | emitDecl("Tmp" + utostr(ResNo)); | 
|  | emitCode("Tmp" + utostr(ResNo) + " = " + Val + ";"); | 
|  | } | 
|  | } else if (!N->isLeaf() && N->getOperator()->getName() == "texternalsym"){ | 
|  | emitDecl("Tmp" + utostr(ResNo)); | 
|  | emitCode("Tmp" + utostr(ResNo) + " = " + Val + ";"); | 
|  | } else if (!N->isLeaf() && N->getOperator()->getName() == "tconstpool") { | 
|  | emitDecl("Tmp" + utostr(ResNo)); | 
|  | emitCode("Tmp" + utostr(ResNo) + " = " + Val + ";"); | 
|  | } else if (N->isLeaf() && (CP = NodeGetComplexPattern(N, ISE))) { | 
|  | std::string Fn = CP->getSelectFunc(); | 
|  | NumRes = CP->getNumOperands(); | 
|  | for (unsigned i = 0; i < NumRes; ++i) | 
|  | emitDecl("CPTmp" + utostr(i+ResNo)); | 
|  |  | 
|  | std::string Code = "bool Match = " + Fn + "(" + Val; | 
|  | for (unsigned i = 0; i < NumRes; i++) | 
|  | Code += ", CPTmp" + utostr(i + ResNo); | 
|  | emitCode(Code + ");"); | 
|  | if (InflightNodes.size()) { | 
|  | // Remove the in-flight nodes if the ComplexPattern does not match! | 
|  | emitCode("if (!Match) {"); | 
|  | for (std::vector<std::string>::iterator AI = InflightNodes.begin(), | 
|  | AE = InflightNodes.end(); AI != AE; ++AI) | 
|  | emitCode("  InFlightSet.erase(" + *AI + ".Val);"); | 
|  | emitCode("}"); | 
|  | } | 
|  |  | 
|  | emitCheck("Match"); | 
|  |  | 
|  | for (unsigned i = 0; i < NumRes; ++i) { | 
|  | emitCode("InFlightSet.insert(CPTmp" + utostr(i+ResNo) + ".Val);"); | 
|  | InflightNodes.push_back("CPTmp" + utostr(i+ResNo)); | 
|  | } | 
|  | for (unsigned i = 0; i < NumRes; ++i) { | 
|  | emitDecl("Tmp" + utostr(i+ResNo)); | 
|  | emitCode("Select(Tmp" + utostr(i+ResNo) + ", CPTmp" + | 
|  | utostr(i+ResNo) + ");"); | 
|  | } | 
|  |  | 
|  | TmpNo = ResNo + NumRes; | 
|  | } else { | 
|  | emitDecl("Tmp" + utostr(ResNo)); | 
|  | // This node, probably wrapped in a SDNodeXForms, behaves like a leaf | 
|  | // node even if it isn't one. Don't select it. | 
|  | if (LikeLeaf) | 
|  | emitCode("Tmp" + utostr(ResNo) + " = " + Val + ";"); | 
|  | else { | 
|  | emitCode("Select(Tmp" + utostr(ResNo) + ", " + Val + ");"); | 
|  | } | 
|  |  | 
|  | if (isRoot && N->isLeaf()) { | 
|  | emitCode("Result = Tmp" + utostr(ResNo) + ";"); | 
|  | emitCode("return;"); | 
|  | } | 
|  | } | 
|  | // Add Tmp<ResNo> to VariableMap, so that we don't multiply select this | 
|  | // value if used multiple times by this pattern result. | 
|  | Val = "Tmp"+utostr(ResNo); | 
|  | return std::make_pair(NumRes, ResNo); | 
|  | } | 
|  | if (N->isLeaf()) { | 
|  | // If this is an explicit register reference, handle it. | 
|  | if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) { | 
|  | unsigned ResNo = TmpNo++; | 
|  | if (DI->getDef()->isSubClassOf("Register")) { | 
|  | emitDecl("Tmp" + utostr(ResNo)); | 
|  | emitCode("Tmp" + utostr(ResNo) + " = CurDAG->getRegister(" + | 
|  | ISE.getQualifiedName(DI->getDef()) + ", " + | 
|  | getEnumName(N->getTypeNum(0)) + ");"); | 
|  | return std::make_pair(1, ResNo); | 
|  | } | 
|  | } else if (IntInit *II = dynamic_cast<IntInit*>(N->getLeafValue())) { | 
|  | unsigned ResNo = TmpNo++; | 
|  | assert(N->getExtTypes().size() == 1 && "Multiple types not handled!"); | 
|  | emitDecl("Tmp" + utostr(ResNo)); | 
|  | emitCode("Tmp" + utostr(ResNo) + | 
|  | " = CurDAG->getTargetConstant(" + itostr(II->getValue()) + | 
|  | ", " + getEnumName(N->getTypeNum(0)) + ");"); | 
|  | return std::make_pair(1, ResNo); | 
|  | } | 
|  |  | 
|  | N->dump(); | 
|  | assert(0 && "Unknown leaf type!"); | 
|  | return std::make_pair(1, ~0U); | 
|  | } | 
|  |  | 
|  | Record *Op = N->getOperator(); | 
|  | if (Op->isSubClassOf("Instruction")) { | 
|  | const CodeGenTarget &CGT = ISE.getTargetInfo(); | 
|  | CodeGenInstruction &II = CGT.getInstruction(Op->getName()); | 
|  | const DAGInstruction &Inst = ISE.getInstruction(Op); | 
|  | TreePattern *InstPat = Inst.getPattern(); | 
|  | TreePatternNode *InstPatNode = | 
|  | isRoot ? (InstPat ? InstPat->getOnlyTree() : Pattern) | 
|  | : (InstPat ? InstPat->getOnlyTree() : NULL); | 
|  | if (InstPatNode && InstPatNode->getOperator()->getName() == "set") { | 
|  | InstPatNode = InstPatNode->getChild(1); | 
|  | } | 
|  | bool HasVarOps     = isRoot && II.hasVariableNumberOfOperands; | 
|  | bool HasImpInputs  = isRoot && Inst.getNumImpOperands() > 0; | 
|  | bool HasImpResults = isRoot && Inst.getNumImpResults() > 0; | 
|  | bool NodeHasOptInFlag = isRoot && | 
|  | PatternHasProperty(Pattern, SDNodeInfo::SDNPOptInFlag, ISE); | 
|  | bool NodeHasInFlag  = isRoot && | 
|  | PatternHasProperty(Pattern, SDNodeInfo::SDNPInFlag, ISE); | 
|  | bool NodeHasOutFlag = HasImpResults || (isRoot && | 
|  | PatternHasProperty(Pattern, SDNodeInfo::SDNPOutFlag, ISE)); | 
|  | bool NodeHasChain = InstPatNode && | 
|  | PatternHasProperty(InstPatNode, SDNodeInfo::SDNPHasChain, ISE); | 
|  | bool InputHasChain = isRoot && | 
|  | NodeHasProperty(Pattern, SDNodeInfo::SDNPHasChain, ISE); | 
|  |  | 
|  | if (NodeHasInFlag || NodeHasOutFlag || NodeHasOptInFlag || HasImpInputs) | 
|  | emitDecl("InFlag"); | 
|  | if (NodeHasOptInFlag) | 
|  | emitCode("bool HasInFlag = " | 
|  | "N.getOperand(N.getNumOperands()-1).getValueType() == MVT::Flag;"); | 
|  | if (HasVarOps) | 
|  | emitCode("std::vector<SDOperand> Ops;"); | 
|  |  | 
|  | // How many results is this pattern expected to produce? | 
|  | unsigned PatResults = 0; | 
|  | for (unsigned i = 0, e = Pattern->getExtTypes().size(); i != e; i++) { | 
|  | MVT::ValueType VT = Pattern->getTypeNum(i); | 
|  | if (VT != MVT::isVoid && VT != MVT::Flag) | 
|  | PatResults++; | 
|  | } | 
|  |  | 
|  | // Determine operand emission order. Complex pattern first. | 
|  | std::vector<std::pair<unsigned, TreePatternNode*> > EmitOrder; | 
|  | std::vector<std::pair<unsigned, TreePatternNode*> >::iterator OI; | 
|  | for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { | 
|  | TreePatternNode *Child = N->getChild(i); | 
|  | if (i == 0) { | 
|  | EmitOrder.push_back(std::make_pair(i, Child)); | 
|  | OI = EmitOrder.begin(); | 
|  | } else if (NodeIsComplexPattern(Child)) { | 
|  | OI = EmitOrder.insert(OI, std::make_pair(i, Child)); | 
|  | } else { | 
|  | EmitOrder.push_back(std::make_pair(i, Child)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure these operands which would be selected won't be folded while | 
|  | // the isel traverses the DAG upward. | 
|  | for (unsigned i = 0, e = EmitOrder.size(); i != e; ++i) { | 
|  | TreePatternNode *Child = EmitOrder[i].second; | 
|  | if (!Child->getName().empty()) { | 
|  | std::string &Val = VariableMap[Child->getName()]; | 
|  | assert(!Val.empty() && | 
|  | "Variable referenced but not defined and not caught earlier!"); | 
|  | if (Child->isLeaf() && !NodeGetComplexPattern(Child, ISE)) { | 
|  | emitCode("InFlightSet.insert(" + Val + ".Val);"); | 
|  | InflightNodes.push_back(Val); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit all of the operands. | 
|  | std::vector<std::pair<unsigned, unsigned> > NumTemps(EmitOrder.size()); | 
|  | for (unsigned i = 0, e = EmitOrder.size(); i != e; ++i) { | 
|  | unsigned OpOrder       = EmitOrder[i].first; | 
|  | TreePatternNode *Child = EmitOrder[i].second; | 
|  | std::pair<unsigned, unsigned> NumTemp =  EmitResultCode(Child); | 
|  | NumTemps[OpOrder] = NumTemp; | 
|  | } | 
|  |  | 
|  | // List all the operands in the right order. | 
|  | std::vector<unsigned> Ops; | 
|  | for (unsigned i = 0, e = NumTemps.size(); i != e; i++) { | 
|  | for (unsigned j = 0; j < NumTemps[i].first; j++) | 
|  | Ops.push_back(NumTemps[i].second + j); | 
|  | } | 
|  |  | 
|  | // Emit all the chain and CopyToReg stuff. | 
|  | bool ChainEmitted = NodeHasChain; | 
|  | if (NodeHasChain) | 
|  | emitCode("Select(" + ChainName + ", " + ChainName + ");"); | 
|  | if (NodeHasInFlag || HasImpInputs) | 
|  | EmitInFlagSelectCode(Pattern, "N", ChainEmitted, true); | 
|  | if (NodeHasOptInFlag) { | 
|  | emitCode("if (HasInFlag)"); | 
|  | emitCode("  Select(InFlag, N.getOperand(N.getNumOperands()-1));"); | 
|  | } | 
|  |  | 
|  | if (isRoot) { | 
|  | // The operands have been selected. Remove them from InFlightSet. | 
|  | for (std::vector<std::string>::iterator AI = InflightNodes.begin(), | 
|  | AE = InflightNodes.end(); AI != AE; ++AI) | 
|  | emitCode("InFlightSet.erase(" + *AI + ".Val);"); | 
|  | } | 
|  |  | 
|  | unsigned NumResults = Inst.getNumResults(); | 
|  | unsigned ResNo = TmpNo++; | 
|  | if (!isRoot || InputHasChain || NodeHasChain || NodeHasOutFlag || | 
|  | NodeHasOptInFlag) { | 
|  | std::string Code; | 
|  | std::string Code2; | 
|  | std::string NodeName; | 
|  | if (!isRoot) { | 
|  | NodeName = "Tmp" + utostr(ResNo); | 
|  | emitDecl(NodeName); | 
|  | Code2 = NodeName + " = SDOperand("; | 
|  | } else { | 
|  | NodeName = "ResNode"; | 
|  | emitDecl(NodeName, true); | 
|  | Code2 = NodeName + " = "; | 
|  | } | 
|  | Code = "CurDAG->getTargetNode(" + | 
|  | II.Namespace + "::" + II.TheDef->getName(); | 
|  |  | 
|  | // Output order: results, chain, flags | 
|  | // Result types. | 
|  | if (NumResults > 0 && N->getTypeNum(0) != MVT::isVoid) | 
|  | Code += ", " + getEnumName(N->getTypeNum(0)); | 
|  | if (NodeHasChain) | 
|  | Code += ", MVT::Other"; | 
|  | if (NodeHasOutFlag) | 
|  | Code += ", MVT::Flag"; | 
|  |  | 
|  | // Inputs. | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) { | 
|  | if (HasVarOps) | 
|  | emitCode("Ops.push_back(Tmp" + utostr(Ops[i]) + ");"); | 
|  | else | 
|  | Code += ", Tmp" + utostr(Ops[i]); | 
|  | } | 
|  |  | 
|  | if (HasVarOps) { | 
|  | if (NodeHasInFlag || HasImpInputs) | 
|  | emitCode("for (unsigned i = 2, e = N.getNumOperands()-1; " | 
|  | "i != e; ++i) {"); | 
|  | else if (NodeHasOptInFlag) | 
|  | emitCode("for (unsigned i = 2, e = N.getNumOperands()-HasInFlag; " | 
|  | "i != e; ++i) {"); | 
|  | else | 
|  | emitCode("for (unsigned i = 2, e = N.getNumOperands(); " | 
|  | "i != e; ++i) {"); | 
|  | emitCode("  SDOperand VarOp(0, 0);"); | 
|  | emitCode("  Select(VarOp, N.getOperand(i));"); | 
|  | emitCode("  Ops.push_back(VarOp);"); | 
|  | emitCode("}"); | 
|  | } | 
|  |  | 
|  | if (NodeHasChain) { | 
|  | if (HasVarOps) | 
|  | emitCode("Ops.push_back(" + ChainName + ");"); | 
|  | else | 
|  | Code += ", " + ChainName; | 
|  | } | 
|  | if (NodeHasInFlag || HasImpInputs) { | 
|  | if (HasVarOps) | 
|  | emitCode("Ops.push_back(InFlag);"); | 
|  | else | 
|  | Code += ", InFlag"; | 
|  | } else if (NodeHasOptInFlag && HasVarOps) { | 
|  | emitCode("if (HasInFlag)"); | 
|  | emitCode("  Ops.push_back(InFlag);"); | 
|  | } | 
|  |  | 
|  | if (HasVarOps) | 
|  | Code += ", Ops"; | 
|  | else if (NodeHasOptInFlag) | 
|  | Code = "HasInFlag ? " + Code + ", InFlag) : " + Code; | 
|  |  | 
|  | if (!isRoot) | 
|  | Code += "), 0"; | 
|  | emitCode(Code2 + Code + ");"); | 
|  |  | 
|  | if (NodeHasChain) | 
|  | // Remember which op produces the chain. | 
|  | if (!isRoot) | 
|  | emitCode(ChainName + " = SDOperand(" + NodeName + | 
|  | ".Val, " + utostr(PatResults) + ");"); | 
|  | else | 
|  | emitCode(ChainName + " = SDOperand(" + NodeName + | 
|  | ", " + utostr(PatResults) + ");"); | 
|  |  | 
|  | if (!isRoot) | 
|  | return std::make_pair(1, ResNo); | 
|  |  | 
|  | if (NewTF) | 
|  | emitCode("if (OldTF) " | 
|  | "SelectionDAG::InsertISelMapEntry(CodeGenMap, OldTF, 0, " + | 
|  | ChainName + ".Val, 0);"); | 
|  |  | 
|  | for (unsigned i = 0; i < NumResults; i++) | 
|  | emitCode("SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, " + | 
|  | utostr(i) + ", ResNode, " + utostr(i) + ");"); | 
|  |  | 
|  | if (NodeHasOutFlag) | 
|  | emitCode("InFlag = SDOperand(ResNode, " + | 
|  | utostr(NumResults + (unsigned)NodeHasChain) + ");"); | 
|  |  | 
|  | if (HasImpResults && EmitCopyFromRegs(N, ChainEmitted)) { | 
|  | emitCode("SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, " | 
|  | "0, ResNode, 0);"); | 
|  | NumResults = 1; | 
|  | } | 
|  |  | 
|  | if (InputHasChain) { | 
|  | emitCode("SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, " + | 
|  | utostr(PatResults) + ", " + ChainName + ".Val, " + | 
|  | ChainName + ".ResNo" + ");"); | 
|  | if (DoReplace) | 
|  | emitCode("if (N.ResNo == 0) AddHandleReplacement(N.Val, " + | 
|  | utostr(PatResults) + ", " + ChainName + ".Val, " + | 
|  | ChainName + ".ResNo" + ");"); | 
|  | } | 
|  |  | 
|  | if (FoldedChains.size() > 0) { | 
|  | std::string Code; | 
|  | for (unsigned j = 0, e = FoldedChains.size(); j < e; j++) | 
|  | emitCode("SelectionDAG::InsertISelMapEntry(CodeGenMap, " + | 
|  | FoldedChains[j].first + ".Val, " + | 
|  | utostr(FoldedChains[j].second) + ", ResNode, " + | 
|  | utostr(NumResults) + ");"); | 
|  |  | 
|  | for (unsigned j = 0, e = FoldedChains.size(); j < e; j++) { | 
|  | std::string Code = | 
|  | FoldedChains[j].first + ".Val, " + | 
|  | utostr(FoldedChains[j].second) + ", "; | 
|  | emitCode("AddHandleReplacement(" + Code + "ResNode, " + | 
|  | utostr(NumResults) + ");"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (NodeHasOutFlag) | 
|  | emitCode("SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, " + | 
|  | utostr(PatResults + (unsigned)InputHasChain) + | 
|  | ", InFlag.Val, InFlag.ResNo);"); | 
|  |  | 
|  | // User does not expect the instruction would produce a chain! | 
|  | bool AddedChain = NodeHasChain && !InputHasChain; | 
|  | if (AddedChain && NodeHasOutFlag) { | 
|  | if (PatResults == 0) { | 
|  | emitCode("Result = SDOperand(ResNode, N.ResNo+1);"); | 
|  | } else { | 
|  | emitCode("if (N.ResNo < " + utostr(PatResults) + ")"); | 
|  | emitCode("  Result = SDOperand(ResNode, N.ResNo);"); | 
|  | emitCode("else"); | 
|  | emitCode("  Result = SDOperand(ResNode, N.ResNo+1);"); | 
|  | } | 
|  | } else if (InputHasChain && !NodeHasChain) { | 
|  | // One of the inner node produces a chain. | 
|  | emitCode("if (N.ResNo < " + utostr(PatResults) + ")"); | 
|  | emitCode("  Result = SDOperand(ResNode, N.ResNo);"); | 
|  | if (NodeHasOutFlag) { | 
|  | emitCode("else if (N.ResNo > " + utostr(PatResults) + ")"); | 
|  | emitCode("  Result = SDOperand(ResNode, N.ResNo-1);"); | 
|  | } | 
|  | emitCode("else"); | 
|  | emitCode("  Result = SDOperand(" + ChainName + ".Val, " + | 
|  | ChainName + ".ResNo);"); | 
|  | } else { | 
|  | emitCode("Result = SDOperand(ResNode, N.ResNo);"); | 
|  | } | 
|  | } else { | 
|  | // If this instruction is the root, and if there is only one use of it, | 
|  | // use SelectNodeTo instead of getTargetNode to avoid an allocation. | 
|  | emitCode("if (N.Val->hasOneUse()) {"); | 
|  | std::string Code = "  Result = CurDAG->SelectNodeTo(N.Val, " + | 
|  | II.Namespace + "::" + II.TheDef->getName(); | 
|  | if (N->getTypeNum(0) != MVT::isVoid) | 
|  | Code += ", " + getEnumName(N->getTypeNum(0)); | 
|  | if (NodeHasOutFlag) | 
|  | Code += ", MVT::Flag"; | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
|  | Code += ", Tmp" + utostr(Ops[i]); | 
|  | if (NodeHasInFlag || HasImpInputs) | 
|  | Code += ", InFlag"; | 
|  | emitCode(Code + ");"); | 
|  | emitCode("} else {"); | 
|  | emitDecl("ResNode", true); | 
|  | Code = "  ResNode = CurDAG->getTargetNode(" + | 
|  | II.Namespace + "::" + II.TheDef->getName(); | 
|  | if (N->getTypeNum(0) != MVT::isVoid) | 
|  | Code += ", " + getEnumName(N->getTypeNum(0)); | 
|  | if (NodeHasOutFlag) | 
|  | Code += ", MVT::Flag"; | 
|  | for (unsigned i = 0, e = Ops.size(); i != e; ++i) | 
|  | Code += ", Tmp" + utostr(Ops[i]); | 
|  | if (NodeHasInFlag || HasImpInputs) | 
|  | Code += ", InFlag"; | 
|  | emitCode(Code + ");"); | 
|  | emitCode("  SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, N.ResNo" | 
|  | ", ResNode, 0);"); | 
|  | emitCode("  Result = SDOperand(ResNode, 0);"); | 
|  | emitCode("}"); | 
|  | } | 
|  |  | 
|  | if (isRoot) | 
|  | emitCode("return;"); | 
|  | return std::make_pair(1, ResNo); | 
|  | } else if (Op->isSubClassOf("SDNodeXForm")) { | 
|  | assert(N->getNumChildren() == 1 && "node xform should have one child!"); | 
|  | // PatLeaf node - the operand may or may not be a leaf node. But it should | 
|  | // behave like one. | 
|  | unsigned OpVal = EmitResultCode(N->getChild(0), true).second; | 
|  | unsigned ResNo = TmpNo++; | 
|  | emitDecl("Tmp" + utostr(ResNo)); | 
|  | emitCode("Tmp" + utostr(ResNo) + " = Transform_" + Op->getName() | 
|  | + "(Tmp" + utostr(OpVal) + ".Val);"); | 
|  | if (isRoot) { | 
|  | emitCode("SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val," | 
|  | "N.ResNo, Tmp" + utostr(ResNo) + ".Val, Tmp" + | 
|  | utostr(ResNo) + ".ResNo);"); | 
|  | emitCode("Result = Tmp" + utostr(ResNo) + ";"); | 
|  | emitCode("return;"); | 
|  | } | 
|  | return std::make_pair(1, ResNo); | 
|  | } else { | 
|  | N->dump(); | 
|  | std::cerr << "\n"; | 
|  | throw std::string("Unknown node in result pattern!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// InsertOneTypeCheck - Insert a type-check for an unresolved type in 'Pat' | 
|  | /// and add it to the tree. 'Pat' and 'Other' are isomorphic trees except that | 
|  | /// 'Pat' may be missing types.  If we find an unresolved type to add a check | 
|  | /// for, this returns true otherwise false if Pat has all types. | 
|  | bool InsertOneTypeCheck(TreePatternNode *Pat, TreePatternNode *Other, | 
|  | const std::string &Prefix) { | 
|  | // Did we find one? | 
|  | if (Pat->getExtTypes() != Other->getExtTypes()) { | 
|  | // Move a type over from 'other' to 'pat'. | 
|  | Pat->setTypes(Other->getExtTypes()); | 
|  | emitCheck(Prefix + ".Val->getValueType(0) == " + | 
|  | getName(Pat->getTypeNum(0))); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | unsigned OpNo = | 
|  | (unsigned) NodeHasProperty(Pat, SDNodeInfo::SDNPHasChain, ISE); | 
|  | for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i, ++OpNo) | 
|  | if (InsertOneTypeCheck(Pat->getChild(i), Other->getChild(i), | 
|  | Prefix + utostr(OpNo))) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | private: | 
|  | /// EmitInFlagSelectCode - Emit the flag operands for the DAG that is | 
|  | /// being built. | 
|  | void EmitInFlagSelectCode(TreePatternNode *N, const std::string &RootName, | 
|  | bool &ChainEmitted, bool isRoot = false) { | 
|  | const CodeGenTarget &T = ISE.getTargetInfo(); | 
|  | unsigned OpNo = | 
|  | (unsigned) NodeHasProperty(N, SDNodeInfo::SDNPHasChain, ISE); | 
|  | bool HasInFlag = NodeHasProperty(N, SDNodeInfo::SDNPInFlag, ISE); | 
|  | for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i, ++OpNo) { | 
|  | TreePatternNode *Child = N->getChild(i); | 
|  | if (!Child->isLeaf()) { | 
|  | EmitInFlagSelectCode(Child, RootName + utostr(OpNo), ChainEmitted); | 
|  | } else { | 
|  | if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { | 
|  | if (!Child->getName().empty()) { | 
|  | std::string Name = RootName + utostr(OpNo); | 
|  | if (Duplicates.find(Name) != Duplicates.end()) | 
|  | // A duplicate! Do not emit a copy for this node. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Record *RR = DI->getDef(); | 
|  | if (RR->isSubClassOf("Register")) { | 
|  | MVT::ValueType RVT = getRegisterValueType(RR, T); | 
|  | if (RVT == MVT::Flag) { | 
|  | emitCode("Select(InFlag, " + RootName + utostr(OpNo) + ");"); | 
|  | } else { | 
|  | if (!ChainEmitted) { | 
|  | emitDecl("Chain"); | 
|  | emitCode("Chain = CurDAG->getEntryNode();"); | 
|  | ChainName = "Chain"; | 
|  | ChainEmitted = true; | 
|  | } | 
|  | emitCode("Select(" + RootName + utostr(OpNo) + ", " + | 
|  | RootName + utostr(OpNo) + ");"); | 
|  | emitCode("ResNode = CurDAG->getCopyToReg(" + ChainName + | 
|  | ", CurDAG->getRegister(" + ISE.getQualifiedName(RR) + | 
|  | ", " + getEnumName(RVT) + "), " + | 
|  | RootName + utostr(OpNo) + ", InFlag).Val;"); | 
|  | emitCode(ChainName + " = SDOperand(ResNode, 0);"); | 
|  | emitCode("InFlag = SDOperand(ResNode, 1);"); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (HasInFlag) | 
|  | emitCode("Select(InFlag, " + RootName + | 
|  | ".getOperand(" + utostr(OpNo) + "));"); | 
|  | } | 
|  |  | 
|  | /// EmitCopyFromRegs - Emit code to copy result to physical registers | 
|  | /// as specified by the instruction. It returns true if any copy is | 
|  | /// emitted. | 
|  | bool EmitCopyFromRegs(TreePatternNode *N, bool &ChainEmitted) { | 
|  | bool RetVal = false; | 
|  | Record *Op = N->getOperator(); | 
|  | if (Op->isSubClassOf("Instruction")) { | 
|  | const DAGInstruction &Inst = ISE.getInstruction(Op); | 
|  | const CodeGenTarget &CGT = ISE.getTargetInfo(); | 
|  | unsigned NumImpResults  = Inst.getNumImpResults(); | 
|  | for (unsigned i = 0; i < NumImpResults; i++) { | 
|  | Record *RR = Inst.getImpResult(i); | 
|  | if (RR->isSubClassOf("Register")) { | 
|  | MVT::ValueType RVT = getRegisterValueType(RR, CGT); | 
|  | if (RVT != MVT::Flag) { | 
|  | if (!ChainEmitted) { | 
|  | emitDecl("Chain"); | 
|  | emitCode("Chain = CurDAG->getEntryNode();"); | 
|  | ChainEmitted = true; | 
|  | ChainName = "Chain"; | 
|  | } | 
|  | emitCode("ResNode = CurDAG->getCopyFromReg(" + ChainName + ", " + | 
|  | ISE.getQualifiedName(RR) + ", " + getEnumName(RVT) + | 
|  | ", InFlag).Val;"); | 
|  | emitCode(ChainName + " = SDOperand(ResNode, 1);"); | 
|  | emitCode("InFlag = SDOperand(ResNode, 2);"); | 
|  | RetVal = true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | return RetVal; | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// EmitCodeForPattern - Given a pattern to match, emit code to the specified | 
|  | /// stream to match the pattern, and generate the code for the match if it | 
|  | /// succeeds.  Returns true if the pattern is not guaranteed to match. | 
|  | void DAGISelEmitter::GenerateCodeForPattern(PatternToMatch &Pattern, | 
|  | std::vector<std::pair<bool, std::string> > &GeneratedCode, | 
|  | std::set<std::pair<bool, std::string> > &GeneratedDecl, | 
|  | bool DoReplace) { | 
|  | PatternCodeEmitter Emitter(*this, Pattern.getPredicates(), | 
|  | Pattern.getSrcPattern(), Pattern.getDstPattern(), | 
|  | GeneratedCode, GeneratedDecl, DoReplace); | 
|  |  | 
|  | // Emit the matcher, capturing named arguments in VariableMap. | 
|  | bool FoundChain = false; | 
|  | Emitter.EmitMatchCode(Pattern.getSrcPattern(), NULL, "N", "", "", FoundChain); | 
|  |  | 
|  | // TP - Get *SOME* tree pattern, we don't care which. | 
|  | TreePattern &TP = *PatternFragments.begin()->second; | 
|  |  | 
|  | // At this point, we know that we structurally match the pattern, but the | 
|  | // types of the nodes may not match.  Figure out the fewest number of type | 
|  | // comparisons we need to emit.  For example, if there is only one integer | 
|  | // type supported by a target, there should be no type comparisons at all for | 
|  | // integer patterns! | 
|  | // | 
|  | // To figure out the fewest number of type checks needed, clone the pattern, | 
|  | // remove the types, then perform type inference on the pattern as a whole. | 
|  | // If there are unresolved types, emit an explicit check for those types, | 
|  | // apply the type to the tree, then rerun type inference.  Iterate until all | 
|  | // types are resolved. | 
|  | // | 
|  | TreePatternNode *Pat = Pattern.getSrcPattern()->clone(); | 
|  | RemoveAllTypes(Pat); | 
|  |  | 
|  | do { | 
|  | // Resolve/propagate as many types as possible. | 
|  | try { | 
|  | bool MadeChange = true; | 
|  | while (MadeChange) | 
|  | MadeChange = Pat->ApplyTypeConstraints(TP, | 
|  | true/*Ignore reg constraints*/); | 
|  | } catch (...) { | 
|  | assert(0 && "Error: could not find consistent types for something we" | 
|  | " already decided was ok!"); | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | // Insert a check for an unresolved type and add it to the tree.  If we find | 
|  | // an unresolved type to add a check for, this returns true and we iterate, | 
|  | // otherwise we are done. | 
|  | } while (Emitter.InsertOneTypeCheck(Pat, Pattern.getSrcPattern(), "N")); | 
|  |  | 
|  | Emitter.EmitResultCode(Pattern.getDstPattern(), false, true /*the root*/); | 
|  | delete Pat; | 
|  | } | 
|  |  | 
|  | /// EraseCodeLine - Erase one code line from all of the patterns.  If removing | 
|  | /// a line causes any of them to be empty, remove them and return true when | 
|  | /// done. | 
|  | static bool EraseCodeLine(std::vector<std::pair<PatternToMatch*, | 
|  | std::vector<std::pair<bool, std::string> > > > | 
|  | &Patterns) { | 
|  | bool ErasedPatterns = false; | 
|  | for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { | 
|  | Patterns[i].second.pop_back(); | 
|  | if (Patterns[i].second.empty()) { | 
|  | Patterns.erase(Patterns.begin()+i); | 
|  | --i; --e; | 
|  | ErasedPatterns = true; | 
|  | } | 
|  | } | 
|  | return ErasedPatterns; | 
|  | } | 
|  |  | 
|  | /// EmitPatterns - Emit code for at least one pattern, but try to group common | 
|  | /// code together between the patterns. | 
|  | void DAGISelEmitter::EmitPatterns(std::vector<std::pair<PatternToMatch*, | 
|  | std::vector<std::pair<bool, std::string> > > > | 
|  | &Patterns, unsigned Indent, | 
|  | std::ostream &OS) { | 
|  | typedef std::pair<bool, std::string> CodeLine; | 
|  | typedef std::vector<CodeLine> CodeList; | 
|  | typedef std::vector<std::pair<PatternToMatch*, CodeList> > PatternList; | 
|  |  | 
|  | if (Patterns.empty()) return; | 
|  |  | 
|  | // Figure out how many patterns share the next code line.  Explicitly copy | 
|  | // FirstCodeLine so that we don't invalidate a reference when changing | 
|  | // Patterns. | 
|  | const CodeLine FirstCodeLine = Patterns.back().second.back(); | 
|  | unsigned LastMatch = Patterns.size()-1; | 
|  | while (LastMatch != 0 && Patterns[LastMatch-1].second.back() == FirstCodeLine) | 
|  | --LastMatch; | 
|  |  | 
|  | // If not all patterns share this line, split the list into two pieces.  The | 
|  | // first chunk will use this line, the second chunk won't. | 
|  | if (LastMatch != 0) { | 
|  | PatternList Shared(Patterns.begin()+LastMatch, Patterns.end()); | 
|  | PatternList Other(Patterns.begin(), Patterns.begin()+LastMatch); | 
|  |  | 
|  | // FIXME: Emit braces? | 
|  | if (Shared.size() == 1) { | 
|  | PatternToMatch &Pattern = *Shared.back().first; | 
|  | OS << "\n" << std::string(Indent, ' ') << "// Pattern: "; | 
|  | Pattern.getSrcPattern()->print(OS); | 
|  | OS << "\n" << std::string(Indent, ' ') << "// Emits: "; | 
|  | Pattern.getDstPattern()->print(OS); | 
|  | OS << "\n"; | 
|  | unsigned AddedComplexity = Pattern.getAddedComplexity(); | 
|  | OS << std::string(Indent, ' ') << "// Pattern complexity = " | 
|  | << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity | 
|  | << "  cost = " | 
|  | << getResultPatternCost(Pattern.getDstPattern(), *this) << "\n"; | 
|  | } | 
|  | if (!FirstCodeLine.first) { | 
|  | OS << std::string(Indent, ' ') << "{\n"; | 
|  | Indent += 2; | 
|  | } | 
|  | EmitPatterns(Shared, Indent, OS); | 
|  | if (!FirstCodeLine.first) { | 
|  | Indent -= 2; | 
|  | OS << std::string(Indent, ' ') << "}\n"; | 
|  | } | 
|  |  | 
|  | if (Other.size() == 1) { | 
|  | PatternToMatch &Pattern = *Other.back().first; | 
|  | OS << "\n" << std::string(Indent, ' ') << "// Pattern: "; | 
|  | Pattern.getSrcPattern()->print(OS); | 
|  | OS << "\n" << std::string(Indent, ' ') << "// Emits: "; | 
|  | Pattern.getDstPattern()->print(OS); | 
|  | OS << "\n"; | 
|  | unsigned AddedComplexity = Pattern.getAddedComplexity(); | 
|  | OS << std::string(Indent, ' ') << "// Pattern complexity = " | 
|  | << getPatternSize(Pattern.getSrcPattern(), *this) + AddedComplexity | 
|  | << "  cost = " | 
|  | << getResultPatternCost(Pattern.getDstPattern(), *this) << "\n"; | 
|  | } | 
|  | EmitPatterns(Other, Indent, OS); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Remove this code from all of the patterns that share it. | 
|  | bool ErasedPatterns = EraseCodeLine(Patterns); | 
|  |  | 
|  | bool isPredicate = FirstCodeLine.first; | 
|  |  | 
|  | // Otherwise, every pattern in the list has this line.  Emit it. | 
|  | if (!isPredicate) { | 
|  | // Normal code. | 
|  | OS << std::string(Indent, ' ') << FirstCodeLine.second << "\n"; | 
|  | } else { | 
|  | OS << std::string(Indent, ' ') << "if (" << FirstCodeLine.second; | 
|  |  | 
|  | // If the next code line is another predicate, and if all of the pattern | 
|  | // in this group share the same next line, emit it inline now.  Do this | 
|  | // until we run out of common predicates. | 
|  | while (!ErasedPatterns && Patterns.back().second.back().first) { | 
|  | // Check that all of fhe patterns in Patterns end with the same predicate. | 
|  | bool AllEndWithSamePredicate = true; | 
|  | for (unsigned i = 0, e = Patterns.size(); i != e; ++i) | 
|  | if (Patterns[i].second.back() != Patterns.back().second.back()) { | 
|  | AllEndWithSamePredicate = false; | 
|  | break; | 
|  | } | 
|  | // If all of the predicates aren't the same, we can't share them. | 
|  | if (!AllEndWithSamePredicate) break; | 
|  |  | 
|  | // Otherwise we can.  Emit it shared now. | 
|  | OS << " &&\n" << std::string(Indent+4, ' ') | 
|  | << Patterns.back().second.back().second; | 
|  | ErasedPatterns = EraseCodeLine(Patterns); | 
|  | } | 
|  |  | 
|  | OS << ") {\n"; | 
|  | Indent += 2; | 
|  | } | 
|  |  | 
|  | EmitPatterns(Patterns, Indent, OS); | 
|  |  | 
|  | if (isPredicate) | 
|  | OS << std::string(Indent-2, ' ') << "}\n"; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | namespace { | 
|  | /// CompareByRecordName - An ordering predicate that implements less-than by | 
|  | /// comparing the names records. | 
|  | struct CompareByRecordName { | 
|  | bool operator()(const Record *LHS, const Record *RHS) const { | 
|  | // Sort by name first. | 
|  | if (LHS->getName() < RHS->getName()) return true; | 
|  | // If both names are equal, sort by pointer. | 
|  | return LHS->getName() == RHS->getName() && LHS < RHS; | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | void DAGISelEmitter::EmitInstructionSelector(std::ostream &OS) { | 
|  | std::string InstNS = Target.inst_begin()->second.Namespace; | 
|  | if (!InstNS.empty()) InstNS += "::"; | 
|  |  | 
|  | // Group the patterns by their top-level opcodes. | 
|  | std::map<Record*, std::vector<PatternToMatch*>, | 
|  | CompareByRecordName> PatternsByOpcode; | 
|  | for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { | 
|  | TreePatternNode *Node = PatternsToMatch[i].getSrcPattern(); | 
|  | if (!Node->isLeaf()) { | 
|  | PatternsByOpcode[Node->getOperator()].push_back(&PatternsToMatch[i]); | 
|  | } else { | 
|  | const ComplexPattern *CP; | 
|  | if (IntInit *II = | 
|  | dynamic_cast<IntInit*>(Node->getLeafValue())) { | 
|  | PatternsByOpcode[getSDNodeNamed("imm")].push_back(&PatternsToMatch[i]); | 
|  | } else if ((CP = NodeGetComplexPattern(Node, *this))) { | 
|  | std::vector<Record*> OpNodes = CP->getRootNodes(); | 
|  | for (unsigned j = 0, e = OpNodes.size(); j != e; j++) { | 
|  | PatternsByOpcode[OpNodes[j]] | 
|  | .insert(PatternsByOpcode[OpNodes[j]].begin(), &PatternsToMatch[i]); | 
|  | } | 
|  | } else { | 
|  | std::cerr << "Unrecognized opcode '"; | 
|  | Node->dump(); | 
|  | std::cerr << "' on tree pattern '"; | 
|  | std::cerr << | 
|  | PatternsToMatch[i].getDstPattern()->getOperator()->getName(); | 
|  | std::cerr << "'!\n"; | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Emit one Select_* method for each top-level opcode.  We do this instead of | 
|  | // emitting one giant switch statement to support compilers where this will | 
|  | // result in the recursive functions taking less stack space. | 
|  | for (std::map<Record*, std::vector<PatternToMatch*>, | 
|  | CompareByRecordName>::iterator PBOI = PatternsByOpcode.begin(), | 
|  | E = PatternsByOpcode.end(); PBOI != E; ++PBOI) { | 
|  | const std::string &OpName = PBOI->first->getName(); | 
|  | OS << "void Select_" << OpName << "(SDOperand &Result, SDOperand N) {\n"; | 
|  |  | 
|  | const SDNodeInfo &OpcodeInfo = getSDNodeInfo(PBOI->first); | 
|  | bool OptSlctOrder = | 
|  | (OpcodeInfo.hasProperty(SDNodeInfo::SDNPHasChain) && | 
|  | OpcodeInfo.getNumResults() > 0); | 
|  |  | 
|  | if (OptSlctOrder) { | 
|  | OS << "  if (N.ResNo == " << OpcodeInfo.getNumResults() | 
|  | << " && N.getValue(0).hasOneUse()) {\n" | 
|  | << "    SDOperand Dummy = " | 
|  | << "CurDAG->getNode(ISD::HANDLENODE, MVT::Other, N);\n" | 
|  | << "    SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, " | 
|  | << OpcodeInfo.getNumResults() << ", Dummy.Val, 0);\n" | 
|  | << "    SelectionDAG::InsertISelMapEntry(HandleMap, N.Val, " | 
|  | << OpcodeInfo.getNumResults() << ", Dummy.Val, 0);\n" | 
|  | << "    Result = Dummy;\n" | 
|  | << "    return;\n" | 
|  | << "  }\n"; | 
|  | } | 
|  |  | 
|  | std::vector<PatternToMatch*> &Patterns = PBOI->second; | 
|  | assert(!Patterns.empty() && "No patterns but map has entry?"); | 
|  |  | 
|  | // We want to emit all of the matching code now.  However, we want to emit | 
|  | // the matches in order of minimal cost.  Sort the patterns so the least | 
|  | // cost one is at the start. | 
|  | std::stable_sort(Patterns.begin(), Patterns.end(), | 
|  | PatternSortingPredicate(*this)); | 
|  |  | 
|  | typedef std::vector<std::pair<bool, std::string> > CodeList; | 
|  | typedef std::set<std::string> DeclSet; | 
|  |  | 
|  | std::vector<std::pair<PatternToMatch*, CodeList> > CodeForPatterns; | 
|  | std::set<std::pair<bool, std::string> > GeneratedDecl; | 
|  | for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { | 
|  | CodeList GeneratedCode; | 
|  | GenerateCodeForPattern(*Patterns[i], GeneratedCode, GeneratedDecl, | 
|  | OptSlctOrder); | 
|  | CodeForPatterns.push_back(std::make_pair(Patterns[i], GeneratedCode)); | 
|  | } | 
|  |  | 
|  | // Scan the code to see if all of the patterns are reachable and if it is | 
|  | // possible that the last one might not match. | 
|  | bool mightNotMatch = true; | 
|  | for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { | 
|  | CodeList &GeneratedCode = CodeForPatterns[i].second; | 
|  | mightNotMatch = false; | 
|  |  | 
|  | for (unsigned j = 0, e = GeneratedCode.size(); j != e; ++j) { | 
|  | if (GeneratedCode[j].first) { // predicate. | 
|  | mightNotMatch = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this pattern definitely matches, and if it isn't the last one, the | 
|  | // patterns after it CANNOT ever match.  Error out. | 
|  | if (mightNotMatch == false && i != CodeForPatterns.size()-1) { | 
|  | std::cerr << "Pattern '"; | 
|  | CodeForPatterns[i+1].first->getSrcPattern()->print(OS); | 
|  | std::cerr << "' is impossible to select!\n"; | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Print all declarations. | 
|  | for (std::set<std::pair<bool, std::string> >::iterator | 
|  | I = GeneratedDecl.begin(), E = GeneratedDecl.end(); I != E; ++I) | 
|  | if (I->first) | 
|  | OS << "  SDNode *" << I->second << ";\n"; | 
|  | else | 
|  | OS << "  SDOperand " << I->second << "(0, 0);\n"; | 
|  |  | 
|  | // Loop through and reverse all of the CodeList vectors, as we will be | 
|  | // accessing them from their logical front, but accessing the end of a | 
|  | // vector is more efficient. | 
|  | for (unsigned i = 0, e = CodeForPatterns.size(); i != e; ++i) { | 
|  | CodeList &GeneratedCode = CodeForPatterns[i].second; | 
|  | std::reverse(GeneratedCode.begin(), GeneratedCode.end()); | 
|  | } | 
|  |  | 
|  | // Next, reverse the list of patterns itself for the same reason. | 
|  | std::reverse(CodeForPatterns.begin(), CodeForPatterns.end()); | 
|  |  | 
|  | // Emit all of the patterns now, grouped together to share code. | 
|  | EmitPatterns(CodeForPatterns, 2, OS); | 
|  |  | 
|  | // If the last pattern has predicates (which could fail) emit code to catch | 
|  | // the case where nothing handles a pattern. | 
|  | if (mightNotMatch) { | 
|  | OS << "  std::cerr << \"Cannot yet select: \";\n"; | 
|  | if (OpcodeInfo.getEnumName() != "ISD::INTRINSIC_W_CHAIN" && | 
|  | OpcodeInfo.getEnumName() != "ISD::INTRINSIC_WO_CHAIN" && | 
|  | OpcodeInfo.getEnumName() != "ISD::INTRINSIC_VOID") { | 
|  | OS << "  N.Val->dump(CurDAG);\n"; | 
|  | } else { | 
|  | OS << "  unsigned iid = cast<ConstantSDNode>(N.getOperand(" | 
|  | "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n" | 
|  | << "  std::cerr << \"intrinsic %\"<< " | 
|  | "Intrinsic::getName((Intrinsic::ID)iid);\n"; | 
|  | } | 
|  | OS << "  std::cerr << '\\n';\n" | 
|  | << "  abort();\n"; | 
|  | } | 
|  | OS << "}\n\n"; | 
|  | } | 
|  |  | 
|  | // Emit boilerplate. | 
|  | OS << "void Select_INLINEASM(SDOperand& Result, SDOperand N) {\n" | 
|  | << "  std::vector<SDOperand> Ops(N.Val->op_begin(), N.Val->op_end());\n" | 
|  | << "  Select(Ops[0], N.getOperand(0)); // Select the chain.\n\n" | 
|  | << "  // Select the flag operand.\n" | 
|  | << "  if (Ops.back().getValueType() == MVT::Flag)\n" | 
|  | << "    Select(Ops.back(), Ops.back());\n" | 
|  | << "  SelectInlineAsmMemoryOperands(Ops, *CurDAG);\n" | 
|  | << "  std::vector<MVT::ValueType> VTs;\n" | 
|  | << "  VTs.push_back(MVT::Other);\n" | 
|  | << "  VTs.push_back(MVT::Flag);\n" | 
|  | << "  SDOperand New = CurDAG->getNode(ISD::INLINEASM, VTs, Ops);\n" | 
|  | << "  SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 0, New.Val, 0);\n" | 
|  | << "  SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 1, New.Val, 1);\n" | 
|  | << "  Result = New.getValue(N.ResNo);\n" | 
|  | << "  return;\n" | 
|  | << "}\n\n"; | 
|  |  | 
|  | OS << "// The main instruction selector code.\n" | 
|  | << "void SelectCode(SDOperand &Result, SDOperand N) {\n" | 
|  | << "  if (N.getOpcode() >= ISD::BUILTIN_OP_END &&\n" | 
|  | << "      N.getOpcode() < (ISD::BUILTIN_OP_END+" << InstNS | 
|  | << "INSTRUCTION_LIST_END)) {\n" | 
|  | << "    Result = N;\n" | 
|  | << "    return;   // Already selected.\n" | 
|  | << "  }\n\n" | 
|  | << "  std::map<SDOperand, SDOperand>::iterator CGMI = CodeGenMap.find(N);\n" | 
|  | << "  if (CGMI != CodeGenMap.end()) {\n" | 
|  | << "    Result = CGMI->second;\n" | 
|  | << "    return;\n" | 
|  | << "  }\n\n" | 
|  | << "  switch (N.getOpcode()) {\n" | 
|  | << "  default: break;\n" | 
|  | << "  case ISD::EntryToken:       // These leaves remain the same.\n" | 
|  | << "  case ISD::BasicBlock:\n" | 
|  | << "  case ISD::Register:\n" | 
|  | << "  case ISD::HANDLENODE:\n" | 
|  | << "  case ISD::TargetConstant:\n" | 
|  | << "  case ISD::TargetConstantPool:\n" | 
|  | << "  case ISD::TargetFrameIndex:\n" | 
|  | << "  case ISD::TargetJumpTable:\n" | 
|  | << "  case ISD::TargetGlobalAddress: {\n" | 
|  | << "    Result = N;\n" | 
|  | << "    return;\n" | 
|  | << "  }\n" | 
|  | << "  case ISD::AssertSext:\n" | 
|  | << "  case ISD::AssertZext: {\n" | 
|  | << "    SDOperand Tmp0;\n" | 
|  | << "    Select(Tmp0, N.getOperand(0));\n" | 
|  | << "    if (!N.Val->hasOneUse())\n" | 
|  | << "      SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, N.ResNo, " | 
|  | << "Tmp0.Val, Tmp0.ResNo);\n" | 
|  | << "    Result = Tmp0;\n" | 
|  | << "    return;\n" | 
|  | << "  }\n" | 
|  | << "  case ISD::TokenFactor:\n" | 
|  | << "    if (N.getNumOperands() == 2) {\n" | 
|  | << "      SDOperand Op0, Op1;\n" | 
|  | << "      Select(Op0, N.getOperand(0));\n" | 
|  | << "      Select(Op1, N.getOperand(1));\n" | 
|  | << "      Result = \n" | 
|  | << "          CurDAG->getNode(ISD::TokenFactor, MVT::Other, Op0, Op1);\n" | 
|  | << "      SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, N.ResNo, " | 
|  | << "Result.Val, Result.ResNo);\n" | 
|  | << "    } else {\n" | 
|  | << "      std::vector<SDOperand> Ops;\n" | 
|  | << "      for (unsigned i = 0, e = N.getNumOperands(); i != e; ++i) {\n" | 
|  | << "        SDOperand Val;\n" | 
|  | << "        Select(Val, N.getOperand(i));\n" | 
|  | << "        Ops.push_back(Val);\n" | 
|  | << "      }\n" | 
|  | << "      Result = \n" | 
|  | << "          CurDAG->getNode(ISD::TokenFactor, MVT::Other, Ops);\n" | 
|  | << "      SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, N.ResNo, " | 
|  | << "Result.Val, Result.ResNo);\n" | 
|  | << "    }\n" | 
|  | << "    return;\n" | 
|  | << "  case ISD::CopyFromReg: {\n" | 
|  | << "    SDOperand Chain;\n" | 
|  | << "    Select(Chain, N.getOperand(0));\n" | 
|  | << "    unsigned Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();\n" | 
|  | << "    MVT::ValueType VT = N.Val->getValueType(0);\n" | 
|  | << "    if (N.Val->getNumValues() == 2) {\n" | 
|  | << "      if (Chain == N.getOperand(0)) {\n" | 
|  | << "        Result = N; // No change\n" | 
|  | << "        return;\n" | 
|  | << "      }\n" | 
|  | << "      SDOperand New = CurDAG->getCopyFromReg(Chain, Reg, VT);\n" | 
|  | << "      SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 0, " | 
|  | << "New.Val, 0);\n" | 
|  | << "      SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 1, " | 
|  | << "New.Val, 1);\n" | 
|  | << "      Result = New.getValue(N.ResNo);\n" | 
|  | << "      return;\n" | 
|  | << "    } else {\n" | 
|  | << "      SDOperand Flag;\n" | 
|  | << "      if (N.getNumOperands() == 3) Select(Flag, N.getOperand(2));\n" | 
|  | << "      if (Chain == N.getOperand(0) &&\n" | 
|  | << "          (N.getNumOperands() == 2 || Flag == N.getOperand(2))) {\n" | 
|  | << "        Result = N; // No change\n" | 
|  | << "        return;\n" | 
|  | << "      }\n" | 
|  | << "      SDOperand New = CurDAG->getCopyFromReg(Chain, Reg, VT, Flag);\n" | 
|  | << "      SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 0, " | 
|  | << "New.Val, 0);\n" | 
|  | << "      SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 1, " | 
|  | << "New.Val, 1);\n" | 
|  | << "      SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 2, " | 
|  | << "New.Val, 2);\n" | 
|  | << "      Result = New.getValue(N.ResNo);\n" | 
|  | << "      return;\n" | 
|  | << "    }\n" | 
|  | << "  }\n" | 
|  | << "  case ISD::CopyToReg: {\n" | 
|  | << "    SDOperand Chain;\n" | 
|  | << "    Select(Chain, N.getOperand(0));\n" | 
|  | << "    unsigned Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();\n" | 
|  | << "    SDOperand Val;\n" | 
|  | << "    Select(Val, N.getOperand(2));\n" | 
|  | << "    Result = N;\n" | 
|  | << "    if (N.Val->getNumValues() == 1) {\n" | 
|  | << "      if (Chain != N.getOperand(0) || Val != N.getOperand(2))\n" | 
|  | << "        Result = CurDAG->getCopyToReg(Chain, Reg, Val);\n" | 
|  | << "      SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 0, " | 
|  | << "Result.Val, 0);\n" | 
|  | << "    } else {\n" | 
|  | << "      SDOperand Flag(0, 0);\n" | 
|  | << "      if (N.getNumOperands() == 4) Select(Flag, N.getOperand(3));\n" | 
|  | << "      if (Chain != N.getOperand(0) || Val != N.getOperand(2) ||\n" | 
|  | << "          (N.getNumOperands() == 4 && Flag != N.getOperand(3)))\n" | 
|  | << "        Result = CurDAG->getCopyToReg(Chain, Reg, Val, Flag);\n" | 
|  | << "      SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 0, " | 
|  | << "Result.Val, 0);\n" | 
|  | << "      SelectionDAG::InsertISelMapEntry(CodeGenMap, N.Val, 1, " | 
|  | << "Result.Val, 1);\n" | 
|  | << "      Result = Result.getValue(N.ResNo);\n" | 
|  | << "    }\n" | 
|  | << "    return;\n" | 
|  | << "  }\n" | 
|  | << "  case ISD::INLINEASM:  Select_INLINEASM(Result, N); return;\n"; | 
|  |  | 
|  |  | 
|  | // Loop over all of the case statements, emiting a call to each method we | 
|  | // emitted above. | 
|  | for (std::map<Record*, std::vector<PatternToMatch*>, | 
|  | CompareByRecordName>::iterator PBOI = PatternsByOpcode.begin(), | 
|  | E = PatternsByOpcode.end(); PBOI != E; ++PBOI) { | 
|  | const SDNodeInfo &OpcodeInfo = getSDNodeInfo(PBOI->first); | 
|  | OS << "  case " << OpcodeInfo.getEnumName() << ": " | 
|  | << std::string(std::max(0, int(24-OpcodeInfo.getEnumName().size())), ' ') | 
|  | << "Select_" << PBOI->first->getName() << "(Result, N); return;\n"; | 
|  | } | 
|  |  | 
|  | OS << "  } // end of big switch.\n\n" | 
|  | << "  std::cerr << \"Cannot yet select: \";\n" | 
|  | << "  if (N.getOpcode() != ISD::INTRINSIC_W_CHAIN &&\n" | 
|  | << "      N.getOpcode() != ISD::INTRINSIC_WO_CHAIN &&\n" | 
|  | << "      N.getOpcode() != ISD::INTRINSIC_VOID) {\n" | 
|  | << "    N.Val->dump(CurDAG);\n" | 
|  | << "  } else {\n" | 
|  | << "    unsigned iid = cast<ConstantSDNode>(N.getOperand(" | 
|  | "N.getOperand(0).getValueType() == MVT::Other))->getValue();\n" | 
|  | << "    std::cerr << \"intrinsic %\"<< " | 
|  | "Intrinsic::getName((Intrinsic::ID)iid);\n" | 
|  | << "  }\n" | 
|  | << "  std::cerr << '\\n';\n" | 
|  | << "  abort();\n" | 
|  | << "}\n"; | 
|  | } | 
|  |  | 
|  | void DAGISelEmitter::run(std::ostream &OS) { | 
|  | EmitSourceFileHeader("DAG Instruction Selector for the " + Target.getName() + | 
|  | " target", OS); | 
|  |  | 
|  | OS << "// *** NOTE: This file is #included into the middle of the target\n" | 
|  | << "// *** instruction selector class.  These functions are really " | 
|  | << "methods.\n\n"; | 
|  |  | 
|  | OS << "// Instance var to keep track of multiply used nodes that have \n" | 
|  | << "// already been selected.\n" | 
|  | << "std::map<SDOperand, SDOperand> CodeGenMap;\n"; | 
|  |  | 
|  | OS << "// Instance var to keep track of mapping of chain generating nodes\n" | 
|  | << "// and their place handle nodes.\n"; | 
|  | OS << "std::map<SDOperand, SDOperand> HandleMap;\n"; | 
|  | OS << "// Instance var to keep track of mapping of place handle nodes\n" | 
|  | << "// and their replacement nodes.\n"; | 
|  | OS << "std::map<SDOperand, SDOperand> ReplaceMap;\n"; | 
|  | OS << "// Keep track of nodes that are currently being selecte and therefore\n" | 
|  | << "// should not be folded.\n"; | 
|  | OS << "std::set<SDNode*> InFlightSet;\n"; | 
|  |  | 
|  | OS << "\n"; | 
|  | OS << "static void findNonImmUse(SDNode* Use, SDNode* Def, bool &found, " | 
|  | << "std::set<SDNode *> &Visited) {\n"; | 
|  | OS << "  if (found || !Visited.insert(Use).second) return;\n"; | 
|  | OS << "  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {\n"; | 
|  | OS << "    SDNode *N = Use->getOperand(i).Val;\n"; | 
|  | OS << "    if (N != Def) {\n"; | 
|  | OS << "      findNonImmUse(N, Def, found, Visited);\n"; | 
|  | OS << "    } else {\n"; | 
|  | OS << "      found = true;\n"; | 
|  | OS << "      break;\n"; | 
|  | OS << "    }\n"; | 
|  | OS << "  }\n"; | 
|  | OS << "}\n"; | 
|  |  | 
|  | OS << "\n"; | 
|  | OS << "static bool isNonImmUse(SDNode* Use, SDNode* Def) {\n"; | 
|  | OS << "  std::set<SDNode *> Visited;\n"; | 
|  | OS << "  bool found = false;\n"; | 
|  | OS << "  for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) {\n"; | 
|  | OS << "    SDNode *N = Use->getOperand(i).Val;\n"; | 
|  | OS << "    if (N != Def) {\n"; | 
|  | OS << "      findNonImmUse(N, Def, found, Visited);\n"; | 
|  | OS << "      if (found) break;\n"; | 
|  | OS << "    }\n"; | 
|  | OS << "  }\n"; | 
|  | OS << "  return found;\n"; | 
|  | OS << "}\n"; | 
|  |  | 
|  | OS << "\n"; | 
|  | OS << "// AddHandleReplacement - Note the pending replacement node for a\n" | 
|  | << "// handle node in ReplaceMap.\n"; | 
|  | OS << "void AddHandleReplacement(SDNode *H, unsigned HNum, SDNode *R, " | 
|  | << "unsigned RNum) {\n"; | 
|  | OS << "  SDOperand N(H, HNum);\n"; | 
|  | OS << "  std::map<SDOperand, SDOperand>::iterator HMI = HandleMap.find(N);\n"; | 
|  | OS << "  if (HMI != HandleMap.end()) {\n"; | 
|  | OS << "    ReplaceMap[HMI->second] = SDOperand(R, RNum);\n"; | 
|  | OS << "    HandleMap.erase(N);\n"; | 
|  | OS << "  }\n"; | 
|  | OS << "}\n"; | 
|  |  | 
|  | OS << "\n"; | 
|  | OS << "// SelectDanglingHandles - Select replacements for all `dangling`\n"; | 
|  | OS << "// handles.Some handles do not yet have replacements because the\n"; | 
|  | OS << "// nodes they replacements have only dead readers.\n"; | 
|  | OS << "void SelectDanglingHandles() {\n"; | 
|  | OS << "  for (std::map<SDOperand, SDOperand>::iterator I = " | 
|  | << "HandleMap.begin(),\n" | 
|  | << "         E = HandleMap.end(); I != E; ++I) {\n"; | 
|  | OS << "    SDOperand N = I->first;\n"; | 
|  | OS << "    SDOperand R;\n"; | 
|  | OS << "    Select(R, N.getValue(0));\n"; | 
|  | OS << "    AddHandleReplacement(N.Val, N.ResNo, R.Val, R.ResNo);\n"; | 
|  | OS << "  }\n"; | 
|  | OS << "}\n"; | 
|  | OS << "\n"; | 
|  | OS << "// ReplaceHandles - Replace all the handles with the real target\n"; | 
|  | OS << "// specific nodes.\n"; | 
|  | OS << "void ReplaceHandles() {\n"; | 
|  | OS << "  for (std::map<SDOperand, SDOperand>::iterator I = " | 
|  | << "ReplaceMap.begin(),\n" | 
|  | << "        E = ReplaceMap.end(); I != E; ++I) {\n"; | 
|  | OS << "    SDOperand From = I->first;\n"; | 
|  | OS << "    SDOperand To   = I->second;\n"; | 
|  | OS << "    for (SDNode::use_iterator UI = From.Val->use_begin(), " | 
|  | << "E = From.Val->use_end(); UI != E; ++UI) {\n"; | 
|  | OS << "      SDNode *Use = *UI;\n"; | 
|  | OS << "      std::vector<SDOperand> Ops;\n"; | 
|  | OS << "      for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i){\n"; | 
|  | OS << "        SDOperand O = Use->getOperand(i);\n"; | 
|  | OS << "        if (O.Val == From.Val)\n"; | 
|  | OS << "          Ops.push_back(To);\n"; | 
|  | OS << "        else\n"; | 
|  | OS << "          Ops.push_back(O);\n"; | 
|  | OS << "      }\n"; | 
|  | OS << "      SDOperand U = SDOperand(Use, 0);\n"; | 
|  | OS << "      CurDAG->UpdateNodeOperands(U, Ops);\n"; | 
|  | OS << "    }\n"; | 
|  | OS << "  }\n"; | 
|  | OS << "}\n"; | 
|  |  | 
|  | OS << "\n"; | 
|  | OS << "// UpdateFoldedChain - return a SDOperand of the new chain created\n"; | 
|  | OS << "// if the folding were to happen. This is called when, for example,\n"; | 
|  | OS << "// a load is folded into a store. If the store's chain is the load,\n"; | 
|  | OS << "// then the resulting node's input chain would be the load's input\n"; | 
|  | OS << "// chain. If the store's chain is a TokenFactor and the load's\n"; | 
|  | OS << "// output chain feeds into in, then the new chain is a TokenFactor\n"; | 
|  | OS << "// with the other operands along with the input chain of the load.\n"; | 
|  | OS << "SDOperand UpdateFoldedChain(SelectionDAG *DAG, SDNode *N, " | 
|  | << "SDNode *Chain, SDNode* &OldTF) {\n"; | 
|  | OS << "  OldTF = NULL;\n"; | 
|  | OS << "  if (N == Chain) {\n"; | 
|  | OS << "    return N->getOperand(0);\n"; | 
|  | OS << "  } else if (Chain->getOpcode() == ISD::TokenFactor &&\n"; | 
|  | OS << "             N->isOperand(Chain)) {\n"; | 
|  | OS << "    SDOperand Ch = SDOperand(Chain, 0);\n"; | 
|  | OS << "    std::map<SDOperand, SDOperand>::iterator CGMI = " | 
|  | << "CodeGenMap.find(Ch);\n"; | 
|  | OS << "    if (CGMI != CodeGenMap.end())\n"; | 
|  | OS << "      return SDOperand(0, 0);\n"; | 
|  | OS << "    OldTF = Chain;\n"; | 
|  | OS << "    std::vector<SDOperand> Ops;\n"; | 
|  | OS << "    for (unsigned i = 0; i < Chain->getNumOperands(); ++i) {\n"; | 
|  | OS << "      SDOperand Op = Chain->getOperand(i);\n"; | 
|  | OS << "      if (Op.Val == N)\n"; | 
|  | OS << "        Ops.push_back(N->getOperand(0));\n"; | 
|  | OS << "      else\n"; | 
|  | OS << "        Ops.push_back(Op);\n"; | 
|  | OS << "    }\n"; | 
|  | OS << "    return DAG->getNode(ISD::TokenFactor, MVT::Other, Ops);\n"; | 
|  | OS << "  }\n"; | 
|  | OS << "  return SDOperand(0, 0);\n"; | 
|  | OS << "}\n"; | 
|  |  | 
|  | OS << "\n"; | 
|  | OS << "// SelectRoot - Top level entry to DAG isel.\n"; | 
|  | OS << "SDOperand SelectRoot(SDOperand N) {\n"; | 
|  | OS << "  SDOperand ResNode;\n"; | 
|  | OS << "  Select(ResNode, N);\n"; | 
|  | OS << "  SelectDanglingHandles();\n"; | 
|  | OS << "  ReplaceHandles();\n"; | 
|  | OS << "  ReplaceMap.clear();\n"; | 
|  | OS << "  return ResNode;\n"; | 
|  | OS << "}\n"; | 
|  |  | 
|  | Intrinsics = LoadIntrinsics(Records); | 
|  | ParseNodeInfo(); | 
|  | ParseNodeTransforms(OS); | 
|  | ParseComplexPatterns(); | 
|  | ParsePatternFragments(OS); | 
|  | ParseInstructions(); | 
|  | ParsePatterns(); | 
|  |  | 
|  | // Generate variants.  For example, commutative patterns can match | 
|  | // multiple ways.  Add them to PatternsToMatch as well. | 
|  | GenerateVariants(); | 
|  |  | 
|  |  | 
|  | DEBUG(std::cerr << "\n\nALL PATTERNS TO MATCH:\n\n"; | 
|  | for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { | 
|  | std::cerr << "PATTERN: ";  PatternsToMatch[i].getSrcPattern()->dump(); | 
|  | std::cerr << "\nRESULT:  ";PatternsToMatch[i].getDstPattern()->dump(); | 
|  | std::cerr << "\n"; | 
|  | }); | 
|  |  | 
|  | // At this point, we have full information about the 'Patterns' we need to | 
|  | // parse, both implicitly from instructions as well as from explicit pattern | 
|  | // definitions.  Emit the resultant instruction selector. | 
|  | EmitInstructionSelector(OS); | 
|  |  | 
|  | for (std::map<Record*, TreePattern*>::iterator I = PatternFragments.begin(), | 
|  | E = PatternFragments.end(); I != E; ++I) | 
|  | delete I->second; | 
|  | PatternFragments.clear(); | 
|  |  | 
|  | Instructions.clear(); | 
|  | } |