|  | ///===-- FastISel.cpp - Implementation of the FastISel class --------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file contains the implementation of the FastISel class. | 
|  | // | 
|  | // "Fast" instruction selection is designed to emit very poor code quickly. | 
|  | // Also, it is not designed to be able to do much lowering, so most illegal | 
|  | // types (e.g. i64 on 32-bit targets) and operations are not supported.  It is | 
|  | // also not intended to be able to do much optimization, except in a few cases | 
|  | // where doing optimizations reduces overall compile time.  For example, folding | 
|  | // constants into immediate fields is often done, because it's cheap and it | 
|  | // reduces the number of instructions later phases have to examine. | 
|  | // | 
|  | // "Fast" instruction selection is able to fail gracefully and transfer | 
|  | // control to the SelectionDAG selector for operations that it doesn't | 
|  | // support.  In many cases, this allows us to avoid duplicating a lot of | 
|  | // the complicated lowering logic that SelectionDAG currently has. | 
|  | // | 
|  | // The intended use for "fast" instruction selection is "-O0" mode | 
|  | // compilation, where the quality of the generated code is irrelevant when | 
|  | // weighed against the speed at which the code can be generated.  Also, | 
|  | // at -O0, the LLVM optimizers are not running, and this makes the | 
|  | // compile time of codegen a much higher portion of the overall compile | 
|  | // time.  Despite its limitations, "fast" instruction selection is able to | 
|  | // handle enough code on its own to provide noticeable overall speedups | 
|  | // in -O0 compiles. | 
|  | // | 
|  | // Basic operations are supported in a target-independent way, by reading | 
|  | // the same instruction descriptions that the SelectionDAG selector reads, | 
|  | // and identifying simple arithmetic operations that can be directly selected | 
|  | // from simple operators.  More complicated operations currently require | 
|  | // target-specific code. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/GlobalVariable.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/CodeGen/FastISel.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/DwarfWriter.h" | 
|  | #include "llvm/Analysis/DebugInfo.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "SelectionDAGBuild.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | unsigned FastISel::getRegForValue(Value *V) { | 
|  | MVT::SimpleValueType VT = TLI.getValueType(V->getType()).getSimpleVT(); | 
|  |  | 
|  | // Ignore illegal types. We must do this before looking up the value | 
|  | // in ValueMap because Arguments are given virtual registers regardless | 
|  | // of whether FastISel can handle them. | 
|  | if (!TLI.isTypeLegal(VT)) { | 
|  | // Promote MVT::i1 to a legal type though, because it's common and easy. | 
|  | if (VT == MVT::i1) | 
|  | VT = TLI.getTypeToTransformTo(VT).getSimpleVT(); | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Look up the value to see if we already have a register for it. We | 
|  | // cache values defined by Instructions across blocks, and other values | 
|  | // only locally. This is because Instructions already have the SSA | 
|  | // def-dominatess-use requirement enforced. | 
|  | if (ValueMap.count(V)) | 
|  | return ValueMap[V]; | 
|  | unsigned Reg = LocalValueMap[V]; | 
|  | if (Reg != 0) | 
|  | return Reg; | 
|  |  | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { | 
|  | if (CI->getValue().getActiveBits() <= 64) | 
|  | Reg = FastEmit_i(VT, VT, ISD::Constant, CI->getZExtValue()); | 
|  | } else if (isa<AllocaInst>(V)) { | 
|  | Reg = TargetMaterializeAlloca(cast<AllocaInst>(V)); | 
|  | } else if (isa<ConstantPointerNull>(V)) { | 
|  | // Translate this as an integer zero so that it can be | 
|  | // local-CSE'd with actual integer zeros. | 
|  | Reg = getRegForValue(Constant::getNullValue(TD.getIntPtrType())); | 
|  | } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) { | 
|  | Reg = FastEmit_f(VT, VT, ISD::ConstantFP, CF); | 
|  |  | 
|  | if (!Reg) { | 
|  | const APFloat &Flt = CF->getValueAPF(); | 
|  | MVT IntVT = TLI.getPointerTy(); | 
|  |  | 
|  | uint64_t x[2]; | 
|  | uint32_t IntBitWidth = IntVT.getSizeInBits(); | 
|  | bool isExact; | 
|  | (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, | 
|  | APFloat::rmTowardZero, &isExact); | 
|  | if (isExact) { | 
|  | APInt IntVal(IntBitWidth, 2, x); | 
|  |  | 
|  | unsigned IntegerReg = getRegForValue(ConstantInt::get(IntVal)); | 
|  | if (IntegerReg != 0) | 
|  | Reg = FastEmit_r(IntVT.getSimpleVT(), VT, ISD::SINT_TO_FP, IntegerReg); | 
|  | } | 
|  | } | 
|  | } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { | 
|  | if (!SelectOperator(CE, CE->getOpcode())) return 0; | 
|  | Reg = LocalValueMap[CE]; | 
|  | } else if (isa<UndefValue>(V)) { | 
|  | Reg = createResultReg(TLI.getRegClassFor(VT)); | 
|  | BuildMI(MBB, TII.get(TargetInstrInfo::IMPLICIT_DEF), Reg); | 
|  | } | 
|  |  | 
|  | // If target-independent code couldn't handle the value, give target-specific | 
|  | // code a try. | 
|  | if (!Reg && isa<Constant>(V)) | 
|  | Reg = TargetMaterializeConstant(cast<Constant>(V)); | 
|  |  | 
|  | // Don't cache constant materializations in the general ValueMap. | 
|  | // To do so would require tracking what uses they dominate. | 
|  | if (Reg != 0) | 
|  | LocalValueMap[V] = Reg; | 
|  | return Reg; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::lookUpRegForValue(Value *V) { | 
|  | // Look up the value to see if we already have a register for it. We | 
|  | // cache values defined by Instructions across blocks, and other values | 
|  | // only locally. This is because Instructions already have the SSA | 
|  | // def-dominatess-use requirement enforced. | 
|  | if (ValueMap.count(V)) | 
|  | return ValueMap[V]; | 
|  | return LocalValueMap[V]; | 
|  | } | 
|  |  | 
|  | /// UpdateValueMap - Update the value map to include the new mapping for this | 
|  | /// instruction, or insert an extra copy to get the result in a previous | 
|  | /// determined register. | 
|  | /// NOTE: This is only necessary because we might select a block that uses | 
|  | /// a value before we select the block that defines the value.  It might be | 
|  | /// possible to fix this by selecting blocks in reverse postorder. | 
|  | void FastISel::UpdateValueMap(Value* I, unsigned Reg) { | 
|  | if (!isa<Instruction>(I)) { | 
|  | LocalValueMap[I] = Reg; | 
|  | return; | 
|  | } | 
|  | if (!ValueMap.count(I)) | 
|  | ValueMap[I] = Reg; | 
|  | else | 
|  | TII.copyRegToReg(*MBB, MBB->end(), ValueMap[I], | 
|  | Reg, MRI.getRegClass(Reg), MRI.getRegClass(Reg)); | 
|  | } | 
|  |  | 
|  | unsigned FastISel::getRegForGEPIndex(Value *Idx) { | 
|  | unsigned IdxN = getRegForValue(Idx); | 
|  | if (IdxN == 0) | 
|  | // Unhandled operand. Halt "fast" selection and bail. | 
|  | return 0; | 
|  |  | 
|  | // If the index is smaller or larger than intptr_t, truncate or extend it. | 
|  | MVT PtrVT = TLI.getPointerTy(); | 
|  | MVT IdxVT = MVT::getMVT(Idx->getType(), /*HandleUnknown=*/false); | 
|  | if (IdxVT.bitsLT(PtrVT)) | 
|  | IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(), | 
|  | ISD::SIGN_EXTEND, IdxN); | 
|  | else if (IdxVT.bitsGT(PtrVT)) | 
|  | IdxN = FastEmit_r(IdxVT.getSimpleVT(), PtrVT.getSimpleVT(), | 
|  | ISD::TRUNCATE, IdxN); | 
|  | return IdxN; | 
|  | } | 
|  |  | 
|  | /// SelectBinaryOp - Select and emit code for a binary operator instruction, | 
|  | /// which has an opcode which directly corresponds to the given ISD opcode. | 
|  | /// | 
|  | bool FastISel::SelectBinaryOp(User *I, ISD::NodeType ISDOpcode) { | 
|  | MVT VT = MVT::getMVT(I->getType(), /*HandleUnknown=*/true); | 
|  | if (VT == MVT::Other || !VT.isSimple()) | 
|  | // Unhandled type. Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | // We only handle legal types. For example, on x86-32 the instruction | 
|  | // selector contains all of the 64-bit instructions from x86-64, | 
|  | // under the assumption that i64 won't be used if the target doesn't | 
|  | // support it. | 
|  | if (!TLI.isTypeLegal(VT)) { | 
|  | // MVT::i1 is special. Allow AND, OR, or XOR because they | 
|  | // don't require additional zeroing, which makes them easy. | 
|  | if (VT == MVT::i1 && | 
|  | (ISDOpcode == ISD::AND || ISDOpcode == ISD::OR || | 
|  | ISDOpcode == ISD::XOR)) | 
|  | VT = TLI.getTypeToTransformTo(VT); | 
|  | else | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned Op0 = getRegForValue(I->getOperand(0)); | 
|  | if (Op0 == 0) | 
|  | // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | // Check if the second operand is a constant and handle it appropriately. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) { | 
|  | unsigned ResultReg = FastEmit_ri(VT.getSimpleVT(), VT.getSimpleVT(), | 
|  | ISDOpcode, Op0, CI->getZExtValue()); | 
|  | if (ResultReg != 0) { | 
|  | // We successfully emitted code for the given LLVM Instruction. | 
|  | UpdateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if the second operand is a constant float. | 
|  | if (ConstantFP *CF = dyn_cast<ConstantFP>(I->getOperand(1))) { | 
|  | unsigned ResultReg = FastEmit_rf(VT.getSimpleVT(), VT.getSimpleVT(), | 
|  | ISDOpcode, Op0, CF); | 
|  | if (ResultReg != 0) { | 
|  | // We successfully emitted code for the given LLVM Instruction. | 
|  | UpdateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | unsigned Op1 = getRegForValue(I->getOperand(1)); | 
|  | if (Op1 == 0) | 
|  | // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | // Now we have both operands in registers. Emit the instruction. | 
|  | unsigned ResultReg = FastEmit_rr(VT.getSimpleVT(), VT.getSimpleVT(), | 
|  | ISDOpcode, Op0, Op1); | 
|  | if (ResultReg == 0) | 
|  | // Target-specific code wasn't able to find a machine opcode for | 
|  | // the given ISD opcode and type. Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | // We successfully emitted code for the given LLVM Instruction. | 
|  | UpdateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FastISel::SelectGetElementPtr(User *I) { | 
|  | unsigned N = getRegForValue(I->getOperand(0)); | 
|  | if (N == 0) | 
|  | // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | const Type *Ty = I->getOperand(0)->getType(); | 
|  | MVT::SimpleValueType VT = TLI.getPointerTy().getSimpleVT(); | 
|  | for (GetElementPtrInst::op_iterator OI = I->op_begin()+1, E = I->op_end(); | 
|  | OI != E; ++OI) { | 
|  | Value *Idx = *OI; | 
|  | if (const StructType *StTy = dyn_cast<StructType>(Ty)) { | 
|  | unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); | 
|  | if (Field) { | 
|  | // N = N + Offset | 
|  | uint64_t Offs = TD.getStructLayout(StTy)->getElementOffset(Field); | 
|  | // FIXME: This can be optimized by combining the add with a | 
|  | // subsequent one. | 
|  | N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT); | 
|  | if (N == 0) | 
|  | // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  | } | 
|  | Ty = StTy->getElementType(Field); | 
|  | } else { | 
|  | Ty = cast<SequentialType>(Ty)->getElementType(); | 
|  |  | 
|  | // If this is a constant subscript, handle it quickly. | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { | 
|  | if (CI->getZExtValue() == 0) continue; | 
|  | uint64_t Offs = | 
|  | TD.getTypePaddedSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); | 
|  | N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT); | 
|  | if (N == 0) | 
|  | // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // N = N + Idx * ElementSize; | 
|  | uint64_t ElementSize = TD.getTypePaddedSize(Ty); | 
|  | unsigned IdxN = getRegForGEPIndex(Idx); | 
|  | if (IdxN == 0) | 
|  | // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | if (ElementSize != 1) { | 
|  | IdxN = FastEmit_ri_(VT, ISD::MUL, IdxN, ElementSize, VT); | 
|  | if (IdxN == 0) | 
|  | // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  | } | 
|  | N = FastEmit_rr(VT, VT, ISD::ADD, N, IdxN); | 
|  | if (N == 0) | 
|  | // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We successfully emitted code for the given LLVM Instruction. | 
|  | UpdateValueMap(I, N); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FastISel::SelectCall(User *I) { | 
|  | Function *F = cast<CallInst>(I)->getCalledFunction(); | 
|  | if (!F) return false; | 
|  |  | 
|  | unsigned IID = F->getIntrinsicID(); | 
|  | switch (IID) { | 
|  | default: break; | 
|  | case Intrinsic::dbg_stoppoint: { | 
|  | DbgStopPointInst *SPI = cast<DbgStopPointInst>(I); | 
|  | if (DW && SPI->getContext() && DW->ValidDebugInfo(SPI->getContext())) { | 
|  | DICompileUnit CU(cast<GlobalVariable>(SPI->getContext())); | 
|  | unsigned SrcFile = DW->RecordSource(CU.getDirectory(), | 
|  | CU.getFilename()); | 
|  | unsigned Line = SPI->getLine(); | 
|  | unsigned Col = SPI->getColumn(); | 
|  | unsigned ID = DW->RecordSourceLine(Line, Col, SrcFile); | 
|  | const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL); | 
|  | BuildMI(MBB, II).addImm(ID); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::dbg_region_start: { | 
|  | DbgRegionStartInst *RSI = cast<DbgRegionStartInst>(I); | 
|  | if (DW && RSI->getContext() && DW->ValidDebugInfo(RSI->getContext())) { | 
|  | unsigned ID = | 
|  | DW->RecordRegionStart(cast<GlobalVariable>(RSI->getContext())); | 
|  | const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL); | 
|  | BuildMI(MBB, II).addImm(ID); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::dbg_region_end: { | 
|  | DbgRegionEndInst *REI = cast<DbgRegionEndInst>(I); | 
|  | if (DW && REI->getContext() && DW->ValidDebugInfo(REI->getContext())) { | 
|  | unsigned ID = | 
|  | DW->RecordRegionEnd(cast<GlobalVariable>(REI->getContext())); | 
|  | const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL); | 
|  | BuildMI(MBB, II).addImm(ID); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::dbg_func_start: { | 
|  | if (!DW) return true; | 
|  | DbgFuncStartInst *FSI = cast<DbgFuncStartInst>(I); | 
|  | Value *SP = FSI->getSubprogram(); | 
|  | if (SP && DW->ValidDebugInfo(SP)) { | 
|  | // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is | 
|  | // what (most?) gdb expects. | 
|  | DISubprogram Subprogram(cast<GlobalVariable>(SP)); | 
|  | DICompileUnit CompileUnit = Subprogram.getCompileUnit(); | 
|  | unsigned SrcFile = DW->RecordSource(CompileUnit.getDirectory(), | 
|  | CompileUnit.getFilename()); | 
|  | // Record the source line but does not create a label for the normal | 
|  | // function start. It will be emitted at asm emission time. However, | 
|  | // create a label if this is a beginning of inlined function. | 
|  | unsigned LabelID = | 
|  | DW->RecordSourceLine(Subprogram.getLineNumber(), 0, SrcFile); | 
|  | if (DW->getRecordSourceLineCount() != 1) { | 
|  | const TargetInstrDesc &II = TII.get(TargetInstrInfo::DBG_LABEL); | 
|  | BuildMI(MBB, II).addImm(LabelID); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::dbg_declare: { | 
|  | DbgDeclareInst *DI = cast<DbgDeclareInst>(I); | 
|  | Value *Variable = DI->getVariable(); | 
|  | if (DW && Variable && DW->ValidDebugInfo(Variable)) { | 
|  | // Determine the address of the declared object. | 
|  | Value *Address = DI->getAddress(); | 
|  | if (BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) | 
|  | Address = BCI->getOperand(0); | 
|  | AllocaInst *AI = dyn_cast<AllocaInst>(Address); | 
|  | // Don't handle byval struct arguments, for example. | 
|  | if (!AI) break; | 
|  | DenseMap<const AllocaInst*, int>::iterator SI = | 
|  | StaticAllocaMap.find(AI); | 
|  | assert(SI != StaticAllocaMap.end() && "Invalid dbg.declare!"); | 
|  | int FI = SI->second; | 
|  |  | 
|  | // Determine the debug globalvariable. | 
|  | GlobalValue *GV = cast<GlobalVariable>(Variable); | 
|  |  | 
|  | // Build the DECLARE instruction. | 
|  | const TargetInstrDesc &II = TII.get(TargetInstrInfo::DECLARE); | 
|  | BuildMI(MBB, II).addFrameIndex(FI).addGlobalAddress(GV); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | case Intrinsic::eh_exception: { | 
|  | MVT VT = TLI.getValueType(I->getType()); | 
|  | switch (TLI.getOperationAction(ISD::EXCEPTIONADDR, VT)) { | 
|  | default: break; | 
|  | case TargetLowering::Expand: { | 
|  | if (!MBB->isLandingPad()) { | 
|  | // FIXME: Mark exception register as live in.  Hack for PR1508. | 
|  | unsigned Reg = TLI.getExceptionAddressRegister(); | 
|  | if (Reg) MBB->addLiveIn(Reg); | 
|  | } | 
|  | unsigned Reg = TLI.getExceptionAddressRegister(); | 
|  | const TargetRegisterClass *RC = TLI.getRegClassFor(VT); | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, | 
|  | Reg, RC, RC); | 
|  | assert(InsertedCopy && "Can't copy address registers!"); | 
|  | InsertedCopy = InsertedCopy; | 
|  | UpdateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case Intrinsic::eh_selector_i32: | 
|  | case Intrinsic::eh_selector_i64: { | 
|  | MVT VT = TLI.getValueType(I->getType()); | 
|  | switch (TLI.getOperationAction(ISD::EHSELECTION, VT)) { | 
|  | default: break; | 
|  | case TargetLowering::Expand: { | 
|  | MVT VT = (IID == Intrinsic::eh_selector_i32 ? | 
|  | MVT::i32 : MVT::i64); | 
|  |  | 
|  | if (MMI) { | 
|  | if (MBB->isLandingPad()) | 
|  | AddCatchInfo(*cast<CallInst>(I), MMI, MBB); | 
|  | else { | 
|  | #ifndef NDEBUG | 
|  | CatchInfoLost.insert(cast<CallInst>(I)); | 
|  | #endif | 
|  | // FIXME: Mark exception selector register as live in.  Hack for PR1508. | 
|  | unsigned Reg = TLI.getExceptionSelectorRegister(); | 
|  | if (Reg) MBB->addLiveIn(Reg); | 
|  | } | 
|  |  | 
|  | unsigned Reg = TLI.getExceptionSelectorRegister(); | 
|  | const TargetRegisterClass *RC = TLI.getRegClassFor(VT); | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, | 
|  | Reg, RC, RC); | 
|  | assert(InsertedCopy && "Can't copy address registers!"); | 
|  | InsertedCopy = InsertedCopy; | 
|  | UpdateValueMap(I, ResultReg); | 
|  | } else { | 
|  | unsigned ResultReg = | 
|  | getRegForValue(Constant::getNullValue(I->getType())); | 
|  | UpdateValueMap(I, ResultReg); | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool FastISel::SelectCast(User *I, ISD::NodeType Opcode) { | 
|  | MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); | 
|  | MVT DstVT = TLI.getValueType(I->getType()); | 
|  |  | 
|  | if (SrcVT == MVT::Other || !SrcVT.isSimple() || | 
|  | DstVT == MVT::Other || !DstVT.isSimple() || | 
|  | !TLI.isTypeLegal(DstVT)) | 
|  | // Unhandled type. Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | // Check if the source operand is legal. Or as a special case, | 
|  | // it may be i1 if we're doing zero-extension because that's | 
|  | // trivially easy and somewhat common. | 
|  | if (!TLI.isTypeLegal(SrcVT)) { | 
|  | if (SrcVT == MVT::i1 && Opcode == ISD::ZERO_EXTEND) | 
|  | SrcVT = TLI.getTypeToTransformTo(SrcVT); | 
|  | else | 
|  | // Unhandled type. Halt "fast" selection and bail. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | unsigned InputReg = getRegForValue(I->getOperand(0)); | 
|  | if (!InputReg) | 
|  | // Unhandled operand.  Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | unsigned ResultReg = FastEmit_r(SrcVT.getSimpleVT(), | 
|  | DstVT.getSimpleVT(), | 
|  | Opcode, | 
|  | InputReg); | 
|  | if (!ResultReg) | 
|  | return false; | 
|  |  | 
|  | UpdateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool FastISel::SelectBitCast(User *I) { | 
|  | // If the bitcast doesn't change the type, just use the operand value. | 
|  | if (I->getType() == I->getOperand(0)->getType()) { | 
|  | unsigned Reg = getRegForValue(I->getOperand(0)); | 
|  | if (Reg == 0) | 
|  | return false; | 
|  | UpdateValueMap(I, Reg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Bitcasts of other values become reg-reg copies or BIT_CONVERT operators. | 
|  | MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); | 
|  | MVT DstVT = TLI.getValueType(I->getType()); | 
|  |  | 
|  | if (SrcVT == MVT::Other || !SrcVT.isSimple() || | 
|  | DstVT == MVT::Other || !DstVT.isSimple() || | 
|  | !TLI.isTypeLegal(SrcVT) || !TLI.isTypeLegal(DstVT)) | 
|  | // Unhandled type. Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | unsigned Op0 = getRegForValue(I->getOperand(0)); | 
|  | if (Op0 == 0) | 
|  | // Unhandled operand. Halt "fast" selection and bail. | 
|  | return false; | 
|  |  | 
|  | // First, try to perform the bitcast by inserting a reg-reg copy. | 
|  | unsigned ResultReg = 0; | 
|  | if (SrcVT.getSimpleVT() == DstVT.getSimpleVT()) { | 
|  | TargetRegisterClass* SrcClass = TLI.getRegClassFor(SrcVT); | 
|  | TargetRegisterClass* DstClass = TLI.getRegClassFor(DstVT); | 
|  | ResultReg = createResultReg(DstClass); | 
|  |  | 
|  | bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, | 
|  | Op0, DstClass, SrcClass); | 
|  | if (!InsertedCopy) | 
|  | ResultReg = 0; | 
|  | } | 
|  |  | 
|  | // If the reg-reg copy failed, select a BIT_CONVERT opcode. | 
|  | if (!ResultReg) | 
|  | ResultReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), | 
|  | ISD::BIT_CONVERT, Op0); | 
|  |  | 
|  | if (!ResultReg) | 
|  | return false; | 
|  |  | 
|  | UpdateValueMap(I, ResultReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool | 
|  | FastISel::SelectInstruction(Instruction *I) { | 
|  | return SelectOperator(I, I->getOpcode()); | 
|  | } | 
|  |  | 
|  | /// FastEmitBranch - Emit an unconditional branch to the given block, | 
|  | /// unless it is the immediate (fall-through) successor, and update | 
|  | /// the CFG. | 
|  | void | 
|  | FastISel::FastEmitBranch(MachineBasicBlock *MSucc) { | 
|  | MachineFunction::iterator NextMBB = | 
|  | next(MachineFunction::iterator(MBB)); | 
|  |  | 
|  | if (MBB->isLayoutSuccessor(MSucc)) { | 
|  | // The unconditional fall-through case, which needs no instructions. | 
|  | } else { | 
|  | // The unconditional branch case. | 
|  | TII.InsertBranch(*MBB, MSucc, NULL, SmallVector<MachineOperand, 0>()); | 
|  | } | 
|  | MBB->addSuccessor(MSucc); | 
|  | } | 
|  |  | 
|  | bool | 
|  | FastISel::SelectOperator(User *I, unsigned Opcode) { | 
|  | switch (Opcode) { | 
|  | case Instruction::Add: { | 
|  | ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FADD : ISD::ADD; | 
|  | return SelectBinaryOp(I, Opc); | 
|  | } | 
|  | case Instruction::Sub: { | 
|  | ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FSUB : ISD::SUB; | 
|  | return SelectBinaryOp(I, Opc); | 
|  | } | 
|  | case Instruction::Mul: { | 
|  | ISD::NodeType Opc = I->getType()->isFPOrFPVector() ? ISD::FMUL : ISD::MUL; | 
|  | return SelectBinaryOp(I, Opc); | 
|  | } | 
|  | case Instruction::SDiv: | 
|  | return SelectBinaryOp(I, ISD::SDIV); | 
|  | case Instruction::UDiv: | 
|  | return SelectBinaryOp(I, ISD::UDIV); | 
|  | case Instruction::FDiv: | 
|  | return SelectBinaryOp(I, ISD::FDIV); | 
|  | case Instruction::SRem: | 
|  | return SelectBinaryOp(I, ISD::SREM); | 
|  | case Instruction::URem: | 
|  | return SelectBinaryOp(I, ISD::UREM); | 
|  | case Instruction::FRem: | 
|  | return SelectBinaryOp(I, ISD::FREM); | 
|  | case Instruction::Shl: | 
|  | return SelectBinaryOp(I, ISD::SHL); | 
|  | case Instruction::LShr: | 
|  | return SelectBinaryOp(I, ISD::SRL); | 
|  | case Instruction::AShr: | 
|  | return SelectBinaryOp(I, ISD::SRA); | 
|  | case Instruction::And: | 
|  | return SelectBinaryOp(I, ISD::AND); | 
|  | case Instruction::Or: | 
|  | return SelectBinaryOp(I, ISD::OR); | 
|  | case Instruction::Xor: | 
|  | return SelectBinaryOp(I, ISD::XOR); | 
|  |  | 
|  | case Instruction::GetElementPtr: | 
|  | return SelectGetElementPtr(I); | 
|  |  | 
|  | case Instruction::Br: { | 
|  | BranchInst *BI = cast<BranchInst>(I); | 
|  |  | 
|  | if (BI->isUnconditional()) { | 
|  | BasicBlock *LLVMSucc = BI->getSuccessor(0); | 
|  | MachineBasicBlock *MSucc = MBBMap[LLVMSucc]; | 
|  | FastEmitBranch(MSucc); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Conditional branches are not handed yet. | 
|  | // Halt "fast" selection and bail. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | case Instruction::Unreachable: | 
|  | // Nothing to emit. | 
|  | return true; | 
|  |  | 
|  | case Instruction::PHI: | 
|  | // PHI nodes are already emitted. | 
|  | return true; | 
|  |  | 
|  | case Instruction::Alloca: | 
|  | // FunctionLowering has the static-sized case covered. | 
|  | if (StaticAllocaMap.count(cast<AllocaInst>(I))) | 
|  | return true; | 
|  |  | 
|  | // Dynamic-sized alloca is not handled yet. | 
|  | return false; | 
|  |  | 
|  | case Instruction::Call: | 
|  | return SelectCall(I); | 
|  |  | 
|  | case Instruction::BitCast: | 
|  | return SelectBitCast(I); | 
|  |  | 
|  | case Instruction::FPToSI: | 
|  | return SelectCast(I, ISD::FP_TO_SINT); | 
|  | case Instruction::ZExt: | 
|  | return SelectCast(I, ISD::ZERO_EXTEND); | 
|  | case Instruction::SExt: | 
|  | return SelectCast(I, ISD::SIGN_EXTEND); | 
|  | case Instruction::Trunc: | 
|  | return SelectCast(I, ISD::TRUNCATE); | 
|  | case Instruction::SIToFP: | 
|  | return SelectCast(I, ISD::SINT_TO_FP); | 
|  |  | 
|  | case Instruction::IntToPtr: // Deliberate fall-through. | 
|  | case Instruction::PtrToInt: { | 
|  | MVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); | 
|  | MVT DstVT = TLI.getValueType(I->getType()); | 
|  | if (DstVT.bitsGT(SrcVT)) | 
|  | return SelectCast(I, ISD::ZERO_EXTEND); | 
|  | if (DstVT.bitsLT(SrcVT)) | 
|  | return SelectCast(I, ISD::TRUNCATE); | 
|  | unsigned Reg = getRegForValue(I->getOperand(0)); | 
|  | if (Reg == 0) return false; | 
|  | UpdateValueMap(I, Reg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | default: | 
|  | // Unhandled instruction. Halt "fast" selection and bail. | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | FastISel::FastISel(MachineFunction &mf, | 
|  | MachineModuleInfo *mmi, | 
|  | DwarfWriter *dw, | 
|  | DenseMap<const Value *, unsigned> &vm, | 
|  | DenseMap<const BasicBlock *, MachineBasicBlock *> &bm, | 
|  | DenseMap<const AllocaInst *, int> &am | 
|  | #ifndef NDEBUG | 
|  | , SmallSet<Instruction*, 8> &cil | 
|  | #endif | 
|  | ) | 
|  | : MBB(0), | 
|  | ValueMap(vm), | 
|  | MBBMap(bm), | 
|  | StaticAllocaMap(am), | 
|  | #ifndef NDEBUG | 
|  | CatchInfoLost(cil), | 
|  | #endif | 
|  | MF(mf), | 
|  | MMI(mmi), | 
|  | DW(dw), | 
|  | MRI(MF.getRegInfo()), | 
|  | MFI(*MF.getFrameInfo()), | 
|  | MCP(*MF.getConstantPool()), | 
|  | TM(MF.getTarget()), | 
|  | TD(*TM.getTargetData()), | 
|  | TII(*TM.getInstrInfo()), | 
|  | TLI(*TM.getTargetLowering()) { | 
|  | } | 
|  |  | 
|  | FastISel::~FastISel() {} | 
|  |  | 
|  | unsigned FastISel::FastEmit_(MVT::SimpleValueType, MVT::SimpleValueType, | 
|  | ISD::NodeType) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::FastEmit_r(MVT::SimpleValueType, MVT::SimpleValueType, | 
|  | ISD::NodeType, unsigned /*Op0*/) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::FastEmit_rr(MVT::SimpleValueType, MVT::SimpleValueType, | 
|  | ISD::NodeType, unsigned /*Op0*/, | 
|  | unsigned /*Op0*/) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::FastEmit_i(MVT::SimpleValueType, MVT::SimpleValueType, | 
|  | ISD::NodeType, uint64_t /*Imm*/) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::FastEmit_f(MVT::SimpleValueType, MVT::SimpleValueType, | 
|  | ISD::NodeType, ConstantFP * /*FPImm*/) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::FastEmit_ri(MVT::SimpleValueType, MVT::SimpleValueType, | 
|  | ISD::NodeType, unsigned /*Op0*/, | 
|  | uint64_t /*Imm*/) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::FastEmit_rf(MVT::SimpleValueType, MVT::SimpleValueType, | 
|  | ISD::NodeType, unsigned /*Op0*/, | 
|  | ConstantFP * /*FPImm*/) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::FastEmit_rri(MVT::SimpleValueType, MVT::SimpleValueType, | 
|  | ISD::NodeType, | 
|  | unsigned /*Op0*/, unsigned /*Op1*/, | 
|  | uint64_t /*Imm*/) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// FastEmit_ri_ - This method is a wrapper of FastEmit_ri. It first tries | 
|  | /// to emit an instruction with an immediate operand using FastEmit_ri. | 
|  | /// If that fails, it materializes the immediate into a register and try | 
|  | /// FastEmit_rr instead. | 
|  | unsigned FastISel::FastEmit_ri_(MVT::SimpleValueType VT, ISD::NodeType Opcode, | 
|  | unsigned Op0, uint64_t Imm, | 
|  | MVT::SimpleValueType ImmType) { | 
|  | // First check if immediate type is legal. If not, we can't use the ri form. | 
|  | unsigned ResultReg = FastEmit_ri(VT, VT, Opcode, Op0, Imm); | 
|  | if (ResultReg != 0) | 
|  | return ResultReg; | 
|  | unsigned MaterialReg = FastEmit_i(ImmType, ImmType, ISD::Constant, Imm); | 
|  | if (MaterialReg == 0) | 
|  | return 0; | 
|  | return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg); | 
|  | } | 
|  |  | 
|  | /// FastEmit_rf_ - This method is a wrapper of FastEmit_ri. It first tries | 
|  | /// to emit an instruction with a floating-point immediate operand using | 
|  | /// FastEmit_rf. If that fails, it materializes the immediate into a register | 
|  | /// and try FastEmit_rr instead. | 
|  | unsigned FastISel::FastEmit_rf_(MVT::SimpleValueType VT, ISD::NodeType Opcode, | 
|  | unsigned Op0, ConstantFP *FPImm, | 
|  | MVT::SimpleValueType ImmType) { | 
|  | // First check if immediate type is legal. If not, we can't use the rf form. | 
|  | unsigned ResultReg = FastEmit_rf(VT, VT, Opcode, Op0, FPImm); | 
|  | if (ResultReg != 0) | 
|  | return ResultReg; | 
|  |  | 
|  | // Materialize the constant in a register. | 
|  | unsigned MaterialReg = FastEmit_f(ImmType, ImmType, ISD::ConstantFP, FPImm); | 
|  | if (MaterialReg == 0) { | 
|  | // If the target doesn't have a way to directly enter a floating-point | 
|  | // value into a register, use an alternate approach. | 
|  | // TODO: The current approach only supports floating-point constants | 
|  | // that can be constructed by conversion from integer values. This should | 
|  | // be replaced by code that creates a load from a constant-pool entry, | 
|  | // which will require some target-specific work. | 
|  | const APFloat &Flt = FPImm->getValueAPF(); | 
|  | MVT IntVT = TLI.getPointerTy(); | 
|  |  | 
|  | uint64_t x[2]; | 
|  | uint32_t IntBitWidth = IntVT.getSizeInBits(); | 
|  | bool isExact; | 
|  | (void) Flt.convertToInteger(x, IntBitWidth, /*isSigned=*/true, | 
|  | APFloat::rmTowardZero, &isExact); | 
|  | if (!isExact) | 
|  | return 0; | 
|  | APInt IntVal(IntBitWidth, 2, x); | 
|  |  | 
|  | unsigned IntegerReg = FastEmit_i(IntVT.getSimpleVT(), IntVT.getSimpleVT(), | 
|  | ISD::Constant, IntVal.getZExtValue()); | 
|  | if (IntegerReg == 0) | 
|  | return 0; | 
|  | MaterialReg = FastEmit_r(IntVT.getSimpleVT(), VT, | 
|  | ISD::SINT_TO_FP, IntegerReg); | 
|  | if (MaterialReg == 0) | 
|  | return 0; | 
|  | } | 
|  | return FastEmit_rr(VT, VT, Opcode, Op0, MaterialReg); | 
|  | } | 
|  |  | 
|  | unsigned FastISel::createResultReg(const TargetRegisterClass* RC) { | 
|  | return MRI.createVirtualRegister(RC); | 
|  | } | 
|  |  | 
|  | unsigned FastISel::FastEmitInst_(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass* RC) { | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | const TargetInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | BuildMI(MBB, II, ResultReg); | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::FastEmitInst_r(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, | 
|  | unsigned Op0) { | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | const TargetInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) | 
|  | BuildMI(MBB, II, ResultReg).addReg(Op0); | 
|  | else { | 
|  | BuildMI(MBB, II).addReg(Op0); | 
|  | bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, | 
|  | II.ImplicitDefs[0], RC, RC); | 
|  | if (!InsertedCopy) | 
|  | ResultReg = 0; | 
|  | } | 
|  |  | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::FastEmitInst_rr(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, | 
|  | unsigned Op0, unsigned Op1) { | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | const TargetInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) | 
|  | BuildMI(MBB, II, ResultReg).addReg(Op0).addReg(Op1); | 
|  | else { | 
|  | BuildMI(MBB, II).addReg(Op0).addReg(Op1); | 
|  | bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, | 
|  | II.ImplicitDefs[0], RC, RC); | 
|  | if (!InsertedCopy) | 
|  | ResultReg = 0; | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::FastEmitInst_ri(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, | 
|  | unsigned Op0, uint64_t Imm) { | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | const TargetInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) | 
|  | BuildMI(MBB, II, ResultReg).addReg(Op0).addImm(Imm); | 
|  | else { | 
|  | BuildMI(MBB, II).addReg(Op0).addImm(Imm); | 
|  | bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, | 
|  | II.ImplicitDefs[0], RC, RC); | 
|  | if (!InsertedCopy) | 
|  | ResultReg = 0; | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::FastEmitInst_rf(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, | 
|  | unsigned Op0, ConstantFP *FPImm) { | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | const TargetInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) | 
|  | BuildMI(MBB, II, ResultReg).addReg(Op0).addFPImm(FPImm); | 
|  | else { | 
|  | BuildMI(MBB, II).addReg(Op0).addFPImm(FPImm); | 
|  | bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, | 
|  | II.ImplicitDefs[0], RC, RC); | 
|  | if (!InsertedCopy) | 
|  | ResultReg = 0; | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::FastEmitInst_rri(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, | 
|  | unsigned Op0, unsigned Op1, uint64_t Imm) { | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | const TargetInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) | 
|  | BuildMI(MBB, II, ResultReg).addReg(Op0).addReg(Op1).addImm(Imm); | 
|  | else { | 
|  | BuildMI(MBB, II).addReg(Op0).addReg(Op1).addImm(Imm); | 
|  | bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, | 
|  | II.ImplicitDefs[0], RC, RC); | 
|  | if (!InsertedCopy) | 
|  | ResultReg = 0; | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::FastEmitInst_i(unsigned MachineInstOpcode, | 
|  | const TargetRegisterClass *RC, | 
|  | uint64_t Imm) { | 
|  | unsigned ResultReg = createResultReg(RC); | 
|  | const TargetInstrDesc &II = TII.get(MachineInstOpcode); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) | 
|  | BuildMI(MBB, II, ResultReg).addImm(Imm); | 
|  | else { | 
|  | BuildMI(MBB, II).addImm(Imm); | 
|  | bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, | 
|  | II.ImplicitDefs[0], RC, RC); | 
|  | if (!InsertedCopy) | 
|  | ResultReg = 0; | 
|  | } | 
|  | return ResultReg; | 
|  | } | 
|  |  | 
|  | unsigned FastISel::FastEmitInst_extractsubreg(unsigned Op0, uint32_t Idx) { | 
|  | const TargetRegisterClass* RC = MRI.getRegClass(Op0); | 
|  | const TargetRegisterClass* SRC = *(RC->subregclasses_begin()+Idx-1); | 
|  |  | 
|  | unsigned ResultReg = createResultReg(SRC); | 
|  | const TargetInstrDesc &II = TII.get(TargetInstrInfo::EXTRACT_SUBREG); | 
|  |  | 
|  | if (II.getNumDefs() >= 1) | 
|  | BuildMI(MBB, II, ResultReg).addReg(Op0).addImm(Idx); | 
|  | else { | 
|  | BuildMI(MBB, II).addReg(Op0).addImm(Idx); | 
|  | bool InsertedCopy = TII.copyRegToReg(*MBB, MBB->end(), ResultReg, | 
|  | II.ImplicitDefs[0], RC, RC); | 
|  | if (!InsertedCopy) | 
|  | ResultReg = 0; | 
|  | } | 
|  | return ResultReg; | 
|  | } |