|  | //===- StraightLineStrengthReduce.cpp - -----------------------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements straight-line strength reduction (SLSR). Unlike loop | 
|  | // strength reduction, this algorithm is designed to reduce arithmetic | 
|  | // redundancy in straight-line code instead of loops. It has proven to be | 
|  | // effective in simplifying arithmetic statements derived from an unrolled loop. | 
|  | // It can also simplify the logic of SeparateConstOffsetFromGEP. | 
|  | // | 
|  | // There are many optimizations we can perform in the domain of SLSR. This file | 
|  | // for now contains only an initial step. Specifically, we look for strength | 
|  | // reduction candidates in the following forms: | 
|  | // | 
|  | // Form 1: B + i * S | 
|  | // Form 2: (B + i) * S | 
|  | // Form 3: &B[i * S] | 
|  | // | 
|  | // where S is an integer variable, and i is a constant integer. If we found two | 
|  | // candidates S1 and S2 in the same form and S1 dominates S2, we may rewrite S2 | 
|  | // in a simpler way with respect to S1. For example, | 
|  | // | 
|  | // S1: X = B + i * S | 
|  | // S2: Y = B + i' * S   => X + (i' - i) * S | 
|  | // | 
|  | // S1: X = (B + i) * S | 
|  | // S2: Y = (B + i') * S => X + (i' - i) * S | 
|  | // | 
|  | // S1: X = &B[i * S] | 
|  | // S2: Y = &B[i' * S]   => &X[(i' - i) * S] | 
|  | // | 
|  | // Note: (i' - i) * S is folded to the extent possible. | 
|  | // | 
|  | // This rewriting is in general a good idea. The code patterns we focus on | 
|  | // usually come from loop unrolling, so (i' - i) * S is likely the same | 
|  | // across iterations and can be reused. When that happens, the optimized form | 
|  | // takes only one add starting from the second iteration. | 
|  | // | 
|  | // When such rewriting is possible, we call S1 a "basis" of S2. When S2 has | 
|  | // multiple bases, we choose to rewrite S2 with respect to its "immediate" | 
|  | // basis, the basis that is the closest ancestor in the dominator tree. | 
|  | // | 
|  | // TODO: | 
|  | // | 
|  | // - Floating point arithmetics when fast math is enabled. | 
|  | // | 
|  | // - SLSR may decrease ILP at the architecture level. Targets that are very | 
|  | //   sensitive to ILP may want to disable it. Having SLSR to consider ILP is | 
|  | //   left as future work. | 
|  | // | 
|  | // - When (i' - i) is constant but i and i' are not, we could still perform | 
|  | //   SLSR. | 
|  |  | 
|  | #include "llvm/ADT/APInt.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Analysis/ScalarEvolution.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <limits> | 
|  | #include <list> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  |  | 
|  | static const unsigned UnknownAddressSpace = | 
|  | std::numeric_limits<unsigned>::max(); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class StraightLineStrengthReduce : public FunctionPass { | 
|  | public: | 
|  | // SLSR candidate. Such a candidate must be in one of the forms described in | 
|  | // the header comments. | 
|  | struct Candidate { | 
|  | enum Kind { | 
|  | Invalid, // reserved for the default constructor | 
|  | Add,     // B + i * S | 
|  | Mul,     // (B + i) * S | 
|  | GEP,     // &B[..][i * S][..] | 
|  | }; | 
|  |  | 
|  | Candidate() = default; | 
|  | Candidate(Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, | 
|  | Instruction *I) | 
|  | : CandidateKind(CT), Base(B), Index(Idx), Stride(S), Ins(I) {} | 
|  |  | 
|  | Kind CandidateKind = Invalid; | 
|  |  | 
|  | const SCEV *Base = nullptr; | 
|  |  | 
|  | // Note that Index and Stride of a GEP candidate do not necessarily have the | 
|  | // same integer type. In that case, during rewriting, Stride will be | 
|  | // sign-extended or truncated to Index's type. | 
|  | ConstantInt *Index = nullptr; | 
|  |  | 
|  | Value *Stride = nullptr; | 
|  |  | 
|  | // The instruction this candidate corresponds to. It helps us to rewrite a | 
|  | // candidate with respect to its immediate basis. Note that one instruction | 
|  | // can correspond to multiple candidates depending on how you associate the | 
|  | // expression. For instance, | 
|  | // | 
|  | // (a + 1) * (b + 2) | 
|  | // | 
|  | // can be treated as | 
|  | // | 
|  | // <Base: a, Index: 1, Stride: b + 2> | 
|  | // | 
|  | // or | 
|  | // | 
|  | // <Base: b, Index: 2, Stride: a + 1> | 
|  | Instruction *Ins = nullptr; | 
|  |  | 
|  | // Points to the immediate basis of this candidate, or nullptr if we cannot | 
|  | // find any basis for this candidate. | 
|  | Candidate *Basis = nullptr; | 
|  | }; | 
|  |  | 
|  | static char ID; | 
|  |  | 
|  | StraightLineStrengthReduce() : FunctionPass(ID) { | 
|  | initializeStraightLineStrengthReducePass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | AU.addRequired<ScalarEvolutionWrapperPass>(); | 
|  | AU.addRequired<TargetTransformInfoWrapperPass>(); | 
|  | // We do not modify the shape of the CFG. | 
|  | AU.setPreservesCFG(); | 
|  | } | 
|  |  | 
|  | bool doInitialization(Module &M) override { | 
|  | DL = &M.getDataLayout(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override; | 
|  |  | 
|  | private: | 
|  | // Returns true if Basis is a basis for C, i.e., Basis dominates C and they | 
|  | // share the same base and stride. | 
|  | bool isBasisFor(const Candidate &Basis, const Candidate &C); | 
|  |  | 
|  | // Returns whether the candidate can be folded into an addressing mode. | 
|  | bool isFoldable(const Candidate &C, TargetTransformInfo *TTI, | 
|  | const DataLayout *DL); | 
|  |  | 
|  | // Returns true if C is already in a simplest form and not worth being | 
|  | // rewritten. | 
|  | bool isSimplestForm(const Candidate &C); | 
|  |  | 
|  | // Checks whether I is in a candidate form. If so, adds all the matching forms | 
|  | // to Candidates, and tries to find the immediate basis for each of them. | 
|  | void allocateCandidatesAndFindBasis(Instruction *I); | 
|  |  | 
|  | // Allocate candidates and find bases for Add instructions. | 
|  | void allocateCandidatesAndFindBasisForAdd(Instruction *I); | 
|  |  | 
|  | // Given I = LHS + RHS, factors RHS into i * S and makes (LHS + i * S) a | 
|  | // candidate. | 
|  | void allocateCandidatesAndFindBasisForAdd(Value *LHS, Value *RHS, | 
|  | Instruction *I); | 
|  | // Allocate candidates and find bases for Mul instructions. | 
|  | void allocateCandidatesAndFindBasisForMul(Instruction *I); | 
|  |  | 
|  | // Splits LHS into Base + Index and, if succeeds, calls | 
|  | // allocateCandidatesAndFindBasis. | 
|  | void allocateCandidatesAndFindBasisForMul(Value *LHS, Value *RHS, | 
|  | Instruction *I); | 
|  |  | 
|  | // Allocate candidates and find bases for GetElementPtr instructions. | 
|  | void allocateCandidatesAndFindBasisForGEP(GetElementPtrInst *GEP); | 
|  |  | 
|  | // A helper function that scales Idx with ElementSize before invoking | 
|  | // allocateCandidatesAndFindBasis. | 
|  | void allocateCandidatesAndFindBasisForGEP(const SCEV *B, ConstantInt *Idx, | 
|  | Value *S, uint64_t ElementSize, | 
|  | Instruction *I); | 
|  |  | 
|  | // Adds the given form <CT, B, Idx, S> to Candidates, and finds its immediate | 
|  | // basis. | 
|  | void allocateCandidatesAndFindBasis(Candidate::Kind CT, const SCEV *B, | 
|  | ConstantInt *Idx, Value *S, | 
|  | Instruction *I); | 
|  |  | 
|  | // Rewrites candidate C with respect to Basis. | 
|  | void rewriteCandidateWithBasis(const Candidate &C, const Candidate &Basis); | 
|  |  | 
|  | // A helper function that factors ArrayIdx to a product of a stride and a | 
|  | // constant index, and invokes allocateCandidatesAndFindBasis with the | 
|  | // factorings. | 
|  | void factorArrayIndex(Value *ArrayIdx, const SCEV *Base, uint64_t ElementSize, | 
|  | GetElementPtrInst *GEP); | 
|  |  | 
|  | // Emit code that computes the "bump" from Basis to C. If the candidate is a | 
|  | // GEP and the bump is not divisible by the element size of the GEP, this | 
|  | // function sets the BumpWithUglyGEP flag to notify its caller to bump the | 
|  | // basis using an ugly GEP. | 
|  | static Value *emitBump(const Candidate &Basis, const Candidate &C, | 
|  | IRBuilder<> &Builder, const DataLayout *DL, | 
|  | bool &BumpWithUglyGEP); | 
|  |  | 
|  | const DataLayout *DL = nullptr; | 
|  | DominatorTree *DT = nullptr; | 
|  | ScalarEvolution *SE; | 
|  | TargetTransformInfo *TTI = nullptr; | 
|  | std::list<Candidate> Candidates; | 
|  |  | 
|  | // Temporarily holds all instructions that are unlinked (but not deleted) by | 
|  | // rewriteCandidateWithBasis. These instructions will be actually removed | 
|  | // after all rewriting finishes. | 
|  | std::vector<Instruction *> UnlinkedInstructions; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char StraightLineStrengthReduce::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(StraightLineStrengthReduce, "slsr", | 
|  | "Straight line strength reduction", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(StraightLineStrengthReduce, "slsr", | 
|  | "Straight line strength reduction", false, false) | 
|  |  | 
|  | FunctionPass *llvm::createStraightLineStrengthReducePass() { | 
|  | return new StraightLineStrengthReduce(); | 
|  | } | 
|  |  | 
|  | bool StraightLineStrengthReduce::isBasisFor(const Candidate &Basis, | 
|  | const Candidate &C) { | 
|  | return (Basis.Ins != C.Ins && // skip the same instruction | 
|  | // They must have the same type too. Basis.Base == C.Base doesn't | 
|  | // guarantee their types are the same (PR23975). | 
|  | Basis.Ins->getType() == C.Ins->getType() && | 
|  | // Basis must dominate C in order to rewrite C with respect to Basis. | 
|  | DT->dominates(Basis.Ins->getParent(), C.Ins->getParent()) && | 
|  | // They share the same base, stride, and candidate kind. | 
|  | Basis.Base == C.Base && Basis.Stride == C.Stride && | 
|  | Basis.CandidateKind == C.CandidateKind); | 
|  | } | 
|  |  | 
|  | static bool isGEPFoldable(GetElementPtrInst *GEP, | 
|  | const TargetTransformInfo *TTI) { | 
|  | SmallVector<const Value*, 4> Indices; | 
|  | for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) | 
|  | Indices.push_back(*I); | 
|  | return TTI->getGEPCost(GEP->getSourceElementType(), GEP->getPointerOperand(), | 
|  | Indices) == TargetTransformInfo::TCC_Free; | 
|  | } | 
|  |  | 
|  | // Returns whether (Base + Index * Stride) can be folded to an addressing mode. | 
|  | static bool isAddFoldable(const SCEV *Base, ConstantInt *Index, Value *Stride, | 
|  | TargetTransformInfo *TTI) { | 
|  | // Index->getSExtValue() may crash if Index is wider than 64-bit. | 
|  | return Index->getBitWidth() <= 64 && | 
|  | TTI->isLegalAddressingMode(Base->getType(), nullptr, 0, true, | 
|  | Index->getSExtValue(), UnknownAddressSpace); | 
|  | } | 
|  |  | 
|  | bool StraightLineStrengthReduce::isFoldable(const Candidate &C, | 
|  | TargetTransformInfo *TTI, | 
|  | const DataLayout *DL) { | 
|  | if (C.CandidateKind == Candidate::Add) | 
|  | return isAddFoldable(C.Base, C.Index, C.Stride, TTI); | 
|  | if (C.CandidateKind == Candidate::GEP) | 
|  | return isGEPFoldable(cast<GetElementPtrInst>(C.Ins), TTI); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Returns true if GEP has zero or one non-zero index. | 
|  | static bool hasOnlyOneNonZeroIndex(GetElementPtrInst *GEP) { | 
|  | unsigned NumNonZeroIndices = 0; | 
|  | for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) { | 
|  | ConstantInt *ConstIdx = dyn_cast<ConstantInt>(*I); | 
|  | if (ConstIdx == nullptr || !ConstIdx->isZero()) | 
|  | ++NumNonZeroIndices; | 
|  | } | 
|  | return NumNonZeroIndices <= 1; | 
|  | } | 
|  |  | 
|  | bool StraightLineStrengthReduce::isSimplestForm(const Candidate &C) { | 
|  | if (C.CandidateKind == Candidate::Add) { | 
|  | // B + 1 * S or B + (-1) * S | 
|  | return C.Index->isOne() || C.Index->isMinusOne(); | 
|  | } | 
|  | if (C.CandidateKind == Candidate::Mul) { | 
|  | // (B + 0) * S | 
|  | return C.Index->isZero(); | 
|  | } | 
|  | if (C.CandidateKind == Candidate::GEP) { | 
|  | // (char*)B + S or (char*)B - S | 
|  | return ((C.Index->isOne() || C.Index->isMinusOne()) && | 
|  | hasOnlyOneNonZeroIndex(cast<GetElementPtrInst>(C.Ins))); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // TODO: We currently implement an algorithm whose time complexity is linear in | 
|  | // the number of existing candidates. However, we could do better by using | 
|  | // ScopedHashTable. Specifically, while traversing the dominator tree, we could | 
|  | // maintain all the candidates that dominate the basic block being traversed in | 
|  | // a ScopedHashTable. This hash table is indexed by the base and the stride of | 
|  | // a candidate. Therefore, finding the immediate basis of a candidate boils down | 
|  | // to one hash-table look up. | 
|  | void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( | 
|  | Candidate::Kind CT, const SCEV *B, ConstantInt *Idx, Value *S, | 
|  | Instruction *I) { | 
|  | Candidate C(CT, B, Idx, S, I); | 
|  | // SLSR can complicate an instruction in two cases: | 
|  | // | 
|  | // 1. If we can fold I into an addressing mode, computing I is likely free or | 
|  | // takes only one instruction. | 
|  | // | 
|  | // 2. I is already in a simplest form. For example, when | 
|  | //      X = B + 8 * S | 
|  | //      Y = B + S, | 
|  | //    rewriting Y to X - 7 * S is probably a bad idea. | 
|  | // | 
|  | // In the above cases, we still add I to the candidate list so that I can be | 
|  | // the basis of other candidates, but we leave I's basis blank so that I | 
|  | // won't be rewritten. | 
|  | if (!isFoldable(C, TTI, DL) && !isSimplestForm(C)) { | 
|  | // Try to compute the immediate basis of C. | 
|  | unsigned NumIterations = 0; | 
|  | // Limit the scan radius to avoid running in quadratice time. | 
|  | static const unsigned MaxNumIterations = 50; | 
|  | for (auto Basis = Candidates.rbegin(); | 
|  | Basis != Candidates.rend() && NumIterations < MaxNumIterations; | 
|  | ++Basis, ++NumIterations) { | 
|  | if (isBasisFor(*Basis, C)) { | 
|  | C.Basis = &(*Basis); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | // Regardless of whether we find a basis for C, we need to push C to the | 
|  | // candidate list so that it can be the basis of other candidates. | 
|  | Candidates.push_back(C); | 
|  | } | 
|  |  | 
|  | void StraightLineStrengthReduce::allocateCandidatesAndFindBasis( | 
|  | Instruction *I) { | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::Add: | 
|  | allocateCandidatesAndFindBasisForAdd(I); | 
|  | break; | 
|  | case Instruction::Mul: | 
|  | allocateCandidatesAndFindBasisForMul(I); | 
|  | break; | 
|  | case Instruction::GetElementPtr: | 
|  | allocateCandidatesAndFindBasisForGEP(cast<GetElementPtrInst>(I)); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( | 
|  | Instruction *I) { | 
|  | // Try matching B + i * S. | 
|  | if (!isa<IntegerType>(I->getType())) | 
|  | return; | 
|  |  | 
|  | assert(I->getNumOperands() == 2 && "isn't I an add?"); | 
|  | Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); | 
|  | allocateCandidatesAndFindBasisForAdd(LHS, RHS, I); | 
|  | if (LHS != RHS) | 
|  | allocateCandidatesAndFindBasisForAdd(RHS, LHS, I); | 
|  | } | 
|  |  | 
|  | void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForAdd( | 
|  | Value *LHS, Value *RHS, Instruction *I) { | 
|  | Value *S = nullptr; | 
|  | ConstantInt *Idx = nullptr; | 
|  | if (match(RHS, m_Mul(m_Value(S), m_ConstantInt(Idx)))) { | 
|  | // I = LHS + RHS = LHS + Idx * S | 
|  | allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I); | 
|  | } else if (match(RHS, m_Shl(m_Value(S), m_ConstantInt(Idx)))) { | 
|  | // I = LHS + RHS = LHS + (S << Idx) = LHS + S * (1 << Idx) | 
|  | APInt One(Idx->getBitWidth(), 1); | 
|  | Idx = ConstantInt::get(Idx->getContext(), One << Idx->getValue()); | 
|  | allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), Idx, S, I); | 
|  | } else { | 
|  | // At least, I = LHS + 1 * RHS | 
|  | ConstantInt *One = ConstantInt::get(cast<IntegerType>(I->getType()), 1); | 
|  | allocateCandidatesAndFindBasis(Candidate::Add, SE->getSCEV(LHS), One, RHS, | 
|  | I); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Returns true if A matches B + C where C is constant. | 
|  | static bool matchesAdd(Value *A, Value *&B, ConstantInt *&C) { | 
|  | return (match(A, m_Add(m_Value(B), m_ConstantInt(C))) || | 
|  | match(A, m_Add(m_ConstantInt(C), m_Value(B)))); | 
|  | } | 
|  |  | 
|  | // Returns true if A matches B | C where C is constant. | 
|  | static bool matchesOr(Value *A, Value *&B, ConstantInt *&C) { | 
|  | return (match(A, m_Or(m_Value(B), m_ConstantInt(C))) || | 
|  | match(A, m_Or(m_ConstantInt(C), m_Value(B)))); | 
|  | } | 
|  |  | 
|  | void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( | 
|  | Value *LHS, Value *RHS, Instruction *I) { | 
|  | Value *B = nullptr; | 
|  | ConstantInt *Idx = nullptr; | 
|  | if (matchesAdd(LHS, B, Idx)) { | 
|  | // If LHS is in the form of "Base + Index", then I is in the form of | 
|  | // "(Base + Index) * RHS". | 
|  | allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I); | 
|  | } else if (matchesOr(LHS, B, Idx) && haveNoCommonBitsSet(B, Idx, *DL)) { | 
|  | // If LHS is in the form of "Base | Index" and Base and Index have no common | 
|  | // bits set, then | 
|  | //   Base | Index = Base + Index | 
|  | // and I is thus in the form of "(Base + Index) * RHS". | 
|  | allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(B), Idx, RHS, I); | 
|  | } else { | 
|  | // Otherwise, at least try the form (LHS + 0) * RHS. | 
|  | ConstantInt *Zero = ConstantInt::get(cast<IntegerType>(I->getType()), 0); | 
|  | allocateCandidatesAndFindBasis(Candidate::Mul, SE->getSCEV(LHS), Zero, RHS, | 
|  | I); | 
|  | } | 
|  | } | 
|  |  | 
|  | void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForMul( | 
|  | Instruction *I) { | 
|  | // Try matching (B + i) * S. | 
|  | // TODO: we could extend SLSR to float and vector types. | 
|  | if (!isa<IntegerType>(I->getType())) | 
|  | return; | 
|  |  | 
|  | assert(I->getNumOperands() == 2 && "isn't I a mul?"); | 
|  | Value *LHS = I->getOperand(0), *RHS = I->getOperand(1); | 
|  | allocateCandidatesAndFindBasisForMul(LHS, RHS, I); | 
|  | if (LHS != RHS) { | 
|  | // Symmetrically, try to split RHS to Base + Index. | 
|  | allocateCandidatesAndFindBasisForMul(RHS, LHS, I); | 
|  | } | 
|  | } | 
|  |  | 
|  | void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( | 
|  | const SCEV *B, ConstantInt *Idx, Value *S, uint64_t ElementSize, | 
|  | Instruction *I) { | 
|  | // I = B + sext(Idx *nsw S) * ElementSize | 
|  | //   = B + (sext(Idx) * sext(S)) * ElementSize | 
|  | //   = B + (sext(Idx) * ElementSize) * sext(S) | 
|  | // Casting to IntegerType is safe because we skipped vector GEPs. | 
|  | IntegerType *IntPtrTy = cast<IntegerType>(DL->getIntPtrType(I->getType())); | 
|  | ConstantInt *ScaledIdx = ConstantInt::get( | 
|  | IntPtrTy, Idx->getSExtValue() * (int64_t)ElementSize, true); | 
|  | allocateCandidatesAndFindBasis(Candidate::GEP, B, ScaledIdx, S, I); | 
|  | } | 
|  |  | 
|  | void StraightLineStrengthReduce::factorArrayIndex(Value *ArrayIdx, | 
|  | const SCEV *Base, | 
|  | uint64_t ElementSize, | 
|  | GetElementPtrInst *GEP) { | 
|  | // At least, ArrayIdx = ArrayIdx *nsw 1. | 
|  | allocateCandidatesAndFindBasisForGEP( | 
|  | Base, ConstantInt::get(cast<IntegerType>(ArrayIdx->getType()), 1), | 
|  | ArrayIdx, ElementSize, GEP); | 
|  | Value *LHS = nullptr; | 
|  | ConstantInt *RHS = nullptr; | 
|  | // One alternative is matching the SCEV of ArrayIdx instead of ArrayIdx | 
|  | // itself. This would allow us to handle the shl case for free. However, | 
|  | // matching SCEVs has two issues: | 
|  | // | 
|  | // 1. this would complicate rewriting because the rewriting procedure | 
|  | // would have to translate SCEVs back to IR instructions. This translation | 
|  | // is difficult when LHS is further evaluated to a composite SCEV. | 
|  | // | 
|  | // 2. ScalarEvolution is designed to be control-flow oblivious. It tends | 
|  | // to strip nsw/nuw flags which are critical for SLSR to trace into | 
|  | // sext'ed multiplication. | 
|  | if (match(ArrayIdx, m_NSWMul(m_Value(LHS), m_ConstantInt(RHS)))) { | 
|  | // SLSR is currently unsafe if i * S may overflow. | 
|  | // GEP = Base + sext(LHS *nsw RHS) * ElementSize | 
|  | allocateCandidatesAndFindBasisForGEP(Base, RHS, LHS, ElementSize, GEP); | 
|  | } else if (match(ArrayIdx, m_NSWShl(m_Value(LHS), m_ConstantInt(RHS)))) { | 
|  | // GEP = Base + sext(LHS <<nsw RHS) * ElementSize | 
|  | //     = Base + sext(LHS *nsw (1 << RHS)) * ElementSize | 
|  | APInt One(RHS->getBitWidth(), 1); | 
|  | ConstantInt *PowerOf2 = | 
|  | ConstantInt::get(RHS->getContext(), One << RHS->getValue()); | 
|  | allocateCandidatesAndFindBasisForGEP(Base, PowerOf2, LHS, ElementSize, GEP); | 
|  | } | 
|  | } | 
|  |  | 
|  | void StraightLineStrengthReduce::allocateCandidatesAndFindBasisForGEP( | 
|  | GetElementPtrInst *GEP) { | 
|  | // TODO: handle vector GEPs | 
|  | if (GEP->getType()->isVectorTy()) | 
|  | return; | 
|  |  | 
|  | SmallVector<const SCEV *, 4> IndexExprs; | 
|  | for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) | 
|  | IndexExprs.push_back(SE->getSCEV(*I)); | 
|  |  | 
|  | gep_type_iterator GTI = gep_type_begin(GEP); | 
|  | for (unsigned I = 1, E = GEP->getNumOperands(); I != E; ++I, ++GTI) { | 
|  | if (GTI.isStruct()) | 
|  | continue; | 
|  |  | 
|  | const SCEV *OrigIndexExpr = IndexExprs[I - 1]; | 
|  | IndexExprs[I - 1] = SE->getZero(OrigIndexExpr->getType()); | 
|  |  | 
|  | // The base of this candidate is GEP's base plus the offsets of all | 
|  | // indices except this current one. | 
|  | const SCEV *BaseExpr = SE->getGEPExpr(cast<GEPOperator>(GEP), IndexExprs); | 
|  | Value *ArrayIdx = GEP->getOperand(I); | 
|  | uint64_t ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); | 
|  | if (ArrayIdx->getType()->getIntegerBitWidth() <= | 
|  | DL->getPointerSizeInBits(GEP->getAddressSpace())) { | 
|  | // Skip factoring if ArrayIdx is wider than the pointer size, because | 
|  | // ArrayIdx is implicitly truncated to the pointer size. | 
|  | factorArrayIndex(ArrayIdx, BaseExpr, ElementSize, GEP); | 
|  | } | 
|  | // When ArrayIdx is the sext of a value, we try to factor that value as | 
|  | // well.  Handling this case is important because array indices are | 
|  | // typically sign-extended to the pointer size. | 
|  | Value *TruncatedArrayIdx = nullptr; | 
|  | if (match(ArrayIdx, m_SExt(m_Value(TruncatedArrayIdx))) && | 
|  | TruncatedArrayIdx->getType()->getIntegerBitWidth() <= | 
|  | DL->getPointerSizeInBits(GEP->getAddressSpace())) { | 
|  | // Skip factoring if TruncatedArrayIdx is wider than the pointer size, | 
|  | // because TruncatedArrayIdx is implicitly truncated to the pointer size. | 
|  | factorArrayIndex(TruncatedArrayIdx, BaseExpr, ElementSize, GEP); | 
|  | } | 
|  |  | 
|  | IndexExprs[I - 1] = OrigIndexExpr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // A helper function that unifies the bitwidth of A and B. | 
|  | static void unifyBitWidth(APInt &A, APInt &B) { | 
|  | if (A.getBitWidth() < B.getBitWidth()) | 
|  | A = A.sext(B.getBitWidth()); | 
|  | else if (A.getBitWidth() > B.getBitWidth()) | 
|  | B = B.sext(A.getBitWidth()); | 
|  | } | 
|  |  | 
|  | Value *StraightLineStrengthReduce::emitBump(const Candidate &Basis, | 
|  | const Candidate &C, | 
|  | IRBuilder<> &Builder, | 
|  | const DataLayout *DL, | 
|  | bool &BumpWithUglyGEP) { | 
|  | APInt Idx = C.Index->getValue(), BasisIdx = Basis.Index->getValue(); | 
|  | unifyBitWidth(Idx, BasisIdx); | 
|  | APInt IndexOffset = Idx - BasisIdx; | 
|  |  | 
|  | BumpWithUglyGEP = false; | 
|  | if (Basis.CandidateKind == Candidate::GEP) { | 
|  | APInt ElementSize( | 
|  | IndexOffset.getBitWidth(), | 
|  | DL->getTypeAllocSize( | 
|  | cast<GetElementPtrInst>(Basis.Ins)->getResultElementType())); | 
|  | APInt Q, R; | 
|  | APInt::sdivrem(IndexOffset, ElementSize, Q, R); | 
|  | if (R == 0) | 
|  | IndexOffset = Q; | 
|  | else | 
|  | BumpWithUglyGEP = true; | 
|  | } | 
|  |  | 
|  | // Compute Bump = C - Basis = (i' - i) * S. | 
|  | // Common case 1: if (i' - i) is 1, Bump = S. | 
|  | if (IndexOffset == 1) | 
|  | return C.Stride; | 
|  | // Common case 2: if (i' - i) is -1, Bump = -S. | 
|  | if (IndexOffset.isAllOnesValue()) | 
|  | return Builder.CreateNeg(C.Stride); | 
|  |  | 
|  | // Otherwise, Bump = (i' - i) * sext/trunc(S). Note that (i' - i) and S may | 
|  | // have different bit widths. | 
|  | IntegerType *DeltaType = | 
|  | IntegerType::get(Basis.Ins->getContext(), IndexOffset.getBitWidth()); | 
|  | Value *ExtendedStride = Builder.CreateSExtOrTrunc(C.Stride, DeltaType); | 
|  | if (IndexOffset.isPowerOf2()) { | 
|  | // If (i' - i) is a power of 2, Bump = sext/trunc(S) << log(i' - i). | 
|  | ConstantInt *Exponent = ConstantInt::get(DeltaType, IndexOffset.logBase2()); | 
|  | return Builder.CreateShl(ExtendedStride, Exponent); | 
|  | } | 
|  | if ((-IndexOffset).isPowerOf2()) { | 
|  | // If (i - i') is a power of 2, Bump = -sext/trunc(S) << log(i' - i). | 
|  | ConstantInt *Exponent = | 
|  | ConstantInt::get(DeltaType, (-IndexOffset).logBase2()); | 
|  | return Builder.CreateNeg(Builder.CreateShl(ExtendedStride, Exponent)); | 
|  | } | 
|  | Constant *Delta = ConstantInt::get(DeltaType, IndexOffset); | 
|  | return Builder.CreateMul(ExtendedStride, Delta); | 
|  | } | 
|  |  | 
|  | void StraightLineStrengthReduce::rewriteCandidateWithBasis( | 
|  | const Candidate &C, const Candidate &Basis) { | 
|  | assert(C.CandidateKind == Basis.CandidateKind && C.Base == Basis.Base && | 
|  | C.Stride == Basis.Stride); | 
|  | // We run rewriteCandidateWithBasis on all candidates in a post-order, so the | 
|  | // basis of a candidate cannot be unlinked before the candidate. | 
|  | assert(Basis.Ins->getParent() != nullptr && "the basis is unlinked"); | 
|  |  | 
|  | // An instruction can correspond to multiple candidates. Therefore, instead of | 
|  | // simply deleting an instruction when we rewrite it, we mark its parent as | 
|  | // nullptr (i.e. unlink it) so that we can skip the candidates whose | 
|  | // instruction is already rewritten. | 
|  | if (!C.Ins->getParent()) | 
|  | return; | 
|  |  | 
|  | IRBuilder<> Builder(C.Ins); | 
|  | bool BumpWithUglyGEP; | 
|  | Value *Bump = emitBump(Basis, C, Builder, DL, BumpWithUglyGEP); | 
|  | Value *Reduced = nullptr; // equivalent to but weaker than C.Ins | 
|  | switch (C.CandidateKind) { | 
|  | case Candidate::Add: | 
|  | case Candidate::Mul: | 
|  | // C = Basis + Bump | 
|  | if (BinaryOperator::isNeg(Bump)) { | 
|  | // If Bump is a neg instruction, emit C = Basis - (-Bump). | 
|  | Reduced = | 
|  | Builder.CreateSub(Basis.Ins, BinaryOperator::getNegArgument(Bump)); | 
|  | // We only use the negative argument of Bump, and Bump itself may be | 
|  | // trivially dead. | 
|  | RecursivelyDeleteTriviallyDeadInstructions(Bump); | 
|  | } else { | 
|  | // It's tempting to preserve nsw on Bump and/or Reduced. However, it's | 
|  | // usually unsound, e.g., | 
|  | // | 
|  | // X = (-2 +nsw 1) *nsw INT_MAX | 
|  | // Y = (-2 +nsw 3) *nsw INT_MAX | 
|  | //   => | 
|  | // Y = X + 2 * INT_MAX | 
|  | // | 
|  | // Neither + and * in the resultant expression are nsw. | 
|  | Reduced = Builder.CreateAdd(Basis.Ins, Bump); | 
|  | } | 
|  | break; | 
|  | case Candidate::GEP: | 
|  | { | 
|  | Type *IntPtrTy = DL->getIntPtrType(C.Ins->getType()); | 
|  | bool InBounds = cast<GetElementPtrInst>(C.Ins)->isInBounds(); | 
|  | if (BumpWithUglyGEP) { | 
|  | // C = (char *)Basis + Bump | 
|  | unsigned AS = Basis.Ins->getType()->getPointerAddressSpace(); | 
|  | Type *CharTy = Type::getInt8PtrTy(Basis.Ins->getContext(), AS); | 
|  | Reduced = Builder.CreateBitCast(Basis.Ins, CharTy); | 
|  | if (InBounds) | 
|  | Reduced = | 
|  | Builder.CreateInBoundsGEP(Builder.getInt8Ty(), Reduced, Bump); | 
|  | else | 
|  | Reduced = Builder.CreateGEP(Builder.getInt8Ty(), Reduced, Bump); | 
|  | Reduced = Builder.CreateBitCast(Reduced, C.Ins->getType()); | 
|  | } else { | 
|  | // C = gep Basis, Bump | 
|  | // Canonicalize bump to pointer size. | 
|  | Bump = Builder.CreateSExtOrTrunc(Bump, IntPtrTy); | 
|  | if (InBounds) | 
|  | Reduced = Builder.CreateInBoundsGEP(nullptr, Basis.Ins, Bump); | 
|  | else | 
|  | Reduced = Builder.CreateGEP(nullptr, Basis.Ins, Bump); | 
|  | } | 
|  | break; | 
|  | } | 
|  | default: | 
|  | llvm_unreachable("C.CandidateKind is invalid"); | 
|  | }; | 
|  | Reduced->takeName(C.Ins); | 
|  | C.Ins->replaceAllUsesWith(Reduced); | 
|  | // Unlink C.Ins so that we can skip other candidates also corresponding to | 
|  | // C.Ins. The actual deletion is postponed to the end of runOnFunction. | 
|  | C.Ins->removeFromParent(); | 
|  | UnlinkedInstructions.push_back(C.Ins); | 
|  | } | 
|  |  | 
|  | bool StraightLineStrengthReduce::runOnFunction(Function &F) { | 
|  | if (skipFunction(F)) | 
|  | return false; | 
|  |  | 
|  | TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); | 
|  | DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  | SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE(); | 
|  | // Traverse the dominator tree in the depth-first order. This order makes sure | 
|  | // all bases of a candidate are in Candidates when we process it. | 
|  | for (const auto Node : depth_first(DT)) | 
|  | for (auto &I : *(Node->getBlock())) | 
|  | allocateCandidatesAndFindBasis(&I); | 
|  |  | 
|  | // Rewrite candidates in the reverse depth-first order. This order makes sure | 
|  | // a candidate being rewritten is not a basis for any other candidate. | 
|  | while (!Candidates.empty()) { | 
|  | const Candidate &C = Candidates.back(); | 
|  | if (C.Basis != nullptr) { | 
|  | rewriteCandidateWithBasis(C, *C.Basis); | 
|  | } | 
|  | Candidates.pop_back(); | 
|  | } | 
|  |  | 
|  | // Delete all unlink instructions. | 
|  | for (auto *UnlinkedInst : UnlinkedInstructions) { | 
|  | for (unsigned I = 0, E = UnlinkedInst->getNumOperands(); I != E; ++I) { | 
|  | Value *Op = UnlinkedInst->getOperand(I); | 
|  | UnlinkedInst->setOperand(I, nullptr); | 
|  | RecursivelyDeleteTriviallyDeadInstructions(Op); | 
|  | } | 
|  | UnlinkedInst->deleteValue(); | 
|  | } | 
|  | bool Ret = !UnlinkedInstructions.empty(); | 
|  | UnlinkedInstructions.clear(); | 
|  | return Ret; | 
|  | } |