|  | //===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// \file | 
|  | /// \brief Custom DAG lowering for SI | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #ifdef _MSC_VER | 
|  | // Provide M_PI. | 
|  | #define _USE_MATH_DEFINES | 
|  | #include <cmath> | 
|  | #endif | 
|  |  | 
|  | #include "SIISelLowering.h" | 
|  | #include "AMDGPU.h" | 
|  | #include "AMDGPUIntrinsicInfo.h" | 
|  | #include "AMDGPUSubtarget.h" | 
|  | #include "SIInstrInfo.h" | 
|  | #include "SIMachineFunctionInfo.h" | 
|  | #include "SIRegisterInfo.h" | 
|  | #include "llvm/ADT/BitVector.h" | 
|  | #include "llvm/CodeGen/CallingConvLower.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | SITargetLowering::SITargetLowering(TargetMachine &TM, | 
|  | const AMDGPUSubtarget &STI) | 
|  | : AMDGPUTargetLowering(TM, STI) { | 
|  | addRegisterClass(MVT::i1, &AMDGPU::VReg_1RegClass); | 
|  | addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); | 
|  |  | 
|  | addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass); | 
|  | addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass); | 
|  |  | 
|  | addRegisterClass(MVT::i32, &AMDGPU::SReg_32RegClass); | 
|  | addRegisterClass(MVT::f32, &AMDGPU::VGPR_32RegClass); | 
|  |  | 
|  | addRegisterClass(MVT::f64, &AMDGPU::VReg_64RegClass); | 
|  | addRegisterClass(MVT::v2i32, &AMDGPU::SReg_64RegClass); | 
|  | addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass); | 
|  |  | 
|  | addRegisterClass(MVT::v4i32, &AMDGPU::SReg_128RegClass); | 
|  | addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass); | 
|  |  | 
|  | addRegisterClass(MVT::v8i32, &AMDGPU::SReg_256RegClass); | 
|  | addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass); | 
|  |  | 
|  | addRegisterClass(MVT::v16i32, &AMDGPU::SReg_512RegClass); | 
|  | addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass); | 
|  |  | 
|  | computeRegisterProperties(STI.getRegisterInfo()); | 
|  |  | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand); | 
|  | setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand); | 
|  |  | 
|  | setOperationAction(ISD::ADD, MVT::i32, Legal); | 
|  | setOperationAction(ISD::ADDC, MVT::i32, Legal); | 
|  | setOperationAction(ISD::ADDE, MVT::i32, Legal); | 
|  | setOperationAction(ISD::SUBC, MVT::i32, Legal); | 
|  | setOperationAction(ISD::SUBE, MVT::i32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::FSIN, MVT::f32, Custom); | 
|  | setOperationAction(ISD::FCOS, MVT::f32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::FMINNUM, MVT::f64, Legal); | 
|  | setOperationAction(ISD::FMAXNUM, MVT::f64, Legal); | 
|  |  | 
|  | // We need to custom lower vector stores from local memory | 
|  | setOperationAction(ISD::LOAD, MVT::v4i32, Custom); | 
|  | setOperationAction(ISD::LOAD, MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::LOAD, MVT::v16i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::STORE, MVT::v8i32, Custom); | 
|  | setOperationAction(ISD::STORE, MVT::v16i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::STORE, MVT::i1, Custom); | 
|  | setOperationAction(ISD::STORE, MVT::v4i32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SELECT, MVT::i64, Custom); | 
|  | setOperationAction(ISD::SELECT, MVT::f64, Promote); | 
|  | AddPromotedToType(ISD::SELECT, MVT::f64, MVT::i64); | 
|  |  | 
|  | setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::i32, Expand); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::i64, Expand); | 
|  | setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); | 
|  |  | 
|  | setOperationAction(ISD::SETCC, MVT::v2i1, Expand); | 
|  | setOperationAction(ISD::SETCC, MVT::v4i1, Expand); | 
|  |  | 
|  | setOperationAction(ISD::BSWAP, MVT::i32, Legal); | 
|  |  | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Legal); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i1, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i1, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8, Legal); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i8, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i8, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16, Legal); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v2i16, Custom); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::v4i16, Custom); | 
|  |  | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i32, Legal); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::Other, Custom); | 
|  |  | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::f32, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v16i8, Custom); | 
|  | setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::v4f32, Custom); | 
|  |  | 
|  | setOperationAction(ISD::INTRINSIC_VOID, MVT::Other, Custom); | 
|  | setOperationAction(ISD::BRCOND, MVT::Other, Custom); | 
|  |  | 
|  | for (MVT VT : MVT::integer_valuetypes()) { | 
|  | if (VT == MVT::i64) | 
|  | continue; | 
|  |  | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Promote); | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i8, Legal); | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i16, Legal); | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i32, Expand); | 
|  |  | 
|  | setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i1, Promote); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i8, Legal); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i16, Legal); | 
|  | setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::i32, Expand); | 
|  |  | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::i1, Promote); | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::i8, Legal); | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::i16, Legal); | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::i32, Expand); | 
|  | } | 
|  |  | 
|  | for (MVT VT : MVT::integer_vector_valuetypes()) { | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v8i16, Expand); | 
|  | setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v16i16, Expand); | 
|  | } | 
|  |  | 
|  | for (MVT VT : MVT::fp_valuetypes()) | 
|  | setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand); | 
|  |  | 
|  | setTruncStoreAction(MVT::i64, MVT::i32, Expand); | 
|  | setTruncStoreAction(MVT::v8i32, MVT::v8i16, Expand); | 
|  | setTruncStoreAction(MVT::v16i32, MVT::v16i16, Expand); | 
|  |  | 
|  | setOperationAction(ISD::LOAD, MVT::i1, Custom); | 
|  |  | 
|  | setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); | 
|  | setOperationAction(ISD::GlobalAddress, MVT::i64, Custom); | 
|  | setOperationAction(ISD::FrameIndex, MVT::i32, Custom); | 
|  |  | 
|  | // These should use UDIVREM, so set them to expand | 
|  | setOperationAction(ISD::UDIV, MVT::i64, Expand); | 
|  | setOperationAction(ISD::UREM, MVT::i64, Expand); | 
|  |  | 
|  | setOperationAction(ISD::SELECT_CC, MVT::i1, Expand); | 
|  | setOperationAction(ISD::SELECT, MVT::i1, Promote); | 
|  |  | 
|  | // We only support LOAD/STORE and vector manipulation ops for vectors | 
|  | // with > 4 elements. | 
|  | for (MVT VT : {MVT::v8i32, MVT::v8f32, MVT::v16i32, MVT::v16f32}) { | 
|  | for (unsigned Op = 0; Op < ISD::BUILTIN_OP_END; ++Op) { | 
|  | switch(Op) { | 
|  | case ISD::LOAD: | 
|  | case ISD::STORE: | 
|  | case ISD::BUILD_VECTOR: | 
|  | case ISD::BITCAST: | 
|  | case ISD::EXTRACT_VECTOR_ELT: | 
|  | case ISD::INSERT_VECTOR_ELT: | 
|  | case ISD::INSERT_SUBVECTOR: | 
|  | case ISD::EXTRACT_SUBVECTOR: | 
|  | break; | 
|  | case ISD::CONCAT_VECTORS: | 
|  | setOperationAction(Op, VT, Custom); | 
|  | break; | 
|  | default: | 
|  | setOperationAction(Op, VT, Expand); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Subtarget->getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) { | 
|  | setOperationAction(ISD::FTRUNC, MVT::f64, Legal); | 
|  | setOperationAction(ISD::FCEIL, MVT::f64, Legal); | 
|  | setOperationAction(ISD::FRINT, MVT::f64, Legal); | 
|  | } | 
|  |  | 
|  | setOperationAction(ISD::FFLOOR, MVT::f64, Legal); | 
|  | setOperationAction(ISD::FDIV, MVT::f32, Custom); | 
|  | setOperationAction(ISD::FDIV, MVT::f64, Custom); | 
|  |  | 
|  | setTargetDAGCombine(ISD::FADD); | 
|  | setTargetDAGCombine(ISD::FSUB); | 
|  | setTargetDAGCombine(ISD::FMINNUM); | 
|  | setTargetDAGCombine(ISD::FMAXNUM); | 
|  | setTargetDAGCombine(ISD::SMIN); | 
|  | setTargetDAGCombine(ISD::SMAX); | 
|  | setTargetDAGCombine(ISD::UMIN); | 
|  | setTargetDAGCombine(ISD::UMAX); | 
|  | setTargetDAGCombine(ISD::SELECT_CC); | 
|  | setTargetDAGCombine(ISD::SETCC); | 
|  | setTargetDAGCombine(ISD::AND); | 
|  | setTargetDAGCombine(ISD::OR); | 
|  | setTargetDAGCombine(ISD::UINT_TO_FP); | 
|  |  | 
|  | // All memory operations. Some folding on the pointer operand is done to help | 
|  | // matching the constant offsets in the addressing modes. | 
|  | setTargetDAGCombine(ISD::LOAD); | 
|  | setTargetDAGCombine(ISD::STORE); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD); | 
|  | setTargetDAGCombine(ISD::ATOMIC_STORE); | 
|  | setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP); | 
|  | setTargetDAGCombine(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS); | 
|  | setTargetDAGCombine(ISD::ATOMIC_SWAP); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_ADD); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_SUB); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_AND); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_OR); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_XOR); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_NAND); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_MIN); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_MAX); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_UMIN); | 
|  | setTargetDAGCombine(ISD::ATOMIC_LOAD_UMAX); | 
|  |  | 
|  | setSchedulingPreference(Sched::RegPressure); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // TargetLowering queries | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | bool SITargetLowering::isShuffleMaskLegal(const SmallVectorImpl<int> &, | 
|  | EVT) const { | 
|  | // SI has some legal vector types, but no legal vector operations. Say no | 
|  | // shuffles are legal in order to prefer scalarizing some vector operations. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isLegalFlatAddressingMode(const AddrMode &AM) const { | 
|  | // Flat instructions do not have offsets, and only have the register | 
|  | // address. | 
|  | return AM.BaseOffs == 0 && (AM.Scale == 0 || AM.Scale == 1); | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::isLegalAddressingMode(const DataLayout &DL, | 
|  | const AddrMode &AM, Type *Ty, | 
|  | unsigned AS) const { | 
|  | // No global is ever allowed as a base. | 
|  | if (AM.BaseGV) | 
|  | return false; | 
|  |  | 
|  | switch (AS) { | 
|  | case AMDGPUAS::GLOBAL_ADDRESS: | 
|  | if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) { | 
|  | // Assume the we will use FLAT for all global memory accesses | 
|  | // on VI. | 
|  | // FIXME: This assumption is currently wrong.  On VI we still use | 
|  | // MUBUF instructions for the r + i addressing mode.  As currently | 
|  | // implemented, the MUBUF instructions only work on buffer < 4GB. | 
|  | // It may be possible to support > 4GB buffers with MUBUF instructions, | 
|  | // by setting the stride value in the resource descriptor which would | 
|  | // increase the size limit to (stride * 4GB).  However, this is risky, | 
|  | // because it has never been validated. | 
|  | return isLegalFlatAddressingMode(AM); | 
|  | } | 
|  | // fall-through | 
|  | case AMDGPUAS::PRIVATE_ADDRESS: | 
|  | case AMDGPUAS::CONSTANT_ADDRESS: // XXX - Should we assume SMRD instructions? | 
|  | case AMDGPUAS::UNKNOWN_ADDRESS_SPACE: { | 
|  | // MUBUF / MTBUF instructions have a 12-bit unsigned byte offset, and | 
|  | // additionally can do r + r + i with addr64. 32-bit has more addressing | 
|  | // mode options. Depending on the resource constant, it can also do | 
|  | // (i64 r0) + (i32 r1) * (i14 i). | 
|  | // | 
|  | // SMRD instructions have an 8-bit, dword offset. | 
|  | // | 
|  | // Assume nonunifom access, since the address space isn't enough to know | 
|  | // what instruction we will use, and since we don't know if this is a load | 
|  | // or store and scalar stores are only available on VI. | 
|  | // | 
|  | // We also know if we are doing an extload, we can't do a scalar load. | 
|  | // | 
|  | // Private arrays end up using a scratch buffer most of the time, so also | 
|  | // assume those use MUBUF instructions. Scratch loads / stores are currently | 
|  | // implemented as mubuf instructions with offen bit set, so slightly | 
|  | // different than the normal addr64. | 
|  | if (!isUInt<12>(AM.BaseOffs)) | 
|  | return false; | 
|  |  | 
|  | // FIXME: Since we can split immediate into soffset and immediate offset, | 
|  | // would it make sense to allow any immediate? | 
|  |  | 
|  | switch (AM.Scale) { | 
|  | case 0: // r + i or just i, depending on HasBaseReg. | 
|  | return true; | 
|  | case 1: | 
|  | return true; // We have r + r or r + i. | 
|  | case 2: | 
|  | if (AM.HasBaseReg) { | 
|  | // Reject 2 * r + r. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Allow 2 * r as r + r | 
|  | // Or  2 * r + i is allowed as r + r + i. | 
|  | return true; | 
|  | default: // Don't allow n * r | 
|  | return false; | 
|  | } | 
|  | } | 
|  | case AMDGPUAS::LOCAL_ADDRESS: | 
|  | case AMDGPUAS::REGION_ADDRESS: { | 
|  | // Basic, single offset DS instructions allow a 16-bit unsigned immediate | 
|  | // field. | 
|  | // XXX - If doing a 4-byte aligned 8-byte type access, we effectively have | 
|  | // an 8-bit dword offset but we don't know the alignment here. | 
|  | if (!isUInt<16>(AM.BaseOffs)) | 
|  | return false; | 
|  |  | 
|  | if (AM.Scale == 0) // r + i or just i, depending on HasBaseReg. | 
|  | return true; | 
|  |  | 
|  | if (AM.Scale == 1 && AM.HasBaseReg) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  | case AMDGPUAS::FLAT_ADDRESS: | 
|  | return isLegalFlatAddressingMode(AM); | 
|  |  | 
|  | default: | 
|  | llvm_unreachable("unhandled address space"); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::allowsMisalignedMemoryAccesses(EVT VT, | 
|  | unsigned AddrSpace, | 
|  | unsigned Align, | 
|  | bool *IsFast) const { | 
|  | if (IsFast) | 
|  | *IsFast = false; | 
|  |  | 
|  | // TODO: I think v3i32 should allow unaligned accesses on CI with DS_READ_B96, | 
|  | // which isn't a simple VT. | 
|  | if (!VT.isSimple() || VT == MVT::Other) | 
|  | return false; | 
|  |  | 
|  | // TODO - CI+ supports unaligned memory accesses, but this requires driver | 
|  | // support. | 
|  |  | 
|  | // XXX - The only mention I see of this in the ISA manual is for LDS direct | 
|  | // reads the "byte address and must be dword aligned". Is it also true for the | 
|  | // normal loads and stores? | 
|  | if (AddrSpace == AMDGPUAS::LOCAL_ADDRESS) { | 
|  | // ds_read/write_b64 require 8-byte alignment, but we can do a 4 byte | 
|  | // aligned, 8 byte access in a single operation using ds_read2/write2_b32 | 
|  | // with adjacent offsets. | 
|  | return Align % 4 == 0; | 
|  | } | 
|  |  | 
|  | // Smaller than dword value must be aligned. | 
|  | // FIXME: This should be allowed on CI+ | 
|  | if (VT.bitsLT(MVT::i32)) | 
|  | return false; | 
|  |  | 
|  | // 8.1.6 - For Dword or larger reads or writes, the two LSBs of the | 
|  | // byte-address are ignored, thus forcing Dword alignment. | 
|  | // This applies to private, global, and constant memory. | 
|  | if (IsFast) | 
|  | *IsFast = true; | 
|  |  | 
|  | return VT.bitsGT(MVT::i32) && Align % 4 == 0; | 
|  | } | 
|  |  | 
|  | EVT SITargetLowering::getOptimalMemOpType(uint64_t Size, unsigned DstAlign, | 
|  | unsigned SrcAlign, bool IsMemset, | 
|  | bool ZeroMemset, | 
|  | bool MemcpyStrSrc, | 
|  | MachineFunction &MF) const { | 
|  | // FIXME: Should account for address space here. | 
|  |  | 
|  | // The default fallback uses the private pointer size as a guess for a type to | 
|  | // use. Make sure we switch these to 64-bit accesses. | 
|  |  | 
|  | if (Size >= 16 && DstAlign >= 4) // XXX: Should only do for global | 
|  | return MVT::v4i32; | 
|  |  | 
|  | if (Size >= 8 && DstAlign >= 4) | 
|  | return MVT::v2i32; | 
|  |  | 
|  | // Use the default. | 
|  | return MVT::Other; | 
|  | } | 
|  |  | 
|  | TargetLoweringBase::LegalizeTypeAction | 
|  | SITargetLowering::getPreferredVectorAction(EVT VT) const { | 
|  | if (VT.getVectorNumElements() != 1 && VT.getScalarType().bitsLE(MVT::i16)) | 
|  | return TypeSplitVector; | 
|  |  | 
|  | return TargetLoweringBase::getPreferredVectorAction(VT); | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::shouldConvertConstantLoadToIntImm(const APInt &Imm, | 
|  | Type *Ty) const { | 
|  | const SIInstrInfo *TII = | 
|  | static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); | 
|  | return TII->isInlineConstant(Imm); | 
|  | } | 
|  |  | 
|  | static EVT toIntegerVT(EVT VT) { | 
|  | if (VT.isVector()) | 
|  | return VT.changeVectorElementTypeToInteger(); | 
|  | return MVT::getIntegerVT(VT.getSizeInBits()); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerParameter(SelectionDAG &DAG, EVT VT, EVT MemVT, | 
|  | SDLoc SL, SDValue Chain, | 
|  | unsigned Offset, bool Signed) const { | 
|  | const DataLayout &DL = DAG.getDataLayout(); | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | const SIRegisterInfo *TRI = | 
|  | static_cast<const SIRegisterInfo*>(Subtarget->getRegisterInfo()); | 
|  | unsigned InputPtrReg = TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR); | 
|  |  | 
|  | Type *Ty = VT.getTypeForEVT(*DAG.getContext()); | 
|  |  | 
|  | MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); | 
|  | MVT PtrVT = getPointerTy(DL, AMDGPUAS::CONSTANT_ADDRESS); | 
|  | PointerType *PtrTy = PointerType::get(Ty, AMDGPUAS::CONSTANT_ADDRESS); | 
|  | SDValue BasePtr = DAG.getCopyFromReg(Chain, SL, | 
|  | MRI.getLiveInVirtReg(InputPtrReg), PtrVT); | 
|  | SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr, | 
|  | DAG.getConstant(Offset, SL, PtrVT)); | 
|  | SDValue PtrOffset = DAG.getUNDEF(PtrVT); | 
|  | MachinePointerInfo PtrInfo(UndefValue::get(PtrTy)); | 
|  |  | 
|  | unsigned Align = DL.getABITypeAlignment(Ty); | 
|  |  | 
|  | if (VT != MemVT && VT.isFloatingPoint()) { | 
|  | // Do an integer load and convert. | 
|  | // FIXME: This is mostly because load legalization after type legalization | 
|  | // doesn't handle FP extloads. | 
|  | assert(VT.getScalarType() == MVT::f32 && | 
|  | MemVT.getScalarType() == MVT::f16); | 
|  |  | 
|  | EVT IVT = toIntegerVT(VT); | 
|  | EVT MemIVT = toIntegerVT(MemVT); | 
|  | SDValue Load = DAG.getLoad(ISD::UNINDEXED, ISD::ZEXTLOAD, | 
|  | IVT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemIVT, | 
|  | false, // isVolatile | 
|  | true, // isNonTemporal | 
|  | true, // isInvariant | 
|  | Align); // Alignment | 
|  | SDValue Ops[] = { | 
|  | DAG.getNode(ISD::FP16_TO_FP, SL, VT, Load), | 
|  | Load.getValue(1) | 
|  | }; | 
|  |  | 
|  | return DAG.getMergeValues(Ops, SL); | 
|  | } | 
|  |  | 
|  | ISD::LoadExtType ExtTy = Signed ? ISD::SEXTLOAD : ISD::ZEXTLOAD; | 
|  | return DAG.getLoad(ISD::UNINDEXED, ExtTy, | 
|  | VT, SL, Chain, Ptr, PtrOffset, PtrInfo, MemVT, | 
|  | false, // isVolatile | 
|  | true, // isNonTemporal | 
|  | true, // isInvariant | 
|  | Align); // Alignment | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerFormalArguments( | 
|  | SDValue Chain, CallingConv::ID CallConv, bool isVarArg, | 
|  | const SmallVectorImpl<ISD::InputArg> &Ins, SDLoc DL, SelectionDAG &DAG, | 
|  | SmallVectorImpl<SDValue> &InVals) const { | 
|  | const SIRegisterInfo *TRI = | 
|  | static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | FunctionType *FType = MF.getFunction()->getFunctionType(); | 
|  | SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); | 
|  |  | 
|  | assert(CallConv == CallingConv::C); | 
|  |  | 
|  | SmallVector<ISD::InputArg, 16> Splits; | 
|  | BitVector Skipped(Ins.size()); | 
|  |  | 
|  | for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) { | 
|  | const ISD::InputArg &Arg = Ins[i]; | 
|  |  | 
|  | // First check if it's a PS input addr | 
|  | if (Info->getShaderType() == ShaderType::PIXEL && !Arg.Flags.isInReg() && | 
|  | !Arg.Flags.isByVal()) { | 
|  |  | 
|  | assert((PSInputNum <= 15) && "Too many PS inputs!"); | 
|  |  | 
|  | if (!Arg.Used) { | 
|  | // We can savely skip PS inputs | 
|  | Skipped.set(i); | 
|  | ++PSInputNum; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Info->PSInputAddr |= 1 << PSInputNum++; | 
|  | } | 
|  |  | 
|  | // Second split vertices into their elements | 
|  | if (Info->getShaderType() != ShaderType::COMPUTE && Arg.VT.isVector()) { | 
|  | ISD::InputArg NewArg = Arg; | 
|  | NewArg.Flags.setSplit(); | 
|  | NewArg.VT = Arg.VT.getVectorElementType(); | 
|  |  | 
|  | // We REALLY want the ORIGINAL number of vertex elements here, e.g. a | 
|  | // three or five element vertex only needs three or five registers, | 
|  | // NOT four or eigth. | 
|  | Type *ParamType = FType->getParamType(Arg.getOrigArgIndex()); | 
|  | unsigned NumElements = ParamType->getVectorNumElements(); | 
|  |  | 
|  | for (unsigned j = 0; j != NumElements; ++j) { | 
|  | Splits.push_back(NewArg); | 
|  | NewArg.PartOffset += NewArg.VT.getStoreSize(); | 
|  | } | 
|  |  | 
|  | } else if (Info->getShaderType() != ShaderType::COMPUTE) { | 
|  | Splits.push_back(Arg); | 
|  | } | 
|  | } | 
|  |  | 
|  | SmallVector<CCValAssign, 16> ArgLocs; | 
|  | CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs, | 
|  | *DAG.getContext()); | 
|  |  | 
|  | // At least one interpolation mode must be enabled or else the GPU will hang. | 
|  | if (Info->getShaderType() == ShaderType::PIXEL && | 
|  | (Info->PSInputAddr & 0x7F) == 0) { | 
|  | Info->PSInputAddr |= 1; | 
|  | CCInfo.AllocateReg(AMDGPU::VGPR0); | 
|  | CCInfo.AllocateReg(AMDGPU::VGPR1); | 
|  | } | 
|  |  | 
|  | // The pointer to the list of arguments is stored in SGPR0, SGPR1 | 
|  | // The pointer to the scratch buffer is stored in SGPR2, SGPR3 | 
|  | if (Info->getShaderType() == ShaderType::COMPUTE) { | 
|  | if (Subtarget->isAmdHsaOS()) | 
|  | Info->NumUserSGPRs = 2;  // FIXME: Need to support scratch buffers. | 
|  | else | 
|  | Info->NumUserSGPRs = 4; | 
|  |  | 
|  | unsigned InputPtrReg = | 
|  | TRI->getPreloadedValue(MF, SIRegisterInfo::INPUT_PTR); | 
|  | unsigned InputPtrRegLo = | 
|  | TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 0); | 
|  | unsigned InputPtrRegHi = | 
|  | TRI->getPhysRegSubReg(InputPtrReg, &AMDGPU::SReg_32RegClass, 1); | 
|  |  | 
|  | unsigned ScratchPtrReg = | 
|  | TRI->getPreloadedValue(MF, SIRegisterInfo::SCRATCH_PTR); | 
|  | unsigned ScratchPtrRegLo = | 
|  | TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 0); | 
|  | unsigned ScratchPtrRegHi = | 
|  | TRI->getPhysRegSubReg(ScratchPtrReg, &AMDGPU::SReg_32RegClass, 1); | 
|  |  | 
|  | CCInfo.AllocateReg(InputPtrRegLo); | 
|  | CCInfo.AllocateReg(InputPtrRegHi); | 
|  | CCInfo.AllocateReg(ScratchPtrRegLo); | 
|  | CCInfo.AllocateReg(ScratchPtrRegHi); | 
|  | MF.addLiveIn(InputPtrReg, &AMDGPU::SReg_64RegClass); | 
|  | MF.addLiveIn(ScratchPtrReg, &AMDGPU::SReg_64RegClass); | 
|  | } | 
|  |  | 
|  | if (Info->getShaderType() == ShaderType::COMPUTE) { | 
|  | getOriginalFunctionArgs(DAG, DAG.getMachineFunction().getFunction(), Ins, | 
|  | Splits); | 
|  | } | 
|  |  | 
|  | AnalyzeFormalArguments(CCInfo, Splits); | 
|  |  | 
|  | SmallVector<SDValue, 16> Chains; | 
|  |  | 
|  | for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { | 
|  |  | 
|  | const ISD::InputArg &Arg = Ins[i]; | 
|  | if (Skipped[i]) { | 
|  | InVals.push_back(DAG.getUNDEF(Arg.VT)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | CCValAssign &VA = ArgLocs[ArgIdx++]; | 
|  | MVT VT = VA.getLocVT(); | 
|  |  | 
|  | if (VA.isMemLoc()) { | 
|  | VT = Ins[i].VT; | 
|  | EVT MemVT = Splits[i].VT; | 
|  | const unsigned Offset = Subtarget->getExplicitKernelArgOffset() + | 
|  | VA.getLocMemOffset(); | 
|  | // The first 36 bytes of the input buffer contains information about | 
|  | // thread group and global sizes. | 
|  | SDValue Arg = LowerParameter(DAG, VT, MemVT,  DL, Chain, | 
|  | Offset, Ins[i].Flags.isSExt()); | 
|  | Chains.push_back(Arg.getValue(1)); | 
|  |  | 
|  | const PointerType *ParamTy = | 
|  | dyn_cast<PointerType>(FType->getParamType(Ins[i].getOrigArgIndex())); | 
|  | if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS && | 
|  | ParamTy && ParamTy->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS) { | 
|  | // On SI local pointers are just offsets into LDS, so they are always | 
|  | // less than 16-bits.  On CI and newer they could potentially be | 
|  | // real pointers, so we can't guarantee their size. | 
|  | Arg = DAG.getNode(ISD::AssertZext, DL, Arg.getValueType(), Arg, | 
|  | DAG.getValueType(MVT::i16)); | 
|  | } | 
|  |  | 
|  | InVals.push_back(Arg); | 
|  | Info->ABIArgOffset = Offset + MemVT.getStoreSize(); | 
|  | continue; | 
|  | } | 
|  | assert(VA.isRegLoc() && "Parameter must be in a register!"); | 
|  |  | 
|  | unsigned Reg = VA.getLocReg(); | 
|  |  | 
|  | if (VT == MVT::i64) { | 
|  | // For now assume it is a pointer | 
|  | Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, | 
|  | &AMDGPU::SReg_64RegClass); | 
|  | Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass); | 
|  | SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT); | 
|  | InVals.push_back(Copy); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); | 
|  |  | 
|  | Reg = MF.addLiveIn(Reg, RC); | 
|  | SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); | 
|  |  | 
|  | if (Arg.VT.isVector()) { | 
|  |  | 
|  | // Build a vector from the registers | 
|  | Type *ParamType = FType->getParamType(Arg.getOrigArgIndex()); | 
|  | unsigned NumElements = ParamType->getVectorNumElements(); | 
|  |  | 
|  | SmallVector<SDValue, 4> Regs; | 
|  | Regs.push_back(Val); | 
|  | for (unsigned j = 1; j != NumElements; ++j) { | 
|  | Reg = ArgLocs[ArgIdx++].getLocReg(); | 
|  | Reg = MF.addLiveIn(Reg, RC); | 
|  |  | 
|  | SDValue Copy = DAG.getCopyFromReg(Chain, DL, Reg, VT); | 
|  | Regs.push_back(Copy); | 
|  | } | 
|  |  | 
|  | // Fill up the missing vector elements | 
|  | NumElements = Arg.VT.getVectorNumElements() - NumElements; | 
|  | Regs.append(NumElements, DAG.getUNDEF(VT)); | 
|  |  | 
|  | InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, Regs)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | InVals.push_back(Val); | 
|  | } | 
|  |  | 
|  | if (Info->getShaderType() != ShaderType::COMPUTE) { | 
|  | unsigned ScratchIdx = CCInfo.getFirstUnallocated(ArrayRef<MCPhysReg>( | 
|  | AMDGPU::SGPR_32RegClass.begin(), AMDGPU::SGPR_32RegClass.getNumRegs())); | 
|  | Info->ScratchOffsetReg = AMDGPU::SGPR_32RegClass.getRegister(ScratchIdx); | 
|  | } | 
|  |  | 
|  | if (Chains.empty()) | 
|  | return Chain; | 
|  |  | 
|  | return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter( | 
|  | MachineInstr * MI, MachineBasicBlock * BB) const { | 
|  |  | 
|  | MachineBasicBlock::iterator I = *MI; | 
|  | const SIInstrInfo *TII = | 
|  | static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); | 
|  |  | 
|  | switch (MI->getOpcode()) { | 
|  | default: | 
|  | return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); | 
|  | case AMDGPU::BRANCH: | 
|  | return BB; | 
|  | case AMDGPU::SI_RegisterStorePseudo: { | 
|  | MachineRegisterInfo &MRI = BB->getParent()->getRegInfo(); | 
|  | unsigned Reg = MRI.createVirtualRegister(&AMDGPU::SReg_64RegClass); | 
|  | MachineInstrBuilder MIB = | 
|  | BuildMI(*BB, I, MI->getDebugLoc(), TII->get(AMDGPU::SI_RegisterStore), | 
|  | Reg); | 
|  | for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) | 
|  | MIB.addOperand(MI->getOperand(i)); | 
|  |  | 
|  | MI->eraseFromParent(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | bool SITargetLowering::enableAggressiveFMAFusion(EVT VT) const { | 
|  | // This currently forces unfolding various combinations of fsub into fma with | 
|  | // free fneg'd operands. As long as we have fast FMA (controlled by | 
|  | // isFMAFasterThanFMulAndFAdd), we should perform these. | 
|  |  | 
|  | // When fma is quarter rate, for f64 where add / sub are at best half rate, | 
|  | // most of these combines appear to be cycle neutral but save on instruction | 
|  | // count / code size. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | EVT SITargetLowering::getSetCCResultType(const DataLayout &DL, LLVMContext &Ctx, | 
|  | EVT VT) const { | 
|  | if (!VT.isVector()) { | 
|  | return MVT::i1; | 
|  | } | 
|  | return EVT::getVectorVT(Ctx, MVT::i1, VT.getVectorNumElements()); | 
|  | } | 
|  |  | 
|  | MVT SITargetLowering::getScalarShiftAmountTy(const DataLayout &, EVT) const { | 
|  | return MVT::i32; | 
|  | } | 
|  |  | 
|  | // Answering this is somewhat tricky and depends on the specific device which | 
|  | // have different rates for fma or all f64 operations. | 
|  | // | 
|  | // v_fma_f64 and v_mul_f64 always take the same number of cycles as each other | 
|  | // regardless of which device (although the number of cycles differs between | 
|  | // devices), so it is always profitable for f64. | 
|  | // | 
|  | // v_fma_f32 takes 4 or 16 cycles depending on the device, so it is profitable | 
|  | // only on full rate devices. Normally, we should prefer selecting v_mad_f32 | 
|  | // which we can always do even without fused FP ops since it returns the same | 
|  | // result as the separate operations and since it is always full | 
|  | // rate. Therefore, we lie and report that it is not faster for f32. v_mad_f32 | 
|  | // however does not support denormals, so we do report fma as faster if we have | 
|  | // a fast fma device and require denormals. | 
|  | // | 
|  | bool SITargetLowering::isFMAFasterThanFMulAndFAdd(EVT VT) const { | 
|  | VT = VT.getScalarType(); | 
|  |  | 
|  | if (!VT.isSimple()) | 
|  | return false; | 
|  |  | 
|  | switch (VT.getSimpleVT().SimpleTy) { | 
|  | case MVT::f32: | 
|  | // This is as fast on some subtargets. However, we always have full rate f32 | 
|  | // mad available which returns the same result as the separate operations | 
|  | // which we should prefer over fma. We can't use this if we want to support | 
|  | // denormals, so only report this in these cases. | 
|  | return Subtarget->hasFP32Denormals() && Subtarget->hasFastFMAF32(); | 
|  | case MVT::f64: | 
|  | return true; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Custom DAG Lowering Operations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { | 
|  | switch (Op.getOpcode()) { | 
|  | default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); | 
|  | case ISD::FrameIndex: return LowerFrameIndex(Op, DAG); | 
|  | case ISD::BRCOND: return LowerBRCOND(Op, DAG); | 
|  | case ISD::LOAD: { | 
|  | SDValue Result = LowerLOAD(Op, DAG); | 
|  | assert((!Result.getNode() || | 
|  | Result.getNode()->getNumValues() == 2) && | 
|  | "Load should return a value and a chain"); | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | case ISD::FSIN: | 
|  | case ISD::FCOS: | 
|  | return LowerTrig(Op, DAG); | 
|  | case ISD::SELECT: return LowerSELECT(Op, DAG); | 
|  | case ISD::FDIV: return LowerFDIV(Op, DAG); | 
|  | case ISD::STORE: return LowerSTORE(Op, DAG); | 
|  | case ISD::GlobalAddress: { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | return LowerGlobalAddress(MFI, Op, DAG); | 
|  | } | 
|  | case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); | 
|  | case ISD::INTRINSIC_VOID: return LowerINTRINSIC_VOID(Op, DAG); | 
|  | } | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// \brief Helper function for LowerBRCOND | 
|  | static SDNode *findUser(SDValue Value, unsigned Opcode) { | 
|  |  | 
|  | SDNode *Parent = Value.getNode(); | 
|  | for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); | 
|  | I != E; ++I) { | 
|  |  | 
|  | if (I.getUse().get() != Value) | 
|  | continue; | 
|  |  | 
|  | if (I->getOpcode() == Opcode) | 
|  | return *I; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerFrameIndex(SDValue Op, SelectionDAG &DAG) const { | 
|  |  | 
|  | SDLoc SL(Op); | 
|  | FrameIndexSDNode *FINode = cast<FrameIndexSDNode>(Op); | 
|  | unsigned FrameIndex = FINode->getIndex(); | 
|  |  | 
|  | // A FrameIndex node represents a 32-bit offset into scratch memory.  If | 
|  | // the high bit of a frame index offset were to be set, this would mean | 
|  | // that it represented an offset of ~2GB * 64 = ~128GB from the start of the | 
|  | // scratch buffer, with 64 being the number of threads per wave. | 
|  | // | 
|  | // If we know the machine uses less than 128GB of scratch, then we can | 
|  | // amrk the high bit of the FrameIndex node as known zero, | 
|  | // which is important, because it means in most situations we can | 
|  | // prove that values derived from FrameIndex nodes are non-negative. | 
|  | // This enables us to take advantage of more addressing modes when | 
|  | // accessing scratch buffers, since for scratch reads/writes, the register | 
|  | // offset must always be positive. | 
|  |  | 
|  | SDValue TFI = DAG.getTargetFrameIndex(FrameIndex, MVT::i32); | 
|  | if (Subtarget->enableHugeScratchBuffer()) | 
|  | return TFI; | 
|  |  | 
|  | return DAG.getNode(ISD::AssertZext, SL, MVT::i32, TFI, | 
|  | DAG.getValueType(EVT::getIntegerVT(*DAG.getContext(), 31))); | 
|  | } | 
|  |  | 
|  | /// This transforms the control flow intrinsics to get the branch destination as | 
|  | /// last parameter, also switches branch target with BR if the need arise | 
|  | SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, | 
|  | SelectionDAG &DAG) const { | 
|  |  | 
|  | SDLoc DL(BRCOND); | 
|  |  | 
|  | SDNode *Intr = BRCOND.getOperand(1).getNode(); | 
|  | SDValue Target = BRCOND.getOperand(2); | 
|  | SDNode *BR = nullptr; | 
|  |  | 
|  | if (Intr->getOpcode() == ISD::SETCC) { | 
|  | // As long as we negate the condition everything is fine | 
|  | SDNode *SetCC = Intr; | 
|  | assert(SetCC->getConstantOperandVal(1) == 1); | 
|  | assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == | 
|  | ISD::SETNE); | 
|  | Intr = SetCC->getOperand(0).getNode(); | 
|  |  | 
|  | } else { | 
|  | // Get the target from BR if we don't negate the condition | 
|  | BR = findUser(BRCOND, ISD::BR); | 
|  | Target = BR->getOperand(1); | 
|  | } | 
|  |  | 
|  | assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN); | 
|  |  | 
|  | // Build the result and | 
|  | ArrayRef<EVT> Res(Intr->value_begin() + 1, Intr->value_end()); | 
|  |  | 
|  | // operands of the new intrinsic call | 
|  | SmallVector<SDValue, 4> Ops; | 
|  | Ops.push_back(BRCOND.getOperand(0)); | 
|  | Ops.append(Intr->op_begin() + 1, Intr->op_end()); | 
|  | Ops.push_back(Target); | 
|  |  | 
|  | // build the new intrinsic call | 
|  | SDNode *Result = DAG.getNode( | 
|  | Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL, | 
|  | DAG.getVTList(Res), Ops).getNode(); | 
|  |  | 
|  | if (BR) { | 
|  | // Give the branch instruction our target | 
|  | SDValue Ops[] = { | 
|  | BR->getOperand(0), | 
|  | BRCOND.getOperand(2) | 
|  | }; | 
|  | SDValue NewBR = DAG.getNode(ISD::BR, DL, BR->getVTList(), Ops); | 
|  | DAG.ReplaceAllUsesWith(BR, NewBR.getNode()); | 
|  | BR = NewBR.getNode(); | 
|  | } | 
|  |  | 
|  | SDValue Chain = SDValue(Result, Result->getNumValues() - 1); | 
|  |  | 
|  | // Copy the intrinsic results to registers | 
|  | for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { | 
|  | SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); | 
|  | if (!CopyToReg) | 
|  | continue; | 
|  |  | 
|  | Chain = DAG.getCopyToReg( | 
|  | Chain, DL, | 
|  | CopyToReg->getOperand(1), | 
|  | SDValue(Result, i - 1), | 
|  | SDValue()); | 
|  |  | 
|  | DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); | 
|  | } | 
|  |  | 
|  | // Remove the old intrinsic from the chain | 
|  | DAG.ReplaceAllUsesOfValueWith( | 
|  | SDValue(Intr, Intr->getNumValues() - 1), | 
|  | Intr->getOperand(0)); | 
|  |  | 
|  | return Chain; | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerGlobalAddress(AMDGPUMachineFunction *MFI, | 
|  | SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | GlobalAddressSDNode *GSD = cast<GlobalAddressSDNode>(Op); | 
|  |  | 
|  | if (GSD->getAddressSpace() != AMDGPUAS::CONSTANT_ADDRESS) | 
|  | return AMDGPUTargetLowering::LowerGlobalAddress(MFI, Op, DAG); | 
|  |  | 
|  | SDLoc DL(GSD); | 
|  | const GlobalValue *GV = GSD->getGlobal(); | 
|  | MVT PtrVT = getPointerTy(DAG.getDataLayout(), GSD->getAddressSpace()); | 
|  |  | 
|  | SDValue Ptr = DAG.getNode(AMDGPUISD::CONST_DATA_PTR, DL, PtrVT); | 
|  | SDValue GA = DAG.getTargetGlobalAddress(GV, DL, MVT::i32); | 
|  |  | 
|  | SDValue PtrLo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr, | 
|  | DAG.getConstant(0, DL, MVT::i32)); | 
|  | SDValue PtrHi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, Ptr, | 
|  | DAG.getConstant(1, DL, MVT::i32)); | 
|  |  | 
|  | SDValue Lo = DAG.getNode(ISD::ADDC, DL, DAG.getVTList(MVT::i32, MVT::Glue), | 
|  | PtrLo, GA); | 
|  | SDValue Hi = DAG.getNode(ISD::ADDE, DL, DAG.getVTList(MVT::i32, MVT::Glue), | 
|  | PtrHi, DAG.getConstant(0, DL, MVT::i32), | 
|  | SDValue(Lo.getNode(), 1)); | 
|  | return DAG.getNode(ISD::BUILD_PAIR, DL, MVT::i64, Lo, Hi); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::copyToM0(SelectionDAG &DAG, SDValue Chain, SDLoc DL, | 
|  | SDValue V) const { | 
|  | // We can't use CopyToReg, because MachineCSE won't combine COPY instructions, | 
|  | // so we will end up with redundant moves to m0. | 
|  | // | 
|  | // We can't use S_MOV_B32, because there is no way to specify m0 as the | 
|  | // destination register. | 
|  | // | 
|  | // We have to use them both.  Machine cse will combine all the S_MOV_B32 | 
|  | // instructions and the register coalescer eliminate the extra copies. | 
|  | SDNode *M0 = DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, V.getValueType(), V); | 
|  | return DAG.getCopyToReg(Chain, DL, DAG.getRegister(AMDGPU::M0, MVT::i32), | 
|  | SDValue(M0, 0), SDValue()); // Glue | 
|  | // A Null SDValue creates | 
|  | // a glue result. | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | auto MFI = MF.getInfo<SIMachineFunctionInfo>(); | 
|  | const SIRegisterInfo *TRI = | 
|  | static_cast<const SIRegisterInfo *>(Subtarget->getRegisterInfo()); | 
|  |  | 
|  | EVT VT = Op.getValueType(); | 
|  | SDLoc DL(Op); | 
|  | unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); | 
|  |  | 
|  | switch (IntrinsicID) { | 
|  | case Intrinsic::r600_read_ngroups_x: | 
|  | return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | 
|  | SI::KernelInputOffsets::NGROUPS_X, false); | 
|  | case Intrinsic::r600_read_ngroups_y: | 
|  | return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | 
|  | SI::KernelInputOffsets::NGROUPS_Y, false); | 
|  | case Intrinsic::r600_read_ngroups_z: | 
|  | return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | 
|  | SI::KernelInputOffsets::NGROUPS_Z, false); | 
|  | case Intrinsic::r600_read_global_size_x: | 
|  | return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | 
|  | SI::KernelInputOffsets::GLOBAL_SIZE_X, false); | 
|  | case Intrinsic::r600_read_global_size_y: | 
|  | return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | 
|  | SI::KernelInputOffsets::GLOBAL_SIZE_Y, false); | 
|  | case Intrinsic::r600_read_global_size_z: | 
|  | return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | 
|  | SI::KernelInputOffsets::GLOBAL_SIZE_Z, false); | 
|  | case Intrinsic::r600_read_local_size_x: | 
|  | return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | 
|  | SI::KernelInputOffsets::LOCAL_SIZE_X, false); | 
|  | case Intrinsic::r600_read_local_size_y: | 
|  | return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | 
|  | SI::KernelInputOffsets::LOCAL_SIZE_Y, false); | 
|  | case Intrinsic::r600_read_local_size_z: | 
|  | return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | 
|  | SI::KernelInputOffsets::LOCAL_SIZE_Z, false); | 
|  |  | 
|  | case Intrinsic::AMDGPU_read_workdim: | 
|  | return LowerParameter(DAG, VT, VT, DL, DAG.getEntryNode(), | 
|  | getImplicitParameterOffset(MFI, GRID_DIM), false); | 
|  |  | 
|  | case Intrinsic::r600_read_tgid_x: | 
|  | return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass, | 
|  | TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_X), VT); | 
|  | case Intrinsic::r600_read_tgid_y: | 
|  | return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass, | 
|  | TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Y), VT); | 
|  | case Intrinsic::r600_read_tgid_z: | 
|  | return CreateLiveInRegister(DAG, &AMDGPU::SReg_32RegClass, | 
|  | TRI->getPreloadedValue(MF, SIRegisterInfo::TGID_Z), VT); | 
|  | case Intrinsic::r600_read_tidig_x: | 
|  | return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass, | 
|  | TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_X), VT); | 
|  | case Intrinsic::r600_read_tidig_y: | 
|  | return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass, | 
|  | TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Y), VT); | 
|  | case Intrinsic::r600_read_tidig_z: | 
|  | return CreateLiveInRegister(DAG, &AMDGPU::VGPR_32RegClass, | 
|  | TRI->getPreloadedValue(MF, SIRegisterInfo::TIDIG_Z), VT); | 
|  | case AMDGPUIntrinsic::SI_load_const: { | 
|  | SDValue Ops[] = { | 
|  | Op.getOperand(1), | 
|  | Op.getOperand(2) | 
|  | }; | 
|  |  | 
|  | MachineMemOperand *MMO = MF.getMachineMemOperand( | 
|  | MachinePointerInfo(), | 
|  | MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant, | 
|  | VT.getStoreSize(), 4); | 
|  | return DAG.getMemIntrinsicNode(AMDGPUISD::LOAD_CONSTANT, DL, | 
|  | Op->getVTList(), Ops, VT, MMO); | 
|  | } | 
|  | case AMDGPUIntrinsic::SI_sample: | 
|  | return LowerSampleIntrinsic(AMDGPUISD::SAMPLE, Op, DAG); | 
|  | case AMDGPUIntrinsic::SI_sampleb: | 
|  | return LowerSampleIntrinsic(AMDGPUISD::SAMPLEB, Op, DAG); | 
|  | case AMDGPUIntrinsic::SI_sampled: | 
|  | return LowerSampleIntrinsic(AMDGPUISD::SAMPLED, Op, DAG); | 
|  | case AMDGPUIntrinsic::SI_samplel: | 
|  | return LowerSampleIntrinsic(AMDGPUISD::SAMPLEL, Op, DAG); | 
|  | case AMDGPUIntrinsic::SI_vs_load_input: | 
|  | return DAG.getNode(AMDGPUISD::LOAD_INPUT, DL, VT, | 
|  | Op.getOperand(1), | 
|  | Op.getOperand(2), | 
|  | Op.getOperand(3)); | 
|  |  | 
|  | case AMDGPUIntrinsic::AMDGPU_fract: | 
|  | case AMDGPUIntrinsic::AMDIL_fraction: // Legacy name. | 
|  | return DAG.getNode(ISD::FSUB, DL, VT, Op.getOperand(1), | 
|  | DAG.getNode(ISD::FFLOOR, DL, VT, Op.getOperand(1))); | 
|  | case AMDGPUIntrinsic::SI_fs_constant: { | 
|  | SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3)); | 
|  | SDValue Glue = M0.getValue(1); | 
|  | return DAG.getNode(AMDGPUISD::INTERP_MOV, DL, MVT::f32, | 
|  | DAG.getConstant(2, DL, MVT::i32), // P0 | 
|  | Op.getOperand(1), Op.getOperand(2), Glue); | 
|  | } | 
|  | case AMDGPUIntrinsic::SI_fs_interp: { | 
|  | SDValue IJ = Op.getOperand(4); | 
|  | SDValue I = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ, | 
|  | DAG.getConstant(0, DL, MVT::i32)); | 
|  | SDValue J = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, IJ, | 
|  | DAG.getConstant(1, DL, MVT::i32)); | 
|  | SDValue M0 = copyToM0(DAG, DAG.getEntryNode(), DL, Op.getOperand(3)); | 
|  | SDValue Glue = M0.getValue(1); | 
|  | SDValue P1 = DAG.getNode(AMDGPUISD::INTERP_P1, DL, | 
|  | DAG.getVTList(MVT::f32, MVT::Glue), | 
|  | I, Op.getOperand(1), Op.getOperand(2), Glue); | 
|  | Glue = SDValue(P1.getNode(), 1); | 
|  | return DAG.getNode(AMDGPUISD::INTERP_P2, DL, MVT::f32, P1, J, | 
|  | Op.getOperand(1), Op.getOperand(2), Glue); | 
|  | } | 
|  | default: | 
|  | return AMDGPUTargetLowering::LowerOperation(Op, DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerINTRINSIC_VOID(SDValue Op, | 
|  | SelectionDAG &DAG) const { | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | SDLoc DL(Op); | 
|  | SDValue Chain = Op.getOperand(0); | 
|  | unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue(); | 
|  |  | 
|  | switch (IntrinsicID) { | 
|  | case AMDGPUIntrinsic::SI_sendmsg: { | 
|  | Chain = copyToM0(DAG, Chain, DL, Op.getOperand(3)); | 
|  | SDValue Glue = Chain.getValue(1); | 
|  | return DAG.getNode(AMDGPUISD::SENDMSG, DL, MVT::Other, Chain, | 
|  | Op.getOperand(2), Glue); | 
|  | } | 
|  | case AMDGPUIntrinsic::SI_tbuffer_store: { | 
|  | SDValue Ops[] = { | 
|  | Chain, | 
|  | Op.getOperand(2), | 
|  | Op.getOperand(3), | 
|  | Op.getOperand(4), | 
|  | Op.getOperand(5), | 
|  | Op.getOperand(6), | 
|  | Op.getOperand(7), | 
|  | Op.getOperand(8), | 
|  | Op.getOperand(9), | 
|  | Op.getOperand(10), | 
|  | Op.getOperand(11), | 
|  | Op.getOperand(12), | 
|  | Op.getOperand(13), | 
|  | Op.getOperand(14) | 
|  | }; | 
|  |  | 
|  | EVT VT = Op.getOperand(3).getValueType(); | 
|  |  | 
|  | MachineMemOperand *MMO = MF.getMachineMemOperand( | 
|  | MachinePointerInfo(), | 
|  | MachineMemOperand::MOStore, | 
|  | VT.getStoreSize(), 4); | 
|  | return DAG.getMemIntrinsicNode(AMDGPUISD::TBUFFER_STORE_FORMAT, DL, | 
|  | Op->getVTList(), Ops, VT, MMO); | 
|  | } | 
|  | default: | 
|  | return SDValue(); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | LoadSDNode *Load = cast<LoadSDNode>(Op); | 
|  |  | 
|  | if (Op.getValueType().isVector()) { | 
|  | assert(Op.getValueType().getVectorElementType() == MVT::i32 && | 
|  | "Custom lowering for non-i32 vectors hasn't been implemented."); | 
|  | unsigned NumElements = Op.getValueType().getVectorNumElements(); | 
|  | assert(NumElements != 2 && "v2 loads are supported for all address spaces."); | 
|  | switch (Load->getAddressSpace()) { | 
|  | default: break; | 
|  | case AMDGPUAS::GLOBAL_ADDRESS: | 
|  | case AMDGPUAS::PRIVATE_ADDRESS: | 
|  | // v4 loads are supported for private and global memory. | 
|  | if (NumElements <= 4) | 
|  | break; | 
|  | // fall-through | 
|  | case AMDGPUAS::LOCAL_ADDRESS: | 
|  | return ScalarizeVectorLoad(Op, DAG); | 
|  | } | 
|  | } | 
|  |  | 
|  | return AMDGPUTargetLowering::LowerLOAD(Op, DAG); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerSampleIntrinsic(unsigned Opcode, | 
|  | const SDValue &Op, | 
|  | SelectionDAG &DAG) const { | 
|  | return DAG.getNode(Opcode, SDLoc(Op), Op.getValueType(), Op.getOperand(1), | 
|  | Op.getOperand(2), | 
|  | Op.getOperand(3), | 
|  | Op.getOperand(4)); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerSELECT(SDValue Op, SelectionDAG &DAG) const { | 
|  | if (Op.getValueType() != MVT::i64) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc DL(Op); | 
|  | SDValue Cond = Op.getOperand(0); | 
|  |  | 
|  | SDValue Zero = DAG.getConstant(0, DL, MVT::i32); | 
|  | SDValue One = DAG.getConstant(1, DL, MVT::i32); | 
|  |  | 
|  | SDValue LHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(1)); | 
|  | SDValue RHS = DAG.getNode(ISD::BITCAST, DL, MVT::v2i32, Op.getOperand(2)); | 
|  |  | 
|  | SDValue Lo0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, Zero); | 
|  | SDValue Lo1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, Zero); | 
|  |  | 
|  | SDValue Lo = DAG.getSelect(DL, MVT::i32, Cond, Lo0, Lo1); | 
|  |  | 
|  | SDValue Hi0 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, LHS, One); | 
|  | SDValue Hi1 = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, MVT::i32, RHS, One); | 
|  |  | 
|  | SDValue Hi = DAG.getSelect(DL, MVT::i32, Cond, Hi0, Hi1); | 
|  |  | 
|  | SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, DL, MVT::v2i32, Lo, Hi); | 
|  | return DAG.getNode(ISD::BITCAST, DL, MVT::i64, Res); | 
|  | } | 
|  |  | 
|  | // Catch division cases where we can use shortcuts with rcp and rsq | 
|  | // instructions. | 
|  | SDValue SITargetLowering::LowerFastFDIV(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc SL(Op); | 
|  | SDValue LHS = Op.getOperand(0); | 
|  | SDValue RHS = Op.getOperand(1); | 
|  | EVT VT = Op.getValueType(); | 
|  | bool Unsafe = DAG.getTarget().Options.UnsafeFPMath; | 
|  |  | 
|  | if (const ConstantFPSDNode *CLHS = dyn_cast<ConstantFPSDNode>(LHS)) { | 
|  | if ((Unsafe || (VT == MVT::f32 && !Subtarget->hasFP32Denormals())) && | 
|  | CLHS->isExactlyValue(1.0)) { | 
|  | // v_rcp_f32 and v_rsq_f32 do not support denormals, and according to | 
|  | // the CI documentation has a worst case error of 1 ulp. | 
|  | // OpenCL requires <= 2.5 ulp for 1.0 / x, so it should always be OK to | 
|  | // use it as long as we aren't trying to use denormals. | 
|  |  | 
|  | // 1.0 / sqrt(x) -> rsq(x) | 
|  | // | 
|  | // XXX - Is UnsafeFPMath sufficient to do this for f64? The maximum ULP | 
|  | // error seems really high at 2^29 ULP. | 
|  | if (RHS.getOpcode() == ISD::FSQRT) | 
|  | return DAG.getNode(AMDGPUISD::RSQ, SL, VT, RHS.getOperand(0)); | 
|  |  | 
|  | // 1.0 / x -> rcp(x) | 
|  | return DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Unsafe) { | 
|  | // Turn into multiply by the reciprocal. | 
|  | // x / y -> x * (1.0 / y) | 
|  | SDValue Recip = DAG.getNode(AMDGPUISD::RCP, SL, VT, RHS); | 
|  | return DAG.getNode(ISD::FMUL, SL, VT, LHS, Recip); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerFDIV32(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDValue FastLowered = LowerFastFDIV(Op, DAG); | 
|  | if (FastLowered.getNode()) | 
|  | return FastLowered; | 
|  |  | 
|  | // This uses v_rcp_f32 which does not handle denormals. Let this hit a | 
|  | // selection error for now rather than do something incorrect. | 
|  | if (Subtarget->hasFP32Denormals()) | 
|  | return SDValue(); | 
|  |  | 
|  | SDLoc SL(Op); | 
|  | SDValue LHS = Op.getOperand(0); | 
|  | SDValue RHS = Op.getOperand(1); | 
|  |  | 
|  | SDValue r1 = DAG.getNode(ISD::FABS, SL, MVT::f32, RHS); | 
|  |  | 
|  | const APFloat K0Val(BitsToFloat(0x6f800000)); | 
|  | const SDValue K0 = DAG.getConstantFP(K0Val, SL, MVT::f32); | 
|  |  | 
|  | const APFloat K1Val(BitsToFloat(0x2f800000)); | 
|  | const SDValue K1 = DAG.getConstantFP(K1Val, SL, MVT::f32); | 
|  |  | 
|  | const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f32); | 
|  |  | 
|  | EVT SetCCVT = | 
|  | getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), MVT::f32); | 
|  |  | 
|  | SDValue r2 = DAG.getSetCC(SL, SetCCVT, r1, K0, ISD::SETOGT); | 
|  |  | 
|  | SDValue r3 = DAG.getNode(ISD::SELECT, SL, MVT::f32, r2, K1, One); | 
|  |  | 
|  | r1 = DAG.getNode(ISD::FMUL, SL, MVT::f32, RHS, r3); | 
|  |  | 
|  | SDValue r0 = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f32, r1); | 
|  |  | 
|  | SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f32, LHS, r0); | 
|  |  | 
|  | return DAG.getNode(ISD::FMUL, SL, MVT::f32, r3, Mul); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerFDIV64(SDValue Op, SelectionDAG &DAG) const { | 
|  | if (DAG.getTarget().Options.UnsafeFPMath) | 
|  | return LowerFastFDIV(Op, DAG); | 
|  |  | 
|  | SDLoc SL(Op); | 
|  | SDValue X = Op.getOperand(0); | 
|  | SDValue Y = Op.getOperand(1); | 
|  |  | 
|  | const SDValue One = DAG.getConstantFP(1.0, SL, MVT::f64); | 
|  |  | 
|  | SDVTList ScaleVT = DAG.getVTList(MVT::f64, MVT::i1); | 
|  |  | 
|  | SDValue DivScale0 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, Y, Y, X); | 
|  |  | 
|  | SDValue NegDivScale0 = DAG.getNode(ISD::FNEG, SL, MVT::f64, DivScale0); | 
|  |  | 
|  | SDValue Rcp = DAG.getNode(AMDGPUISD::RCP, SL, MVT::f64, DivScale0); | 
|  |  | 
|  | SDValue Fma0 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Rcp, One); | 
|  |  | 
|  | SDValue Fma1 = DAG.getNode(ISD::FMA, SL, MVT::f64, Rcp, Fma0, Rcp); | 
|  |  | 
|  | SDValue Fma2 = DAG.getNode(ISD::FMA, SL, MVT::f64, NegDivScale0, Fma1, One); | 
|  |  | 
|  | SDValue DivScale1 = DAG.getNode(AMDGPUISD::DIV_SCALE, SL, ScaleVT, X, Y, X); | 
|  |  | 
|  | SDValue Fma3 = DAG.getNode(ISD::FMA, SL, MVT::f64, Fma1, Fma2, Fma1); | 
|  | SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, DivScale1, Fma3); | 
|  |  | 
|  | SDValue Fma4 = DAG.getNode(ISD::FMA, SL, MVT::f64, | 
|  | NegDivScale0, Mul, DivScale1); | 
|  |  | 
|  | SDValue Scale; | 
|  |  | 
|  | if (Subtarget->getGeneration() == AMDGPUSubtarget::SOUTHERN_ISLANDS) { | 
|  | // Workaround a hardware bug on SI where the condition output from div_scale | 
|  | // is not usable. | 
|  |  | 
|  | const SDValue Hi = DAG.getConstant(1, SL, MVT::i32); | 
|  |  | 
|  | // Figure out if the scale to use for div_fmas. | 
|  | SDValue NumBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X); | 
|  | SDValue DenBC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Y); | 
|  | SDValue Scale0BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale0); | 
|  | SDValue Scale1BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, DivScale1); | 
|  |  | 
|  | SDValue NumHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, NumBC, Hi); | 
|  | SDValue DenHi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, DenBC, Hi); | 
|  |  | 
|  | SDValue Scale0Hi | 
|  | = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale0BC, Hi); | 
|  | SDValue Scale1Hi | 
|  | = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, Scale1BC, Hi); | 
|  |  | 
|  | SDValue CmpDen = DAG.getSetCC(SL, MVT::i1, DenHi, Scale0Hi, ISD::SETEQ); | 
|  | SDValue CmpNum = DAG.getSetCC(SL, MVT::i1, NumHi, Scale1Hi, ISD::SETEQ); | 
|  | Scale = DAG.getNode(ISD::XOR, SL, MVT::i1, CmpNum, CmpDen); | 
|  | } else { | 
|  | Scale = DivScale1.getValue(1); | 
|  | } | 
|  |  | 
|  | SDValue Fmas = DAG.getNode(AMDGPUISD::DIV_FMAS, SL, MVT::f64, | 
|  | Fma4, Fma3, Mul, Scale); | 
|  |  | 
|  | return DAG.getNode(AMDGPUISD::DIV_FIXUP, SL, MVT::f64, Fmas, Y, X); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerFDIV(SDValue Op, SelectionDAG &DAG) const { | 
|  | EVT VT = Op.getValueType(); | 
|  |  | 
|  | if (VT == MVT::f32) | 
|  | return LowerFDIV32(Op, DAG); | 
|  |  | 
|  | if (VT == MVT::f64) | 
|  | return LowerFDIV64(Op, DAG); | 
|  |  | 
|  | llvm_unreachable("Unexpected type for fdiv"); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | StoreSDNode *Store = cast<StoreSDNode>(Op); | 
|  | EVT VT = Store->getMemoryVT(); | 
|  |  | 
|  | // These stores are legal. | 
|  | if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) { | 
|  | if (VT.isVector() && VT.getVectorNumElements() > 4) | 
|  | return ScalarizeVectorStore(Op, DAG); | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue Ret = AMDGPUTargetLowering::LowerSTORE(Op, DAG); | 
|  | if (Ret.getNode()) | 
|  | return Ret; | 
|  |  | 
|  | if (VT.isVector() && VT.getVectorNumElements() >= 8) | 
|  | return ScalarizeVectorStore(Op, DAG); | 
|  |  | 
|  | if (VT == MVT::i1) | 
|  | return DAG.getTruncStore(Store->getChain(), DL, | 
|  | DAG.getSExtOrTrunc(Store->getValue(), DL, MVT::i32), | 
|  | Store->getBasePtr(), MVT::i1, Store->getMemOperand()); | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::LowerTrig(SDValue Op, SelectionDAG &DAG) const { | 
|  | SDLoc DL(Op); | 
|  | EVT VT = Op.getValueType(); | 
|  | SDValue Arg = Op.getOperand(0); | 
|  | SDValue FractPart = DAG.getNode(AMDGPUISD::FRACT, DL, VT, | 
|  | DAG.getNode(ISD::FMUL, DL, VT, Arg, | 
|  | DAG.getConstantFP(0.5/M_PI, DL, | 
|  | VT))); | 
|  |  | 
|  | switch (Op.getOpcode()) { | 
|  | case ISD::FCOS: | 
|  | return DAG.getNode(AMDGPUISD::COS_HW, SDLoc(Op), VT, FractPart); | 
|  | case ISD::FSIN: | 
|  | return DAG.getNode(AMDGPUISD::SIN_HW, SDLoc(Op), VT, FractPart); | 
|  | default: | 
|  | llvm_unreachable("Wrong trig opcode"); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Custom DAG optimizations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | SDValue SITargetLowering::performUCharToFloatCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | EVT VT = N->getValueType(0); | 
|  | EVT ScalarVT = VT.getScalarType(); | 
|  | if (ScalarVT != MVT::f32) | 
|  | return SDValue(); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc DL(N); | 
|  |  | 
|  | SDValue Src = N->getOperand(0); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  |  | 
|  | // TODO: We could try to match extracting the higher bytes, which would be | 
|  | // easier if i8 vectors weren't promoted to i32 vectors, particularly after | 
|  | // types are legalized. v4i8 -> v4f32 is probably the only case to worry | 
|  | // about in practice. | 
|  | if (DCI.isAfterLegalizeVectorOps() && SrcVT == MVT::i32) { | 
|  | if (DAG.MaskedValueIsZero(Src, APInt::getHighBitsSet(32, 24))) { | 
|  | SDValue Cvt = DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Src); | 
|  | DCI.AddToWorklist(Cvt.getNode()); | 
|  | return Cvt; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We are primarily trying to catch operations on illegal vector types | 
|  | // before they are expanded. | 
|  | // For scalars, we can use the more flexible method of checking masked bits | 
|  | // after legalization. | 
|  | if (!DCI.isBeforeLegalize() || | 
|  | !SrcVT.isVector() || | 
|  | SrcVT.getVectorElementType() != MVT::i8) { | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | assert(DCI.isBeforeLegalize() && "Unexpected legal type"); | 
|  |  | 
|  | // Weird sized vectors are a pain to handle, but we know 3 is really the same | 
|  | // size as 4. | 
|  | unsigned NElts = SrcVT.getVectorNumElements(); | 
|  | if (!SrcVT.isSimple() && NElts != 3) | 
|  | return SDValue(); | 
|  |  | 
|  | // Handle v4i8 -> v4f32 extload. Replace the v4i8 with a legal i32 load to | 
|  | // prevent a mess from expanding to v4i32 and repacking. | 
|  | if (ISD::isNormalLoad(Src.getNode()) && Src.hasOneUse()) { | 
|  | EVT LoadVT = getEquivalentMemType(*DAG.getContext(), SrcVT); | 
|  | EVT RegVT = getEquivalentLoadRegType(*DAG.getContext(), SrcVT); | 
|  | EVT FloatVT = EVT::getVectorVT(*DAG.getContext(), MVT::f32, NElts); | 
|  | LoadSDNode *Load = cast<LoadSDNode>(Src); | 
|  |  | 
|  | unsigned AS = Load->getAddressSpace(); | 
|  | unsigned Align = Load->getAlignment(); | 
|  | Type *Ty = LoadVT.getTypeForEVT(*DAG.getContext()); | 
|  | unsigned ABIAlignment = DAG.getDataLayout().getABITypeAlignment(Ty); | 
|  |  | 
|  | // Don't try to replace the load if we have to expand it due to alignment | 
|  | // problems. Otherwise we will end up scalarizing the load, and trying to | 
|  | // repack into the vector for no real reason. | 
|  | if (Align < ABIAlignment && | 
|  | !allowsMisalignedMemoryAccesses(LoadVT, AS, Align, nullptr)) { | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue NewLoad = DAG.getExtLoad(ISD::ZEXTLOAD, DL, RegVT, | 
|  | Load->getChain(), | 
|  | Load->getBasePtr(), | 
|  | LoadVT, | 
|  | Load->getMemOperand()); | 
|  |  | 
|  | // Make sure successors of the original load stay after it by updating | 
|  | // them to use the new Chain. | 
|  | DAG.ReplaceAllUsesOfValueWith(SDValue(Load, 1), NewLoad.getValue(1)); | 
|  |  | 
|  | SmallVector<SDValue, 4> Elts; | 
|  | if (RegVT.isVector()) | 
|  | DAG.ExtractVectorElements(NewLoad, Elts); | 
|  | else | 
|  | Elts.push_back(NewLoad); | 
|  |  | 
|  | SmallVector<SDValue, 4> Ops; | 
|  |  | 
|  | unsigned EltIdx = 0; | 
|  | for (SDValue Elt : Elts) { | 
|  | unsigned ComponentsInElt = std::min(4u, NElts - 4 * EltIdx); | 
|  | for (unsigned I = 0; I < ComponentsInElt; ++I) { | 
|  | unsigned Opc = AMDGPUISD::CVT_F32_UBYTE0 + I; | 
|  | SDValue Cvt = DAG.getNode(Opc, DL, MVT::f32, Elt); | 
|  | DCI.AddToWorklist(Cvt.getNode()); | 
|  | Ops.push_back(Cvt); | 
|  | } | 
|  |  | 
|  | ++EltIdx; | 
|  | } | 
|  |  | 
|  | assert(Ops.size() == NElts); | 
|  |  | 
|  | return DAG.getNode(ISD::BUILD_VECTOR, DL, FloatVT, Ops); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | /// \brief Return true if the given offset Size in bytes can be folded into | 
|  | /// the immediate offsets of a memory instruction for the given address space. | 
|  | static bool canFoldOffset(unsigned OffsetSize, unsigned AS, | 
|  | const AMDGPUSubtarget &STI) { | 
|  | switch (AS) { | 
|  | case AMDGPUAS::GLOBAL_ADDRESS: { | 
|  | // MUBUF instructions a 12-bit offset in bytes. | 
|  | return isUInt<12>(OffsetSize); | 
|  | } | 
|  | case AMDGPUAS::CONSTANT_ADDRESS: { | 
|  | // SMRD instructions have an 8-bit offset in dwords on SI and | 
|  | // a 20-bit offset in bytes on VI. | 
|  | if (STI.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) | 
|  | return isUInt<20>(OffsetSize); | 
|  | else | 
|  | return (OffsetSize % 4 == 0) && isUInt<8>(OffsetSize / 4); | 
|  | } | 
|  | case AMDGPUAS::LOCAL_ADDRESS: | 
|  | case AMDGPUAS::REGION_ADDRESS: { | 
|  | // The single offset versions have a 16-bit offset in bytes. | 
|  | return isUInt<16>(OffsetSize); | 
|  | } | 
|  | case AMDGPUAS::PRIVATE_ADDRESS: | 
|  | // Indirect register addressing does not use any offsets. | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // (shl (add x, c1), c2) -> add (shl x, c2), (shl c1, c2) | 
|  |  | 
|  | // This is a variant of | 
|  | // (mul (add x, c1), c2) -> add (mul x, c2), (mul c1, c2), | 
|  | // | 
|  | // The normal DAG combiner will do this, but only if the add has one use since | 
|  | // that would increase the number of instructions. | 
|  | // | 
|  | // This prevents us from seeing a constant offset that can be folded into a | 
|  | // memory instruction's addressing mode. If we know the resulting add offset of | 
|  | // a pointer can be folded into an addressing offset, we can replace the pointer | 
|  | // operand with the add of new constant offset. This eliminates one of the uses, | 
|  | // and may allow the remaining use to also be simplified. | 
|  | // | 
|  | SDValue SITargetLowering::performSHLPtrCombine(SDNode *N, | 
|  | unsigned AddrSpace, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SDValue N0 = N->getOperand(0); | 
|  | SDValue N1 = N->getOperand(1); | 
|  |  | 
|  | if (N0.getOpcode() != ISD::ADD) | 
|  | return SDValue(); | 
|  |  | 
|  | const ConstantSDNode *CN1 = dyn_cast<ConstantSDNode>(N1); | 
|  | if (!CN1) | 
|  | return SDValue(); | 
|  |  | 
|  | const ConstantSDNode *CAdd = dyn_cast<ConstantSDNode>(N0.getOperand(1)); | 
|  | if (!CAdd) | 
|  | return SDValue(); | 
|  |  | 
|  | // If the resulting offset is too large, we can't fold it into the addressing | 
|  | // mode offset. | 
|  | APInt Offset = CAdd->getAPIntValue() << CN1->getAPIntValue(); | 
|  | if (!canFoldOffset(Offset.getZExtValue(), AddrSpace, *Subtarget)) | 
|  | return SDValue(); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc SL(N); | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | SDValue ShlX = DAG.getNode(ISD::SHL, SL, VT, N0.getOperand(0), N1); | 
|  | SDValue COffset = DAG.getConstant(Offset, SL, MVT::i32); | 
|  |  | 
|  | return DAG.getNode(ISD::ADD, SL, VT, ShlX, COffset); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performAndCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | if (DCI.isBeforeLegalize()) | 
|  | return SDValue(); | 
|  |  | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  |  | 
|  | // (and (fcmp ord x, x), (fcmp une (fabs x), inf)) -> | 
|  | // fp_class x, ~(s_nan | q_nan | n_infinity | p_infinity) | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  |  | 
|  | if (LHS.getOpcode() == ISD::SETCC && | 
|  | RHS.getOpcode() == ISD::SETCC) { | 
|  | ISD::CondCode LCC = cast<CondCodeSDNode>(LHS.getOperand(2))->get(); | 
|  | ISD::CondCode RCC = cast<CondCodeSDNode>(RHS.getOperand(2))->get(); | 
|  |  | 
|  | SDValue X = LHS.getOperand(0); | 
|  | SDValue Y = RHS.getOperand(0); | 
|  | if (Y.getOpcode() != ISD::FABS || Y.getOperand(0) != X) | 
|  | return SDValue(); | 
|  |  | 
|  | if (LCC == ISD::SETO) { | 
|  | if (X != LHS.getOperand(1)) | 
|  | return SDValue(); | 
|  |  | 
|  | if (RCC == ISD::SETUNE) { | 
|  | const ConstantFPSDNode *C1 = dyn_cast<ConstantFPSDNode>(RHS.getOperand(1)); | 
|  | if (!C1 || !C1->isInfinity() || C1->isNegative()) | 
|  | return SDValue(); | 
|  |  | 
|  | const uint32_t Mask = SIInstrFlags::N_NORMAL | | 
|  | SIInstrFlags::N_SUBNORMAL | | 
|  | SIInstrFlags::N_ZERO | | 
|  | SIInstrFlags::P_ZERO | | 
|  | SIInstrFlags::P_SUBNORMAL | | 
|  | SIInstrFlags::P_NORMAL; | 
|  |  | 
|  | static_assert(((~(SIInstrFlags::S_NAN | | 
|  | SIInstrFlags::Q_NAN | | 
|  | SIInstrFlags::N_INFINITY | | 
|  | SIInstrFlags::P_INFINITY)) & 0x3ff) == Mask, | 
|  | "mask not equal"); | 
|  |  | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, | 
|  | X, DAG.getConstant(Mask, DL, MVT::i32)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performOrCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  |  | 
|  | // or (fp_class x, c1), (fp_class x, c2) -> fp_class x, (c1 | c2) | 
|  | if (LHS.getOpcode() == AMDGPUISD::FP_CLASS && | 
|  | RHS.getOpcode() == AMDGPUISD::FP_CLASS) { | 
|  | SDValue Src = LHS.getOperand(0); | 
|  | if (Src != RHS.getOperand(0)) | 
|  | return SDValue(); | 
|  |  | 
|  | const ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(LHS.getOperand(1)); | 
|  | const ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(RHS.getOperand(1)); | 
|  | if (!CLHS || !CRHS) | 
|  | return SDValue(); | 
|  |  | 
|  | // Only 10 bits are used. | 
|  | static const uint32_t MaxMask = 0x3ff; | 
|  |  | 
|  | uint32_t NewMask = (CLHS->getZExtValue() | CRHS->getZExtValue()) & MaxMask; | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(AMDGPUISD::FP_CLASS, DL, MVT::i1, | 
|  | Src, DAG.getConstant(NewMask, DL, MVT::i32)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performClassCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDValue Mask = N->getOperand(1); | 
|  |  | 
|  | // fp_class x, 0 -> false | 
|  | if (const ConstantSDNode *CMask = dyn_cast<ConstantSDNode>(Mask)) { | 
|  | if (CMask->isNullValue()) | 
|  | return DAG.getConstant(0, SDLoc(N), MVT::i1); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | static unsigned minMaxOpcToMin3Max3Opc(unsigned Opc) { | 
|  | switch (Opc) { | 
|  | case ISD::FMAXNUM: | 
|  | return AMDGPUISD::FMAX3; | 
|  | case ISD::SMAX: | 
|  | return AMDGPUISD::SMAX3; | 
|  | case ISD::UMAX: | 
|  | return AMDGPUISD::UMAX3; | 
|  | case ISD::FMINNUM: | 
|  | return AMDGPUISD::FMIN3; | 
|  | case ISD::SMIN: | 
|  | return AMDGPUISD::SMIN3; | 
|  | case ISD::UMIN: | 
|  | return AMDGPUISD::UMIN3; | 
|  | default: | 
|  | llvm_unreachable("Not a min/max opcode"); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performMin3Max3Combine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  |  | 
|  | unsigned Opc = N->getOpcode(); | 
|  | SDValue Op0 = N->getOperand(0); | 
|  | SDValue Op1 = N->getOperand(1); | 
|  |  | 
|  | // Only do this if the inner op has one use since this will just increases | 
|  | // register pressure for no benefit. | 
|  |  | 
|  | // max(max(a, b), c) | 
|  | if (Op0.getOpcode() == Opc && Op0.hasOneUse()) { | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), | 
|  | DL, | 
|  | N->getValueType(0), | 
|  | Op0.getOperand(0), | 
|  | Op0.getOperand(1), | 
|  | Op1); | 
|  | } | 
|  |  | 
|  | // max(a, max(b, c)) | 
|  | if (Op1.getOpcode() == Opc && Op1.hasOneUse()) { | 
|  | SDLoc DL(N); | 
|  | return DAG.getNode(minMaxOpcToMin3Max3Opc(Opc), | 
|  | DL, | 
|  | N->getValueType(0), | 
|  | Op0, | 
|  | Op1.getOperand(0), | 
|  | Op1.getOperand(1)); | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::performSetCCCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc SL(N); | 
|  |  | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | EVT VT = LHS.getValueType(); | 
|  |  | 
|  | if (VT != MVT::f32 && VT != MVT::f64) | 
|  | return SDValue(); | 
|  |  | 
|  | // Match isinf pattern | 
|  | // (fcmp oeq (fabs x), inf) -> (fp_class x, (p_infinity | n_infinity)) | 
|  | ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get(); | 
|  | if (CC == ISD::SETOEQ && LHS.getOpcode() == ISD::FABS) { | 
|  | const ConstantFPSDNode *CRHS = dyn_cast<ConstantFPSDNode>(RHS); | 
|  | if (!CRHS) | 
|  | return SDValue(); | 
|  |  | 
|  | const APFloat &APF = CRHS->getValueAPF(); | 
|  | if (APF.isInfinity() && !APF.isNegative()) { | 
|  | unsigned Mask = SIInstrFlags::P_INFINITY | SIInstrFlags::N_INFINITY; | 
|  | return DAG.getNode(AMDGPUISD::FP_CLASS, SL, MVT::i1, LHS.getOperand(0), | 
|  | DAG.getConstant(Mask, SL, MVT::i32)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::PerformDAGCombine(SDNode *N, | 
|  | DAGCombinerInfo &DCI) const { | 
|  | SelectionDAG &DAG = DCI.DAG; | 
|  | SDLoc DL(N); | 
|  |  | 
|  | switch (N->getOpcode()) { | 
|  | default: | 
|  | return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); | 
|  | case ISD::SETCC: | 
|  | return performSetCCCombine(N, DCI); | 
|  | case ISD::FMAXNUM: // TODO: What about fmax_legacy? | 
|  | case ISD::FMINNUM: | 
|  | case ISD::SMAX: | 
|  | case ISD::SMIN: | 
|  | case ISD::UMAX: | 
|  | case ISD::UMIN: { | 
|  | if (DCI.getDAGCombineLevel() >= AfterLegalizeDAG && | 
|  | N->getValueType(0) != MVT::f64 && | 
|  | getTargetMachine().getOptLevel() > CodeGenOpt::None) | 
|  | return performMin3Max3Combine(N, DCI); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case AMDGPUISD::CVT_F32_UBYTE0: | 
|  | case AMDGPUISD::CVT_F32_UBYTE1: | 
|  | case AMDGPUISD::CVT_F32_UBYTE2: | 
|  | case AMDGPUISD::CVT_F32_UBYTE3: { | 
|  | unsigned Offset = N->getOpcode() - AMDGPUISD::CVT_F32_UBYTE0; | 
|  |  | 
|  | SDValue Src = N->getOperand(0); | 
|  | APInt Demanded = APInt::getBitsSet(32, 8 * Offset, 8 * Offset + 8); | 
|  |  | 
|  | APInt KnownZero, KnownOne; | 
|  | TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(), | 
|  | !DCI.isBeforeLegalizeOps()); | 
|  | const TargetLowering &TLI = DAG.getTargetLoweringInfo(); | 
|  | if (TLO.ShrinkDemandedConstant(Src, Demanded) || | 
|  | TLI.SimplifyDemandedBits(Src, Demanded, KnownZero, KnownOne, TLO)) { | 
|  | DCI.CommitTargetLoweringOpt(TLO); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  |  | 
|  | case ISD::UINT_TO_FP: { | 
|  | return performUCharToFloatCombine(N, DCI); | 
|  |  | 
|  | case ISD::FADD: { | 
|  | if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) | 
|  | break; | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  | if (VT != MVT::f32) | 
|  | break; | 
|  |  | 
|  | // Only do this if we are not trying to support denormals. v_mad_f32 does | 
|  | // not support denormals ever. | 
|  | if (Subtarget->hasFP32Denormals()) | 
|  | break; | 
|  |  | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  |  | 
|  | // These should really be instruction patterns, but writing patterns with | 
|  | // source modiifiers is a pain. | 
|  |  | 
|  | // fadd (fadd (a, a), b) -> mad 2.0, a, b | 
|  | if (LHS.getOpcode() == ISD::FADD) { | 
|  | SDValue A = LHS.getOperand(0); | 
|  | if (A == LHS.getOperand(1)) { | 
|  | const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32); | 
|  | return DAG.getNode(ISD::FMAD, DL, VT, Two, A, RHS); | 
|  | } | 
|  | } | 
|  |  | 
|  | // fadd (b, fadd (a, a)) -> mad 2.0, a, b | 
|  | if (RHS.getOpcode() == ISD::FADD) { | 
|  | SDValue A = RHS.getOperand(0); | 
|  | if (A == RHS.getOperand(1)) { | 
|  | const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32); | 
|  | return DAG.getNode(ISD::FMAD, DL, VT, Two, A, LHS); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  | case ISD::FSUB: { | 
|  | if (DCI.getDAGCombineLevel() < AfterLegalizeDAG) | 
|  | break; | 
|  |  | 
|  | EVT VT = N->getValueType(0); | 
|  |  | 
|  | // Try to get the fneg to fold into the source modifier. This undoes generic | 
|  | // DAG combines and folds them into the mad. | 
|  | // | 
|  | // Only do this if we are not trying to support denormals. v_mad_f32 does | 
|  | // not support denormals ever. | 
|  | if (VT == MVT::f32 && | 
|  | !Subtarget->hasFP32Denormals()) { | 
|  | SDValue LHS = N->getOperand(0); | 
|  | SDValue RHS = N->getOperand(1); | 
|  | if (LHS.getOpcode() == ISD::FADD) { | 
|  | // (fsub (fadd a, a), c) -> mad 2.0, a, (fneg c) | 
|  |  | 
|  | SDValue A = LHS.getOperand(0); | 
|  | if (A == LHS.getOperand(1)) { | 
|  | const SDValue Two = DAG.getConstantFP(2.0, DL, MVT::f32); | 
|  | SDValue NegRHS = DAG.getNode(ISD::FNEG, DL, VT, RHS); | 
|  |  | 
|  | return DAG.getNode(ISD::FMAD, DL, VT, Two, A, NegRHS); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (RHS.getOpcode() == ISD::FADD) { | 
|  | // (fsub c, (fadd a, a)) -> mad -2.0, a, c | 
|  |  | 
|  | SDValue A = RHS.getOperand(0); | 
|  | if (A == RHS.getOperand(1)) { | 
|  | const SDValue NegTwo = DAG.getConstantFP(-2.0, DL, MVT::f32); | 
|  | return DAG.getNode(ISD::FMAD, DL, VT, NegTwo, A, LHS); | 
|  | } | 
|  | } | 
|  |  | 
|  | return SDValue(); | 
|  | } | 
|  |  | 
|  | break; | 
|  | } | 
|  | } | 
|  | case ISD::LOAD: | 
|  | case ISD::STORE: | 
|  | case ISD::ATOMIC_LOAD: | 
|  | case ISD::ATOMIC_STORE: | 
|  | case ISD::ATOMIC_CMP_SWAP: | 
|  | case ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS: | 
|  | case ISD::ATOMIC_SWAP: | 
|  | case ISD::ATOMIC_LOAD_ADD: | 
|  | case ISD::ATOMIC_LOAD_SUB: | 
|  | case ISD::ATOMIC_LOAD_AND: | 
|  | case ISD::ATOMIC_LOAD_OR: | 
|  | case ISD::ATOMIC_LOAD_XOR: | 
|  | case ISD::ATOMIC_LOAD_NAND: | 
|  | case ISD::ATOMIC_LOAD_MIN: | 
|  | case ISD::ATOMIC_LOAD_MAX: | 
|  | case ISD::ATOMIC_LOAD_UMIN: | 
|  | case ISD::ATOMIC_LOAD_UMAX: { // TODO: Target mem intrinsics. | 
|  | if (DCI.isBeforeLegalize()) | 
|  | break; | 
|  |  | 
|  | MemSDNode *MemNode = cast<MemSDNode>(N); | 
|  | SDValue Ptr = MemNode->getBasePtr(); | 
|  |  | 
|  | // TODO: We could also do this for multiplies. | 
|  | unsigned AS = MemNode->getAddressSpace(); | 
|  | if (Ptr.getOpcode() == ISD::SHL && AS != AMDGPUAS::PRIVATE_ADDRESS) { | 
|  | SDValue NewPtr = performSHLPtrCombine(Ptr.getNode(), AS, DCI); | 
|  | if (NewPtr) { | 
|  | SmallVector<SDValue, 8> NewOps(MemNode->op_begin(), MemNode->op_end()); | 
|  |  | 
|  | NewOps[N->getOpcode() == ISD::STORE ? 2 : 1] = NewPtr; | 
|  | return SDValue(DAG.UpdateNodeOperands(MemNode, NewOps), 0); | 
|  | } | 
|  | } | 
|  | break; | 
|  | } | 
|  | case ISD::AND: | 
|  | return performAndCombine(N, DCI); | 
|  | case ISD::OR: | 
|  | return performOrCombine(N, DCI); | 
|  | case AMDGPUISD::FP_CLASS: | 
|  | return performClassCombine(N, DCI); | 
|  | } | 
|  | return AMDGPUTargetLowering::PerformDAGCombine(N, DCI); | 
|  | } | 
|  |  | 
|  | /// \brief Analyze the possible immediate value Op | 
|  | /// | 
|  | /// Returns -1 if it isn't an immediate, 0 if it's and inline immediate | 
|  | /// and the immediate value if it's a literal immediate | 
|  | int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const { | 
|  |  | 
|  | const SIInstrInfo *TII = | 
|  | static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); | 
|  |  | 
|  | if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) { | 
|  | if (TII->isInlineConstant(Node->getAPIntValue())) | 
|  | return 0; | 
|  |  | 
|  | uint64_t Val = Node->getZExtValue(); | 
|  | return isUInt<32>(Val) ? Val : -1; | 
|  | } | 
|  |  | 
|  | if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) { | 
|  | if (TII->isInlineConstant(Node->getValueAPF().bitcastToAPInt())) | 
|  | return 0; | 
|  |  | 
|  | if (Node->getValueType(0) == MVT::f32) | 
|  | return FloatToBits(Node->getValueAPF().convertToFloat()); | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /// \brief Helper function for adjustWritemask | 
|  | static unsigned SubIdx2Lane(unsigned Idx) { | 
|  | switch (Idx) { | 
|  | default: return 0; | 
|  | case AMDGPU::sub0: return 0; | 
|  | case AMDGPU::sub1: return 1; | 
|  | case AMDGPU::sub2: return 2; | 
|  | case AMDGPU::sub3: return 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// \brief Adjust the writemask of MIMG instructions | 
|  | void SITargetLowering::adjustWritemask(MachineSDNode *&Node, | 
|  | SelectionDAG &DAG) const { | 
|  | SDNode *Users[4] = { }; | 
|  | unsigned Lane = 0; | 
|  | unsigned OldDmask = Node->getConstantOperandVal(0); | 
|  | unsigned NewDmask = 0; | 
|  |  | 
|  | // Try to figure out the used register components | 
|  | for (SDNode::use_iterator I = Node->use_begin(), E = Node->use_end(); | 
|  | I != E; ++I) { | 
|  |  | 
|  | // Abort if we can't understand the usage | 
|  | if (!I->isMachineOpcode() || | 
|  | I->getMachineOpcode() != TargetOpcode::EXTRACT_SUBREG) | 
|  | return; | 
|  |  | 
|  | // Lane means which subreg of %VGPRa_VGPRb_VGPRc_VGPRd is used. | 
|  | // Note that subregs are packed, i.e. Lane==0 is the first bit set | 
|  | // in OldDmask, so it can be any of X,Y,Z,W; Lane==1 is the second bit | 
|  | // set, etc. | 
|  | Lane = SubIdx2Lane(I->getConstantOperandVal(1)); | 
|  |  | 
|  | // Set which texture component corresponds to the lane. | 
|  | unsigned Comp; | 
|  | for (unsigned i = 0, Dmask = OldDmask; i <= Lane; i++) { | 
|  | assert(Dmask); | 
|  | Comp = countTrailingZeros(Dmask); | 
|  | Dmask &= ~(1 << Comp); | 
|  | } | 
|  |  | 
|  | // Abort if we have more than one user per component | 
|  | if (Users[Lane]) | 
|  | return; | 
|  |  | 
|  | Users[Lane] = *I; | 
|  | NewDmask |= 1 << Comp; | 
|  | } | 
|  |  | 
|  | // Abort if there's no change | 
|  | if (NewDmask == OldDmask) | 
|  | return; | 
|  |  | 
|  | // Adjust the writemask in the node | 
|  | std::vector<SDValue> Ops; | 
|  | Ops.push_back(DAG.getTargetConstant(NewDmask, SDLoc(Node), MVT::i32)); | 
|  | Ops.insert(Ops.end(), Node->op_begin() + 1, Node->op_end()); | 
|  | Node = (MachineSDNode*)DAG.UpdateNodeOperands(Node, Ops); | 
|  |  | 
|  | // If we only got one lane, replace it with a copy | 
|  | // (if NewDmask has only one bit set...) | 
|  | if (NewDmask && (NewDmask & (NewDmask-1)) == 0) { | 
|  | SDValue RC = DAG.getTargetConstant(AMDGPU::VGPR_32RegClassID, SDLoc(), | 
|  | MVT::i32); | 
|  | SDNode *Copy = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS, | 
|  | SDLoc(), Users[Lane]->getValueType(0), | 
|  | SDValue(Node, 0), RC); | 
|  | DAG.ReplaceAllUsesWith(Users[Lane], Copy); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Update the users of the node with the new indices | 
|  | for (unsigned i = 0, Idx = AMDGPU::sub0; i < 4; ++i) { | 
|  |  | 
|  | SDNode *User = Users[i]; | 
|  | if (!User) | 
|  | continue; | 
|  |  | 
|  | SDValue Op = DAG.getTargetConstant(Idx, SDLoc(User), MVT::i32); | 
|  | DAG.UpdateNodeOperands(User, User->getOperand(0), Op); | 
|  |  | 
|  | switch (Idx) { | 
|  | default: break; | 
|  | case AMDGPU::sub0: Idx = AMDGPU::sub1; break; | 
|  | case AMDGPU::sub1: Idx = AMDGPU::sub2; break; | 
|  | case AMDGPU::sub2: Idx = AMDGPU::sub3; break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool isFrameIndexOp(SDValue Op) { | 
|  | if (Op.getOpcode() == ISD::AssertZext) | 
|  | Op = Op.getOperand(0); | 
|  |  | 
|  | return isa<FrameIndexSDNode>(Op); | 
|  | } | 
|  |  | 
|  | /// \brief Legalize target independent instructions (e.g. INSERT_SUBREG) | 
|  | /// with frame index operands. | 
|  | /// LLVM assumes that inputs are to these instructions are registers. | 
|  | void SITargetLowering::legalizeTargetIndependentNode(SDNode *Node, | 
|  | SelectionDAG &DAG) const { | 
|  |  | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (unsigned i = 0; i < Node->getNumOperands(); ++i) { | 
|  | if (!isFrameIndexOp(Node->getOperand(i))) { | 
|  | Ops.push_back(Node->getOperand(i)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | SDLoc DL(Node); | 
|  | Ops.push_back(SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, | 
|  | Node->getOperand(i).getValueType(), | 
|  | Node->getOperand(i)), 0)); | 
|  | } | 
|  |  | 
|  | DAG.UpdateNodeOperands(Node, Ops); | 
|  | } | 
|  |  | 
|  | /// \brief Fold the instructions after selecting them. | 
|  | SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, | 
|  | SelectionDAG &DAG) const { | 
|  | const SIInstrInfo *TII = | 
|  | static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); | 
|  |  | 
|  | if (TII->isMIMG(Node->getMachineOpcode())) | 
|  | adjustWritemask(Node, DAG); | 
|  |  | 
|  | if (Node->getMachineOpcode() == AMDGPU::INSERT_SUBREG || | 
|  | Node->getMachineOpcode() == AMDGPU::REG_SEQUENCE) { | 
|  | legalizeTargetIndependentNode(Node, DAG); | 
|  | return Node; | 
|  | } | 
|  | return Node; | 
|  | } | 
|  |  | 
|  | /// \brief Assign the register class depending on the number of | 
|  | /// bits set in the writemask | 
|  | void SITargetLowering::AdjustInstrPostInstrSelection(MachineInstr *MI, | 
|  | SDNode *Node) const { | 
|  | const SIInstrInfo *TII = | 
|  | static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); | 
|  |  | 
|  | MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo(); | 
|  | TII->legalizeOperands(MI); | 
|  |  | 
|  | if (TII->isMIMG(MI->getOpcode())) { | 
|  | unsigned VReg = MI->getOperand(0).getReg(); | 
|  | unsigned Writemask = MI->getOperand(1).getImm(); | 
|  | unsigned BitsSet = 0; | 
|  | for (unsigned i = 0; i < 4; ++i) | 
|  | BitsSet += Writemask & (1 << i) ? 1 : 0; | 
|  |  | 
|  | const TargetRegisterClass *RC; | 
|  | switch (BitsSet) { | 
|  | default: return; | 
|  | case 1:  RC = &AMDGPU::VGPR_32RegClass; break; | 
|  | case 2:  RC = &AMDGPU::VReg_64RegClass; break; | 
|  | case 3:  RC = &AMDGPU::VReg_96RegClass; break; | 
|  | } | 
|  |  | 
|  | unsigned NewOpcode = TII->getMaskedMIMGOp(MI->getOpcode(), BitsSet); | 
|  | MI->setDesc(TII->get(NewOpcode)); | 
|  | MRI.setRegClass(VReg, RC); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Replace unused atomics with the no return version. | 
|  | int NoRetAtomicOp = AMDGPU::getAtomicNoRetOp(MI->getOpcode()); | 
|  | if (NoRetAtomicOp != -1) { | 
|  | if (!Node->hasAnyUseOfValue(0)) { | 
|  | MI->setDesc(TII->get(NoRetAtomicOp)); | 
|  | MI->RemoveOperand(0); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static SDValue buildSMovImm32(SelectionDAG &DAG, SDLoc DL, uint64_t Val) { | 
|  | SDValue K = DAG.getTargetConstant(Val, DL, MVT::i32); | 
|  | return SDValue(DAG.getMachineNode(AMDGPU::S_MOV_B32, DL, MVT::i32, K), 0); | 
|  | } | 
|  |  | 
|  | MachineSDNode *SITargetLowering::wrapAddr64Rsrc(SelectionDAG &DAG, | 
|  | SDLoc DL, | 
|  | SDValue Ptr) const { | 
|  | const SIInstrInfo *TII = | 
|  | static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); | 
|  | #if 1 | 
|  | // XXX - Workaround for moveToVALU not handling different register class | 
|  | // inserts for REG_SEQUENCE. | 
|  |  | 
|  | // Build the half of the subregister with the constants. | 
|  | const SDValue Ops0[] = { | 
|  | DAG.getTargetConstant(AMDGPU::SGPR_64RegClassID, DL, MVT::i32), | 
|  | buildSMovImm32(DAG, DL, 0), | 
|  | DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), | 
|  | buildSMovImm32(DAG, DL, TII->getDefaultRsrcDataFormat() >> 32), | 
|  | DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32) | 
|  | }; | 
|  |  | 
|  | SDValue SubRegHi = SDValue(DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, | 
|  | MVT::v2i32, Ops0), 0); | 
|  |  | 
|  | // Combine the constants and the pointer. | 
|  | const SDValue Ops1[] = { | 
|  | DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32), | 
|  | Ptr, | 
|  | DAG.getTargetConstant(AMDGPU::sub0_sub1, DL, MVT::i32), | 
|  | SubRegHi, | 
|  | DAG.getTargetConstant(AMDGPU::sub2_sub3, DL, MVT::i32) | 
|  | }; | 
|  |  | 
|  | return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops1); | 
|  | #else | 
|  | const SDValue Ops[] = { | 
|  | DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, MVT::i32), | 
|  | Ptr, | 
|  | DAG.getTargetConstant(AMDGPU::sub0_sub1, MVT::i32), | 
|  | buildSMovImm32(DAG, DL, 0), | 
|  | DAG.getTargetConstant(AMDGPU::sub2, MVT::i32), | 
|  | buildSMovImm32(DAG, DL, TII->getDefaultRsrcFormat() >> 32), | 
|  | DAG.getTargetConstant(AMDGPU::sub3, MVT::i32) | 
|  | }; | 
|  |  | 
|  | return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); | 
|  |  | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /// \brief Return a resource descriptor with the 'Add TID' bit enabled | 
|  | ///        The TID (Thread ID) is multipled by the stride value (bits [61:48] | 
|  | ///        of the resource descriptor) to create an offset, which is added to the | 
|  | ///        resource ponter. | 
|  | MachineSDNode *SITargetLowering::buildRSRC(SelectionDAG &DAG, | 
|  | SDLoc DL, | 
|  | SDValue Ptr, | 
|  | uint32_t RsrcDword1, | 
|  | uint64_t RsrcDword2And3) const { | 
|  | SDValue PtrLo = DAG.getTargetExtractSubreg(AMDGPU::sub0, DL, MVT::i32, Ptr); | 
|  | SDValue PtrHi = DAG.getTargetExtractSubreg(AMDGPU::sub1, DL, MVT::i32, Ptr); | 
|  | if (RsrcDword1) { | 
|  | PtrHi = SDValue(DAG.getMachineNode(AMDGPU::S_OR_B32, DL, MVT::i32, PtrHi, | 
|  | DAG.getConstant(RsrcDword1, DL, MVT::i32)), | 
|  | 0); | 
|  | } | 
|  |  | 
|  | SDValue DataLo = buildSMovImm32(DAG, DL, | 
|  | RsrcDword2And3 & UINT64_C(0xFFFFFFFF)); | 
|  | SDValue DataHi = buildSMovImm32(DAG, DL, RsrcDword2And3 >> 32); | 
|  |  | 
|  | const SDValue Ops[] = { | 
|  | DAG.getTargetConstant(AMDGPU::SReg_128RegClassID, DL, MVT::i32), | 
|  | PtrLo, | 
|  | DAG.getTargetConstant(AMDGPU::sub0, DL, MVT::i32), | 
|  | PtrHi, | 
|  | DAG.getTargetConstant(AMDGPU::sub1, DL, MVT::i32), | 
|  | DataLo, | 
|  | DAG.getTargetConstant(AMDGPU::sub2, DL, MVT::i32), | 
|  | DataHi, | 
|  | DAG.getTargetConstant(AMDGPU::sub3, DL, MVT::i32) | 
|  | }; | 
|  |  | 
|  | return DAG.getMachineNode(AMDGPU::REG_SEQUENCE, DL, MVT::v4i32, Ops); | 
|  | } | 
|  |  | 
|  | MachineSDNode *SITargetLowering::buildScratchRSRC(SelectionDAG &DAG, | 
|  | SDLoc DL, | 
|  | SDValue Ptr) const { | 
|  | const SIInstrInfo *TII = | 
|  | static_cast<const SIInstrInfo *>(Subtarget->getInstrInfo()); | 
|  | uint64_t Rsrc = TII->getDefaultRsrcDataFormat() | AMDGPU::RSRC_TID_ENABLE | | 
|  | 0xffffffff; // Size | 
|  |  | 
|  | return buildRSRC(DAG, DL, Ptr, 0, Rsrc); | 
|  | } | 
|  |  | 
|  | SDValue SITargetLowering::CreateLiveInRegister(SelectionDAG &DAG, | 
|  | const TargetRegisterClass *RC, | 
|  | unsigned Reg, EVT VT) const { | 
|  | SDValue VReg = AMDGPUTargetLowering::CreateLiveInRegister(DAG, RC, Reg, VT); | 
|  |  | 
|  | return DAG.getCopyFromReg(DAG.getEntryNode(), SDLoc(DAG.getEntryNode()), | 
|  | cast<RegisterSDNode>(VReg)->getReg(), VT); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                         SI Inline Assembly Support | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | std::pair<unsigned, const TargetRegisterClass *> | 
|  | SITargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, | 
|  | StringRef Constraint, | 
|  | MVT VT) const { | 
|  | if (Constraint == "r") { | 
|  | switch(VT.SimpleTy) { | 
|  | default: llvm_unreachable("Unhandled type for 'r' inline asm constraint"); | 
|  | case MVT::i64: | 
|  | return std::make_pair(0U, &AMDGPU::SGPR_64RegClass); | 
|  | case MVT::i32: | 
|  | return std::make_pair(0U, &AMDGPU::SGPR_32RegClass); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Constraint.size() > 1) { | 
|  | const TargetRegisterClass *RC = nullptr; | 
|  | if (Constraint[1] == 'v') { | 
|  | RC = &AMDGPU::VGPR_32RegClass; | 
|  | } else if (Constraint[1] == 's') { | 
|  | RC = &AMDGPU::SGPR_32RegClass; | 
|  | } | 
|  |  | 
|  | if (RC) { | 
|  | uint32_t Idx; | 
|  | bool Failed = Constraint.substr(2).getAsInteger(10, Idx); | 
|  | if (!Failed && Idx < RC->getNumRegs()) | 
|  | return std::make_pair(RC->getRegister(Idx), RC); | 
|  | } | 
|  | } | 
|  | return TargetLowering::getRegForInlineAsmConstraint(TRI, Constraint, VT); | 
|  | } |