|  | //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "CGCXXABI.h" | 
|  | #include "CGCleanup.h" | 
|  | #include "CGDebugInfo.h" | 
|  | #include "CGObjCRuntime.h" | 
|  | #include "CodeGenFunction.h" | 
|  | #include "CodeGenModule.h" | 
|  | #include "TargetInfo.h" | 
|  | #include "clang/AST/ASTContext.h" | 
|  | #include "clang/AST/DeclObjC.h" | 
|  | #include "clang/AST/Expr.h" | 
|  | #include "clang/AST/RecordLayout.h" | 
|  | #include "clang/AST/StmtVisitor.h" | 
|  | #include "clang/Basic/FixedPoint.h" | 
|  | #include "clang/Basic/TargetInfo.h" | 
|  | #include "clang/Frontend/CodeGenOptions.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include <cstdarg> | 
|  |  | 
|  | using namespace clang; | 
|  | using namespace CodeGen; | 
|  | using llvm::Value; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                         Scalar Expression Emitter | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Determine whether the given binary operation may overflow. | 
|  | /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, | 
|  | /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, | 
|  | /// the returned overflow check is precise. The returned value is 'true' for | 
|  | /// all other opcodes, to be conservative. | 
|  | bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, | 
|  | BinaryOperator::Opcode Opcode, bool Signed, | 
|  | llvm::APInt &Result) { | 
|  | // Assume overflow is possible, unless we can prove otherwise. | 
|  | bool Overflow = true; | 
|  | const auto &LHSAP = LHS->getValue(); | 
|  | const auto &RHSAP = RHS->getValue(); | 
|  | if (Opcode == BO_Add) { | 
|  | if (Signed) | 
|  | Result = LHSAP.sadd_ov(RHSAP, Overflow); | 
|  | else | 
|  | Result = LHSAP.uadd_ov(RHSAP, Overflow); | 
|  | } else if (Opcode == BO_Sub) { | 
|  | if (Signed) | 
|  | Result = LHSAP.ssub_ov(RHSAP, Overflow); | 
|  | else | 
|  | Result = LHSAP.usub_ov(RHSAP, Overflow); | 
|  | } else if (Opcode == BO_Mul) { | 
|  | if (Signed) | 
|  | Result = LHSAP.smul_ov(RHSAP, Overflow); | 
|  | else | 
|  | Result = LHSAP.umul_ov(RHSAP, Overflow); | 
|  | } else if (Opcode == BO_Div || Opcode == BO_Rem) { | 
|  | if (Signed && !RHS->isZero()) | 
|  | Result = LHSAP.sdiv_ov(RHSAP, Overflow); | 
|  | else | 
|  | return false; | 
|  | } | 
|  | return Overflow; | 
|  | } | 
|  |  | 
|  | struct BinOpInfo { | 
|  | Value *LHS; | 
|  | Value *RHS; | 
|  | QualType Ty;  // Computation Type. | 
|  | BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform | 
|  | FPOptions FPFeatures; | 
|  | const Expr *E;      // Entire expr, for error unsupported.  May not be binop. | 
|  |  | 
|  | /// Check if the binop can result in integer overflow. | 
|  | bool mayHaveIntegerOverflow() const { | 
|  | // Without constant input, we can't rule out overflow. | 
|  | auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); | 
|  | auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); | 
|  | if (!LHSCI || !RHSCI) | 
|  | return true; | 
|  |  | 
|  | llvm::APInt Result; | 
|  | return ::mayHaveIntegerOverflow( | 
|  | LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); | 
|  | } | 
|  |  | 
|  | /// Check if the binop computes a division or a remainder. | 
|  | bool isDivremOp() const { | 
|  | return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || | 
|  | Opcode == BO_RemAssign; | 
|  | } | 
|  |  | 
|  | /// Check if the binop can result in an integer division by zero. | 
|  | bool mayHaveIntegerDivisionByZero() const { | 
|  | if (isDivremOp()) | 
|  | if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) | 
|  | return CI->isZero(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Check if the binop can result in a float division by zero. | 
|  | bool mayHaveFloatDivisionByZero() const { | 
|  | if (isDivremOp()) | 
|  | if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) | 
|  | return CFP->isZero(); | 
|  | return true; | 
|  | } | 
|  | }; | 
|  |  | 
|  | static bool MustVisitNullValue(const Expr *E) { | 
|  | // If a null pointer expression's type is the C++0x nullptr_t, then | 
|  | // it's not necessarily a simple constant and it must be evaluated | 
|  | // for its potential side effects. | 
|  | return E->getType()->isNullPtrType(); | 
|  | } | 
|  |  | 
|  | /// If \p E is a widened promoted integer, get its base (unpromoted) type. | 
|  | static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, | 
|  | const Expr *E) { | 
|  | const Expr *Base = E->IgnoreImpCasts(); | 
|  | if (E == Base) | 
|  | return llvm::None; | 
|  |  | 
|  | QualType BaseTy = Base->getType(); | 
|  | if (!BaseTy->isPromotableIntegerType() || | 
|  | Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) | 
|  | return llvm::None; | 
|  |  | 
|  | return BaseTy; | 
|  | } | 
|  |  | 
|  | /// Check if \p E is a widened promoted integer. | 
|  | static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { | 
|  | return getUnwidenedIntegerType(Ctx, E).hasValue(); | 
|  | } | 
|  |  | 
|  | /// Check if we can skip the overflow check for \p Op. | 
|  | static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { | 
|  | assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && | 
|  | "Expected a unary or binary operator"); | 
|  |  | 
|  | // If the binop has constant inputs and we can prove there is no overflow, | 
|  | // we can elide the overflow check. | 
|  | if (!Op.mayHaveIntegerOverflow()) | 
|  | return true; | 
|  |  | 
|  | // If a unary op has a widened operand, the op cannot overflow. | 
|  | if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) | 
|  | return !UO->canOverflow(); | 
|  |  | 
|  | // We usually don't need overflow checks for binops with widened operands. | 
|  | // Multiplication with promoted unsigned operands is a special case. | 
|  | const auto *BO = cast<BinaryOperator>(Op.E); | 
|  | auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); | 
|  | if (!OptionalLHSTy) | 
|  | return false; | 
|  |  | 
|  | auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); | 
|  | if (!OptionalRHSTy) | 
|  | return false; | 
|  |  | 
|  | QualType LHSTy = *OptionalLHSTy; | 
|  | QualType RHSTy = *OptionalRHSTy; | 
|  |  | 
|  | // This is the simple case: binops without unsigned multiplication, and with | 
|  | // widened operands. No overflow check is needed here. | 
|  | if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || | 
|  | !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) | 
|  | return true; | 
|  |  | 
|  | // For unsigned multiplication the overflow check can be elided if either one | 
|  | // of the unpromoted types are less than half the size of the promoted type. | 
|  | unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); | 
|  | return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || | 
|  | (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; | 
|  | } | 
|  |  | 
|  | /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. | 
|  | static void updateFastMathFlags(llvm::FastMathFlags &FMF, | 
|  | FPOptions FPFeatures) { | 
|  | FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); | 
|  | } | 
|  |  | 
|  | /// Propagate fast-math flags from \p Op to the instruction in \p V. | 
|  | static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { | 
|  | if (auto *I = dyn_cast<llvm::Instruction>(V)) { | 
|  | llvm::FastMathFlags FMF = I->getFastMathFlags(); | 
|  | updateFastMathFlags(FMF, Op.FPFeatures); | 
|  | I->setFastMathFlags(FMF); | 
|  | } | 
|  | return V; | 
|  | } | 
|  |  | 
|  | class ScalarExprEmitter | 
|  | : public StmtVisitor<ScalarExprEmitter, Value*> { | 
|  | CodeGenFunction &CGF; | 
|  | CGBuilderTy &Builder; | 
|  | bool IgnoreResultAssign; | 
|  | llvm::LLVMContext &VMContext; | 
|  | public: | 
|  |  | 
|  | ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) | 
|  | : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), | 
|  | VMContext(cgf.getLLVMContext()) { | 
|  | } | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | //                               Utilities | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | bool TestAndClearIgnoreResultAssign() { | 
|  | bool I = IgnoreResultAssign; | 
|  | IgnoreResultAssign = false; | 
|  | return I; | 
|  | } | 
|  |  | 
|  | llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } | 
|  | LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } | 
|  | LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { | 
|  | return CGF.EmitCheckedLValue(E, TCK); | 
|  | } | 
|  |  | 
|  | void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, | 
|  | const BinOpInfo &Info); | 
|  |  | 
|  | Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { | 
|  | return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); | 
|  | } | 
|  |  | 
|  | void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { | 
|  | const AlignValueAttr *AVAttr = nullptr; | 
|  | if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { | 
|  | const ValueDecl *VD = DRE->getDecl(); | 
|  |  | 
|  | if (VD->getType()->isReferenceType()) { | 
|  | if (const auto *TTy = | 
|  | dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) | 
|  | AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); | 
|  | } else { | 
|  | // Assumptions for function parameters are emitted at the start of the | 
|  | // function, so there is no need to repeat that here. | 
|  | if (isa<ParmVarDecl>(VD)) | 
|  | return; | 
|  |  | 
|  | AVAttr = VD->getAttr<AlignValueAttr>(); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!AVAttr) | 
|  | if (const auto *TTy = | 
|  | dyn_cast<TypedefType>(E->getType())) | 
|  | AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); | 
|  |  | 
|  | if (!AVAttr) | 
|  | return; | 
|  |  | 
|  | Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); | 
|  | llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); | 
|  | CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); | 
|  | } | 
|  |  | 
|  | /// EmitLoadOfLValue - Given an expression with complex type that represents a | 
|  | /// value l-value, this method emits the address of the l-value, then loads | 
|  | /// and returns the result. | 
|  | Value *EmitLoadOfLValue(const Expr *E) { | 
|  | Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), | 
|  | E->getExprLoc()); | 
|  |  | 
|  | EmitLValueAlignmentAssumption(E, V); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | /// EmitConversionToBool - Convert the specified expression value to a | 
|  | /// boolean (i1) truth value.  This is equivalent to "Val != 0". | 
|  | Value *EmitConversionToBool(Value *Src, QualType DstTy); | 
|  |  | 
|  | /// Emit a check that a conversion to or from a floating-point type does not | 
|  | /// overflow. | 
|  | void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, | 
|  | Value *Src, QualType SrcType, QualType DstType, | 
|  | llvm::Type *DstTy, SourceLocation Loc); | 
|  |  | 
|  | /// Known implicit conversion check kinds. | 
|  | /// Keep in sync with the enum of the same name in ubsan_handlers.h | 
|  | enum ImplicitConversionCheckKind : unsigned char { | 
|  | ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. | 
|  | ICCK_UnsignedIntegerTruncation = 1, | 
|  | ICCK_SignedIntegerTruncation = 2, | 
|  | ICCK_IntegerSignChange = 3, | 
|  | ICCK_SignedIntegerTruncationOrSignChange = 4, | 
|  | }; | 
|  |  | 
|  | /// Emit a check that an [implicit] truncation of an integer  does not | 
|  | /// discard any bits. It is not UB, so we use the value after truncation. | 
|  | void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, | 
|  | QualType DstType, SourceLocation Loc); | 
|  |  | 
|  | /// Emit a check that an [implicit] conversion of an integer does not change | 
|  | /// the sign of the value. It is not UB, so we use the value after conversion. | 
|  | /// NOTE: Src and Dst may be the exact same value! (point to the same thing) | 
|  | void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, | 
|  | QualType DstType, SourceLocation Loc); | 
|  |  | 
|  | /// Emit a conversion from the specified type to the specified destination | 
|  | /// type, both of which are LLVM scalar types. | 
|  | struct ScalarConversionOpts { | 
|  | bool TreatBooleanAsSigned; | 
|  | bool EmitImplicitIntegerTruncationChecks; | 
|  | bool EmitImplicitIntegerSignChangeChecks; | 
|  |  | 
|  | ScalarConversionOpts() | 
|  | : TreatBooleanAsSigned(false), | 
|  | EmitImplicitIntegerTruncationChecks(false), | 
|  | EmitImplicitIntegerSignChangeChecks(false) {} | 
|  | }; | 
|  | Value * | 
|  | EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, | 
|  | SourceLocation Loc, | 
|  | ScalarConversionOpts Opts = ScalarConversionOpts()); | 
|  |  | 
|  | Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, | 
|  | SourceLocation Loc); | 
|  |  | 
|  | /// Emit a conversion from the specified complex type to the specified | 
|  | /// destination type, where the destination type is an LLVM scalar type. | 
|  | Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, | 
|  | QualType SrcTy, QualType DstTy, | 
|  | SourceLocation Loc); | 
|  |  | 
|  | /// EmitNullValue - Emit a value that corresponds to null for the given type. | 
|  | Value *EmitNullValue(QualType Ty); | 
|  |  | 
|  | /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. | 
|  | Value *EmitFloatToBoolConversion(Value *V) { | 
|  | // Compare against 0.0 for fp scalars. | 
|  | llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); | 
|  | return Builder.CreateFCmpUNE(V, Zero, "tobool"); | 
|  | } | 
|  |  | 
|  | /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. | 
|  | Value *EmitPointerToBoolConversion(Value *V, QualType QT) { | 
|  | Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); | 
|  |  | 
|  | return Builder.CreateICmpNE(V, Zero, "tobool"); | 
|  | } | 
|  |  | 
|  | Value *EmitIntToBoolConversion(Value *V) { | 
|  | // Because of the type rules of C, we often end up computing a | 
|  | // logical value, then zero extending it to int, then wanting it | 
|  | // as a logical value again.  Optimize this common case. | 
|  | if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { | 
|  | if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { | 
|  | Value *Result = ZI->getOperand(0); | 
|  | // If there aren't any more uses, zap the instruction to save space. | 
|  | // Note that there can be more uses, for example if this | 
|  | // is the result of an assignment. | 
|  | if (ZI->use_empty()) | 
|  | ZI->eraseFromParent(); | 
|  | return Result; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Builder.CreateIsNotNull(V, "tobool"); | 
|  | } | 
|  |  | 
|  | //===--------------------------------------------------------------------===// | 
|  | //                            Visitor Methods | 
|  | //===--------------------------------------------------------------------===// | 
|  |  | 
|  | Value *Visit(Expr *E) { | 
|  | ApplyDebugLocation DL(CGF, E); | 
|  | return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); | 
|  | } | 
|  |  | 
|  | Value *VisitStmt(Stmt *S) { | 
|  | S->dump(CGF.getContext().getSourceManager()); | 
|  | llvm_unreachable("Stmt can't have complex result type!"); | 
|  | } | 
|  | Value *VisitExpr(Expr *S); | 
|  |  | 
|  | Value *VisitParenExpr(ParenExpr *PE) { | 
|  | return Visit(PE->getSubExpr()); | 
|  | } | 
|  | Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { | 
|  | return Visit(E->getReplacement()); | 
|  | } | 
|  | Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { | 
|  | return Visit(GE->getResultExpr()); | 
|  | } | 
|  | Value *VisitCoawaitExpr(CoawaitExpr *S) { | 
|  | return CGF.EmitCoawaitExpr(*S).getScalarVal(); | 
|  | } | 
|  | Value *VisitCoyieldExpr(CoyieldExpr *S) { | 
|  | return CGF.EmitCoyieldExpr(*S).getScalarVal(); | 
|  | } | 
|  | Value *VisitUnaryCoawait(const UnaryOperator *E) { | 
|  | return Visit(E->getSubExpr()); | 
|  | } | 
|  |  | 
|  | // Leaves. | 
|  | Value *VisitIntegerLiteral(const IntegerLiteral *E) { | 
|  | return Builder.getInt(E->getValue()); | 
|  | } | 
|  | Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { | 
|  | return Builder.getInt(E->getValue()); | 
|  | } | 
|  | Value *VisitFloatingLiteral(const FloatingLiteral *E) { | 
|  | return llvm::ConstantFP::get(VMContext, E->getValue()); | 
|  | } | 
|  | Value *VisitCharacterLiteral(const CharacterLiteral *E) { | 
|  | return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); | 
|  | } | 
|  | Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { | 
|  | return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); | 
|  | } | 
|  | Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { | 
|  | return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); | 
|  | } | 
|  | Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { | 
|  | return EmitNullValue(E->getType()); | 
|  | } | 
|  | Value *VisitGNUNullExpr(const GNUNullExpr *E) { | 
|  | return EmitNullValue(E->getType()); | 
|  | } | 
|  | Value *VisitOffsetOfExpr(OffsetOfExpr *E); | 
|  | Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); | 
|  | Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { | 
|  | llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); | 
|  | return Builder.CreateBitCast(V, ConvertType(E->getType())); | 
|  | } | 
|  |  | 
|  | Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { | 
|  | return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); | 
|  | } | 
|  |  | 
|  | Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { | 
|  | return CGF.EmitPseudoObjectRValue(E).getScalarVal(); | 
|  | } | 
|  |  | 
|  | Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { | 
|  | if (E->isGLValue()) | 
|  | return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), | 
|  | E->getExprLoc()); | 
|  |  | 
|  | // Otherwise, assume the mapping is the scalar directly. | 
|  | return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); | 
|  | } | 
|  |  | 
|  | // l-values. | 
|  | Value *VisitDeclRefExpr(DeclRefExpr *E) { | 
|  | if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) | 
|  | return CGF.emitScalarConstant(Constant, E); | 
|  | return EmitLoadOfLValue(E); | 
|  | } | 
|  |  | 
|  | Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { | 
|  | return CGF.EmitObjCSelectorExpr(E); | 
|  | } | 
|  | Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { | 
|  | return CGF.EmitObjCProtocolExpr(E); | 
|  | } | 
|  | Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { | 
|  | return EmitLoadOfLValue(E); | 
|  | } | 
|  | Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { | 
|  | if (E->getMethodDecl() && | 
|  | E->getMethodDecl()->getReturnType()->isReferenceType()) | 
|  | return EmitLoadOfLValue(E); | 
|  | return CGF.EmitObjCMessageExpr(E).getScalarVal(); | 
|  | } | 
|  |  | 
|  | Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { | 
|  | LValue LV = CGF.EmitObjCIsaExpr(E); | 
|  | Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { | 
|  | VersionTuple Version = E->getVersion(); | 
|  |  | 
|  | // If we're checking for a platform older than our minimum deployment | 
|  | // target, we can fold the check away. | 
|  | if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) | 
|  | return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); | 
|  |  | 
|  | Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); | 
|  | llvm::Value *Args[] = { | 
|  | llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), | 
|  | llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), | 
|  | llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), | 
|  | }; | 
|  |  | 
|  | return CGF.EmitBuiltinAvailable(Args); | 
|  | } | 
|  |  | 
|  | Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); | 
|  | Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); | 
|  | Value *VisitConvertVectorExpr(ConvertVectorExpr *E); | 
|  | Value *VisitMemberExpr(MemberExpr *E); | 
|  | Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } | 
|  | Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { | 
|  | return EmitLoadOfLValue(E); | 
|  | } | 
|  |  | 
|  | Value *VisitInitListExpr(InitListExpr *E); | 
|  |  | 
|  | Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { | 
|  | assert(CGF.getArrayInitIndex() && | 
|  | "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); | 
|  | return CGF.getArrayInitIndex(); | 
|  | } | 
|  |  | 
|  | Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { | 
|  | return EmitNullValue(E->getType()); | 
|  | } | 
|  | Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { | 
|  | CGF.CGM.EmitExplicitCastExprType(E, &CGF); | 
|  | return VisitCastExpr(E); | 
|  | } | 
|  | Value *VisitCastExpr(CastExpr *E); | 
|  |  | 
|  | Value *VisitCallExpr(const CallExpr *E) { | 
|  | if (E->getCallReturnType(CGF.getContext())->isReferenceType()) | 
|  | return EmitLoadOfLValue(E); | 
|  |  | 
|  | Value *V = CGF.EmitCallExpr(E).getScalarVal(); | 
|  |  | 
|  | EmitLValueAlignmentAssumption(E, V); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | Value *VisitStmtExpr(const StmtExpr *E); | 
|  |  | 
|  | // Unary Operators. | 
|  | Value *VisitUnaryPostDec(const UnaryOperator *E) { | 
|  | LValue LV = EmitLValue(E->getSubExpr()); | 
|  | return EmitScalarPrePostIncDec(E, LV, false, false); | 
|  | } | 
|  | Value *VisitUnaryPostInc(const UnaryOperator *E) { | 
|  | LValue LV = EmitLValue(E->getSubExpr()); | 
|  | return EmitScalarPrePostIncDec(E, LV, true, false); | 
|  | } | 
|  | Value *VisitUnaryPreDec(const UnaryOperator *E) { | 
|  | LValue LV = EmitLValue(E->getSubExpr()); | 
|  | return EmitScalarPrePostIncDec(E, LV, false, true); | 
|  | } | 
|  | Value *VisitUnaryPreInc(const UnaryOperator *E) { | 
|  | LValue LV = EmitLValue(E->getSubExpr()); | 
|  | return EmitScalarPrePostIncDec(E, LV, true, true); | 
|  | } | 
|  |  | 
|  | llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, | 
|  | llvm::Value *InVal, | 
|  | bool IsInc); | 
|  |  | 
|  | llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, | 
|  | bool isInc, bool isPre); | 
|  |  | 
|  |  | 
|  | Value *VisitUnaryAddrOf(const UnaryOperator *E) { | 
|  | if (isa<MemberPointerType>(E->getType())) // never sugared | 
|  | return CGF.CGM.getMemberPointerConstant(E); | 
|  |  | 
|  | return EmitLValue(E->getSubExpr()).getPointer(); | 
|  | } | 
|  | Value *VisitUnaryDeref(const UnaryOperator *E) { | 
|  | if (E->getType()->isVoidType()) | 
|  | return Visit(E->getSubExpr()); // the actual value should be unused | 
|  | return EmitLoadOfLValue(E); | 
|  | } | 
|  | Value *VisitUnaryPlus(const UnaryOperator *E) { | 
|  | // This differs from gcc, though, most likely due to a bug in gcc. | 
|  | TestAndClearIgnoreResultAssign(); | 
|  | return Visit(E->getSubExpr()); | 
|  | } | 
|  | Value *VisitUnaryMinus    (const UnaryOperator *E); | 
|  | Value *VisitUnaryNot      (const UnaryOperator *E); | 
|  | Value *VisitUnaryLNot     (const UnaryOperator *E); | 
|  | Value *VisitUnaryReal     (const UnaryOperator *E); | 
|  | Value *VisitUnaryImag     (const UnaryOperator *E); | 
|  | Value *VisitUnaryExtension(const UnaryOperator *E) { | 
|  | return Visit(E->getSubExpr()); | 
|  | } | 
|  |  | 
|  | // C++ | 
|  | Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { | 
|  | return EmitLoadOfLValue(E); | 
|  | } | 
|  |  | 
|  | Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { | 
|  | return Visit(DAE->getExpr()); | 
|  | } | 
|  | Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { | 
|  | CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); | 
|  | return Visit(DIE->getExpr()); | 
|  | } | 
|  | Value *VisitCXXThisExpr(CXXThisExpr *TE) { | 
|  | return CGF.LoadCXXThis(); | 
|  | } | 
|  |  | 
|  | Value *VisitExprWithCleanups(ExprWithCleanups *E); | 
|  | Value *VisitCXXNewExpr(const CXXNewExpr *E) { | 
|  | return CGF.EmitCXXNewExpr(E); | 
|  | } | 
|  | Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { | 
|  | CGF.EmitCXXDeleteExpr(E); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { | 
|  | return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); | 
|  | } | 
|  |  | 
|  | Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { | 
|  | return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); | 
|  | } | 
|  |  | 
|  | Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { | 
|  | return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); | 
|  | } | 
|  |  | 
|  | Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { | 
|  | // C++ [expr.pseudo]p1: | 
|  | //   The result shall only be used as the operand for the function call | 
|  | //   operator (), and the result of such a call has type void. The only | 
|  | //   effect is the evaluation of the postfix-expression before the dot or | 
|  | //   arrow. | 
|  | CGF.EmitScalarExpr(E->getBase()); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { | 
|  | return EmitNullValue(E->getType()); | 
|  | } | 
|  |  | 
|  | Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { | 
|  | CGF.EmitCXXThrowExpr(E); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { | 
|  | return Builder.getInt1(E->getValue()); | 
|  | } | 
|  |  | 
|  | // Binary Operators. | 
|  | Value *EmitMul(const BinOpInfo &Ops) { | 
|  | if (Ops.Ty->isSignedIntegerOrEnumerationType()) { | 
|  | switch (CGF.getLangOpts().getSignedOverflowBehavior()) { | 
|  | case LangOptions::SOB_Defined: | 
|  | return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); | 
|  | case LangOptions::SOB_Undefined: | 
|  | if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) | 
|  | return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); | 
|  | LLVM_FALLTHROUGH; | 
|  | case LangOptions::SOB_Trapping: | 
|  | if (CanElideOverflowCheck(CGF.getContext(), Ops)) | 
|  | return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); | 
|  | return EmitOverflowCheckedBinOp(Ops); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Ops.Ty->isUnsignedIntegerType() && | 
|  | CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && | 
|  | !CanElideOverflowCheck(CGF.getContext(), Ops)) | 
|  | return EmitOverflowCheckedBinOp(Ops); | 
|  |  | 
|  | if (Ops.LHS->getType()->isFPOrFPVectorTy()) { | 
|  | Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); | 
|  | return propagateFMFlags(V, Ops); | 
|  | } | 
|  | return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); | 
|  | } | 
|  | /// Create a binary op that checks for overflow. | 
|  | /// Currently only supports +, - and *. | 
|  | Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); | 
|  |  | 
|  | // Check for undefined division and modulus behaviors. | 
|  | void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, | 
|  | llvm::Value *Zero,bool isDiv); | 
|  | // Common helper for getting how wide LHS of shift is. | 
|  | static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); | 
|  | Value *EmitDiv(const BinOpInfo &Ops); | 
|  | Value *EmitRem(const BinOpInfo &Ops); | 
|  | Value *EmitAdd(const BinOpInfo &Ops); | 
|  | Value *EmitSub(const BinOpInfo &Ops); | 
|  | Value *EmitShl(const BinOpInfo &Ops); | 
|  | Value *EmitShr(const BinOpInfo &Ops); | 
|  | Value *EmitAnd(const BinOpInfo &Ops) { | 
|  | return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); | 
|  | } | 
|  | Value *EmitXor(const BinOpInfo &Ops) { | 
|  | return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); | 
|  | } | 
|  | Value *EmitOr (const BinOpInfo &Ops) { | 
|  | return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); | 
|  | } | 
|  |  | 
|  | BinOpInfo EmitBinOps(const BinaryOperator *E); | 
|  | LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, | 
|  | Value *(ScalarExprEmitter::*F)(const BinOpInfo &), | 
|  | Value *&Result); | 
|  |  | 
|  | Value *EmitCompoundAssign(const CompoundAssignOperator *E, | 
|  | Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); | 
|  |  | 
|  | // Binary operators and binary compound assignment operators. | 
|  | #define HANDLEBINOP(OP) \ | 
|  | Value *VisitBin ## OP(const BinaryOperator *E) {                         \ | 
|  | return Emit ## OP(EmitBinOps(E));                                      \ | 
|  | }                                                                        \ | 
|  | Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \ | 
|  | return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \ | 
|  | } | 
|  | HANDLEBINOP(Mul) | 
|  | HANDLEBINOP(Div) | 
|  | HANDLEBINOP(Rem) | 
|  | HANDLEBINOP(Add) | 
|  | HANDLEBINOP(Sub) | 
|  | HANDLEBINOP(Shl) | 
|  | HANDLEBINOP(Shr) | 
|  | HANDLEBINOP(And) | 
|  | HANDLEBINOP(Xor) | 
|  | HANDLEBINOP(Or) | 
|  | #undef HANDLEBINOP | 
|  |  | 
|  | // Comparisons. | 
|  | Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, | 
|  | llvm::CmpInst::Predicate SICmpOpc, | 
|  | llvm::CmpInst::Predicate FCmpOpc); | 
|  | #define VISITCOMP(CODE, UI, SI, FP) \ | 
|  | Value *VisitBin##CODE(const BinaryOperator *E) { \ | 
|  | return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ | 
|  | llvm::FCmpInst::FP); } | 
|  | VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) | 
|  | VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) | 
|  | VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) | 
|  | VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) | 
|  | VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) | 
|  | VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) | 
|  | #undef VISITCOMP | 
|  |  | 
|  | Value *VisitBinAssign     (const BinaryOperator *E); | 
|  |  | 
|  | Value *VisitBinLAnd       (const BinaryOperator *E); | 
|  | Value *VisitBinLOr        (const BinaryOperator *E); | 
|  | Value *VisitBinComma      (const BinaryOperator *E); | 
|  |  | 
|  | Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } | 
|  | Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } | 
|  |  | 
|  | // Other Operators. | 
|  | Value *VisitBlockExpr(const BlockExpr *BE); | 
|  | Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); | 
|  | Value *VisitChooseExpr(ChooseExpr *CE); | 
|  | Value *VisitVAArgExpr(VAArgExpr *VE); | 
|  | Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { | 
|  | return CGF.EmitObjCStringLiteral(E); | 
|  | } | 
|  | Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { | 
|  | return CGF.EmitObjCBoxedExpr(E); | 
|  | } | 
|  | Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { | 
|  | return CGF.EmitObjCArrayLiteral(E); | 
|  | } | 
|  | Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { | 
|  | return CGF.EmitObjCDictionaryLiteral(E); | 
|  | } | 
|  | Value *VisitAsTypeExpr(AsTypeExpr *CE); | 
|  | Value *VisitAtomicExpr(AtomicExpr *AE); | 
|  | }; | 
|  | }  // end anonymous namespace. | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                                Utilities | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// EmitConversionToBool - Convert the specified expression value to a | 
|  | /// boolean (i1) truth value.  This is equivalent to "Val != 0". | 
|  | Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { | 
|  | assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); | 
|  |  | 
|  | if (SrcType->isRealFloatingType()) | 
|  | return EmitFloatToBoolConversion(Src); | 
|  |  | 
|  | if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) | 
|  | return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); | 
|  |  | 
|  | assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && | 
|  | "Unknown scalar type to convert"); | 
|  |  | 
|  | if (isa<llvm::IntegerType>(Src->getType())) | 
|  | return EmitIntToBoolConversion(Src); | 
|  |  | 
|  | assert(isa<llvm::PointerType>(Src->getType())); | 
|  | return EmitPointerToBoolConversion(Src, SrcType); | 
|  | } | 
|  |  | 
|  | void ScalarExprEmitter::EmitFloatConversionCheck( | 
|  | Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, | 
|  | QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { | 
|  | CodeGenFunction::SanitizerScope SanScope(&CGF); | 
|  | using llvm::APFloat; | 
|  | using llvm::APSInt; | 
|  |  | 
|  | llvm::Type *SrcTy = Src->getType(); | 
|  |  | 
|  | llvm::Value *Check = nullptr; | 
|  | if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { | 
|  | // Integer to floating-point. This can fail for unsigned short -> __half | 
|  | // or unsigned __int128 -> float. | 
|  | assert(DstType->isFloatingType()); | 
|  | bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); | 
|  |  | 
|  | APFloat LargestFloat = | 
|  | APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); | 
|  | APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); | 
|  |  | 
|  | bool IsExact; | 
|  | if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, | 
|  | &IsExact) != APFloat::opOK) | 
|  | // The range of representable values of this floating point type includes | 
|  | // all values of this integer type. Don't need an overflow check. | 
|  | return; | 
|  |  | 
|  | llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); | 
|  | if (SrcIsUnsigned) | 
|  | Check = Builder.CreateICmpULE(Src, Max); | 
|  | else { | 
|  | llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); | 
|  | llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); | 
|  | llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); | 
|  | Check = Builder.CreateAnd(GE, LE); | 
|  | } | 
|  | } else { | 
|  | const llvm::fltSemantics &SrcSema = | 
|  | CGF.getContext().getFloatTypeSemantics(OrigSrcType); | 
|  | if (isa<llvm::IntegerType>(DstTy)) { | 
|  | // Floating-point to integer. This has undefined behavior if the source is | 
|  | // +-Inf, NaN, or doesn't fit into the destination type (after truncation | 
|  | // to an integer). | 
|  | unsigned Width = CGF.getContext().getIntWidth(DstType); | 
|  | bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); | 
|  |  | 
|  | APSInt Min = APSInt::getMinValue(Width, Unsigned); | 
|  | APFloat MinSrc(SrcSema, APFloat::uninitialized); | 
|  | if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & | 
|  | APFloat::opOverflow) | 
|  | // Don't need an overflow check for lower bound. Just check for | 
|  | // -Inf/NaN. | 
|  | MinSrc = APFloat::getInf(SrcSema, true); | 
|  | else | 
|  | // Find the largest value which is too small to represent (before | 
|  | // truncation toward zero). | 
|  | MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); | 
|  |  | 
|  | APSInt Max = APSInt::getMaxValue(Width, Unsigned); | 
|  | APFloat MaxSrc(SrcSema, APFloat::uninitialized); | 
|  | if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & | 
|  | APFloat::opOverflow) | 
|  | // Don't need an overflow check for upper bound. Just check for | 
|  | // +Inf/NaN. | 
|  | MaxSrc = APFloat::getInf(SrcSema, false); | 
|  | else | 
|  | // Find the smallest value which is too large to represent (before | 
|  | // truncation toward zero). | 
|  | MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); | 
|  |  | 
|  | // If we're converting from __half, convert the range to float to match | 
|  | // the type of src. | 
|  | if (OrigSrcType->isHalfType()) { | 
|  | const llvm::fltSemantics &Sema = | 
|  | CGF.getContext().getFloatTypeSemantics(SrcType); | 
|  | bool IsInexact; | 
|  | MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); | 
|  | MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); | 
|  | } | 
|  |  | 
|  | llvm::Value *GE = | 
|  | Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); | 
|  | llvm::Value *LE = | 
|  | Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); | 
|  | Check = Builder.CreateAnd(GE, LE); | 
|  | } else { | 
|  | // FIXME: Maybe split this sanitizer out from float-cast-overflow. | 
|  | // | 
|  | // Floating-point to floating-point. This has undefined behavior if the | 
|  | // source is not in the range of representable values of the destination | 
|  | // type. The C and C++ standards are spectacularly unclear here. We | 
|  | // diagnose finite out-of-range conversions, but allow infinities and NaNs | 
|  | // to convert to the corresponding value in the smaller type. | 
|  | // | 
|  | // C11 Annex F gives all such conversions defined behavior for IEC 60559 | 
|  | // conforming implementations. Unfortunately, LLVM's fptrunc instruction | 
|  | // does not. | 
|  |  | 
|  | // Converting from a lower rank to a higher rank can never have | 
|  | // undefined behavior, since higher-rank types must have a superset | 
|  | // of values of lower-rank types. | 
|  | if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) | 
|  | return; | 
|  |  | 
|  | assert(!OrigSrcType->isHalfType() && | 
|  | "should not check conversion from __half, it has the lowest rank"); | 
|  |  | 
|  | const llvm::fltSemantics &DstSema = | 
|  | CGF.getContext().getFloatTypeSemantics(DstType); | 
|  | APFloat MinBad = APFloat::getLargest(DstSema, false); | 
|  | APFloat MaxBad = APFloat::getInf(DstSema, false); | 
|  |  | 
|  | bool IsInexact; | 
|  | MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); | 
|  | MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); | 
|  |  | 
|  | Value *AbsSrc = CGF.EmitNounwindRuntimeCall( | 
|  | CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); | 
|  | llvm::Value *GE = | 
|  | Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); | 
|  | llvm::Value *LE = | 
|  | Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); | 
|  | Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); | 
|  | } | 
|  | } | 
|  |  | 
|  | llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), | 
|  | CGF.EmitCheckTypeDescriptor(OrigSrcType), | 
|  | CGF.EmitCheckTypeDescriptor(DstType)}; | 
|  | CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), | 
|  | SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); | 
|  | } | 
|  |  | 
|  | // Should be called within CodeGenFunction::SanitizerScope RAII scope. | 
|  | // Returns 'i1 false' when the truncation Src -> Dst was lossy. | 
|  | static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, | 
|  | std::pair<llvm::Value *, SanitizerMask>> | 
|  | EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, | 
|  | QualType DstType, CGBuilderTy &Builder) { | 
|  | llvm::Type *SrcTy = Src->getType(); | 
|  | llvm::Type *DstTy = Dst->getType(); | 
|  | (void)DstTy; // Only used in assert() | 
|  |  | 
|  | // This should be truncation of integral types. | 
|  | assert(Src != Dst); | 
|  | assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); | 
|  | assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && | 
|  | "non-integer llvm type"); | 
|  |  | 
|  | bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); | 
|  | bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); | 
|  |  | 
|  | // If both (src and dst) types are unsigned, then it's an unsigned truncation. | 
|  | // Else, it is a signed truncation. | 
|  | ScalarExprEmitter::ImplicitConversionCheckKind Kind; | 
|  | SanitizerMask Mask; | 
|  | if (!SrcSigned && !DstSigned) { | 
|  | Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; | 
|  | Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; | 
|  | } else { | 
|  | Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; | 
|  | Mask = SanitizerKind::ImplicitSignedIntegerTruncation; | 
|  | } | 
|  |  | 
|  | llvm::Value *Check = nullptr; | 
|  | // 1. Extend the truncated value back to the same width as the Src. | 
|  | Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); | 
|  | // 2. Equality-compare with the original source value | 
|  | Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); | 
|  | // If the comparison result is 'i1 false', then the truncation was lossy. | 
|  | return std::make_pair(Kind, std::make_pair(Check, Mask)); | 
|  | } | 
|  |  | 
|  | void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, | 
|  | Value *Dst, QualType DstType, | 
|  | SourceLocation Loc) { | 
|  | if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) | 
|  | return; | 
|  |  | 
|  | // We only care about int->int conversions here. | 
|  | // We ignore conversions to/from pointer and/or bool. | 
|  | if (!(SrcType->isIntegerType() && DstType->isIntegerType())) | 
|  | return; | 
|  |  | 
|  | unsigned SrcBits = Src->getType()->getScalarSizeInBits(); | 
|  | unsigned DstBits = Dst->getType()->getScalarSizeInBits(); | 
|  | // This must be truncation. Else we do not care. | 
|  | if (SrcBits <= DstBits) | 
|  | return; | 
|  |  | 
|  | assert(!DstType->isBooleanType() && "we should not get here with booleans."); | 
|  |  | 
|  | // If the integer sign change sanitizer is enabled, | 
|  | // and we are truncating from larger unsigned type to smaller signed type, | 
|  | // let that next sanitizer deal with it. | 
|  | bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); | 
|  | bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); | 
|  | if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && | 
|  | (!SrcSigned && DstSigned)) | 
|  | return; | 
|  |  | 
|  | CodeGenFunction::SanitizerScope SanScope(&CGF); | 
|  |  | 
|  | std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, | 
|  | std::pair<llvm::Value *, SanitizerMask>> | 
|  | Check = | 
|  | EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); | 
|  | // If the comparison result is 'i1 false', then the truncation was lossy. | 
|  |  | 
|  | // Do we care about this type of truncation? | 
|  | if (!CGF.SanOpts.has(Check.second.second)) | 
|  | return; | 
|  |  | 
|  | llvm::Constant *StaticArgs[] = { | 
|  | CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), | 
|  | CGF.EmitCheckTypeDescriptor(DstType), | 
|  | llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; | 
|  | CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, | 
|  | {Src, Dst}); | 
|  | } | 
|  |  | 
|  | // Should be called within CodeGenFunction::SanitizerScope RAII scope. | 
|  | // Returns 'i1 false' when the conversion Src -> Dst changed the sign. | 
|  | static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, | 
|  | std::pair<llvm::Value *, SanitizerMask>> | 
|  | EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, | 
|  | QualType DstType, CGBuilderTy &Builder) { | 
|  | llvm::Type *SrcTy = Src->getType(); | 
|  | llvm::Type *DstTy = Dst->getType(); | 
|  |  | 
|  | assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && | 
|  | "non-integer llvm type"); | 
|  |  | 
|  | bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); | 
|  | bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); | 
|  | (void)SrcSigned; // Only used in assert() | 
|  | (void)DstSigned; // Only used in assert() | 
|  | unsigned SrcBits = SrcTy->getScalarSizeInBits(); | 
|  | unsigned DstBits = DstTy->getScalarSizeInBits(); | 
|  | (void)SrcBits; // Only used in assert() | 
|  | (void)DstBits; // Only used in assert() | 
|  |  | 
|  | assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && | 
|  | "either the widths should be different, or the signednesses."); | 
|  |  | 
|  | // NOTE: zero value is considered to be non-negative. | 
|  | auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, | 
|  | const char *Name) -> Value * { | 
|  | // Is this value a signed type? | 
|  | bool VSigned = VType->isSignedIntegerOrEnumerationType(); | 
|  | llvm::Type *VTy = V->getType(); | 
|  | if (!VSigned) { | 
|  | // If the value is unsigned, then it is never negative. | 
|  | // FIXME: can we encounter non-scalar VTy here? | 
|  | return llvm::ConstantInt::getFalse(VTy->getContext()); | 
|  | } | 
|  | // Get the zero of the same type with which we will be comparing. | 
|  | llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); | 
|  | // %V.isnegative = icmp slt %V, 0 | 
|  | // I.e is %V *strictly* less than zero, does it have negative value? | 
|  | return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, | 
|  | llvm::Twine(Name) + "." + V->getName() + | 
|  | ".negativitycheck"); | 
|  | }; | 
|  |  | 
|  | // 1. Was the old Value negative? | 
|  | llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); | 
|  | // 2. Is the new Value negative? | 
|  | llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); | 
|  | // 3. Now, was the 'negativity status' preserved during the conversion? | 
|  | //    NOTE: conversion from negative to zero is considered to change the sign. | 
|  | //    (We want to get 'false' when the conversion changed the sign) | 
|  | //    So we should just equality-compare the negativity statuses. | 
|  | llvm::Value *Check = nullptr; | 
|  | Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); | 
|  | // If the comparison result is 'false', then the conversion changed the sign. | 
|  | return std::make_pair( | 
|  | ScalarExprEmitter::ICCK_IntegerSignChange, | 
|  | std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); | 
|  | } | 
|  |  | 
|  | void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, | 
|  | Value *Dst, QualType DstType, | 
|  | SourceLocation Loc) { | 
|  | if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) | 
|  | return; | 
|  |  | 
|  | llvm::Type *SrcTy = Src->getType(); | 
|  | llvm::Type *DstTy = Dst->getType(); | 
|  |  | 
|  | // We only care about int->int conversions here. | 
|  | // We ignore conversions to/from pointer and/or bool. | 
|  | if (!(SrcType->isIntegerType() && DstType->isIntegerType())) | 
|  | return; | 
|  |  | 
|  | bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); | 
|  | bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); | 
|  | unsigned SrcBits = SrcTy->getScalarSizeInBits(); | 
|  | unsigned DstBits = DstTy->getScalarSizeInBits(); | 
|  |  | 
|  | // Now, we do not need to emit the check in *all* of the cases. | 
|  | // We can avoid emitting it in some obvious cases where it would have been | 
|  | // dropped by the opt passes (instcombine) always anyways. | 
|  | // If it's a cast between effectively the same type, no check. | 
|  | // NOTE: this is *not* equivalent to checking the canonical types. | 
|  | if (SrcSigned == DstSigned && SrcBits == DstBits) | 
|  | return; | 
|  | // At least one of the values needs to have signed type. | 
|  | // If both are unsigned, then obviously, neither of them can be negative. | 
|  | if (!SrcSigned && !DstSigned) | 
|  | return; | 
|  | // If the conversion is to *larger* *signed* type, then no check is needed. | 
|  | // Because either sign-extension happens (so the sign will remain), | 
|  | // or zero-extension will happen (the sign bit will be zero.) | 
|  | if ((DstBits > SrcBits) && DstSigned) | 
|  | return; | 
|  | if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && | 
|  | (SrcBits > DstBits) && SrcSigned) { | 
|  | // If the signed integer truncation sanitizer is enabled, | 
|  | // and this is a truncation from signed type, then no check is needed. | 
|  | // Because here sign change check is interchangeable with truncation check. | 
|  | return; | 
|  | } | 
|  | // That's it. We can't rule out any more cases with the data we have. | 
|  |  | 
|  | CodeGenFunction::SanitizerScope SanScope(&CGF); | 
|  |  | 
|  | std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, | 
|  | std::pair<llvm::Value *, SanitizerMask>> | 
|  | Check; | 
|  |  | 
|  | // Each of these checks needs to return 'false' when an issue was detected. | 
|  | ImplicitConversionCheckKind CheckKind; | 
|  | llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; | 
|  | // So we can 'and' all the checks together, and still get 'false', | 
|  | // if at least one of the checks detected an issue. | 
|  |  | 
|  | Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); | 
|  | CheckKind = Check.first; | 
|  | Checks.emplace_back(Check.second); | 
|  |  | 
|  | if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && | 
|  | (SrcBits > DstBits) && !SrcSigned && DstSigned) { | 
|  | // If the signed integer truncation sanitizer was enabled, | 
|  | // and we are truncating from larger unsigned type to smaller signed type, | 
|  | // let's handle the case we skipped in that check. | 
|  | Check = | 
|  | EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); | 
|  | CheckKind = ICCK_SignedIntegerTruncationOrSignChange; | 
|  | Checks.emplace_back(Check.second); | 
|  | // If the comparison result is 'i1 false', then the truncation was lossy. | 
|  | } | 
|  |  | 
|  | llvm::Constant *StaticArgs[] = { | 
|  | CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), | 
|  | CGF.EmitCheckTypeDescriptor(DstType), | 
|  | llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; | 
|  | // EmitCheck() will 'and' all the checks together. | 
|  | CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, | 
|  | {Src, Dst}); | 
|  | } | 
|  |  | 
|  | /// Emit a conversion from the specified type to the specified destination type, | 
|  | /// both of which are LLVM scalar types. | 
|  | Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, | 
|  | QualType DstType, | 
|  | SourceLocation Loc, | 
|  | ScalarConversionOpts Opts) { | 
|  | // All conversions involving fixed point types should be handled by the | 
|  | // EmitFixedPoint family functions. This is done to prevent bloating up this | 
|  | // function more, and although fixed point numbers are represented by | 
|  | // integers, we do not want to follow any logic that assumes they should be | 
|  | // treated as integers. | 
|  | // TODO(leonardchan): When necessary, add another if statement checking for | 
|  | // conversions to fixed point types from other types. | 
|  | if (SrcType->isFixedPointType()) { | 
|  | if (DstType->isFixedPointType()) { | 
|  | return EmitFixedPointConversion(Src, SrcType, DstType, Loc); | 
|  | } else if (DstType->isBooleanType()) { | 
|  | // We do not need to check the padding bit on unsigned types if unsigned | 
|  | // padding is enabled because overflow into this bit is undefined | 
|  | // behavior. | 
|  | return Builder.CreateIsNotNull(Src, "tobool"); | 
|  | } | 
|  |  | 
|  | llvm_unreachable( | 
|  | "Unhandled scalar conversion involving a fixed point type."); | 
|  | } | 
|  |  | 
|  | QualType NoncanonicalSrcType = SrcType; | 
|  | QualType NoncanonicalDstType = DstType; | 
|  |  | 
|  | SrcType = CGF.getContext().getCanonicalType(SrcType); | 
|  | DstType = CGF.getContext().getCanonicalType(DstType); | 
|  | if (SrcType == DstType) return Src; | 
|  |  | 
|  | if (DstType->isVoidType()) return nullptr; | 
|  |  | 
|  | llvm::Value *OrigSrc = Src; | 
|  | QualType OrigSrcType = SrcType; | 
|  | llvm::Type *SrcTy = Src->getType(); | 
|  |  | 
|  | // Handle conversions to bool first, they are special: comparisons against 0. | 
|  | if (DstType->isBooleanType()) | 
|  | return EmitConversionToBool(Src, SrcType); | 
|  |  | 
|  | llvm::Type *DstTy = ConvertType(DstType); | 
|  |  | 
|  | // Cast from half through float if half isn't a native type. | 
|  | if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { | 
|  | // Cast to FP using the intrinsic if the half type itself isn't supported. | 
|  | if (DstTy->isFloatingPointTy()) { | 
|  | if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) | 
|  | return Builder.CreateCall( | 
|  | CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), | 
|  | Src); | 
|  | } else { | 
|  | // Cast to other types through float, using either the intrinsic or FPExt, | 
|  | // depending on whether the half type itself is supported | 
|  | // (as opposed to operations on half, available with NativeHalfType). | 
|  | if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { | 
|  | Src = Builder.CreateCall( | 
|  | CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, | 
|  | CGF.CGM.FloatTy), | 
|  | Src); | 
|  | } else { | 
|  | Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); | 
|  | } | 
|  | SrcType = CGF.getContext().FloatTy; | 
|  | SrcTy = CGF.FloatTy; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Ignore conversions like int -> uint. | 
|  | if (SrcTy == DstTy) { | 
|  | if (Opts.EmitImplicitIntegerSignChangeChecks) | 
|  | EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, | 
|  | NoncanonicalDstType, Loc); | 
|  |  | 
|  | return Src; | 
|  | } | 
|  |  | 
|  | // Handle pointer conversions next: pointers can only be converted to/from | 
|  | // other pointers and integers. Check for pointer types in terms of LLVM, as | 
|  | // some native types (like Obj-C id) may map to a pointer type. | 
|  | if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { | 
|  | // The source value may be an integer, or a pointer. | 
|  | if (isa<llvm::PointerType>(SrcTy)) | 
|  | return Builder.CreateBitCast(Src, DstTy, "conv"); | 
|  |  | 
|  | assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); | 
|  | // First, convert to the correct width so that we control the kind of | 
|  | // extension. | 
|  | llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); | 
|  | bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); | 
|  | llvm::Value* IntResult = | 
|  | Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); | 
|  | // Then, cast to pointer. | 
|  | return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); | 
|  | } | 
|  |  | 
|  | if (isa<llvm::PointerType>(SrcTy)) { | 
|  | // Must be an ptr to int cast. | 
|  | assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); | 
|  | return Builder.CreatePtrToInt(Src, DstTy, "conv"); | 
|  | } | 
|  |  | 
|  | // A scalar can be splatted to an extended vector of the same element type | 
|  | if (DstType->isExtVectorType() && !SrcType->isVectorType()) { | 
|  | // Sema should add casts to make sure that the source expression's type is | 
|  | // the same as the vector's element type (sans qualifiers) | 
|  | assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == | 
|  | SrcType.getTypePtr() && | 
|  | "Splatted expr doesn't match with vector element type?"); | 
|  |  | 
|  | // Splat the element across to all elements | 
|  | unsigned NumElements = DstTy->getVectorNumElements(); | 
|  | return Builder.CreateVectorSplat(NumElements, Src, "splat"); | 
|  | } | 
|  |  | 
|  | if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { | 
|  | // Allow bitcast from vector to integer/fp of the same size. | 
|  | unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); | 
|  | unsigned DstSize = DstTy->getPrimitiveSizeInBits(); | 
|  | if (SrcSize == DstSize) | 
|  | return Builder.CreateBitCast(Src, DstTy, "conv"); | 
|  |  | 
|  | // Conversions between vectors of different sizes are not allowed except | 
|  | // when vectors of half are involved. Operations on storage-only half | 
|  | // vectors require promoting half vector operands to float vectors and | 
|  | // truncating the result, which is either an int or float vector, to a | 
|  | // short or half vector. | 
|  |  | 
|  | // Source and destination are both expected to be vectors. | 
|  | llvm::Type *SrcElementTy = SrcTy->getVectorElementType(); | 
|  | llvm::Type *DstElementTy = DstTy->getVectorElementType(); | 
|  | (void)DstElementTy; | 
|  |  | 
|  | assert(((SrcElementTy->isIntegerTy() && | 
|  | DstElementTy->isIntegerTy()) || | 
|  | (SrcElementTy->isFloatingPointTy() && | 
|  | DstElementTy->isFloatingPointTy())) && | 
|  | "unexpected conversion between a floating-point vector and an " | 
|  | "integer vector"); | 
|  |  | 
|  | // Truncate an i32 vector to an i16 vector. | 
|  | if (SrcElementTy->isIntegerTy()) | 
|  | return Builder.CreateIntCast(Src, DstTy, false, "conv"); | 
|  |  | 
|  | // Truncate a float vector to a half vector. | 
|  | if (SrcSize > DstSize) | 
|  | return Builder.CreateFPTrunc(Src, DstTy, "conv"); | 
|  |  | 
|  | // Promote a half vector to a float vector. | 
|  | return Builder.CreateFPExt(Src, DstTy, "conv"); | 
|  | } | 
|  |  | 
|  | // Finally, we have the arithmetic types: real int/float. | 
|  | Value *Res = nullptr; | 
|  | llvm::Type *ResTy = DstTy; | 
|  |  | 
|  | // An overflowing conversion has undefined behavior if either the source type | 
|  | // or the destination type is a floating-point type. | 
|  | if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && | 
|  | (OrigSrcType->isFloatingType() || DstType->isFloatingType())) | 
|  | EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, | 
|  | Loc); | 
|  |  | 
|  | // Cast to half through float if half isn't a native type. | 
|  | if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { | 
|  | // Make sure we cast in a single step if from another FP type. | 
|  | if (SrcTy->isFloatingPointTy()) { | 
|  | // Use the intrinsic if the half type itself isn't supported | 
|  | // (as opposed to operations on half, available with NativeHalfType). | 
|  | if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) | 
|  | return Builder.CreateCall( | 
|  | CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); | 
|  | // If the half type is supported, just use an fptrunc. | 
|  | return Builder.CreateFPTrunc(Src, DstTy); | 
|  | } | 
|  | DstTy = CGF.FloatTy; | 
|  | } | 
|  |  | 
|  | if (isa<llvm::IntegerType>(SrcTy)) { | 
|  | bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); | 
|  | if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { | 
|  | InputSigned = true; | 
|  | } | 
|  | if (isa<llvm::IntegerType>(DstTy)) | 
|  | Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); | 
|  | else if (InputSigned) | 
|  | Res = Builder.CreateSIToFP(Src, DstTy, "conv"); | 
|  | else | 
|  | Res = Builder.CreateUIToFP(Src, DstTy, "conv"); | 
|  | } else if (isa<llvm::IntegerType>(DstTy)) { | 
|  | assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); | 
|  | if (DstType->isSignedIntegerOrEnumerationType()) | 
|  | Res = Builder.CreateFPToSI(Src, DstTy, "conv"); | 
|  | else | 
|  | Res = Builder.CreateFPToUI(Src, DstTy, "conv"); | 
|  | } else { | 
|  | assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && | 
|  | "Unknown real conversion"); | 
|  | if (DstTy->getTypeID() < SrcTy->getTypeID()) | 
|  | Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); | 
|  | else | 
|  | Res = Builder.CreateFPExt(Src, DstTy, "conv"); | 
|  | } | 
|  |  | 
|  | if (DstTy != ResTy) { | 
|  | if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { | 
|  | assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); | 
|  | Res = Builder.CreateCall( | 
|  | CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), | 
|  | Res); | 
|  | } else { | 
|  | Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Opts.EmitImplicitIntegerTruncationChecks) | 
|  | EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, | 
|  | NoncanonicalDstType, Loc); | 
|  |  | 
|  | if (Opts.EmitImplicitIntegerSignChangeChecks) | 
|  | EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, | 
|  | NoncanonicalDstType, Loc); | 
|  |  | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, | 
|  | QualType DstTy, | 
|  | SourceLocation Loc) { | 
|  | using llvm::APInt; | 
|  | using llvm::ConstantInt; | 
|  | using llvm::Value; | 
|  |  | 
|  | assert(SrcTy->isFixedPointType()); | 
|  | assert(DstTy->isFixedPointType()); | 
|  |  | 
|  | FixedPointSemantics SrcFPSema = | 
|  | CGF.getContext().getFixedPointSemantics(SrcTy); | 
|  | FixedPointSemantics DstFPSema = | 
|  | CGF.getContext().getFixedPointSemantics(DstTy); | 
|  | unsigned SrcWidth = SrcFPSema.getWidth(); | 
|  | unsigned DstWidth = DstFPSema.getWidth(); | 
|  | unsigned SrcScale = SrcFPSema.getScale(); | 
|  | unsigned DstScale = DstFPSema.getScale(); | 
|  | bool SrcIsSigned = SrcFPSema.isSigned(); | 
|  | bool DstIsSigned = DstFPSema.isSigned(); | 
|  |  | 
|  | llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth); | 
|  |  | 
|  | Value *Result = Src; | 
|  | unsigned ResultWidth = SrcWidth; | 
|  |  | 
|  | if (!DstFPSema.isSaturated()) { | 
|  | // Downscale. | 
|  | if (DstScale < SrcScale) | 
|  | Result = SrcIsSigned ? | 
|  | Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") : | 
|  | Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); | 
|  |  | 
|  | // Resize. | 
|  | Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); | 
|  |  | 
|  | // Upscale. | 
|  | if (DstScale > SrcScale) | 
|  | Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); | 
|  | } else { | 
|  | // Adjust the number of fractional bits. | 
|  | if (DstScale > SrcScale) { | 
|  | ResultWidth = SrcWidth + DstScale - SrcScale; | 
|  | llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth); | 
|  | Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize"); | 
|  | Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); | 
|  | } else if (DstScale < SrcScale) { | 
|  | Result = SrcIsSigned ? | 
|  | Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") : | 
|  | Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); | 
|  | } | 
|  |  | 
|  | // Handle saturation. | 
|  | bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits(); | 
|  | if (LessIntBits) { | 
|  | Value *Max = ConstantInt::get( | 
|  | CGF.getLLVMContext(), | 
|  | APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth)); | 
|  | Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max) | 
|  | : Builder.CreateICmpUGT(Result, Max); | 
|  | Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax"); | 
|  | } | 
|  | // Cannot overflow min to dest type if src is unsigned since all fixed | 
|  | // point types can cover the unsigned min of 0. | 
|  | if (SrcIsSigned && (LessIntBits || !DstIsSigned)) { | 
|  | Value *Min = ConstantInt::get( | 
|  | CGF.getLLVMContext(), | 
|  | APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth)); | 
|  | Value *TooLow = Builder.CreateICmpSLT(Result, Min); | 
|  | Result = Builder.CreateSelect(TooLow, Min, Result, "satmin"); | 
|  | } | 
|  |  | 
|  | // Resize the integer part to get the final destination size. | 
|  | Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// Emit a conversion from the specified complex type to the specified | 
|  | /// destination type, where the destination type is an LLVM scalar type. | 
|  | Value *ScalarExprEmitter::EmitComplexToScalarConversion( | 
|  | CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, | 
|  | SourceLocation Loc) { | 
|  | // Get the source element type. | 
|  | SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); | 
|  |  | 
|  | // Handle conversions to bool first, they are special: comparisons against 0. | 
|  | if (DstTy->isBooleanType()) { | 
|  | //  Complex != 0  -> (Real != 0) | (Imag != 0) | 
|  | Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); | 
|  | Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); | 
|  | return Builder.CreateOr(Src.first, Src.second, "tobool"); | 
|  | } | 
|  |  | 
|  | // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, | 
|  | // the imaginary part of the complex value is discarded and the value of the | 
|  | // real part is converted according to the conversion rules for the | 
|  | // corresponding real type. | 
|  | return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { | 
|  | return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); | 
|  | } | 
|  |  | 
|  | /// Emit a sanitization check for the given "binary" operation (which | 
|  | /// might actually be a unary increment which has been lowered to a binary | 
|  | /// operation). The check passes if all values in \p Checks (which are \c i1), | 
|  | /// are \c true. | 
|  | void ScalarExprEmitter::EmitBinOpCheck( | 
|  | ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { | 
|  | assert(CGF.IsSanitizerScope); | 
|  | SanitizerHandler Check; | 
|  | SmallVector<llvm::Constant *, 4> StaticData; | 
|  | SmallVector<llvm::Value *, 2> DynamicData; | 
|  |  | 
|  | BinaryOperatorKind Opcode = Info.Opcode; | 
|  | if (BinaryOperator::isCompoundAssignmentOp(Opcode)) | 
|  | Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); | 
|  |  | 
|  | StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); | 
|  | const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); | 
|  | if (UO && UO->getOpcode() == UO_Minus) { | 
|  | Check = SanitizerHandler::NegateOverflow; | 
|  | StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); | 
|  | DynamicData.push_back(Info.RHS); | 
|  | } else { | 
|  | if (BinaryOperator::isShiftOp(Opcode)) { | 
|  | // Shift LHS negative or too large, or RHS out of bounds. | 
|  | Check = SanitizerHandler::ShiftOutOfBounds; | 
|  | const BinaryOperator *BO = cast<BinaryOperator>(Info.E); | 
|  | StaticData.push_back( | 
|  | CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); | 
|  | StaticData.push_back( | 
|  | CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); | 
|  | } else if (Opcode == BO_Div || Opcode == BO_Rem) { | 
|  | // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). | 
|  | Check = SanitizerHandler::DivremOverflow; | 
|  | StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); | 
|  | } else { | 
|  | // Arithmetic overflow (+, -, *). | 
|  | switch (Opcode) { | 
|  | case BO_Add: Check = SanitizerHandler::AddOverflow; break; | 
|  | case BO_Sub: Check = SanitizerHandler::SubOverflow; break; | 
|  | case BO_Mul: Check = SanitizerHandler::MulOverflow; break; | 
|  | default: llvm_unreachable("unexpected opcode for bin op check"); | 
|  | } | 
|  | StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); | 
|  | } | 
|  | DynamicData.push_back(Info.LHS); | 
|  | DynamicData.push_back(Info.RHS); | 
|  | } | 
|  |  | 
|  | CGF.EmitCheck(Checks, Check, StaticData, DynamicData); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                            Visitor Methods | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | Value *ScalarExprEmitter::VisitExpr(Expr *E) { | 
|  | CGF.ErrorUnsupported(E, "scalar expression"); | 
|  | if (E->getType()->isVoidType()) | 
|  | return nullptr; | 
|  | return llvm::UndefValue::get(CGF.ConvertType(E->getType())); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { | 
|  | // Vector Mask Case | 
|  | if (E->getNumSubExprs() == 2) { | 
|  | Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); | 
|  | Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); | 
|  | Value *Mask; | 
|  |  | 
|  | llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); | 
|  | unsigned LHSElts = LTy->getNumElements(); | 
|  |  | 
|  | Mask = RHS; | 
|  |  | 
|  | llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); | 
|  |  | 
|  | // Mask off the high bits of each shuffle index. | 
|  | Value *MaskBits = | 
|  | llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); | 
|  | Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); | 
|  |  | 
|  | // newv = undef | 
|  | // mask = mask & maskbits | 
|  | // for each elt | 
|  | //   n = extract mask i | 
|  | //   x = extract val n | 
|  | //   newv = insert newv, x, i | 
|  | llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), | 
|  | MTy->getNumElements()); | 
|  | Value* NewV = llvm::UndefValue::get(RTy); | 
|  | for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { | 
|  | Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); | 
|  | Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); | 
|  |  | 
|  | Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); | 
|  | NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); | 
|  | } | 
|  | return NewV; | 
|  | } | 
|  |  | 
|  | Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); | 
|  | Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); | 
|  |  | 
|  | SmallVector<llvm::Constant*, 32> indices; | 
|  | for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { | 
|  | llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); | 
|  | // Check for -1 and output it as undef in the IR. | 
|  | if (Idx.isSigned() && Idx.isAllOnesValue()) | 
|  | indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); | 
|  | else | 
|  | indices.push_back(Builder.getInt32(Idx.getZExtValue())); | 
|  | } | 
|  |  | 
|  | Value *SV = llvm::ConstantVector::get(indices); | 
|  | return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { | 
|  | QualType SrcType = E->getSrcExpr()->getType(), | 
|  | DstType = E->getType(); | 
|  |  | 
|  | Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr()); | 
|  |  | 
|  | SrcType = CGF.getContext().getCanonicalType(SrcType); | 
|  | DstType = CGF.getContext().getCanonicalType(DstType); | 
|  | if (SrcType == DstType) return Src; | 
|  |  | 
|  | assert(SrcType->isVectorType() && | 
|  | "ConvertVector source type must be a vector"); | 
|  | assert(DstType->isVectorType() && | 
|  | "ConvertVector destination type must be a vector"); | 
|  |  | 
|  | llvm::Type *SrcTy = Src->getType(); | 
|  | llvm::Type *DstTy = ConvertType(DstType); | 
|  |  | 
|  | // Ignore conversions like int -> uint. | 
|  | if (SrcTy == DstTy) | 
|  | return Src; | 
|  |  | 
|  | QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), | 
|  | DstEltType = DstType->getAs<VectorType>()->getElementType(); | 
|  |  | 
|  | assert(SrcTy->isVectorTy() && | 
|  | "ConvertVector source IR type must be a vector"); | 
|  | assert(DstTy->isVectorTy() && | 
|  | "ConvertVector destination IR type must be a vector"); | 
|  |  | 
|  | llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), | 
|  | *DstEltTy = DstTy->getVectorElementType(); | 
|  |  | 
|  | if (DstEltType->isBooleanType()) { | 
|  | assert((SrcEltTy->isFloatingPointTy() || | 
|  | isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); | 
|  |  | 
|  | llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); | 
|  | if (SrcEltTy->isFloatingPointTy()) { | 
|  | return Builder.CreateFCmpUNE(Src, Zero, "tobool"); | 
|  | } else { | 
|  | return Builder.CreateICmpNE(Src, Zero, "tobool"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // We have the arithmetic types: real int/float. | 
|  | Value *Res = nullptr; | 
|  |  | 
|  | if (isa<llvm::IntegerType>(SrcEltTy)) { | 
|  | bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); | 
|  | if (isa<llvm::IntegerType>(DstEltTy)) | 
|  | Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); | 
|  | else if (InputSigned) | 
|  | Res = Builder.CreateSIToFP(Src, DstTy, "conv"); | 
|  | else | 
|  | Res = Builder.CreateUIToFP(Src, DstTy, "conv"); | 
|  | } else if (isa<llvm::IntegerType>(DstEltTy)) { | 
|  | assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); | 
|  | if (DstEltType->isSignedIntegerOrEnumerationType()) | 
|  | Res = Builder.CreateFPToSI(Src, DstTy, "conv"); | 
|  | else | 
|  | Res = Builder.CreateFPToUI(Src, DstTy, "conv"); | 
|  | } else { | 
|  | assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && | 
|  | "Unknown real conversion"); | 
|  | if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) | 
|  | Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); | 
|  | else | 
|  | Res = Builder.CreateFPExt(Src, DstTy, "conv"); | 
|  | } | 
|  |  | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { | 
|  | if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { | 
|  | CGF.EmitIgnoredExpr(E->getBase()); | 
|  | return CGF.emitScalarConstant(Constant, E); | 
|  | } else { | 
|  | llvm::APSInt Value; | 
|  | if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { | 
|  | CGF.EmitIgnoredExpr(E->getBase()); | 
|  | return Builder.getInt(Value); | 
|  | } | 
|  | } | 
|  |  | 
|  | return EmitLoadOfLValue(E); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { | 
|  | TestAndClearIgnoreResultAssign(); | 
|  |  | 
|  | // Emit subscript expressions in rvalue context's.  For most cases, this just | 
|  | // loads the lvalue formed by the subscript expr.  However, we have to be | 
|  | // careful, because the base of a vector subscript is occasionally an rvalue, | 
|  | // so we can't get it as an lvalue. | 
|  | if (!E->getBase()->getType()->isVectorType()) | 
|  | return EmitLoadOfLValue(E); | 
|  |  | 
|  | // Handle the vector case.  The base must be a vector, the index must be an | 
|  | // integer value. | 
|  | Value *Base = Visit(E->getBase()); | 
|  | Value *Idx  = Visit(E->getIdx()); | 
|  | QualType IdxTy = E->getIdx()->getType(); | 
|  |  | 
|  | if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) | 
|  | CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); | 
|  |  | 
|  | return Builder.CreateExtractElement(Base, Idx, "vecext"); | 
|  | } | 
|  |  | 
|  | static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, | 
|  | unsigned Off, llvm::Type *I32Ty) { | 
|  | int MV = SVI->getMaskValue(Idx); | 
|  | if (MV == -1) | 
|  | return llvm::UndefValue::get(I32Ty); | 
|  | return llvm::ConstantInt::get(I32Ty, Off+MV); | 
|  | } | 
|  |  | 
|  | static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { | 
|  | if (C->getBitWidth() != 32) { | 
|  | assert(llvm::ConstantInt::isValueValidForType(I32Ty, | 
|  | C->getZExtValue()) && | 
|  | "Index operand too large for shufflevector mask!"); | 
|  | return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); | 
|  | } | 
|  | return C; | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { | 
|  | bool Ignore = TestAndClearIgnoreResultAssign(); | 
|  | (void)Ignore; | 
|  | assert (Ignore == false && "init list ignored"); | 
|  | unsigned NumInitElements = E->getNumInits(); | 
|  |  | 
|  | if (E->hadArrayRangeDesignator()) | 
|  | CGF.ErrorUnsupported(E, "GNU array range designator extension"); | 
|  |  | 
|  | llvm::VectorType *VType = | 
|  | dyn_cast<llvm::VectorType>(ConvertType(E->getType())); | 
|  |  | 
|  | if (!VType) { | 
|  | if (NumInitElements == 0) { | 
|  | // C++11 value-initialization for the scalar. | 
|  | return EmitNullValue(E->getType()); | 
|  | } | 
|  | // We have a scalar in braces. Just use the first element. | 
|  | return Visit(E->getInit(0)); | 
|  | } | 
|  |  | 
|  | unsigned ResElts = VType->getNumElements(); | 
|  |  | 
|  | // Loop over initializers collecting the Value for each, and remembering | 
|  | // whether the source was swizzle (ExtVectorElementExpr).  This will allow | 
|  | // us to fold the shuffle for the swizzle into the shuffle for the vector | 
|  | // initializer, since LLVM optimizers generally do not want to touch | 
|  | // shuffles. | 
|  | unsigned CurIdx = 0; | 
|  | bool VIsUndefShuffle = false; | 
|  | llvm::Value *V = llvm::UndefValue::get(VType); | 
|  | for (unsigned i = 0; i != NumInitElements; ++i) { | 
|  | Expr *IE = E->getInit(i); | 
|  | Value *Init = Visit(IE); | 
|  | SmallVector<llvm::Constant*, 16> Args; | 
|  |  | 
|  | llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); | 
|  |  | 
|  | // Handle scalar elements.  If the scalar initializer is actually one | 
|  | // element of a different vector of the same width, use shuffle instead of | 
|  | // extract+insert. | 
|  | if (!VVT) { | 
|  | if (isa<ExtVectorElementExpr>(IE)) { | 
|  | llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); | 
|  |  | 
|  | if (EI->getVectorOperandType()->getNumElements() == ResElts) { | 
|  | llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); | 
|  | Value *LHS = nullptr, *RHS = nullptr; | 
|  | if (CurIdx == 0) { | 
|  | // insert into undef -> shuffle (src, undef) | 
|  | // shufflemask must use an i32 | 
|  | Args.push_back(getAsInt32(C, CGF.Int32Ty)); | 
|  | Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); | 
|  |  | 
|  | LHS = EI->getVectorOperand(); | 
|  | RHS = V; | 
|  | VIsUndefShuffle = true; | 
|  | } else if (VIsUndefShuffle) { | 
|  | // insert into undefshuffle && size match -> shuffle (v, src) | 
|  | llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); | 
|  | for (unsigned j = 0; j != CurIdx; ++j) | 
|  | Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); | 
|  | Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); | 
|  | Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); | 
|  |  | 
|  | LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); | 
|  | RHS = EI->getVectorOperand(); | 
|  | VIsUndefShuffle = false; | 
|  | } | 
|  | if (!Args.empty()) { | 
|  | llvm::Constant *Mask = llvm::ConstantVector::get(Args); | 
|  | V = Builder.CreateShuffleVector(LHS, RHS, Mask); | 
|  | ++CurIdx; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  | V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), | 
|  | "vecinit"); | 
|  | VIsUndefShuffle = false; | 
|  | ++CurIdx; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | unsigned InitElts = VVT->getNumElements(); | 
|  |  | 
|  | // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's | 
|  | // input is the same width as the vector being constructed, generate an | 
|  | // optimized shuffle of the swizzle input into the result. | 
|  | unsigned Offset = (CurIdx == 0) ? 0 : ResElts; | 
|  | if (isa<ExtVectorElementExpr>(IE)) { | 
|  | llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); | 
|  | Value *SVOp = SVI->getOperand(0); | 
|  | llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); | 
|  |  | 
|  | if (OpTy->getNumElements() == ResElts) { | 
|  | for (unsigned j = 0; j != CurIdx; ++j) { | 
|  | // If the current vector initializer is a shuffle with undef, merge | 
|  | // this shuffle directly into it. | 
|  | if (VIsUndefShuffle) { | 
|  | Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, | 
|  | CGF.Int32Ty)); | 
|  | } else { | 
|  | Args.push_back(Builder.getInt32(j)); | 
|  | } | 
|  | } | 
|  | for (unsigned j = 0, je = InitElts; j != je; ++j) | 
|  | Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); | 
|  | Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); | 
|  |  | 
|  | if (VIsUndefShuffle) | 
|  | V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); | 
|  |  | 
|  | Init = SVOp; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Extend init to result vector length, and then shuffle its contribution | 
|  | // to the vector initializer into V. | 
|  | if (Args.empty()) { | 
|  | for (unsigned j = 0; j != InitElts; ++j) | 
|  | Args.push_back(Builder.getInt32(j)); | 
|  | Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); | 
|  | llvm::Constant *Mask = llvm::ConstantVector::get(Args); | 
|  | Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), | 
|  | Mask, "vext"); | 
|  |  | 
|  | Args.clear(); | 
|  | for (unsigned j = 0; j != CurIdx; ++j) | 
|  | Args.push_back(Builder.getInt32(j)); | 
|  | for (unsigned j = 0; j != InitElts; ++j) | 
|  | Args.push_back(Builder.getInt32(j+Offset)); | 
|  | Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); | 
|  | } | 
|  |  | 
|  | // If V is undef, make sure it ends up on the RHS of the shuffle to aid | 
|  | // merging subsequent shuffles into this one. | 
|  | if (CurIdx == 0) | 
|  | std::swap(V, Init); | 
|  | llvm::Constant *Mask = llvm::ConstantVector::get(Args); | 
|  | V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); | 
|  | VIsUndefShuffle = isa<llvm::UndefValue>(Init); | 
|  | CurIdx += InitElts; | 
|  | } | 
|  |  | 
|  | // FIXME: evaluate codegen vs. shuffling against constant null vector. | 
|  | // Emit remaining default initializers. | 
|  | llvm::Type *EltTy = VType->getElementType(); | 
|  |  | 
|  | // Emit remaining default initializers | 
|  | for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { | 
|  | Value *Idx = Builder.getInt32(CurIdx); | 
|  | llvm::Value *Init = llvm::Constant::getNullValue(EltTy); | 
|  | V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); | 
|  | } | 
|  | return V; | 
|  | } | 
|  |  | 
|  | bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { | 
|  | const Expr *E = CE->getSubExpr(); | 
|  |  | 
|  | if (CE->getCastKind() == CK_UncheckedDerivedToBase) | 
|  | return false; | 
|  |  | 
|  | if (isa<CXXThisExpr>(E->IgnoreParens())) { | 
|  | // We always assume that 'this' is never null. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { | 
|  | // And that glvalue casts are never null. | 
|  | if (ICE->getValueKind() != VK_RValue) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts | 
|  | // have to handle a more broad range of conversions than explicit casts, as they | 
|  | // handle things like function to ptr-to-function decay etc. | 
|  | Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { | 
|  | Expr *E = CE->getSubExpr(); | 
|  | QualType DestTy = CE->getType(); | 
|  | CastKind Kind = CE->getCastKind(); | 
|  |  | 
|  | // These cases are generally not written to ignore the result of | 
|  | // evaluating their sub-expressions, so we clear this now. | 
|  | bool Ignored = TestAndClearIgnoreResultAssign(); | 
|  |  | 
|  | // Since almost all cast kinds apply to scalars, this switch doesn't have | 
|  | // a default case, so the compiler will warn on a missing case.  The cases | 
|  | // are in the same order as in the CastKind enum. | 
|  | switch (Kind) { | 
|  | case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); | 
|  | case CK_BuiltinFnToFnPtr: | 
|  | llvm_unreachable("builtin functions are handled elsewhere"); | 
|  |  | 
|  | case CK_LValueBitCast: | 
|  | case CK_ObjCObjectLValueCast: { | 
|  | Address Addr = EmitLValue(E).getAddress(); | 
|  | Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); | 
|  | LValue LV = CGF.MakeAddrLValue(Addr, DestTy); | 
|  | return EmitLoadOfLValue(LV, CE->getExprLoc()); | 
|  | } | 
|  |  | 
|  | case CK_CPointerToObjCPointerCast: | 
|  | case CK_BlockPointerToObjCPointerCast: | 
|  | case CK_AnyPointerToBlockPointerCast: | 
|  | case CK_BitCast: { | 
|  | Value *Src = Visit(const_cast<Expr*>(E)); | 
|  | llvm::Type *SrcTy = Src->getType(); | 
|  | llvm::Type *DstTy = ConvertType(DestTy); | 
|  | if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && | 
|  | SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { | 
|  | llvm_unreachable("wrong cast for pointers in different address spaces" | 
|  | "(must be an address space cast)!"); | 
|  | } | 
|  |  | 
|  | if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { | 
|  | if (auto PT = DestTy->getAs<PointerType>()) | 
|  | CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, | 
|  | /*MayBeNull=*/true, | 
|  | CodeGenFunction::CFITCK_UnrelatedCast, | 
|  | CE->getBeginLoc()); | 
|  | } | 
|  |  | 
|  | if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { | 
|  | const QualType SrcType = E->getType(); | 
|  |  | 
|  | if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { | 
|  | // Casting to pointer that could carry dynamic information (provided by | 
|  | // invariant.group) requires launder. | 
|  | Src = Builder.CreateLaunderInvariantGroup(Src); | 
|  | } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { | 
|  | // Casting to pointer that does not carry dynamic information (provided | 
|  | // by invariant.group) requires stripping it.  Note that we don't do it | 
|  | // if the source could not be dynamic type and destination could be | 
|  | // dynamic because dynamic information is already laundered.  It is | 
|  | // because launder(strip(src)) == launder(src), so there is no need to | 
|  | // add extra strip before launder. | 
|  | Src = Builder.CreateStripInvariantGroup(Src); | 
|  | } | 
|  | } | 
|  |  | 
|  | return Builder.CreateBitCast(Src, DstTy); | 
|  | } | 
|  | case CK_AddressSpaceConversion: { | 
|  | Expr::EvalResult Result; | 
|  | if (E->EvaluateAsRValue(Result, CGF.getContext()) && | 
|  | Result.Val.isNullPointer()) { | 
|  | // If E has side effect, it is emitted even if its final result is a | 
|  | // null pointer. In that case, a DCE pass should be able to | 
|  | // eliminate the useless instructions emitted during translating E. | 
|  | if (Result.HasSideEffects) | 
|  | Visit(E); | 
|  | return CGF.CGM.getNullPointer(cast<llvm::PointerType>( | 
|  | ConvertType(DestTy)), DestTy); | 
|  | } | 
|  | // Since target may map different address spaces in AST to the same address | 
|  | // space, an address space conversion may end up as a bitcast. | 
|  | return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( | 
|  | CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), | 
|  | DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); | 
|  | } | 
|  | case CK_AtomicToNonAtomic: | 
|  | case CK_NonAtomicToAtomic: | 
|  | case CK_NoOp: | 
|  | case CK_UserDefinedConversion: | 
|  | return Visit(const_cast<Expr*>(E)); | 
|  |  | 
|  | case CK_BaseToDerived: { | 
|  | const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); | 
|  | assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); | 
|  |  | 
|  | Address Base = CGF.EmitPointerWithAlignment(E); | 
|  | Address Derived = | 
|  | CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, | 
|  | CE->path_begin(), CE->path_end(), | 
|  | CGF.ShouldNullCheckClassCastValue(CE)); | 
|  |  | 
|  | // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is | 
|  | // performed and the object is not of the derived type. | 
|  | if (CGF.sanitizePerformTypeCheck()) | 
|  | CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), | 
|  | Derived.getPointer(), DestTy->getPointeeType()); | 
|  |  | 
|  | if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) | 
|  | CGF.EmitVTablePtrCheckForCast( | 
|  | DestTy->getPointeeType(), Derived.getPointer(), | 
|  | /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, | 
|  | CE->getBeginLoc()); | 
|  |  | 
|  | return Derived.getPointer(); | 
|  | } | 
|  | case CK_UncheckedDerivedToBase: | 
|  | case CK_DerivedToBase: { | 
|  | // The EmitPointerWithAlignment path does this fine; just discard | 
|  | // the alignment. | 
|  | return CGF.EmitPointerWithAlignment(CE).getPointer(); | 
|  | } | 
|  |  | 
|  | case CK_Dynamic: { | 
|  | Address V = CGF.EmitPointerWithAlignment(E); | 
|  | const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); | 
|  | return CGF.EmitDynamicCast(V, DCE); | 
|  | } | 
|  |  | 
|  | case CK_ArrayToPointerDecay: | 
|  | return CGF.EmitArrayToPointerDecay(E).getPointer(); | 
|  | case CK_FunctionToPointerDecay: | 
|  | return EmitLValue(E).getPointer(); | 
|  |  | 
|  | case CK_NullToPointer: | 
|  | if (MustVisitNullValue(E)) | 
|  | CGF.EmitIgnoredExpr(E); | 
|  |  | 
|  | return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), | 
|  | DestTy); | 
|  |  | 
|  | case CK_NullToMemberPointer: { | 
|  | if (MustVisitNullValue(E)) | 
|  | CGF.EmitIgnoredExpr(E); | 
|  |  | 
|  | const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); | 
|  | return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); | 
|  | } | 
|  |  | 
|  | case CK_ReinterpretMemberPointer: | 
|  | case CK_BaseToDerivedMemberPointer: | 
|  | case CK_DerivedToBaseMemberPointer: { | 
|  | Value *Src = Visit(E); | 
|  |  | 
|  | // Note that the AST doesn't distinguish between checked and | 
|  | // unchecked member pointer conversions, so we always have to | 
|  | // implement checked conversions here.  This is inefficient when | 
|  | // actual control flow may be required in order to perform the | 
|  | // check, which it is for data member pointers (but not member | 
|  | // function pointers on Itanium and ARM). | 
|  | return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); | 
|  | } | 
|  |  | 
|  | case CK_ARCProduceObject: | 
|  | return CGF.EmitARCRetainScalarExpr(E); | 
|  | case CK_ARCConsumeObject: | 
|  | return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); | 
|  | case CK_ARCReclaimReturnedObject: | 
|  | return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); | 
|  | case CK_ARCExtendBlockObject: | 
|  | return CGF.EmitARCExtendBlockObject(E); | 
|  |  | 
|  | case CK_CopyAndAutoreleaseBlockObject: | 
|  | return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); | 
|  |  | 
|  | case CK_FloatingRealToComplex: | 
|  | case CK_FloatingComplexCast: | 
|  | case CK_IntegralRealToComplex: | 
|  | case CK_IntegralComplexCast: | 
|  | case CK_IntegralComplexToFloatingComplex: | 
|  | case CK_FloatingComplexToIntegralComplex: | 
|  | case CK_ConstructorConversion: | 
|  | case CK_ToUnion: | 
|  | llvm_unreachable("scalar cast to non-scalar value"); | 
|  |  | 
|  | case CK_LValueToRValue: | 
|  | assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); | 
|  | assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); | 
|  | return Visit(const_cast<Expr*>(E)); | 
|  |  | 
|  | case CK_IntegralToPointer: { | 
|  | Value *Src = Visit(const_cast<Expr*>(E)); | 
|  |  | 
|  | // First, convert to the correct width so that we control the kind of | 
|  | // extension. | 
|  | auto DestLLVMTy = ConvertType(DestTy); | 
|  | llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); | 
|  | bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); | 
|  | llvm::Value* IntResult = | 
|  | Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); | 
|  |  | 
|  | auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); | 
|  |  | 
|  | if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { | 
|  | // Going from integer to pointer that could be dynamic requires reloading | 
|  | // dynamic information from invariant.group. | 
|  | if (DestTy.mayBeDynamicClass()) | 
|  | IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); | 
|  | } | 
|  | return IntToPtr; | 
|  | } | 
|  | case CK_PointerToIntegral: { | 
|  | assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); | 
|  | auto *PtrExpr = Visit(E); | 
|  |  | 
|  | if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { | 
|  | const QualType SrcType = E->getType(); | 
|  |  | 
|  | // Casting to integer requires stripping dynamic information as it does | 
|  | // not carries it. | 
|  | if (SrcType.mayBeDynamicClass()) | 
|  | PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); | 
|  | } | 
|  |  | 
|  | return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); | 
|  | } | 
|  | case CK_ToVoid: { | 
|  | CGF.EmitIgnoredExpr(E); | 
|  | return nullptr; | 
|  | } | 
|  | case CK_VectorSplat: { | 
|  | llvm::Type *DstTy = ConvertType(DestTy); | 
|  | Value *Elt = Visit(const_cast<Expr*>(E)); | 
|  | // Splat the element across to all elements | 
|  | unsigned NumElements = DstTy->getVectorNumElements(); | 
|  | return Builder.CreateVectorSplat(NumElements, Elt, "splat"); | 
|  | } | 
|  |  | 
|  | case CK_FixedPointCast: | 
|  | return EmitScalarConversion(Visit(E), E->getType(), DestTy, | 
|  | CE->getExprLoc()); | 
|  |  | 
|  | case CK_FixedPointToBoolean: | 
|  | assert(E->getType()->isFixedPointType() && | 
|  | "Expected src type to be fixed point type"); | 
|  | assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); | 
|  | return EmitScalarConversion(Visit(E), E->getType(), DestTy, | 
|  | CE->getExprLoc()); | 
|  |  | 
|  | case CK_IntegralCast: { | 
|  | ScalarConversionOpts Opts; | 
|  | if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { | 
|  | if (CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitConversion) && | 
|  | !ICE->isPartOfExplicitCast()) { | 
|  | Opts.EmitImplicitIntegerTruncationChecks = | 
|  | CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation); | 
|  | Opts.EmitImplicitIntegerSignChangeChecks = | 
|  | CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange); | 
|  | } | 
|  | } | 
|  | return EmitScalarConversion(Visit(E), E->getType(), DestTy, | 
|  | CE->getExprLoc(), Opts); | 
|  | } | 
|  | case CK_IntegralToFloating: | 
|  | case CK_FloatingToIntegral: | 
|  | case CK_FloatingCast: | 
|  | return EmitScalarConversion(Visit(E), E->getType(), DestTy, | 
|  | CE->getExprLoc()); | 
|  | case CK_BooleanToSignedIntegral: { | 
|  | ScalarConversionOpts Opts; | 
|  | Opts.TreatBooleanAsSigned = true; | 
|  | return EmitScalarConversion(Visit(E), E->getType(), DestTy, | 
|  | CE->getExprLoc(), Opts); | 
|  | } | 
|  | case CK_IntegralToBoolean: | 
|  | return EmitIntToBoolConversion(Visit(E)); | 
|  | case CK_PointerToBoolean: | 
|  | return EmitPointerToBoolConversion(Visit(E), E->getType()); | 
|  | case CK_FloatingToBoolean: | 
|  | return EmitFloatToBoolConversion(Visit(E)); | 
|  | case CK_MemberPointerToBoolean: { | 
|  | llvm::Value *MemPtr = Visit(E); | 
|  | const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); | 
|  | return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); | 
|  | } | 
|  |  | 
|  | case CK_FloatingComplexToReal: | 
|  | case CK_IntegralComplexToReal: | 
|  | return CGF.EmitComplexExpr(E, false, true).first; | 
|  |  | 
|  | case CK_FloatingComplexToBoolean: | 
|  | case CK_IntegralComplexToBoolean: { | 
|  | CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); | 
|  |  | 
|  | // TODO: kill this function off, inline appropriate case here | 
|  | return EmitComplexToScalarConversion(V, E->getType(), DestTy, | 
|  | CE->getExprLoc()); | 
|  | } | 
|  |  | 
|  | case CK_ZeroToOCLOpaqueType: { | 
|  | assert((DestTy->isEventT() || DestTy->isQueueT()) && | 
|  | "CK_ZeroToOCLEvent cast on non-event type"); | 
|  | return llvm::Constant::getNullValue(ConvertType(DestTy)); | 
|  | } | 
|  |  | 
|  | case CK_IntToOCLSampler: | 
|  | return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); | 
|  |  | 
|  | } // end of switch | 
|  |  | 
|  | llvm_unreachable("unknown scalar cast"); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { | 
|  | CodeGenFunction::StmtExprEvaluation eval(CGF); | 
|  | Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), | 
|  | !E->getType()->isVoidType()); | 
|  | if (!RetAlloca.isValid()) | 
|  | return nullptr; | 
|  | return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), | 
|  | E->getExprLoc()); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { | 
|  | CGF.enterFullExpression(E); | 
|  | CodeGenFunction::RunCleanupsScope Scope(CGF); | 
|  | Value *V = Visit(E->getSubExpr()); | 
|  | // Defend against dominance problems caused by jumps out of expression | 
|  | // evaluation through the shared cleanup block. | 
|  | Scope.ForceCleanup({&V}); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                             Unary Operators | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, | 
|  | llvm::Value *InVal, bool IsInc) { | 
|  | BinOpInfo BinOp; | 
|  | BinOp.LHS = InVal; | 
|  | BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); | 
|  | BinOp.Ty = E->getType(); | 
|  | BinOp.Opcode = IsInc ? BO_Add : BO_Sub; | 
|  | // FIXME: once UnaryOperator carries FPFeatures, copy it here. | 
|  | BinOp.E = E; | 
|  | return BinOp; | 
|  | } | 
|  |  | 
|  | llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( | 
|  | const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { | 
|  | llvm::Value *Amount = | 
|  | llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); | 
|  | StringRef Name = IsInc ? "inc" : "dec"; | 
|  | switch (CGF.getLangOpts().getSignedOverflowBehavior()) { | 
|  | case LangOptions::SOB_Defined: | 
|  | return Builder.CreateAdd(InVal, Amount, Name); | 
|  | case LangOptions::SOB_Undefined: | 
|  | if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) | 
|  | return Builder.CreateNSWAdd(InVal, Amount, Name); | 
|  | LLVM_FALLTHROUGH; | 
|  | case LangOptions::SOB_Trapping: | 
|  | if (!E->canOverflow()) | 
|  | return Builder.CreateNSWAdd(InVal, Amount, Name); | 
|  | return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); | 
|  | } | 
|  | llvm_unreachable("Unknown SignedOverflowBehaviorTy"); | 
|  | } | 
|  |  | 
|  | llvm::Value * | 
|  | ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, | 
|  | bool isInc, bool isPre) { | 
|  |  | 
|  | QualType type = E->getSubExpr()->getType(); | 
|  | llvm::PHINode *atomicPHI = nullptr; | 
|  | llvm::Value *value; | 
|  | llvm::Value *input; | 
|  |  | 
|  | int amount = (isInc ? 1 : -1); | 
|  | bool isSubtraction = !isInc; | 
|  |  | 
|  | if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { | 
|  | type = atomicTy->getValueType(); | 
|  | if (isInc && type->isBooleanType()) { | 
|  | llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); | 
|  | if (isPre) { | 
|  | Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) | 
|  | ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); | 
|  | return Builder.getTrue(); | 
|  | } | 
|  | // For atomic bool increment, we just store true and return it for | 
|  | // preincrement, do an atomic swap with true for postincrement | 
|  | return Builder.CreateAtomicRMW( | 
|  | llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, | 
|  | llvm::AtomicOrdering::SequentiallyConsistent); | 
|  | } | 
|  | // Special case for atomic increment / decrement on integers, emit | 
|  | // atomicrmw instructions.  We skip this if we want to be doing overflow | 
|  | // checking, and fall into the slow path with the atomic cmpxchg loop. | 
|  | if (!type->isBooleanType() && type->isIntegerType() && | 
|  | !(type->isUnsignedIntegerType() && | 
|  | CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && | 
|  | CGF.getLangOpts().getSignedOverflowBehavior() != | 
|  | LangOptions::SOB_Trapping) { | 
|  | llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : | 
|  | llvm::AtomicRMWInst::Sub; | 
|  | llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : | 
|  | llvm::Instruction::Sub; | 
|  | llvm::Value *amt = CGF.EmitToMemory( | 
|  | llvm::ConstantInt::get(ConvertType(type), 1, true), type); | 
|  | llvm::Value *old = Builder.CreateAtomicRMW(aop, | 
|  | LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); | 
|  | return isPre ? Builder.CreateBinOp(op, old, amt) : old; | 
|  | } | 
|  | value = EmitLoadOfLValue(LV, E->getExprLoc()); | 
|  | input = value; | 
|  | // For every other atomic operation, we need to emit a load-op-cmpxchg loop | 
|  | llvm::BasicBlock *startBB = Builder.GetInsertBlock(); | 
|  | llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); | 
|  | value = CGF.EmitToMemory(value, type); | 
|  | Builder.CreateBr(opBB); | 
|  | Builder.SetInsertPoint(opBB); | 
|  | atomicPHI = Builder.CreatePHI(value->getType(), 2); | 
|  | atomicPHI->addIncoming(value, startBB); | 
|  | value = atomicPHI; | 
|  | } else { | 
|  | value = EmitLoadOfLValue(LV, E->getExprLoc()); | 
|  | input = value; | 
|  | } | 
|  |  | 
|  | // Special case of integer increment that we have to check first: bool++. | 
|  | // Due to promotion rules, we get: | 
|  | //   bool++ -> bool = bool + 1 | 
|  | //          -> bool = (int)bool + 1 | 
|  | //          -> bool = ((int)bool + 1 != 0) | 
|  | // An interesting aspect of this is that increment is always true. | 
|  | // Decrement does not have this property. | 
|  | if (isInc && type->isBooleanType()) { | 
|  | value = Builder.getTrue(); | 
|  |  | 
|  | // Most common case by far: integer increment. | 
|  | } else if (type->isIntegerType()) { | 
|  | // Note that signed integer inc/dec with width less than int can't | 
|  | // overflow because of promotion rules; we're just eliding a few steps here. | 
|  | if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { | 
|  | value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); | 
|  | } else if (E->canOverflow() && type->isUnsignedIntegerType() && | 
|  | CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { | 
|  | value = | 
|  | EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); | 
|  | } else { | 
|  | llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); | 
|  | value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); | 
|  | } | 
|  |  | 
|  | // Next most common: pointer increment. | 
|  | } else if (const PointerType *ptr = type->getAs<PointerType>()) { | 
|  | QualType type = ptr->getPointeeType(); | 
|  |  | 
|  | // VLA types don't have constant size. | 
|  | if (const VariableArrayType *vla | 
|  | = CGF.getContext().getAsVariableArrayType(type)) { | 
|  | llvm::Value *numElts = CGF.getVLASize(vla).NumElts; | 
|  | if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); | 
|  | if (CGF.getLangOpts().isSignedOverflowDefined()) | 
|  | value = Builder.CreateGEP(value, numElts, "vla.inc"); | 
|  | else | 
|  | value = CGF.EmitCheckedInBoundsGEP( | 
|  | value, numElts, /*SignedIndices=*/false, isSubtraction, | 
|  | E->getExprLoc(), "vla.inc"); | 
|  |  | 
|  | // Arithmetic on function pointers (!) is just +-1. | 
|  | } else if (type->isFunctionType()) { | 
|  | llvm::Value *amt = Builder.getInt32(amount); | 
|  |  | 
|  | value = CGF.EmitCastToVoidPtr(value); | 
|  | if (CGF.getLangOpts().isSignedOverflowDefined()) | 
|  | value = Builder.CreateGEP(value, amt, "incdec.funcptr"); | 
|  | else | 
|  | value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, | 
|  | isSubtraction, E->getExprLoc(), | 
|  | "incdec.funcptr"); | 
|  | value = Builder.CreateBitCast(value, input->getType()); | 
|  |  | 
|  | // For everything else, we can just do a simple increment. | 
|  | } else { | 
|  | llvm::Value *amt = Builder.getInt32(amount); | 
|  | if (CGF.getLangOpts().isSignedOverflowDefined()) | 
|  | value = Builder.CreateGEP(value, amt, "incdec.ptr"); | 
|  | else | 
|  | value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, | 
|  | isSubtraction, E->getExprLoc(), | 
|  | "incdec.ptr"); | 
|  | } | 
|  |  | 
|  | // Vector increment/decrement. | 
|  | } else if (type->isVectorType()) { | 
|  | if (type->hasIntegerRepresentation()) { | 
|  | llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); | 
|  |  | 
|  | value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); | 
|  | } else { | 
|  | value = Builder.CreateFAdd( | 
|  | value, | 
|  | llvm::ConstantFP::get(value->getType(), amount), | 
|  | isInc ? "inc" : "dec"); | 
|  | } | 
|  |  | 
|  | // Floating point. | 
|  | } else if (type->isRealFloatingType()) { | 
|  | // Add the inc/dec to the real part. | 
|  | llvm::Value *amt; | 
|  |  | 
|  | if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { | 
|  | // Another special case: half FP increment should be done via float | 
|  | if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { | 
|  | value = Builder.CreateCall( | 
|  | CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, | 
|  | CGF.CGM.FloatTy), | 
|  | input, "incdec.conv"); | 
|  | } else { | 
|  | value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (value->getType()->isFloatTy()) | 
|  | amt = llvm::ConstantFP::get(VMContext, | 
|  | llvm::APFloat(static_cast<float>(amount))); | 
|  | else if (value->getType()->isDoubleTy()) | 
|  | amt = llvm::ConstantFP::get(VMContext, | 
|  | llvm::APFloat(static_cast<double>(amount))); | 
|  | else { | 
|  | // Remaining types are Half, LongDouble or __float128. Convert from float. | 
|  | llvm::APFloat F(static_cast<float>(amount)); | 
|  | bool ignored; | 
|  | const llvm::fltSemantics *FS; | 
|  | // Don't use getFloatTypeSemantics because Half isn't | 
|  | // necessarily represented using the "half" LLVM type. | 
|  | if (value->getType()->isFP128Ty()) | 
|  | FS = &CGF.getTarget().getFloat128Format(); | 
|  | else if (value->getType()->isHalfTy()) | 
|  | FS = &CGF.getTarget().getHalfFormat(); | 
|  | else | 
|  | FS = &CGF.getTarget().getLongDoubleFormat(); | 
|  | F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); | 
|  | amt = llvm::ConstantFP::get(VMContext, F); | 
|  | } | 
|  | value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); | 
|  |  | 
|  | if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { | 
|  | if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { | 
|  | value = Builder.CreateCall( | 
|  | CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, | 
|  | CGF.CGM.FloatTy), | 
|  | value, "incdec.conv"); | 
|  | } else { | 
|  | value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Objective-C pointer types. | 
|  | } else { | 
|  | const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); | 
|  | value = CGF.EmitCastToVoidPtr(value); | 
|  |  | 
|  | CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); | 
|  | if (!isInc) size = -size; | 
|  | llvm::Value *sizeValue = | 
|  | llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); | 
|  |  | 
|  | if (CGF.getLangOpts().isSignedOverflowDefined()) | 
|  | value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); | 
|  | else | 
|  | value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, | 
|  | /*SignedIndices=*/false, isSubtraction, | 
|  | E->getExprLoc(), "incdec.objptr"); | 
|  | value = Builder.CreateBitCast(value, input->getType()); | 
|  | } | 
|  |  | 
|  | if (atomicPHI) { | 
|  | llvm::BasicBlock *opBB = Builder.GetInsertBlock(); | 
|  | llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); | 
|  | auto Pair = CGF.EmitAtomicCompareExchange( | 
|  | LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); | 
|  | llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); | 
|  | llvm::Value *success = Pair.second; | 
|  | atomicPHI->addIncoming(old, opBB); | 
|  | Builder.CreateCondBr(success, contBB, opBB); | 
|  | Builder.SetInsertPoint(contBB); | 
|  | return isPre ? value : input; | 
|  | } | 
|  |  | 
|  | // Store the updated result through the lvalue. | 
|  | if (LV.isBitField()) | 
|  | CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); | 
|  | else | 
|  | CGF.EmitStoreThroughLValue(RValue::get(value), LV); | 
|  |  | 
|  | // If this is a postinc, return the value read from memory, otherwise use the | 
|  | // updated value. | 
|  | return isPre ? value : input; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { | 
|  | TestAndClearIgnoreResultAssign(); | 
|  | // Emit unary minus with EmitSub so we handle overflow cases etc. | 
|  | BinOpInfo BinOp; | 
|  | BinOp.RHS = Visit(E->getSubExpr()); | 
|  |  | 
|  | if (BinOp.RHS->getType()->isFPOrFPVectorTy()) | 
|  | BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); | 
|  | else | 
|  | BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); | 
|  | BinOp.Ty = E->getType(); | 
|  | BinOp.Opcode = BO_Sub; | 
|  | // FIXME: once UnaryOperator carries FPFeatures, copy it here. | 
|  | BinOp.E = E; | 
|  | return EmitSub(BinOp); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { | 
|  | TestAndClearIgnoreResultAssign(); | 
|  | Value *Op = Visit(E->getSubExpr()); | 
|  | return Builder.CreateNot(Op, "neg"); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { | 
|  | // Perform vector logical not on comparison with zero vector. | 
|  | if (E->getType()->isExtVectorType()) { | 
|  | Value *Oper = Visit(E->getSubExpr()); | 
|  | Value *Zero = llvm::Constant::getNullValue(Oper->getType()); | 
|  | Value *Result; | 
|  | if (Oper->getType()->isFPOrFPVectorTy()) | 
|  | Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); | 
|  | else | 
|  | Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); | 
|  | return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); | 
|  | } | 
|  |  | 
|  | // Compare operand to zero. | 
|  | Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); | 
|  |  | 
|  | // Invert value. | 
|  | // TODO: Could dynamically modify easy computations here.  For example, if | 
|  | // the operand is an icmp ne, turn into icmp eq. | 
|  | BoolVal = Builder.CreateNot(BoolVal, "lnot"); | 
|  |  | 
|  | // ZExt result to the expr type. | 
|  | return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { | 
|  | // Try folding the offsetof to a constant. | 
|  | llvm::APSInt Value; | 
|  | if (E->EvaluateAsInt(Value, CGF.getContext())) | 
|  | return Builder.getInt(Value); | 
|  |  | 
|  | // Loop over the components of the offsetof to compute the value. | 
|  | unsigned n = E->getNumComponents(); | 
|  | llvm::Type* ResultType = ConvertType(E->getType()); | 
|  | llvm::Value* Result = llvm::Constant::getNullValue(ResultType); | 
|  | QualType CurrentType = E->getTypeSourceInfo()->getType(); | 
|  | for (unsigned i = 0; i != n; ++i) { | 
|  | OffsetOfNode ON = E->getComponent(i); | 
|  | llvm::Value *Offset = nullptr; | 
|  | switch (ON.getKind()) { | 
|  | case OffsetOfNode::Array: { | 
|  | // Compute the index | 
|  | Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); | 
|  | llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); | 
|  | bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); | 
|  | Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); | 
|  |  | 
|  | // Save the element type | 
|  | CurrentType = | 
|  | CGF.getContext().getAsArrayType(CurrentType)->getElementType(); | 
|  |  | 
|  | // Compute the element size | 
|  | llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, | 
|  | CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); | 
|  |  | 
|  | // Multiply out to compute the result | 
|  | Offset = Builder.CreateMul(Idx, ElemSize); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case OffsetOfNode::Field: { | 
|  | FieldDecl *MemberDecl = ON.getField(); | 
|  | RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); | 
|  | const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); | 
|  |  | 
|  | // Compute the index of the field in its parent. | 
|  | unsigned i = 0; | 
|  | // FIXME: It would be nice if we didn't have to loop here! | 
|  | for (RecordDecl::field_iterator Field = RD->field_begin(), | 
|  | FieldEnd = RD->field_end(); | 
|  | Field != FieldEnd; ++Field, ++i) { | 
|  | if (*Field == MemberDecl) | 
|  | break; | 
|  | } | 
|  | assert(i < RL.getFieldCount() && "offsetof field in wrong type"); | 
|  |  | 
|  | // Compute the offset to the field | 
|  | int64_t OffsetInt = RL.getFieldOffset(i) / | 
|  | CGF.getContext().getCharWidth(); | 
|  | Offset = llvm::ConstantInt::get(ResultType, OffsetInt); | 
|  |  | 
|  | // Save the element type. | 
|  | CurrentType = MemberDecl->getType(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | case OffsetOfNode::Identifier: | 
|  | llvm_unreachable("dependent __builtin_offsetof"); | 
|  |  | 
|  | case OffsetOfNode::Base: { | 
|  | if (ON.getBase()->isVirtual()) { | 
|  | CGF.ErrorUnsupported(E, "virtual base in offsetof"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); | 
|  | const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); | 
|  |  | 
|  | // Save the element type. | 
|  | CurrentType = ON.getBase()->getType(); | 
|  |  | 
|  | // Compute the offset to the base. | 
|  | const RecordType *BaseRT = CurrentType->getAs<RecordType>(); | 
|  | CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); | 
|  | CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); | 
|  | Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); | 
|  | break; | 
|  | } | 
|  | } | 
|  | Result = Builder.CreateAdd(Result, Offset); | 
|  | } | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of | 
|  | /// argument of the sizeof expression as an integer. | 
|  | Value * | 
|  | ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( | 
|  | const UnaryExprOrTypeTraitExpr *E) { | 
|  | QualType TypeToSize = E->getTypeOfArgument(); | 
|  | if (E->getKind() == UETT_SizeOf) { | 
|  | if (const VariableArrayType *VAT = | 
|  | CGF.getContext().getAsVariableArrayType(TypeToSize)) { | 
|  | if (E->isArgumentType()) { | 
|  | // sizeof(type) - make sure to emit the VLA size. | 
|  | CGF.EmitVariablyModifiedType(TypeToSize); | 
|  | } else { | 
|  | // C99 6.5.3.4p2: If the argument is an expression of type | 
|  | // VLA, it is evaluated. | 
|  | CGF.EmitIgnoredExpr(E->getArgumentExpr()); | 
|  | } | 
|  |  | 
|  | auto VlaSize = CGF.getVLASize(VAT); | 
|  | llvm::Value *size = VlaSize.NumElts; | 
|  |  | 
|  | // Scale the number of non-VLA elements by the non-VLA element size. | 
|  | CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); | 
|  | if (!eltSize.isOne()) | 
|  | size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); | 
|  |  | 
|  | return size; | 
|  | } | 
|  | } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { | 
|  | auto Alignment = | 
|  | CGF.getContext() | 
|  | .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( | 
|  | E->getTypeOfArgument()->getPointeeType())) | 
|  | .getQuantity(); | 
|  | return llvm::ConstantInt::get(CGF.SizeTy, Alignment); | 
|  | } | 
|  |  | 
|  | // If this isn't sizeof(vla), the result must be constant; use the constant | 
|  | // folding logic so we don't have to duplicate it here. | 
|  | return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { | 
|  | Expr *Op = E->getSubExpr(); | 
|  | if (Op->getType()->isAnyComplexType()) { | 
|  | // If it's an l-value, load through the appropriate subobject l-value. | 
|  | // Note that we have to ask E because Op might be an l-value that | 
|  | // this won't work for, e.g. an Obj-C property. | 
|  | if (E->isGLValue()) | 
|  | return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), | 
|  | E->getExprLoc()).getScalarVal(); | 
|  |  | 
|  | // Otherwise, calculate and project. | 
|  | return CGF.EmitComplexExpr(Op, false, true).first; | 
|  | } | 
|  |  | 
|  | return Visit(Op); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { | 
|  | Expr *Op = E->getSubExpr(); | 
|  | if (Op->getType()->isAnyComplexType()) { | 
|  | // If it's an l-value, load through the appropriate subobject l-value. | 
|  | // Note that we have to ask E because Op might be an l-value that | 
|  | // this won't work for, e.g. an Obj-C property. | 
|  | if (Op->isGLValue()) | 
|  | return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), | 
|  | E->getExprLoc()).getScalarVal(); | 
|  |  | 
|  | // Otherwise, calculate and project. | 
|  | return CGF.EmitComplexExpr(Op, true, false).second; | 
|  | } | 
|  |  | 
|  | // __imag on a scalar returns zero.  Emit the subexpr to ensure side | 
|  | // effects are evaluated, but not the actual value. | 
|  | if (Op->isGLValue()) | 
|  | CGF.EmitLValue(Op); | 
|  | else | 
|  | CGF.EmitScalarExpr(Op, true); | 
|  | return llvm::Constant::getNullValue(ConvertType(E->getType())); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           Binary Operators | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { | 
|  | TestAndClearIgnoreResultAssign(); | 
|  | BinOpInfo Result; | 
|  | Result.LHS = Visit(E->getLHS()); | 
|  | Result.RHS = Visit(E->getRHS()); | 
|  | Result.Ty  = E->getType(); | 
|  | Result.Opcode = E->getOpcode(); | 
|  | Result.FPFeatures = E->getFPFeatures(); | 
|  | Result.E = E; | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | LValue ScalarExprEmitter::EmitCompoundAssignLValue( | 
|  | const CompoundAssignOperator *E, | 
|  | Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), | 
|  | Value *&Result) { | 
|  | QualType LHSTy = E->getLHS()->getType(); | 
|  | BinOpInfo OpInfo; | 
|  |  | 
|  | if (E->getComputationResultType()->isAnyComplexType()) | 
|  | return CGF.EmitScalarCompoundAssignWithComplex(E, Result); | 
|  |  | 
|  | // Emit the RHS first.  __block variables need to have the rhs evaluated | 
|  | // first, plus this should improve codegen a little. | 
|  | OpInfo.RHS = Visit(E->getRHS()); | 
|  | OpInfo.Ty = E->getComputationResultType(); | 
|  | OpInfo.Opcode = E->getOpcode(); | 
|  | OpInfo.FPFeatures = E->getFPFeatures(); | 
|  | OpInfo.E = E; | 
|  | // Load/convert the LHS. | 
|  | LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); | 
|  |  | 
|  | llvm::PHINode *atomicPHI = nullptr; | 
|  | if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { | 
|  | QualType type = atomicTy->getValueType(); | 
|  | if (!type->isBooleanType() && type->isIntegerType() && | 
|  | !(type->isUnsignedIntegerType() && | 
|  | CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && | 
|  | CGF.getLangOpts().getSignedOverflowBehavior() != | 
|  | LangOptions::SOB_Trapping) { | 
|  | llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; | 
|  | switch (OpInfo.Opcode) { | 
|  | // We don't have atomicrmw operands for *, %, /, <<, >> | 
|  | case BO_MulAssign: case BO_DivAssign: | 
|  | case BO_RemAssign: | 
|  | case BO_ShlAssign: | 
|  | case BO_ShrAssign: | 
|  | break; | 
|  | case BO_AddAssign: | 
|  | aop = llvm::AtomicRMWInst::Add; | 
|  | break; | 
|  | case BO_SubAssign: | 
|  | aop = llvm::AtomicRMWInst::Sub; | 
|  | break; | 
|  | case BO_AndAssign: | 
|  | aop = llvm::AtomicRMWInst::And; | 
|  | break; | 
|  | case BO_XorAssign: | 
|  | aop = llvm::AtomicRMWInst::Xor; | 
|  | break; | 
|  | case BO_OrAssign: | 
|  | aop = llvm::AtomicRMWInst::Or; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Invalid compound assignment type"); | 
|  | } | 
|  | if (aop != llvm::AtomicRMWInst::BAD_BINOP) { | 
|  | llvm::Value *amt = CGF.EmitToMemory( | 
|  | EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, | 
|  | E->getExprLoc()), | 
|  | LHSTy); | 
|  | Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, | 
|  | llvm::AtomicOrdering::SequentiallyConsistent); | 
|  | return LHSLV; | 
|  | } | 
|  | } | 
|  | // FIXME: For floating point types, we should be saving and restoring the | 
|  | // floating point environment in the loop. | 
|  | llvm::BasicBlock *startBB = Builder.GetInsertBlock(); | 
|  | llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); | 
|  | OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); | 
|  | OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); | 
|  | Builder.CreateBr(opBB); | 
|  | Builder.SetInsertPoint(opBB); | 
|  | atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); | 
|  | atomicPHI->addIncoming(OpInfo.LHS, startBB); | 
|  | OpInfo.LHS = atomicPHI; | 
|  | } | 
|  | else | 
|  | OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); | 
|  |  | 
|  | SourceLocation Loc = E->getExprLoc(); | 
|  | OpInfo.LHS = | 
|  | EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); | 
|  |  | 
|  | // Expand the binary operator. | 
|  | Result = (this->*Func)(OpInfo); | 
|  |  | 
|  | // Convert the result back to the LHS type. | 
|  | Result = | 
|  | EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc); | 
|  |  | 
|  | if (atomicPHI) { | 
|  | llvm::BasicBlock *opBB = Builder.GetInsertBlock(); | 
|  | llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); | 
|  | auto Pair = CGF.EmitAtomicCompareExchange( | 
|  | LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); | 
|  | llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); | 
|  | llvm::Value *success = Pair.second; | 
|  | atomicPHI->addIncoming(old, opBB); | 
|  | Builder.CreateCondBr(success, contBB, opBB); | 
|  | Builder.SetInsertPoint(contBB); | 
|  | return LHSLV; | 
|  | } | 
|  |  | 
|  | // Store the result value into the LHS lvalue. Bit-fields are handled | 
|  | // specially because the result is altered by the store, i.e., [C99 6.5.16p1] | 
|  | // 'An assignment expression has the value of the left operand after the | 
|  | // assignment...'. | 
|  | if (LHSLV.isBitField()) | 
|  | CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); | 
|  | else | 
|  | CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); | 
|  |  | 
|  | return LHSLV; | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, | 
|  | Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { | 
|  | bool Ignore = TestAndClearIgnoreResultAssign(); | 
|  | Value *RHS; | 
|  | LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); | 
|  |  | 
|  | // If the result is clearly ignored, return now. | 
|  | if (Ignore) | 
|  | return nullptr; | 
|  |  | 
|  | // The result of an assignment in C is the assigned r-value. | 
|  | if (!CGF.getLangOpts().CPlusPlus) | 
|  | return RHS; | 
|  |  | 
|  | // If the lvalue is non-volatile, return the computed value of the assignment. | 
|  | if (!LHS.isVolatileQualified()) | 
|  | return RHS; | 
|  |  | 
|  | // Otherwise, reload the value. | 
|  | return EmitLoadOfLValue(LHS, E->getExprLoc()); | 
|  | } | 
|  |  | 
|  | void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( | 
|  | const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { | 
|  | SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; | 
|  |  | 
|  | if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { | 
|  | Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), | 
|  | SanitizerKind::IntegerDivideByZero)); | 
|  | } | 
|  |  | 
|  | const auto *BO = cast<BinaryOperator>(Ops.E); | 
|  | if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && | 
|  | Ops.Ty->hasSignedIntegerRepresentation() && | 
|  | !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && | 
|  | Ops.mayHaveIntegerOverflow()) { | 
|  | llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); | 
|  |  | 
|  | llvm::Value *IntMin = | 
|  | Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); | 
|  | llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); | 
|  |  | 
|  | llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); | 
|  | llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); | 
|  | llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); | 
|  | Checks.push_back( | 
|  | std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); | 
|  | } | 
|  |  | 
|  | if (Checks.size() > 0) | 
|  | EmitBinOpCheck(Checks, Ops); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { | 
|  | { | 
|  | CodeGenFunction::SanitizerScope SanScope(&CGF); | 
|  | if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || | 
|  | CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && | 
|  | Ops.Ty->isIntegerType() && | 
|  | (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { | 
|  | llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); | 
|  | EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); | 
|  | } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && | 
|  | Ops.Ty->isRealFloatingType() && | 
|  | Ops.mayHaveFloatDivisionByZero()) { | 
|  | llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); | 
|  | llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); | 
|  | EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), | 
|  | Ops); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Ops.LHS->getType()->isFPOrFPVectorTy()) { | 
|  | llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); | 
|  | if (CGF.getLangOpts().OpenCL && | 
|  | !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { | 
|  | // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp | 
|  | // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt | 
|  | // build option allows an application to specify that single precision | 
|  | // floating-point divide (x/y and 1/x) and sqrt used in the program | 
|  | // source are correctly rounded. | 
|  | llvm::Type *ValTy = Val->getType(); | 
|  | if (ValTy->isFloatTy() || | 
|  | (isa<llvm::VectorType>(ValTy) && | 
|  | cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) | 
|  | CGF.SetFPAccuracy(Val, 2.5); | 
|  | } | 
|  | return Val; | 
|  | } | 
|  | else if (Ops.Ty->hasUnsignedIntegerRepresentation()) | 
|  | return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); | 
|  | else | 
|  | return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { | 
|  | // Rem in C can't be a floating point type: C99 6.5.5p2. | 
|  | if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || | 
|  | CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && | 
|  | Ops.Ty->isIntegerType() && | 
|  | (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { | 
|  | CodeGenFunction::SanitizerScope SanScope(&CGF); | 
|  | llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); | 
|  | EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); | 
|  | } | 
|  |  | 
|  | if (Ops.Ty->hasUnsignedIntegerRepresentation()) | 
|  | return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); | 
|  | else | 
|  | return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { | 
|  | unsigned IID; | 
|  | unsigned OpID = 0; | 
|  |  | 
|  | bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); | 
|  | switch (Ops.Opcode) { | 
|  | case BO_Add: | 
|  | case BO_AddAssign: | 
|  | OpID = 1; | 
|  | IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : | 
|  | llvm::Intrinsic::uadd_with_overflow; | 
|  | break; | 
|  | case BO_Sub: | 
|  | case BO_SubAssign: | 
|  | OpID = 2; | 
|  | IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : | 
|  | llvm::Intrinsic::usub_with_overflow; | 
|  | break; | 
|  | case BO_Mul: | 
|  | case BO_MulAssign: | 
|  | OpID = 3; | 
|  | IID = isSigned ? llvm::Intrinsic::smul_with_overflow : | 
|  | llvm::Intrinsic::umul_with_overflow; | 
|  | break; | 
|  | default: | 
|  | llvm_unreachable("Unsupported operation for overflow detection"); | 
|  | } | 
|  | OpID <<= 1; | 
|  | if (isSigned) | 
|  | OpID |= 1; | 
|  |  | 
|  | CodeGenFunction::SanitizerScope SanScope(&CGF); | 
|  | llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); | 
|  |  | 
|  | llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); | 
|  |  | 
|  | Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); | 
|  | Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); | 
|  | Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); | 
|  |  | 
|  | // Handle overflow with llvm.trap if no custom handler has been specified. | 
|  | const std::string *handlerName = | 
|  | &CGF.getLangOpts().OverflowHandler; | 
|  | if (handlerName->empty()) { | 
|  | // If the signed-integer-overflow sanitizer is enabled, emit a call to its | 
|  | // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. | 
|  | if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { | 
|  | llvm::Value *NotOverflow = Builder.CreateNot(overflow); | 
|  | SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow | 
|  | : SanitizerKind::UnsignedIntegerOverflow; | 
|  | EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); | 
|  | } else | 
|  | CGF.EmitTrapCheck(Builder.CreateNot(overflow)); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | // Branch in case of overflow. | 
|  | llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); | 
|  | llvm::BasicBlock *continueBB = | 
|  | CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); | 
|  | llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); | 
|  |  | 
|  | Builder.CreateCondBr(overflow, overflowBB, continueBB); | 
|  |  | 
|  | // If an overflow handler is set, then we want to call it and then use its | 
|  | // result, if it returns. | 
|  | Builder.SetInsertPoint(overflowBB); | 
|  |  | 
|  | // Get the overflow handler. | 
|  | llvm::Type *Int8Ty = CGF.Int8Ty; | 
|  | llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; | 
|  | llvm::FunctionType *handlerTy = | 
|  | llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); | 
|  | llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); | 
|  |  | 
|  | // Sign extend the args to 64-bit, so that we can use the same handler for | 
|  | // all types of overflow. | 
|  | llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); | 
|  | llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); | 
|  |  | 
|  | // Call the handler with the two arguments, the operation, and the size of | 
|  | // the result. | 
|  | llvm::Value *handlerArgs[] = { | 
|  | lhs, | 
|  | rhs, | 
|  | Builder.getInt8(OpID), | 
|  | Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) | 
|  | }; | 
|  | llvm::Value *handlerResult = | 
|  | CGF.EmitNounwindRuntimeCall(handler, handlerArgs); | 
|  |  | 
|  | // Truncate the result back to the desired size. | 
|  | handlerResult = Builder.CreateTrunc(handlerResult, opTy); | 
|  | Builder.CreateBr(continueBB); | 
|  |  | 
|  | Builder.SetInsertPoint(continueBB); | 
|  | llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); | 
|  | phi->addIncoming(result, initialBB); | 
|  | phi->addIncoming(handlerResult, overflowBB); | 
|  |  | 
|  | return phi; | 
|  | } | 
|  |  | 
|  | /// Emit pointer + index arithmetic. | 
|  | static Value *emitPointerArithmetic(CodeGenFunction &CGF, | 
|  | const BinOpInfo &op, | 
|  | bool isSubtraction) { | 
|  | // Must have binary (not unary) expr here.  Unary pointer | 
|  | // increment/decrement doesn't use this path. | 
|  | const BinaryOperator *expr = cast<BinaryOperator>(op.E); | 
|  |  | 
|  | Value *pointer = op.LHS; | 
|  | Expr *pointerOperand = expr->getLHS(); | 
|  | Value *index = op.RHS; | 
|  | Expr *indexOperand = expr->getRHS(); | 
|  |  | 
|  | // In a subtraction, the LHS is always the pointer. | 
|  | if (!isSubtraction && !pointer->getType()->isPointerTy()) { | 
|  | std::swap(pointer, index); | 
|  | std::swap(pointerOperand, indexOperand); | 
|  | } | 
|  |  | 
|  | bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); | 
|  |  | 
|  | unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); | 
|  | auto &DL = CGF.CGM.getDataLayout(); | 
|  | auto PtrTy = cast<llvm::PointerType>(pointer->getType()); | 
|  |  | 
|  | // Some versions of glibc and gcc use idioms (particularly in their malloc | 
|  | // routines) that add a pointer-sized integer (known to be a pointer value) | 
|  | // to a null pointer in order to cast the value back to an integer or as | 
|  | // part of a pointer alignment algorithm.  This is undefined behavior, but | 
|  | // we'd like to be able to compile programs that use it. | 
|  | // | 
|  | // Normally, we'd generate a GEP with a null-pointer base here in response | 
|  | // to that code, but it's also UB to dereference a pointer created that | 
|  | // way.  Instead (as an acknowledged hack to tolerate the idiom) we will | 
|  | // generate a direct cast of the integer value to a pointer. | 
|  | // | 
|  | // The idiom (p = nullptr + N) is not met if any of the following are true: | 
|  | // | 
|  | //   The operation is subtraction. | 
|  | //   The index is not pointer-sized. | 
|  | //   The pointer type is not byte-sized. | 
|  | // | 
|  | if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), | 
|  | op.Opcode, | 
|  | expr->getLHS(), | 
|  | expr->getRHS())) | 
|  | return CGF.Builder.CreateIntToPtr(index, pointer->getType()); | 
|  |  | 
|  | if (width != DL.getTypeSizeInBits(PtrTy)) { | 
|  | // Zero-extend or sign-extend the pointer value according to | 
|  | // whether the index is signed or not. | 
|  | index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, | 
|  | "idx.ext"); | 
|  | } | 
|  |  | 
|  | // If this is subtraction, negate the index. | 
|  | if (isSubtraction) | 
|  | index = CGF.Builder.CreateNeg(index, "idx.neg"); | 
|  |  | 
|  | if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) | 
|  | CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), | 
|  | /*Accessed*/ false); | 
|  |  | 
|  | const PointerType *pointerType | 
|  | = pointerOperand->getType()->getAs<PointerType>(); | 
|  | if (!pointerType) { | 
|  | QualType objectType = pointerOperand->getType() | 
|  | ->castAs<ObjCObjectPointerType>() | 
|  | ->getPointeeType(); | 
|  | llvm::Value *objectSize | 
|  | = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); | 
|  |  | 
|  | index = CGF.Builder.CreateMul(index, objectSize); | 
|  |  | 
|  | Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); | 
|  | result = CGF.Builder.CreateGEP(result, index, "add.ptr"); | 
|  | return CGF.Builder.CreateBitCast(result, pointer->getType()); | 
|  | } | 
|  |  | 
|  | QualType elementType = pointerType->getPointeeType(); | 
|  | if (const VariableArrayType *vla | 
|  | = CGF.getContext().getAsVariableArrayType(elementType)) { | 
|  | // The element count here is the total number of non-VLA elements. | 
|  | llvm::Value *numElements = CGF.getVLASize(vla).NumElts; | 
|  |  | 
|  | // Effectively, the multiply by the VLA size is part of the GEP. | 
|  | // GEP indexes are signed, and scaling an index isn't permitted to | 
|  | // signed-overflow, so we use the same semantics for our explicit | 
|  | // multiply.  We suppress this if overflow is not undefined behavior. | 
|  | if (CGF.getLangOpts().isSignedOverflowDefined()) { | 
|  | index = CGF.Builder.CreateMul(index, numElements, "vla.index"); | 
|  | pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); | 
|  | } else { | 
|  | index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); | 
|  | pointer = | 
|  | CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, | 
|  | op.E->getExprLoc(), "add.ptr"); | 
|  | } | 
|  | return pointer; | 
|  | } | 
|  |  | 
|  | // Explicitly handle GNU void* and function pointer arithmetic extensions. The | 
|  | // GNU void* casts amount to no-ops since our void* type is i8*, but this is | 
|  | // future proof. | 
|  | if (elementType->isVoidType() || elementType->isFunctionType()) { | 
|  | Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); | 
|  | result = CGF.Builder.CreateGEP(result, index, "add.ptr"); | 
|  | return CGF.Builder.CreateBitCast(result, pointer->getType()); | 
|  | } | 
|  |  | 
|  | if (CGF.getLangOpts().isSignedOverflowDefined()) | 
|  | return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); | 
|  |  | 
|  | return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, | 
|  | op.E->getExprLoc(), "add.ptr"); | 
|  | } | 
|  |  | 
|  | // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and | 
|  | // Addend. Use negMul and negAdd to negate the first operand of the Mul or | 
|  | // the add operand respectively. This allows fmuladd to represent a*b-c, or | 
|  | // c-a*b. Patterns in LLVM should catch the negated forms and translate them to | 
|  | // efficient operations. | 
|  | static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, | 
|  | const CodeGenFunction &CGF, CGBuilderTy &Builder, | 
|  | bool negMul, bool negAdd) { | 
|  | assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); | 
|  |  | 
|  | Value *MulOp0 = MulOp->getOperand(0); | 
|  | Value *MulOp1 = MulOp->getOperand(1); | 
|  | if (negMul) { | 
|  | MulOp0 = | 
|  | Builder.CreateFSub( | 
|  | llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, | 
|  | "neg"); | 
|  | } else if (negAdd) { | 
|  | Addend = | 
|  | Builder.CreateFSub( | 
|  | llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, | 
|  | "neg"); | 
|  | } | 
|  |  | 
|  | Value *FMulAdd = Builder.CreateCall( | 
|  | CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), | 
|  | {MulOp0, MulOp1, Addend}); | 
|  | MulOp->eraseFromParent(); | 
|  |  | 
|  | return FMulAdd; | 
|  | } | 
|  |  | 
|  | // Check whether it would be legal to emit an fmuladd intrinsic call to | 
|  | // represent op and if so, build the fmuladd. | 
|  | // | 
|  | // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. | 
|  | // Does NOT check the type of the operation - it's assumed that this function | 
|  | // will be called from contexts where it's known that the type is contractable. | 
|  | static Value* tryEmitFMulAdd(const BinOpInfo &op, | 
|  | const CodeGenFunction &CGF, CGBuilderTy &Builder, | 
|  | bool isSub=false) { | 
|  |  | 
|  | assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || | 
|  | op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && | 
|  | "Only fadd/fsub can be the root of an fmuladd."); | 
|  |  | 
|  | // Check whether this op is marked as fusable. | 
|  | if (!op.FPFeatures.allowFPContractWithinStatement()) | 
|  | return nullptr; | 
|  |  | 
|  | // We have a potentially fusable op. Look for a mul on one of the operands. | 
|  | // Also, make sure that the mul result isn't used directly. In that case, | 
|  | // there's no point creating a muladd operation. | 
|  | if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { | 
|  | if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && | 
|  | LHSBinOp->use_empty()) | 
|  | return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); | 
|  | } | 
|  | if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { | 
|  | if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && | 
|  | RHSBinOp->use_empty()) | 
|  | return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { | 
|  | if (op.LHS->getType()->isPointerTy() || | 
|  | op.RHS->getType()->isPointerTy()) | 
|  | return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); | 
|  |  | 
|  | if (op.Ty->isSignedIntegerOrEnumerationType()) { | 
|  | switch (CGF.getLangOpts().getSignedOverflowBehavior()) { | 
|  | case LangOptions::SOB_Defined: | 
|  | return Builder.CreateAdd(op.LHS, op.RHS, "add"); | 
|  | case LangOptions::SOB_Undefined: | 
|  | if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) | 
|  | return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); | 
|  | LLVM_FALLTHROUGH; | 
|  | case LangOptions::SOB_Trapping: | 
|  | if (CanElideOverflowCheck(CGF.getContext(), op)) | 
|  | return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); | 
|  | return EmitOverflowCheckedBinOp(op); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (op.Ty->isUnsignedIntegerType() && | 
|  | CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && | 
|  | !CanElideOverflowCheck(CGF.getContext(), op)) | 
|  | return EmitOverflowCheckedBinOp(op); | 
|  |  | 
|  | if (op.LHS->getType()->isFPOrFPVectorTy()) { | 
|  | // Try to form an fmuladd. | 
|  | if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) | 
|  | return FMulAdd; | 
|  |  | 
|  | Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); | 
|  | return propagateFMFlags(V, op); | 
|  | } | 
|  |  | 
|  | return Builder.CreateAdd(op.LHS, op.RHS, "add"); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { | 
|  | // The LHS is always a pointer if either side is. | 
|  | if (!op.LHS->getType()->isPointerTy()) { | 
|  | if (op.Ty->isSignedIntegerOrEnumerationType()) { | 
|  | switch (CGF.getLangOpts().getSignedOverflowBehavior()) { | 
|  | case LangOptions::SOB_Defined: | 
|  | return Builder.CreateSub(op.LHS, op.RHS, "sub"); | 
|  | case LangOptions::SOB_Undefined: | 
|  | if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) | 
|  | return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); | 
|  | LLVM_FALLTHROUGH; | 
|  | case LangOptions::SOB_Trapping: | 
|  | if (CanElideOverflowCheck(CGF.getContext(), op)) | 
|  | return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); | 
|  | return EmitOverflowCheckedBinOp(op); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (op.Ty->isUnsignedIntegerType() && | 
|  | CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && | 
|  | !CanElideOverflowCheck(CGF.getContext(), op)) | 
|  | return EmitOverflowCheckedBinOp(op); | 
|  |  | 
|  | if (op.LHS->getType()->isFPOrFPVectorTy()) { | 
|  | // Try to form an fmuladd. | 
|  | if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) | 
|  | return FMulAdd; | 
|  | Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); | 
|  | return propagateFMFlags(V, op); | 
|  | } | 
|  |  | 
|  | return Builder.CreateSub(op.LHS, op.RHS, "sub"); | 
|  | } | 
|  |  | 
|  | // If the RHS is not a pointer, then we have normal pointer | 
|  | // arithmetic. | 
|  | if (!op.RHS->getType()->isPointerTy()) | 
|  | return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); | 
|  |  | 
|  | // Otherwise, this is a pointer subtraction. | 
|  |  | 
|  | // Do the raw subtraction part. | 
|  | llvm::Value *LHS | 
|  | = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); | 
|  | llvm::Value *RHS | 
|  | = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); | 
|  | Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); | 
|  |  | 
|  | // Okay, figure out the element size. | 
|  | const BinaryOperator *expr = cast<BinaryOperator>(op.E); | 
|  | QualType elementType = expr->getLHS()->getType()->getPointeeType(); | 
|  |  | 
|  | llvm::Value *divisor = nullptr; | 
|  |  | 
|  | // For a variable-length array, this is going to be non-constant. | 
|  | if (const VariableArrayType *vla | 
|  | = CGF.getContext().getAsVariableArrayType(elementType)) { | 
|  | auto VlaSize = CGF.getVLASize(vla); | 
|  | elementType = VlaSize.Type; | 
|  | divisor = VlaSize.NumElts; | 
|  |  | 
|  | // Scale the number of non-VLA elements by the non-VLA element size. | 
|  | CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); | 
|  | if (!eltSize.isOne()) | 
|  | divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); | 
|  |  | 
|  | // For everything elese, we can just compute it, safe in the | 
|  | // assumption that Sema won't let anything through that we can't | 
|  | // safely compute the size of. | 
|  | } else { | 
|  | CharUnits elementSize; | 
|  | // Handle GCC extension for pointer arithmetic on void* and | 
|  | // function pointer types. | 
|  | if (elementType->isVoidType() || elementType->isFunctionType()) | 
|  | elementSize = CharUnits::One(); | 
|  | else | 
|  | elementSize = CGF.getContext().getTypeSizeInChars(elementType); | 
|  |  | 
|  | // Don't even emit the divide for element size of 1. | 
|  | if (elementSize.isOne()) | 
|  | return diffInChars; | 
|  |  | 
|  | divisor = CGF.CGM.getSize(elementSize); | 
|  | } | 
|  |  | 
|  | // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since | 
|  | // pointer difference in C is only defined in the case where both operands | 
|  | // are pointing to elements of an array. | 
|  | return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { | 
|  | llvm::IntegerType *Ty; | 
|  | if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) | 
|  | Ty = cast<llvm::IntegerType>(VT->getElementType()); | 
|  | else | 
|  | Ty = cast<llvm::IntegerType>(LHS->getType()); | 
|  | return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { | 
|  | // LLVM requires the LHS and RHS to be the same type: promote or truncate the | 
|  | // RHS to the same size as the LHS. | 
|  | Value *RHS = Ops.RHS; | 
|  | if (Ops.LHS->getType() != RHS->getType()) | 
|  | RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); | 
|  |  | 
|  | bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && | 
|  | Ops.Ty->hasSignedIntegerRepresentation() && | 
|  | !CGF.getLangOpts().isSignedOverflowDefined(); | 
|  | bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); | 
|  | // OpenCL 6.3j: shift values are effectively % word size of LHS. | 
|  | if (CGF.getLangOpts().OpenCL) | 
|  | RHS = | 
|  | Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); | 
|  | else if ((SanitizeBase || SanitizeExponent) && | 
|  | isa<llvm::IntegerType>(Ops.LHS->getType())) { | 
|  | CodeGenFunction::SanitizerScope SanScope(&CGF); | 
|  | SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; | 
|  | llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); | 
|  | llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); | 
|  |  | 
|  | if (SanitizeExponent) { | 
|  | Checks.push_back( | 
|  | std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); | 
|  | } | 
|  |  | 
|  | if (SanitizeBase) { | 
|  | // Check whether we are shifting any non-zero bits off the top of the | 
|  | // integer. We only emit this check if exponent is valid - otherwise | 
|  | // instructions below will have undefined behavior themselves. | 
|  | llvm::BasicBlock *Orig = Builder.GetInsertBlock(); | 
|  | llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); | 
|  | llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); | 
|  | Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); | 
|  | llvm::Value *PromotedWidthMinusOne = | 
|  | (RHS == Ops.RHS) ? WidthMinusOne | 
|  | : GetWidthMinusOneValue(Ops.LHS, RHS); | 
|  | CGF.EmitBlock(CheckShiftBase); | 
|  | llvm::Value *BitsShiftedOff = Builder.CreateLShr( | 
|  | Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", | 
|  | /*NUW*/ true, /*NSW*/ true), | 
|  | "shl.check"); | 
|  | if (CGF.getLangOpts().CPlusPlus) { | 
|  | // In C99, we are not permitted to shift a 1 bit into the sign bit. | 
|  | // Under C++11's rules, shifting a 1 bit into the sign bit is | 
|  | // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't | 
|  | // define signed left shifts, so we use the C99 and C++11 rules there). | 
|  | llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); | 
|  | BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); | 
|  | } | 
|  | llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); | 
|  | llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); | 
|  | CGF.EmitBlock(Cont); | 
|  | llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); | 
|  | BaseCheck->addIncoming(Builder.getTrue(), Orig); | 
|  | BaseCheck->addIncoming(ValidBase, CheckShiftBase); | 
|  | Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); | 
|  | } | 
|  |  | 
|  | assert(!Checks.empty()); | 
|  | EmitBinOpCheck(Checks, Ops); | 
|  | } | 
|  |  | 
|  | return Builder.CreateShl(Ops.LHS, RHS, "shl"); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { | 
|  | // LLVM requires the LHS and RHS to be the same type: promote or truncate the | 
|  | // RHS to the same size as the LHS. | 
|  | Value *RHS = Ops.RHS; | 
|  | if (Ops.LHS->getType() != RHS->getType()) | 
|  | RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); | 
|  |  | 
|  | // OpenCL 6.3j: shift values are effectively % word size of LHS. | 
|  | if (CGF.getLangOpts().OpenCL) | 
|  | RHS = | 
|  | Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); | 
|  | else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && | 
|  | isa<llvm::IntegerType>(Ops.LHS->getType())) { | 
|  | CodeGenFunction::SanitizerScope SanScope(&CGF); | 
|  | llvm::Value *Valid = | 
|  | Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); | 
|  | EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); | 
|  | } | 
|  |  | 
|  | if (Ops.Ty->hasUnsignedIntegerRepresentation()) | 
|  | return Builder.CreateLShr(Ops.LHS, RHS, "shr"); | 
|  | return Builder.CreateAShr(Ops.LHS, RHS, "shr"); | 
|  | } | 
|  |  | 
|  | enum IntrinsicType { VCMPEQ, VCMPGT }; | 
|  | // return corresponding comparison intrinsic for given vector type | 
|  | static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, | 
|  | BuiltinType::Kind ElemKind) { | 
|  | switch (ElemKind) { | 
|  | default: llvm_unreachable("unexpected element type"); | 
|  | case BuiltinType::Char_U: | 
|  | case BuiltinType::UChar: | 
|  | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : | 
|  | llvm::Intrinsic::ppc_altivec_vcmpgtub_p; | 
|  | case BuiltinType::Char_S: | 
|  | case BuiltinType::SChar: | 
|  | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : | 
|  | llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; | 
|  | case BuiltinType::UShort: | 
|  | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : | 
|  | llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; | 
|  | case BuiltinType::Short: | 
|  | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : | 
|  | llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; | 
|  | case BuiltinType::UInt: | 
|  | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : | 
|  | llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; | 
|  | case BuiltinType::Int: | 
|  | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : | 
|  | llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; | 
|  | case BuiltinType::ULong: | 
|  | case BuiltinType::ULongLong: | 
|  | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : | 
|  | llvm::Intrinsic::ppc_altivec_vcmpgtud_p; | 
|  | case BuiltinType::Long: | 
|  | case BuiltinType::LongLong: | 
|  | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : | 
|  | llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; | 
|  | case BuiltinType::Float: | 
|  | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : | 
|  | llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; | 
|  | case BuiltinType::Double: | 
|  | return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : | 
|  | llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; | 
|  | } | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, | 
|  | llvm::CmpInst::Predicate UICmpOpc, | 
|  | llvm::CmpInst::Predicate SICmpOpc, | 
|  | llvm::CmpInst::Predicate FCmpOpc) { | 
|  | TestAndClearIgnoreResultAssign(); | 
|  | Value *Result; | 
|  | QualType LHSTy = E->getLHS()->getType(); | 
|  | QualType RHSTy = E->getRHS()->getType(); | 
|  | if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { | 
|  | assert(E->getOpcode() == BO_EQ || | 
|  | E->getOpcode() == BO_NE); | 
|  | Value *LHS = CGF.EmitScalarExpr(E->getLHS()); | 
|  | Value *RHS = CGF.EmitScalarExpr(E->getRHS()); | 
|  | Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( | 
|  | CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); | 
|  | } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { | 
|  | Value *LHS = Visit(E->getLHS()); | 
|  | Value *RHS = Visit(E->getRHS()); | 
|  |  | 
|  | // If AltiVec, the comparison results in a numeric type, so we use | 
|  | // intrinsics comparing vectors and giving 0 or 1 as a result | 
|  | if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { | 
|  | // constants for mapping CR6 register bits to predicate result | 
|  | enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; | 
|  |  | 
|  | llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; | 
|  |  | 
|  | // in several cases vector arguments order will be reversed | 
|  | Value *FirstVecArg = LHS, | 
|  | *SecondVecArg = RHS; | 
|  |  | 
|  | QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); | 
|  | const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); | 
|  | BuiltinType::Kind ElementKind = BTy->getKind(); | 
|  |  | 
|  | switch(E->getOpcode()) { | 
|  | default: llvm_unreachable("is not a comparison operation"); | 
|  | case BO_EQ: | 
|  | CR6 = CR6_LT; | 
|  | ID = GetIntrinsic(VCMPEQ, ElementKind); | 
|  | break; | 
|  | case BO_NE: | 
|  | CR6 = CR6_EQ; | 
|  | ID = GetIntrinsic(VCMPEQ, ElementKind); | 
|  | break; | 
|  | case BO_LT: | 
|  | CR6 = CR6_LT; | 
|  | ID = GetIntrinsic(VCMPGT, ElementKind); | 
|  | std::swap(FirstVecArg, SecondVecArg); | 
|  | break; | 
|  | case BO_GT: | 
|  | CR6 = CR6_LT; | 
|  | ID = GetIntrinsic(VCMPGT, ElementKind); | 
|  | break; | 
|  | case BO_LE: | 
|  | if (ElementKind == BuiltinType::Float) { | 
|  | CR6 = CR6_LT; | 
|  | ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; | 
|  | std::swap(FirstVecArg, SecondVecArg); | 
|  | } | 
|  | else { | 
|  | CR6 = CR6_EQ; | 
|  | ID = GetIntrinsic(VCMPGT, ElementKind); | 
|  | } | 
|  | break; | 
|  | case BO_GE: | 
|  | if (ElementKind == BuiltinType::Float) { | 
|  | CR6 = CR6_LT; | 
|  | ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; | 
|  | } | 
|  | else { | 
|  | CR6 = CR6_EQ; | 
|  | ID = GetIntrinsic(VCMPGT, ElementKind); | 
|  | std::swap(FirstVecArg, SecondVecArg); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | Value *CR6Param = Builder.getInt32(CR6); | 
|  | llvm::Function *F = CGF.CGM.getIntrinsic(ID); | 
|  | Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); | 
|  |  | 
|  | // The result type of intrinsic may not be same as E->getType(). | 
|  | // If E->getType() is not BoolTy, EmitScalarConversion will do the | 
|  | // conversion work. If E->getType() is BoolTy, EmitScalarConversion will | 
|  | // do nothing, if ResultTy is not i1 at the same time, it will cause | 
|  | // crash later. | 
|  | llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); | 
|  | if (ResultTy->getBitWidth() > 1 && | 
|  | E->getType() == CGF.getContext().BoolTy) | 
|  | Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); | 
|  | return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), | 
|  | E->getExprLoc()); | 
|  | } | 
|  |  | 
|  | if (LHS->getType()->isFPOrFPVectorTy()) { | 
|  | Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); | 
|  | } else if (LHSTy->hasSignedIntegerRepresentation()) { | 
|  | Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); | 
|  | } else { | 
|  | // Unsigned integers and pointers. | 
|  |  | 
|  | if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && | 
|  | !isa<llvm::ConstantPointerNull>(LHS) && | 
|  | !isa<llvm::ConstantPointerNull>(RHS)) { | 
|  |  | 
|  | // Dynamic information is required to be stripped for comparisons, | 
|  | // because it could leak the dynamic information.  Based on comparisons | 
|  | // of pointers to dynamic objects, the optimizer can replace one pointer | 
|  | // with another, which might be incorrect in presence of invariant | 
|  | // groups. Comparison with null is safe because null does not carry any | 
|  | // dynamic information. | 
|  | if (LHSTy.mayBeDynamicClass()) | 
|  | LHS = Builder.CreateStripInvariantGroup(LHS); | 
|  | if (RHSTy.mayBeDynamicClass()) | 
|  | RHS = Builder.CreateStripInvariantGroup(RHS); | 
|  | } | 
|  |  | 
|  | Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); | 
|  | } | 
|  |  | 
|  | // If this is a vector comparison, sign extend the result to the appropriate | 
|  | // vector integer type and return it (don't convert to bool). | 
|  | if (LHSTy->isVectorType()) | 
|  | return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); | 
|  |  | 
|  | } else { | 
|  | // Complex Comparison: can only be an equality comparison. | 
|  | CodeGenFunction::ComplexPairTy LHS, RHS; | 
|  | QualType CETy; | 
|  | if (auto *CTy = LHSTy->getAs<ComplexType>()) { | 
|  | LHS = CGF.EmitComplexExpr(E->getLHS()); | 
|  | CETy = CTy->getElementType(); | 
|  | } else { | 
|  | LHS.first = Visit(E->getLHS()); | 
|  | LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); | 
|  | CETy = LHSTy; | 
|  | } | 
|  | if (auto *CTy = RHSTy->getAs<ComplexType>()) { | 
|  | RHS = CGF.EmitComplexExpr(E->getRHS()); | 
|  | assert(CGF.getContext().hasSameUnqualifiedType(CETy, | 
|  | CTy->getElementType()) && | 
|  | "The element types must always match."); | 
|  | (void)CTy; | 
|  | } else { | 
|  | RHS.first = Visit(E->getRHS()); | 
|  | RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); | 
|  | assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && | 
|  | "The element types must always match."); | 
|  | } | 
|  |  | 
|  | Value *ResultR, *ResultI; | 
|  | if (CETy->isRealFloatingType()) { | 
|  | ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); | 
|  | ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); | 
|  | } else { | 
|  | // Complex comparisons can only be equality comparisons.  As such, signed | 
|  | // and unsigned opcodes are the same. | 
|  | ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); | 
|  | ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); | 
|  | } | 
|  |  | 
|  | if (E->getOpcode() == BO_EQ) { | 
|  | Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); | 
|  | } else { | 
|  | assert(E->getOpcode() == BO_NE && | 
|  | "Complex comparison other than == or != ?"); | 
|  | Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); | 
|  | } | 
|  | } | 
|  |  | 
|  | return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), | 
|  | E->getExprLoc()); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { | 
|  | bool Ignore = TestAndClearIgnoreResultAssign(); | 
|  |  | 
|  | Value *RHS; | 
|  | LValue LHS; | 
|  |  | 
|  | switch (E->getLHS()->getType().getObjCLifetime()) { | 
|  | case Qualifiers::OCL_Strong: | 
|  | std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); | 
|  | break; | 
|  |  | 
|  | case Qualifiers::OCL_Autoreleasing: | 
|  | std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); | 
|  | break; | 
|  |  | 
|  | case Qualifiers::OCL_ExplicitNone: | 
|  | std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); | 
|  | break; | 
|  |  | 
|  | case Qualifiers::OCL_Weak: | 
|  | RHS = Visit(E->getRHS()); | 
|  | LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); | 
|  | RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); | 
|  | break; | 
|  |  | 
|  | case Qualifiers::OCL_None: | 
|  | // __block variables need to have the rhs evaluated first, plus | 
|  | // this should improve codegen just a little. | 
|  | RHS = Visit(E->getRHS()); | 
|  | LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); | 
|  |  | 
|  | // Store the value into the LHS.  Bit-fields are handled specially | 
|  | // because the result is altered by the store, i.e., [C99 6.5.16p1] | 
|  | // 'An assignment expression has the value of the left operand after | 
|  | // the assignment...'. | 
|  | if (LHS.isBitField()) { | 
|  | CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); | 
|  | } else { | 
|  | CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); | 
|  | CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the result is clearly ignored, return now. | 
|  | if (Ignore) | 
|  | return nullptr; | 
|  |  | 
|  | // The result of an assignment in C is the assigned r-value. | 
|  | if (!CGF.getLangOpts().CPlusPlus) | 
|  | return RHS; | 
|  |  | 
|  | // If the lvalue is non-volatile, return the computed value of the assignment. | 
|  | if (!LHS.isVolatileQualified()) | 
|  | return RHS; | 
|  |  | 
|  | // Otherwise, reload the value. | 
|  | return EmitLoadOfLValue(LHS, E->getExprLoc()); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { | 
|  | // Perform vector logical and on comparisons with zero vectors. | 
|  | if (E->getType()->isVectorType()) { | 
|  | CGF.incrementProfileCounter(E); | 
|  |  | 
|  | Value *LHS = Visit(E->getLHS()); | 
|  | Value *RHS = Visit(E->getRHS()); | 
|  | Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); | 
|  | if (LHS->getType()->isFPOrFPVectorTy()) { | 
|  | LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); | 
|  | RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); | 
|  | } else { | 
|  | LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); | 
|  | RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); | 
|  | } | 
|  | Value *And = Builder.CreateAnd(LHS, RHS); | 
|  | return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); | 
|  | } | 
|  |  | 
|  | llvm::Type *ResTy = ConvertType(E->getType()); | 
|  |  | 
|  | // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. | 
|  | // If we have 1 && X, just emit X without inserting the control flow. | 
|  | bool LHSCondVal; | 
|  | if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { | 
|  | if (LHSCondVal) { // If we have 1 && X, just emit X. | 
|  | CGF.incrementProfileCounter(E); | 
|  |  | 
|  | Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); | 
|  | // ZExt result to int or bool. | 
|  | return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); | 
|  | } | 
|  |  | 
|  | // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. | 
|  | if (!CGF.ContainsLabel(E->getRHS())) | 
|  | return llvm::Constant::getNullValue(ResTy); | 
|  | } | 
|  |  | 
|  | llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); | 
|  | llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs"); | 
|  |  | 
|  | CodeGenFunction::ConditionalEvaluation eval(CGF); | 
|  |  | 
|  | // Branch on the LHS first.  If it is false, go to the failure (cont) block. | 
|  | CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, | 
|  | CGF.getProfileCount(E->getRHS())); | 
|  |  | 
|  | // Any edges into the ContBlock are now from an (indeterminate number of) | 
|  | // edges from this first condition.  All of these values will be false.  Start | 
|  | // setting up the PHI node in the Cont Block for this. | 
|  | llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, | 
|  | "", ContBlock); | 
|  | for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); | 
|  | PI != PE; ++PI) | 
|  | PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); | 
|  |  | 
|  | eval.begin(CGF); | 
|  | CGF.EmitBlock(RHSBlock); | 
|  | CGF.incrementProfileCounter(E); | 
|  | Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); | 
|  | eval.end(CGF); | 
|  |  | 
|  | // Reaquire the RHS block, as there may be subblocks inserted. | 
|  | RHSBlock = Builder.GetInsertBlock(); | 
|  |  | 
|  | // Emit an unconditional branch from this block to ContBlock. | 
|  | { | 
|  | // There is no need to emit line number for unconditional branch. | 
|  | auto NL = ApplyDebugLocation::CreateEmpty(CGF); | 
|  | CGF.EmitBlock(ContBlock); | 
|  | } | 
|  | // Insert an entry into the phi node for the edge with the value of RHSCond. | 
|  | PN->addIncoming(RHSCond, RHSBlock); | 
|  |  | 
|  | // Artificial location to preserve the scope information | 
|  | { | 
|  | auto NL = ApplyDebugLocation::CreateArtificial(CGF); | 
|  | PN->setDebugLoc(Builder.getCurrentDebugLocation()); | 
|  | } | 
|  |  | 
|  | // ZExt result to int. | 
|  | return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { | 
|  | // Perform vector logical or on comparisons with zero vectors. | 
|  | if (E->getType()->isVectorType()) { | 
|  | CGF.incrementProfileCounter(E); | 
|  |  | 
|  | Value *LHS = Visit(E->getLHS()); | 
|  | Value *RHS = Visit(E->getRHS()); | 
|  | Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); | 
|  | if (LHS->getType()->isFPOrFPVectorTy()) { | 
|  | LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); | 
|  | RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); | 
|  | } else { | 
|  | LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); | 
|  | RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); | 
|  | } | 
|  | Value *Or = Builder.CreateOr(LHS, RHS); | 
|  | return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); | 
|  | } | 
|  |  | 
|  | llvm::Type *ResTy = ConvertType(E->getType()); | 
|  |  | 
|  | // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. | 
|  | // If we have 0 || X, just emit X without inserting the control flow. | 
|  | bool LHSCondVal; | 
|  | if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { | 
|  | if (!LHSCondVal) { // If we have 0 || X, just emit X. | 
|  | CGF.incrementProfileCounter(E); | 
|  |  | 
|  | Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); | 
|  | // ZExt result to int or bool. | 
|  | return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); | 
|  | } | 
|  |  | 
|  | // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. | 
|  | if (!CGF.ContainsLabel(E->getRHS())) | 
|  | return llvm::ConstantInt::get(ResTy, 1); | 
|  | } | 
|  |  | 
|  | llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); | 
|  | llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); | 
|  |  | 
|  | CodeGenFunction::ConditionalEvaluation eval(CGF); | 
|  |  | 
|  | // Branch on the LHS first.  If it is true, go to the success (cont) block. | 
|  | CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, | 
|  | CGF.getCurrentProfileCount() - | 
|  | CGF.getProfileCount(E->getRHS())); | 
|  |  | 
|  | // Any edges into the ContBlock are now from an (indeterminate number of) | 
|  | // edges from this first condition.  All of these values will be true.  Start | 
|  | // setting up the PHI node in the Cont Block for this. | 
|  | llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, | 
|  | "", ContBlock); | 
|  | for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); | 
|  | PI != PE; ++PI) | 
|  | PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); | 
|  |  | 
|  | eval.begin(CGF); | 
|  |  | 
|  | // Emit the RHS condition as a bool value. | 
|  | CGF.EmitBlock(RHSBlock); | 
|  | CGF.incrementProfileCounter(E); | 
|  | Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); | 
|  |  | 
|  | eval.end(CGF); | 
|  |  | 
|  | // Reaquire the RHS block, as there may be subblocks inserted. | 
|  | RHSBlock = Builder.GetInsertBlock(); | 
|  |  | 
|  | // Emit an unconditional branch from this block to ContBlock.  Insert an entry | 
|  | // into the phi node for the edge with the value of RHSCond. | 
|  | CGF.EmitBlock(ContBlock); | 
|  | PN->addIncoming(RHSCond, RHSBlock); | 
|  |  | 
|  | // ZExt result to int. | 
|  | return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { | 
|  | CGF.EmitIgnoredExpr(E->getLHS()); | 
|  | CGF.EnsureInsertPoint(); | 
|  | return Visit(E->getRHS()); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                             Other Operators | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified | 
|  | /// expression is cheap enough and side-effect-free enough to evaluate | 
|  | /// unconditionally instead of conditionally.  This is used to convert control | 
|  | /// flow into selects in some cases. | 
|  | static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, | 
|  | CodeGenFunction &CGF) { | 
|  | // Anything that is an integer or floating point constant is fine. | 
|  | return E->IgnoreParens()->isEvaluatable(CGF.getContext()); | 
|  |  | 
|  | // Even non-volatile automatic variables can't be evaluated unconditionally. | 
|  | // Referencing a thread_local may cause non-trivial initialization work to | 
|  | // occur. If we're inside a lambda and one of the variables is from the scope | 
|  | // outside the lambda, that function may have returned already. Reading its | 
|  | // locals is a bad idea. Also, these reads may introduce races there didn't | 
|  | // exist in the source-level program. | 
|  | } | 
|  |  | 
|  |  | 
|  | Value *ScalarExprEmitter:: | 
|  | VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { | 
|  | TestAndClearIgnoreResultAssign(); | 
|  |  | 
|  | // Bind the common expression if necessary. | 
|  | CodeGenFunction::OpaqueValueMapping binding(CGF, E); | 
|  |  | 
|  | Expr *condExpr = E->getCond(); | 
|  | Expr *lhsExpr = E->getTrueExpr(); | 
|  | Expr *rhsExpr = E->getFalseExpr(); | 
|  |  | 
|  | // If the condition constant folds and can be elided, try to avoid emitting | 
|  | // the condition and the dead arm. | 
|  | bool CondExprBool; | 
|  | if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { | 
|  | Expr *live = lhsExpr, *dead = rhsExpr; | 
|  | if (!CondExprBool) std::swap(live, dead); | 
|  |  | 
|  | // If the dead side doesn't have labels we need, just emit the Live part. | 
|  | if (!CGF.ContainsLabel(dead)) { | 
|  | if (CondExprBool) | 
|  | CGF.incrementProfileCounter(E); | 
|  | Value *Result = Visit(live); | 
|  |  | 
|  | // If the live part is a throw expression, it acts like it has a void | 
|  | // type, so evaluating it returns a null Value*.  However, a conditional | 
|  | // with non-void type must return a non-null Value*. | 
|  | if (!Result && !E->getType()->isVoidType()) | 
|  | Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); | 
|  |  | 
|  | return Result; | 
|  | } | 
|  | } | 
|  |  | 
|  | // OpenCL: If the condition is a vector, we can treat this condition like | 
|  | // the select function. | 
|  | if (CGF.getLangOpts().OpenCL | 
|  | && condExpr->getType()->isVectorType()) { | 
|  | CGF.incrementProfileCounter(E); | 
|  |  | 
|  | llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); | 
|  | llvm::Value *LHS = Visit(lhsExpr); | 
|  | llvm::Value *RHS = Visit(rhsExpr); | 
|  |  | 
|  | llvm::Type *condType = ConvertType(condExpr->getType()); | 
|  | llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); | 
|  |  | 
|  | unsigned numElem = vecTy->getNumElements(); | 
|  | llvm::Type *elemType = vecTy->getElementType(); | 
|  |  | 
|  | llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); | 
|  | llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); | 
|  | llvm::Value *tmp = Builder.CreateSExt(TestMSB, | 
|  | llvm::VectorType::get(elemType, | 
|  | numElem), | 
|  | "sext"); | 
|  | llvm::Value *tmp2 = Builder.CreateNot(tmp); | 
|  |  | 
|  | // Cast float to int to perform ANDs if necessary. | 
|  | llvm::Value *RHSTmp = RHS; | 
|  | llvm::Value *LHSTmp = LHS; | 
|  | bool wasCast = false; | 
|  | llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); | 
|  | if (rhsVTy->getElementType()->isFloatingPointTy()) { | 
|  | RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); | 
|  | LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); | 
|  | wasCast = true; | 
|  | } | 
|  |  | 
|  | llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); | 
|  | llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); | 
|  | llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); | 
|  | if (wasCast) | 
|  | tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); | 
|  |  | 
|  | return tmp5; | 
|  | } | 
|  |  | 
|  | // If this is a really simple expression (like x ? 4 : 5), emit this as a | 
|  | // select instead of as control flow.  We can only do this if it is cheap and | 
|  | // safe to evaluate the LHS and RHS unconditionally. | 
|  | if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && | 
|  | isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { | 
|  | llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); | 
|  | llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); | 
|  |  | 
|  | CGF.incrementProfileCounter(E, StepV); | 
|  |  | 
|  | llvm::Value *LHS = Visit(lhsExpr); | 
|  | llvm::Value *RHS = Visit(rhsExpr); | 
|  | if (!LHS) { | 
|  | // If the conditional has void type, make sure we return a null Value*. | 
|  | assert(!RHS && "LHS and RHS types must match"); | 
|  | return nullptr; | 
|  | } | 
|  | return Builder.CreateSelect(CondV, LHS, RHS, "cond"); | 
|  | } | 
|  |  | 
|  | llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); | 
|  | llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); | 
|  | llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); | 
|  |  | 
|  | CodeGenFunction::ConditionalEvaluation eval(CGF); | 
|  | CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, | 
|  | CGF.getProfileCount(lhsExpr)); | 
|  |  | 
|  | CGF.EmitBlock(LHSBlock); | 
|  | CGF.incrementProfileCounter(E); | 
|  | eval.begin(CGF); | 
|  | Value *LHS = Visit(lhsExpr); | 
|  | eval.end(CGF); | 
|  |  | 
|  | LHSBlock = Builder.GetInsertBlock(); | 
|  | Builder.CreateBr(ContBlock); | 
|  |  | 
|  | CGF.EmitBlock(RHSBlock); | 
|  | eval.begin(CGF); | 
|  | Value *RHS = Visit(rhsExpr); | 
|  | eval.end(CGF); | 
|  |  | 
|  | RHSBlock = Builder.GetInsertBlock(); | 
|  | CGF.EmitBlock(ContBlock); | 
|  |  | 
|  | // If the LHS or RHS is a throw expression, it will be legitimately null. | 
|  | if (!LHS) | 
|  | return RHS; | 
|  | if (!RHS) | 
|  | return LHS; | 
|  |  | 
|  | // Create a PHI node for the real part. | 
|  | llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); | 
|  | PN->addIncoming(LHS, LHSBlock); | 
|  | PN->addIncoming(RHS, RHSBlock); | 
|  | return PN; | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { | 
|  | return Visit(E->getChosenSubExpr()); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { | 
|  | QualType Ty = VE->getType(); | 
|  |  | 
|  | if (Ty->isVariablyModifiedType()) | 
|  | CGF.EmitVariablyModifiedType(Ty); | 
|  |  | 
|  | Address ArgValue = Address::invalid(); | 
|  | Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); | 
|  |  | 
|  | llvm::Type *ArgTy = ConvertType(VE->getType()); | 
|  |  | 
|  | // If EmitVAArg fails, emit an error. | 
|  | if (!ArgPtr.isValid()) { | 
|  | CGF.ErrorUnsupported(VE, "va_arg expression"); | 
|  | return llvm::UndefValue::get(ArgTy); | 
|  | } | 
|  |  | 
|  | // FIXME Volatility. | 
|  | llvm::Value *Val = Builder.CreateLoad(ArgPtr); | 
|  |  | 
|  | // If EmitVAArg promoted the type, we must truncate it. | 
|  | if (ArgTy != Val->getType()) { | 
|  | if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) | 
|  | Val = Builder.CreateIntToPtr(Val, ArgTy); | 
|  | else | 
|  | Val = Builder.CreateTrunc(Val, ArgTy); | 
|  | } | 
|  |  | 
|  | return Val; | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { | 
|  | return CGF.EmitBlockLiteral(block); | 
|  | } | 
|  |  | 
|  | // Convert a vec3 to vec4, or vice versa. | 
|  | static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, | 
|  | Value *Src, unsigned NumElementsDst) { | 
|  | llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); | 
|  | SmallVector<llvm::Constant*, 4> Args; | 
|  | Args.push_back(Builder.getInt32(0)); | 
|  | Args.push_back(Builder.getInt32(1)); | 
|  | Args.push_back(Builder.getInt32(2)); | 
|  | if (NumElementsDst == 4) | 
|  | Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); | 
|  | llvm::Constant *Mask = llvm::ConstantVector::get(Args); | 
|  | return Builder.CreateShuffleVector(Src, UnV, Mask); | 
|  | } | 
|  |  | 
|  | // Create cast instructions for converting LLVM value \p Src to LLVM type \p | 
|  | // DstTy. \p Src has the same size as \p DstTy. Both are single value types | 
|  | // but could be scalar or vectors of different lengths, and either can be | 
|  | // pointer. | 
|  | // There are 4 cases: | 
|  | // 1. non-pointer -> non-pointer  : needs 1 bitcast | 
|  | // 2. pointer -> pointer          : needs 1 bitcast or addrspacecast | 
|  | // 3. pointer -> non-pointer | 
|  | //   a) pointer -> intptr_t       : needs 1 ptrtoint | 
|  | //   b) pointer -> non-intptr_t   : needs 1 ptrtoint then 1 bitcast | 
|  | // 4. non-pointer -> pointer | 
|  | //   a) intptr_t -> pointer       : needs 1 inttoptr | 
|  | //   b) non-intptr_t -> pointer   : needs 1 bitcast then 1 inttoptr | 
|  | // Note: for cases 3b and 4b two casts are required since LLVM casts do not | 
|  | // allow casting directly between pointer types and non-integer non-pointer | 
|  | // types. | 
|  | static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, | 
|  | const llvm::DataLayout &DL, | 
|  | Value *Src, llvm::Type *DstTy, | 
|  | StringRef Name = "") { | 
|  | auto SrcTy = Src->getType(); | 
|  |  | 
|  | // Case 1. | 
|  | if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) | 
|  | return Builder.CreateBitCast(Src, DstTy, Name); | 
|  |  | 
|  | // Case 2. | 
|  | if (SrcTy->isPointerTy() && DstTy->isPointerTy()) | 
|  | return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); | 
|  |  | 
|  | // Case 3. | 
|  | if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { | 
|  | // Case 3b. | 
|  | if (!DstTy->isIntegerTy()) | 
|  | Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); | 
|  | // Cases 3a and 3b. | 
|  | return Builder.CreateBitOrPointerCast(Src, DstTy, Name); | 
|  | } | 
|  |  | 
|  | // Case 4b. | 
|  | if (!SrcTy->isIntegerTy()) | 
|  | Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); | 
|  | // Cases 4a and 4b. | 
|  | return Builder.CreateIntToPtr(Src, DstTy, Name); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { | 
|  | Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr()); | 
|  | llvm::Type *DstTy = ConvertType(E->getType()); | 
|  |  | 
|  | llvm::Type *SrcTy = Src->getType(); | 
|  | unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? | 
|  | cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; | 
|  | unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? | 
|  | cast<llvm::VectorType>(DstTy)->getNumElements() : 0; | 
|  |  | 
|  | // Going from vec3 to non-vec3 is a special case and requires a shuffle | 
|  | // vector to get a vec4, then a bitcast if the target type is different. | 
|  | if (NumElementsSrc == 3 && NumElementsDst != 3) { | 
|  | Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); | 
|  |  | 
|  | if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { | 
|  | Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, | 
|  | DstTy); | 
|  | } | 
|  |  | 
|  | Src->setName("astype"); | 
|  | return Src; | 
|  | } | 
|  |  | 
|  | // Going from non-vec3 to vec3 is a special case and requires a bitcast | 
|  | // to vec4 if the original type is not vec4, then a shuffle vector to | 
|  | // get a vec3. | 
|  | if (NumElementsSrc != 3 && NumElementsDst == 3) { | 
|  | if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { | 
|  | auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); | 
|  | Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, | 
|  | Vec4Ty); | 
|  | } | 
|  |  | 
|  | Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); | 
|  | Src->setName("astype"); | 
|  | return Src; | 
|  | } | 
|  |  | 
|  | return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), | 
|  | Src, DstTy, "astype"); | 
|  | } | 
|  |  | 
|  | Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { | 
|  | return CGF.EmitAtomicExpr(E).getScalarVal(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                         Entry Point into this File | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// Emit the computation of the specified expression of scalar type, ignoring | 
|  | /// the result. | 
|  | Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { | 
|  | assert(E && hasScalarEvaluationKind(E->getType()) && | 
|  | "Invalid scalar expression to emit"); | 
|  |  | 
|  | return ScalarExprEmitter(*this, IgnoreResultAssign) | 
|  | .Visit(const_cast<Expr *>(E)); | 
|  | } | 
|  |  | 
|  | /// Emit a conversion from the specified type to the specified destination type, | 
|  | /// both of which are LLVM scalar types. | 
|  | Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, | 
|  | QualType DstTy, | 
|  | SourceLocation Loc) { | 
|  | assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && | 
|  | "Invalid scalar expression to emit"); | 
|  | return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); | 
|  | } | 
|  |  | 
|  | /// Emit a conversion from the specified complex type to the specified | 
|  | /// destination type, where the destination type is an LLVM scalar type. | 
|  | Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, | 
|  | QualType SrcTy, | 
|  | QualType DstTy, | 
|  | SourceLocation Loc) { | 
|  | assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && | 
|  | "Invalid complex -> scalar conversion"); | 
|  | return ScalarExprEmitter(*this) | 
|  | .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); | 
|  | } | 
|  |  | 
|  |  | 
|  | llvm::Value *CodeGenFunction:: | 
|  | EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, | 
|  | bool isInc, bool isPre) { | 
|  | return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); | 
|  | } | 
|  |  | 
|  | LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { | 
|  | // object->isa or (*object).isa | 
|  | // Generate code as for: *(Class*)object | 
|  |  | 
|  | Expr *BaseExpr = E->getBase(); | 
|  | Address Addr = Address::invalid(); | 
|  | if (BaseExpr->isRValue()) { | 
|  | Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); | 
|  | } else { | 
|  | Addr = EmitLValue(BaseExpr).getAddress(); | 
|  | } | 
|  |  | 
|  | // Cast the address to Class*. | 
|  | Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); | 
|  | return MakeAddrLValue(Addr, E->getType()); | 
|  | } | 
|  |  | 
|  |  | 
|  | LValue CodeGenFunction::EmitCompoundAssignmentLValue( | 
|  | const CompoundAssignOperator *E) { | 
|  | ScalarExprEmitter Scalar(*this); | 
|  | Value *Result = nullptr; | 
|  | switch (E->getOpcode()) { | 
|  | #define COMPOUND_OP(Op)                                                       \ | 
|  | case BO_##Op##Assign:                                                     \ | 
|  | return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ | 
|  | Result) | 
|  | COMPOUND_OP(Mul); | 
|  | COMPOUND_OP(Div); | 
|  | COMPOUND_OP(Rem); | 
|  | COMPOUND_OP(Add); | 
|  | COMPOUND_OP(Sub); | 
|  | COMPOUND_OP(Shl); | 
|  | COMPOUND_OP(Shr); | 
|  | COMPOUND_OP(And); | 
|  | COMPOUND_OP(Xor); | 
|  | COMPOUND_OP(Or); | 
|  | #undef COMPOUND_OP | 
|  |  | 
|  | case BO_PtrMemD: | 
|  | case BO_PtrMemI: | 
|  | case BO_Mul: | 
|  | case BO_Div: | 
|  | case BO_Rem: | 
|  | case BO_Add: | 
|  | case BO_Sub: | 
|  | case BO_Shl: | 
|  | case BO_Shr: | 
|  | case BO_LT: | 
|  | case BO_GT: | 
|  | case BO_LE: | 
|  | case BO_GE: | 
|  | case BO_EQ: | 
|  | case BO_NE: | 
|  | case BO_Cmp: | 
|  | case BO_And: | 
|  | case BO_Xor: | 
|  | case BO_Or: | 
|  | case BO_LAnd: | 
|  | case BO_LOr: | 
|  | case BO_Assign: | 
|  | case BO_Comma: | 
|  | llvm_unreachable("Not valid compound assignment operators"); | 
|  | } | 
|  |  | 
|  | llvm_unreachable("Unhandled compound assignment operator"); | 
|  | } | 
|  |  | 
|  | Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, | 
|  | ArrayRef<Value *> IdxList, | 
|  | bool SignedIndices, | 
|  | bool IsSubtraction, | 
|  | SourceLocation Loc, | 
|  | const Twine &Name) { | 
|  | Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); | 
|  |  | 
|  | // If the pointer overflow sanitizer isn't enabled, do nothing. | 
|  | if (!SanOpts.has(SanitizerKind::PointerOverflow)) | 
|  | return GEPVal; | 
|  |  | 
|  | // If the GEP has already been reduced to a constant, leave it be. | 
|  | if (isa<llvm::Constant>(GEPVal)) | 
|  | return GEPVal; | 
|  |  | 
|  | // Only check for overflows in the default address space. | 
|  | if (GEPVal->getType()->getPointerAddressSpace()) | 
|  | return GEPVal; | 
|  |  | 
|  | auto *GEP = cast<llvm::GEPOperator>(GEPVal); | 
|  | assert(GEP->isInBounds() && "Expected inbounds GEP"); | 
|  |  | 
|  | SanitizerScope SanScope(this); | 
|  | auto &VMContext = getLLVMContext(); | 
|  | const auto &DL = CGM.getDataLayout(); | 
|  | auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); | 
|  |  | 
|  | // Grab references to the signed add/mul overflow intrinsics for intptr_t. | 
|  | auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); | 
|  | auto *SAddIntrinsic = | 
|  | CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); | 
|  | auto *SMulIntrinsic = | 
|  | CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); | 
|  |  | 
|  | // The total (signed) byte offset for the GEP. | 
|  | llvm::Value *TotalOffset = nullptr; | 
|  | // The offset overflow flag - true if the total offset overflows. | 
|  | llvm::Value *OffsetOverflows = Builder.getFalse(); | 
|  |  | 
|  | /// Return the result of the given binary operation. | 
|  | auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, | 
|  | llvm::Value *RHS) -> llvm::Value * { | 
|  | assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); | 
|  |  | 
|  | // If the operands are constants, return a constant result. | 
|  | if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { | 
|  | if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { | 
|  | llvm::APInt N; | 
|  | bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, | 
|  | /*Signed=*/true, N); | 
|  | if (HasOverflow) | 
|  | OffsetOverflows = Builder.getTrue(); | 
|  | return llvm::ConstantInt::get(VMContext, N); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, compute the result with checked arithmetic. | 
|  | auto *ResultAndOverflow = Builder.CreateCall( | 
|  | (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); | 
|  | OffsetOverflows = Builder.CreateOr( | 
|  | Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); | 
|  | return Builder.CreateExtractValue(ResultAndOverflow, 0); | 
|  | }; | 
|  |  | 
|  | // Determine the total byte offset by looking at each GEP operand. | 
|  | for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); | 
|  | GTI != GTE; ++GTI) { | 
|  | llvm::Value *LocalOffset; | 
|  | auto *Index = GTI.getOperand(); | 
|  | // Compute the local offset contributed by this indexing step: | 
|  | if (auto *STy = GTI.getStructTypeOrNull()) { | 
|  | // For struct indexing, the local offset is the byte position of the | 
|  | // specified field. | 
|  | unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); | 
|  | LocalOffset = llvm::ConstantInt::get( | 
|  | IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); | 
|  | } else { | 
|  | // Otherwise this is array-like indexing. The local offset is the index | 
|  | // multiplied by the element size. | 
|  | auto *ElementSize = llvm::ConstantInt::get( | 
|  | IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); | 
|  | auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); | 
|  | LocalOffset = eval(BO_Mul, ElementSize, IndexS); | 
|  | } | 
|  |  | 
|  | // If this is the first offset, set it as the total offset. Otherwise, add | 
|  | // the local offset into the running total. | 
|  | if (!TotalOffset || TotalOffset == Zero) | 
|  | TotalOffset = LocalOffset; | 
|  | else | 
|  | TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); | 
|  | } | 
|  |  | 
|  | // Common case: if the total offset is zero, don't emit a check. | 
|  | if (TotalOffset == Zero) | 
|  | return GEPVal; | 
|  |  | 
|  | // Now that we've computed the total offset, add it to the base pointer (with | 
|  | // wrapping semantics). | 
|  | auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy); | 
|  | auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset); | 
|  |  | 
|  | // The GEP is valid if: | 
|  | // 1) The total offset doesn't overflow, and | 
|  | // 2) The sign of the difference between the computed address and the base | 
|  | // pointer matches the sign of the total offset. | 
|  | llvm::Value *ValidGEP; | 
|  | auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows); | 
|  | if (SignedIndices) { | 
|  | auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); | 
|  | auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero); | 
|  | llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); | 
|  | ValidGEP = Builder.CreateAnd( | 
|  | Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid), | 
|  | NoOffsetOverflow); | 
|  | } else if (!SignedIndices && !IsSubtraction) { | 
|  | auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); | 
|  | ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow); | 
|  | } else { | 
|  | auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr); | 
|  | ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow); | 
|  | } | 
|  |  | 
|  | llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; | 
|  | // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. | 
|  | llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; | 
|  | EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow), | 
|  | SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); | 
|  |  | 
|  | return GEPVal; | 
|  | } |