|  | //===- ImplicitNullChecks.cpp - Fold null checks into memory accesses -----===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass turns explicit null checks of the form | 
|  | // | 
|  | //   test %r10, %r10 | 
|  | //   je throw_npe | 
|  | //   movl (%r10), %esi | 
|  | //   ... | 
|  | // | 
|  | // to | 
|  | // | 
|  | //   faulting_load_op("movl (%r10), %esi", throw_npe) | 
|  | //   ... | 
|  | // | 
|  | // With the help of a runtime that understands the .fault_maps section, | 
|  | // faulting_load_op branches to throw_npe if executing movl (%r10), %esi incurs | 
|  | // a page fault. | 
|  | // Store and LoadStore are also supported. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/ArrayRef.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/MemoryLocation.h" | 
|  | #include "llvm/CodeGen/FaultMaps.h" | 
|  | #include "llvm/CodeGen/MachineBasicBlock.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineMemOperand.h" | 
|  | #include "llvm/CodeGen/MachineOperand.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/PseudoSourceValue.h" | 
|  | #include "llvm/CodeGen/TargetInstrInfo.h" | 
|  | #include "llvm/CodeGen/TargetOpcodes.h" | 
|  | #include "llvm/CodeGen/TargetRegisterInfo.h" | 
|  | #include "llvm/CodeGen/TargetSubtargetInfo.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/MC/MCInstrDesc.h" | 
|  | #include "llvm/MC/MCRegisterInfo.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <iterator> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | static cl::opt<int> PageSize("imp-null-check-page-size", | 
|  | cl::desc("The page size of the target in bytes"), | 
|  | cl::init(4096), cl::Hidden); | 
|  |  | 
|  | static cl::opt<unsigned> MaxInstsToConsider( | 
|  | "imp-null-max-insts-to-consider", | 
|  | cl::desc("The max number of instructions to consider hoisting loads over " | 
|  | "(the algorithm is quadratic over this number)"), | 
|  | cl::Hidden, cl::init(8)); | 
|  |  | 
|  | #define DEBUG_TYPE "implicit-null-checks" | 
|  |  | 
|  | STATISTIC(NumImplicitNullChecks, | 
|  | "Number of explicit null checks made implicit"); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class ImplicitNullChecks : public MachineFunctionPass { | 
|  | /// Return true if \c computeDependence can process \p MI. | 
|  | static bool canHandle(const MachineInstr *MI); | 
|  |  | 
|  | /// Helper function for \c computeDependence.  Return true if \p A | 
|  | /// and \p B do not have any dependences between them, and can be | 
|  | /// re-ordered without changing program semantics. | 
|  | bool canReorder(const MachineInstr *A, const MachineInstr *B); | 
|  |  | 
|  | /// A data type for representing the result computed by \c | 
|  | /// computeDependence.  States whether it is okay to reorder the | 
|  | /// instruction passed to \c computeDependence with at most one | 
|  | /// dependency. | 
|  | struct DependenceResult { | 
|  | /// Can we actually re-order \p MI with \p Insts (see \c | 
|  | /// computeDependence). | 
|  | bool CanReorder; | 
|  |  | 
|  | /// If non-None, then an instruction in \p Insts that also must be | 
|  | /// hoisted. | 
|  | Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence; | 
|  |  | 
|  | /*implicit*/ DependenceResult( | 
|  | bool CanReorder, | 
|  | Optional<ArrayRef<MachineInstr *>::iterator> PotentialDependence) | 
|  | : CanReorder(CanReorder), PotentialDependence(PotentialDependence) { | 
|  | assert((!PotentialDependence || CanReorder) && | 
|  | "!CanReorder && PotentialDependence.hasValue() not allowed!"); | 
|  | } | 
|  | }; | 
|  |  | 
|  | /// Compute a result for the following question: can \p MI be | 
|  | /// re-ordered from after \p Insts to before it. | 
|  | /// | 
|  | /// \c canHandle should return true for all instructions in \p | 
|  | /// Insts. | 
|  | DependenceResult computeDependence(const MachineInstr *MI, | 
|  | ArrayRef<MachineInstr *> Block); | 
|  |  | 
|  | /// Represents one null check that can be made implicit. | 
|  | class NullCheck { | 
|  | // The memory operation the null check can be folded into. | 
|  | MachineInstr *MemOperation; | 
|  |  | 
|  | // The instruction actually doing the null check (Ptr != 0). | 
|  | MachineInstr *CheckOperation; | 
|  |  | 
|  | // The block the check resides in. | 
|  | MachineBasicBlock *CheckBlock; | 
|  |  | 
|  | // The block branched to if the pointer is non-null. | 
|  | MachineBasicBlock *NotNullSucc; | 
|  |  | 
|  | // The block branched to if the pointer is null. | 
|  | MachineBasicBlock *NullSucc; | 
|  |  | 
|  | // If this is non-null, then MemOperation has a dependency on this | 
|  | // instruction; and it needs to be hoisted to execute before MemOperation. | 
|  | MachineInstr *OnlyDependency; | 
|  |  | 
|  | public: | 
|  | explicit NullCheck(MachineInstr *memOperation, MachineInstr *checkOperation, | 
|  | MachineBasicBlock *checkBlock, | 
|  | MachineBasicBlock *notNullSucc, | 
|  | MachineBasicBlock *nullSucc, | 
|  | MachineInstr *onlyDependency) | 
|  | : MemOperation(memOperation), CheckOperation(checkOperation), | 
|  | CheckBlock(checkBlock), NotNullSucc(notNullSucc), NullSucc(nullSucc), | 
|  | OnlyDependency(onlyDependency) {} | 
|  |  | 
|  | MachineInstr *getMemOperation() const { return MemOperation; } | 
|  |  | 
|  | MachineInstr *getCheckOperation() const { return CheckOperation; } | 
|  |  | 
|  | MachineBasicBlock *getCheckBlock() const { return CheckBlock; } | 
|  |  | 
|  | MachineBasicBlock *getNotNullSucc() const { return NotNullSucc; } | 
|  |  | 
|  | MachineBasicBlock *getNullSucc() const { return NullSucc; } | 
|  |  | 
|  | MachineInstr *getOnlyDependency() const { return OnlyDependency; } | 
|  | }; | 
|  |  | 
|  | const TargetInstrInfo *TII = nullptr; | 
|  | const TargetRegisterInfo *TRI = nullptr; | 
|  | AliasAnalysis *AA = nullptr; | 
|  | MachineFrameInfo *MFI = nullptr; | 
|  |  | 
|  | bool analyzeBlockForNullChecks(MachineBasicBlock &MBB, | 
|  | SmallVectorImpl<NullCheck> &NullCheckList); | 
|  | MachineInstr *insertFaultingInstr(MachineInstr *MI, MachineBasicBlock *MBB, | 
|  | MachineBasicBlock *HandlerMBB); | 
|  | void rewriteNullChecks(ArrayRef<NullCheck> NullCheckList); | 
|  |  | 
|  | enum AliasResult { | 
|  | AR_NoAlias, | 
|  | AR_MayAlias, | 
|  | AR_WillAliasEverything | 
|  | }; | 
|  |  | 
|  | /// Returns AR_NoAlias if \p MI memory operation does not alias with | 
|  | /// \p PrevMI, AR_MayAlias if they may alias and AR_WillAliasEverything if | 
|  | /// they may alias and any further memory operation may alias with \p PrevMI. | 
|  | AliasResult areMemoryOpsAliased(const MachineInstr &MI, | 
|  | const MachineInstr *PrevMI) const; | 
|  |  | 
|  | enum SuitabilityResult { | 
|  | SR_Suitable, | 
|  | SR_Unsuitable, | 
|  | SR_Impossible | 
|  | }; | 
|  |  | 
|  | /// Return SR_Suitable if \p MI a memory operation that can be used to | 
|  | /// implicitly null check the value in \p PointerReg, SR_Unsuitable if | 
|  | /// \p MI cannot be used to null check and SR_Impossible if there is | 
|  | /// no sense to continue lookup due to any other instruction will not be able | 
|  | /// to be used. \p PrevInsts is the set of instruction seen since | 
|  | /// the explicit null check on \p PointerReg. | 
|  | SuitabilityResult isSuitableMemoryOp(const MachineInstr &MI, | 
|  | unsigned PointerReg, | 
|  | ArrayRef<MachineInstr *> PrevInsts); | 
|  |  | 
|  | /// Return true if \p FaultingMI can be hoisted from after the | 
|  | /// instructions in \p InstsSeenSoFar to before them.  Set \p Dependence to a | 
|  | /// non-null value if we also need to (and legally can) hoist a depedency. | 
|  | bool canHoistInst(MachineInstr *FaultingMI, unsigned PointerReg, | 
|  | ArrayRef<MachineInstr *> InstsSeenSoFar, | 
|  | MachineBasicBlock *NullSucc, MachineInstr *&Dependence); | 
|  |  | 
|  | public: | 
|  | static char ID; | 
|  |  | 
|  | ImplicitNullChecks() : MachineFunctionPass(ID) { | 
|  | initializeImplicitNullChecksPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnMachineFunction(MachineFunction &MF) override; | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<AAResultsWrapperPass>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | MachineFunctionProperties getRequiredProperties() const override { | 
|  | return MachineFunctionProperties().set( | 
|  | MachineFunctionProperties::Property::NoVRegs); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | bool ImplicitNullChecks::canHandle(const MachineInstr *MI) { | 
|  | if (MI->isCall() || MI->mayRaiseFPException() || | 
|  | MI->hasUnmodeledSideEffects()) | 
|  | return false; | 
|  | auto IsRegMask = [](const MachineOperand &MO) { return MO.isRegMask(); }; | 
|  | (void)IsRegMask; | 
|  |  | 
|  | assert(!llvm::any_of(MI->operands(), IsRegMask) && | 
|  | "Calls were filtered out above!"); | 
|  |  | 
|  | auto IsUnordered = [](MachineMemOperand *MMO) { return MMO->isUnordered(); }; | 
|  | return llvm::all_of(MI->memoperands(), IsUnordered); | 
|  | } | 
|  |  | 
|  | ImplicitNullChecks::DependenceResult | 
|  | ImplicitNullChecks::computeDependence(const MachineInstr *MI, | 
|  | ArrayRef<MachineInstr *> Block) { | 
|  | assert(llvm::all_of(Block, canHandle) && "Check this first!"); | 
|  | assert(!is_contained(Block, MI) && "Block must be exclusive of MI!"); | 
|  |  | 
|  | Optional<ArrayRef<MachineInstr *>::iterator> Dep; | 
|  |  | 
|  | for (auto I = Block.begin(), E = Block.end(); I != E; ++I) { | 
|  | if (canReorder(*I, MI)) | 
|  | continue; | 
|  |  | 
|  | if (Dep == None) { | 
|  | // Found one possible dependency, keep track of it. | 
|  | Dep = I; | 
|  | } else { | 
|  | // We found two dependencies, so bail out. | 
|  | return {false, None}; | 
|  | } | 
|  | } | 
|  |  | 
|  | return {true, Dep}; | 
|  | } | 
|  |  | 
|  | bool ImplicitNullChecks::canReorder(const MachineInstr *A, | 
|  | const MachineInstr *B) { | 
|  | assert(canHandle(A) && canHandle(B) && "Precondition!"); | 
|  |  | 
|  | // canHandle makes sure that we _can_ correctly analyze the dependencies | 
|  | // between A and B here -- for instance, we should not be dealing with heap | 
|  | // load-store dependencies here. | 
|  |  | 
|  | for (auto MOA : A->operands()) { | 
|  | if (!(MOA.isReg() && MOA.getReg())) | 
|  | continue; | 
|  |  | 
|  | unsigned RegA = MOA.getReg(); | 
|  | for (auto MOB : B->operands()) { | 
|  | if (!(MOB.isReg() && MOB.getReg())) | 
|  | continue; | 
|  |  | 
|  | unsigned RegB = MOB.getReg(); | 
|  |  | 
|  | if (TRI->regsOverlap(RegA, RegB) && (MOA.isDef() || MOB.isDef())) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool ImplicitNullChecks::runOnMachineFunction(MachineFunction &MF) { | 
|  | TII = MF.getSubtarget().getInstrInfo(); | 
|  | TRI = MF.getRegInfo().getTargetRegisterInfo(); | 
|  | MFI = &MF.getFrameInfo(); | 
|  | AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); | 
|  |  | 
|  | SmallVector<NullCheck, 16> NullCheckList; | 
|  |  | 
|  | for (auto &MBB : MF) | 
|  | analyzeBlockForNullChecks(MBB, NullCheckList); | 
|  |  | 
|  | if (!NullCheckList.empty()) | 
|  | rewriteNullChecks(NullCheckList); | 
|  |  | 
|  | return !NullCheckList.empty(); | 
|  | } | 
|  |  | 
|  | // Return true if any register aliasing \p Reg is live-in into \p MBB. | 
|  | static bool AnyAliasLiveIn(const TargetRegisterInfo *TRI, | 
|  | MachineBasicBlock *MBB, unsigned Reg) { | 
|  | for (MCRegAliasIterator AR(Reg, TRI, /*IncludeSelf*/ true); AR.isValid(); | 
|  | ++AR) | 
|  | if (MBB->isLiveIn(*AR)) | 
|  | return true; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ImplicitNullChecks::AliasResult | 
|  | ImplicitNullChecks::areMemoryOpsAliased(const MachineInstr &MI, | 
|  | const MachineInstr *PrevMI) const { | 
|  | // If it is not memory access, skip the check. | 
|  | if (!(PrevMI->mayStore() || PrevMI->mayLoad())) | 
|  | return AR_NoAlias; | 
|  | // Load-Load may alias | 
|  | if (!(MI.mayStore() || PrevMI->mayStore())) | 
|  | return AR_NoAlias; | 
|  | // We lost info, conservatively alias. If it was store then no sense to | 
|  | // continue because we won't be able to check against it further. | 
|  | if (MI.memoperands_empty()) | 
|  | return MI.mayStore() ? AR_WillAliasEverything : AR_MayAlias; | 
|  | if (PrevMI->memoperands_empty()) | 
|  | return PrevMI->mayStore() ? AR_WillAliasEverything : AR_MayAlias; | 
|  |  | 
|  | for (MachineMemOperand *MMO1 : MI.memoperands()) { | 
|  | // MMO1 should have a value due it comes from operation we'd like to use | 
|  | // as implicit null check. | 
|  | assert(MMO1->getValue() && "MMO1 should have a Value!"); | 
|  | for (MachineMemOperand *MMO2 : PrevMI->memoperands()) { | 
|  | if (const PseudoSourceValue *PSV = MMO2->getPseudoValue()) { | 
|  | if (PSV->mayAlias(MFI)) | 
|  | return AR_MayAlias; | 
|  | continue; | 
|  | } | 
|  | llvm::AliasResult AAResult = | 
|  | AA->alias(MemoryLocation(MMO1->getValue(), LocationSize::unknown(), | 
|  | MMO1->getAAInfo()), | 
|  | MemoryLocation(MMO2->getValue(), LocationSize::unknown(), | 
|  | MMO2->getAAInfo())); | 
|  | if (AAResult != NoAlias) | 
|  | return AR_MayAlias; | 
|  | } | 
|  | } | 
|  | return AR_NoAlias; | 
|  | } | 
|  |  | 
|  | ImplicitNullChecks::SuitabilityResult | 
|  | ImplicitNullChecks::isSuitableMemoryOp(const MachineInstr &MI, | 
|  | unsigned PointerReg, | 
|  | ArrayRef<MachineInstr *> PrevInsts) { | 
|  | int64_t Offset; | 
|  | const MachineOperand *BaseOp; | 
|  |  | 
|  | if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI) || | 
|  | !BaseOp->isReg() || BaseOp->getReg() != PointerReg) | 
|  | return SR_Unsuitable; | 
|  |  | 
|  | // We want the mem access to be issued at a sane offset from PointerReg, | 
|  | // so that if PointerReg is null then the access reliably page faults. | 
|  | if (!((MI.mayLoad() || MI.mayStore()) && !MI.isPredicable() && | 
|  | -PageSize < Offset && Offset < PageSize)) | 
|  | return SR_Unsuitable; | 
|  |  | 
|  | // Finally, check whether the current memory access aliases with previous one. | 
|  | for (auto *PrevMI : PrevInsts) { | 
|  | AliasResult AR = areMemoryOpsAliased(MI, PrevMI); | 
|  | if (AR == AR_WillAliasEverything) | 
|  | return SR_Impossible; | 
|  | if (AR == AR_MayAlias) | 
|  | return SR_Unsuitable; | 
|  | } | 
|  | return SR_Suitable; | 
|  | } | 
|  |  | 
|  | bool ImplicitNullChecks::canHoistInst(MachineInstr *FaultingMI, | 
|  | unsigned PointerReg, | 
|  | ArrayRef<MachineInstr *> InstsSeenSoFar, | 
|  | MachineBasicBlock *NullSucc, | 
|  | MachineInstr *&Dependence) { | 
|  | auto DepResult = computeDependence(FaultingMI, InstsSeenSoFar); | 
|  | if (!DepResult.CanReorder) | 
|  | return false; | 
|  |  | 
|  | if (!DepResult.PotentialDependence) { | 
|  | Dependence = nullptr; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | auto DependenceItr = *DepResult.PotentialDependence; | 
|  | auto *DependenceMI = *DependenceItr; | 
|  |  | 
|  | // We don't want to reason about speculating loads.  Note -- at this point | 
|  | // we should have already filtered out all of the other non-speculatable | 
|  | // things, like calls and stores. | 
|  | // We also do not want to hoist stores because it might change the memory | 
|  | // while the FaultingMI may result in faulting. | 
|  | assert(canHandle(DependenceMI) && "Should never have reached here!"); | 
|  | if (DependenceMI->mayLoadOrStore()) | 
|  | return false; | 
|  |  | 
|  | for (auto &DependenceMO : DependenceMI->operands()) { | 
|  | if (!(DependenceMO.isReg() && DependenceMO.getReg())) | 
|  | continue; | 
|  |  | 
|  | // Make sure that we won't clobber any live ins to the sibling block by | 
|  | // hoisting Dependency.  For instance, we can't hoist INST to before the | 
|  | // null check (even if it safe, and does not violate any dependencies in | 
|  | // the non_null_block) if %rdx is live in to _null_block. | 
|  | // | 
|  | //    test %rcx, %rcx | 
|  | //    je _null_block | 
|  | //  _non_null_block: | 
|  | //    %rdx = INST | 
|  | //    ... | 
|  | // | 
|  | // This restriction does not apply to the faulting load inst because in | 
|  | // case the pointer loaded from is in the null page, the load will not | 
|  | // semantically execute, and affect machine state.  That is, if the load | 
|  | // was loading into %rax and it faults, the value of %rax should stay the | 
|  | // same as it would have been had the load not have executed and we'd have | 
|  | // branched to NullSucc directly. | 
|  | if (AnyAliasLiveIn(TRI, NullSucc, DependenceMO.getReg())) | 
|  | return false; | 
|  |  | 
|  | // The Dependency can't be re-defining the base register -- then we won't | 
|  | // get the memory operation on the address we want.  This is already | 
|  | // checked in \c IsSuitableMemoryOp. | 
|  | assert(!(DependenceMO.isDef() && | 
|  | TRI->regsOverlap(DependenceMO.getReg(), PointerReg)) && | 
|  | "Should have been checked before!"); | 
|  | } | 
|  |  | 
|  | auto DepDepResult = | 
|  | computeDependence(DependenceMI, {InstsSeenSoFar.begin(), DependenceItr}); | 
|  |  | 
|  | if (!DepDepResult.CanReorder || DepDepResult.PotentialDependence) | 
|  | return false; | 
|  |  | 
|  | Dependence = DependenceMI; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Analyze MBB to check if its terminating branch can be turned into an | 
|  | /// implicit null check.  If yes, append a description of the said null check to | 
|  | /// NullCheckList and return true, else return false. | 
|  | bool ImplicitNullChecks::analyzeBlockForNullChecks( | 
|  | MachineBasicBlock &MBB, SmallVectorImpl<NullCheck> &NullCheckList) { | 
|  | using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; | 
|  |  | 
|  | MDNode *BranchMD = nullptr; | 
|  | if (auto *BB = MBB.getBasicBlock()) | 
|  | BranchMD = BB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit); | 
|  |  | 
|  | if (!BranchMD) | 
|  | return false; | 
|  |  | 
|  | MachineBranchPredicate MBP; | 
|  |  | 
|  | if (TII->analyzeBranchPredicate(MBB, MBP, true)) | 
|  | return false; | 
|  |  | 
|  | // Is the predicate comparing an integer to zero? | 
|  | if (!(MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && | 
|  | (MBP.Predicate == MachineBranchPredicate::PRED_NE || | 
|  | MBP.Predicate == MachineBranchPredicate::PRED_EQ))) | 
|  | return false; | 
|  |  | 
|  | // If we cannot erase the test instruction itself, then making the null check | 
|  | // implicit does not buy us much. | 
|  | if (!MBP.SingleUseCondition) | 
|  | return false; | 
|  |  | 
|  | MachineBasicBlock *NotNullSucc, *NullSucc; | 
|  |  | 
|  | if (MBP.Predicate == MachineBranchPredicate::PRED_NE) { | 
|  | NotNullSucc = MBP.TrueDest; | 
|  | NullSucc = MBP.FalseDest; | 
|  | } else { | 
|  | NotNullSucc = MBP.FalseDest; | 
|  | NullSucc = MBP.TrueDest; | 
|  | } | 
|  |  | 
|  | // We handle the simplest case for now.  We can potentially do better by using | 
|  | // the machine dominator tree. | 
|  | if (NotNullSucc->pred_size() != 1) | 
|  | return false; | 
|  |  | 
|  | // To prevent the invalid transformation of the following code: | 
|  | // | 
|  | //   mov %rax, %rcx | 
|  | //   test %rax, %rax | 
|  | //   %rax = ... | 
|  | //   je throw_npe | 
|  | //   mov(%rcx), %r9 | 
|  | //   mov(%rax), %r10 | 
|  | // | 
|  | // into: | 
|  | // | 
|  | //   mov %rax, %rcx | 
|  | //   %rax = .... | 
|  | //   faulting_load_op("movl (%rax), %r10", throw_npe) | 
|  | //   mov(%rcx), %r9 | 
|  | // | 
|  | // we must ensure that there are no instructions between the 'test' and | 
|  | // conditional jump that modify %rax. | 
|  | const unsigned PointerReg = MBP.LHS.getReg(); | 
|  |  | 
|  | assert(MBP.ConditionDef->getParent() ==  &MBB && "Should be in basic block"); | 
|  |  | 
|  | for (auto I = MBB.rbegin(); MBP.ConditionDef != &*I; ++I) | 
|  | if (I->modifiesRegister(PointerReg, TRI)) | 
|  | return false; | 
|  |  | 
|  | // Starting with a code fragment like: | 
|  | // | 
|  | //   test %rax, %rax | 
|  | //   jne LblNotNull | 
|  | // | 
|  | //  LblNull: | 
|  | //   callq throw_NullPointerException | 
|  | // | 
|  | //  LblNotNull: | 
|  | //   Inst0 | 
|  | //   Inst1 | 
|  | //   ... | 
|  | //   Def = Load (%rax + <offset>) | 
|  | //   ... | 
|  | // | 
|  | // | 
|  | // we want to end up with | 
|  | // | 
|  | //   Def = FaultingLoad (%rax + <offset>), LblNull | 
|  | //   jmp LblNotNull ;; explicit or fallthrough | 
|  | // | 
|  | //  LblNotNull: | 
|  | //   Inst0 | 
|  | //   Inst1 | 
|  | //   ... | 
|  | // | 
|  | //  LblNull: | 
|  | //   callq throw_NullPointerException | 
|  | // | 
|  | // | 
|  | // To see why this is legal, consider the two possibilities: | 
|  | // | 
|  | //  1. %rax is null: since we constrain <offset> to be less than PageSize, the | 
|  | //     load instruction dereferences the null page, causing a segmentation | 
|  | //     fault. | 
|  | // | 
|  | //  2. %rax is not null: in this case we know that the load cannot fault, as | 
|  | //     otherwise the load would've faulted in the original program too and the | 
|  | //     original program would've been undefined. | 
|  | // | 
|  | // This reasoning cannot be extended to justify hoisting through arbitrary | 
|  | // control flow.  For instance, in the example below (in pseudo-C) | 
|  | // | 
|  | //    if (ptr == null) { throw_npe(); unreachable; } | 
|  | //    if (some_cond) { return 42; } | 
|  | //    v = ptr->field;  // LD | 
|  | //    ... | 
|  | // | 
|  | // we cannot (without code duplication) use the load marked "LD" to null check | 
|  | // ptr -- clause (2) above does not apply in this case.  In the above program | 
|  | // the safety of ptr->field can be dependent on some_cond; and, for instance, | 
|  | // ptr could be some non-null invalid reference that never gets loaded from | 
|  | // because some_cond is always true. | 
|  |  | 
|  | SmallVector<MachineInstr *, 8> InstsSeenSoFar; | 
|  |  | 
|  | for (auto &MI : *NotNullSucc) { | 
|  | if (!canHandle(&MI) || InstsSeenSoFar.size() >= MaxInstsToConsider) | 
|  | return false; | 
|  |  | 
|  | MachineInstr *Dependence; | 
|  | SuitabilityResult SR = isSuitableMemoryOp(MI, PointerReg, InstsSeenSoFar); | 
|  | if (SR == SR_Impossible) | 
|  | return false; | 
|  | if (SR == SR_Suitable && | 
|  | canHoistInst(&MI, PointerReg, InstsSeenSoFar, NullSucc, Dependence)) { | 
|  | NullCheckList.emplace_back(&MI, MBP.ConditionDef, &MBB, NotNullSucc, | 
|  | NullSucc, Dependence); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If MI re-defines the PointerReg then we cannot move further. | 
|  | if (llvm::any_of(MI.operands(), [&](MachineOperand &MO) { | 
|  | return MO.isReg() && MO.getReg() && MO.isDef() && | 
|  | TRI->regsOverlap(MO.getReg(), PointerReg); | 
|  | })) | 
|  | return false; | 
|  | InstsSeenSoFar.push_back(&MI); | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Wrap a machine instruction, MI, into a FAULTING machine instruction. | 
|  | /// The FAULTING instruction does the same load/store as MI | 
|  | /// (defining the same register), and branches to HandlerMBB if the mem access | 
|  | /// faults.  The FAULTING instruction is inserted at the end of MBB. | 
|  | MachineInstr *ImplicitNullChecks::insertFaultingInstr( | 
|  | MachineInstr *MI, MachineBasicBlock *MBB, MachineBasicBlock *HandlerMBB) { | 
|  | const unsigned NoRegister = 0; // Guaranteed to be the NoRegister value for | 
|  | // all targets. | 
|  |  | 
|  | DebugLoc DL; | 
|  | unsigned NumDefs = MI->getDesc().getNumDefs(); | 
|  | assert(NumDefs <= 1 && "other cases unhandled!"); | 
|  |  | 
|  | unsigned DefReg = NoRegister; | 
|  | if (NumDefs != 0) { | 
|  | DefReg = MI->getOperand(0).getReg(); | 
|  | assert(NumDefs == 1 && "expected exactly one def!"); | 
|  | } | 
|  |  | 
|  | FaultMaps::FaultKind FK; | 
|  | if (MI->mayLoad()) | 
|  | FK = | 
|  | MI->mayStore() ? FaultMaps::FaultingLoadStore : FaultMaps::FaultingLoad; | 
|  | else | 
|  | FK = FaultMaps::FaultingStore; | 
|  |  | 
|  | auto MIB = BuildMI(MBB, DL, TII->get(TargetOpcode::FAULTING_OP), DefReg) | 
|  | .addImm(FK) | 
|  | .addMBB(HandlerMBB) | 
|  | .addImm(MI->getOpcode()); | 
|  |  | 
|  | for (auto &MO : MI->uses()) { | 
|  | if (MO.isReg()) { | 
|  | MachineOperand NewMO = MO; | 
|  | if (MO.isUse()) { | 
|  | NewMO.setIsKill(false); | 
|  | } else { | 
|  | assert(MO.isDef() && "Expected def or use"); | 
|  | NewMO.setIsDead(false); | 
|  | } | 
|  | MIB.add(NewMO); | 
|  | } else { | 
|  | MIB.add(MO); | 
|  | } | 
|  | } | 
|  |  | 
|  | MIB.setMemRefs(MI->memoperands()); | 
|  |  | 
|  | return MIB; | 
|  | } | 
|  |  | 
|  | /// Rewrite the null checks in NullCheckList into implicit null checks. | 
|  | void ImplicitNullChecks::rewriteNullChecks( | 
|  | ArrayRef<ImplicitNullChecks::NullCheck> NullCheckList) { | 
|  | DebugLoc DL; | 
|  |  | 
|  | for (auto &NC : NullCheckList) { | 
|  | // Remove the conditional branch dependent on the null check. | 
|  | unsigned BranchesRemoved = TII->removeBranch(*NC.getCheckBlock()); | 
|  | (void)BranchesRemoved; | 
|  | assert(BranchesRemoved > 0 && "expected at least one branch!"); | 
|  |  | 
|  | if (auto *DepMI = NC.getOnlyDependency()) { | 
|  | DepMI->removeFromParent(); | 
|  | NC.getCheckBlock()->insert(NC.getCheckBlock()->end(), DepMI); | 
|  | } | 
|  |  | 
|  | // Insert a faulting instruction where the conditional branch was | 
|  | // originally. We check earlier ensures that this bit of code motion | 
|  | // is legal.  We do not touch the successors list for any basic block | 
|  | // since we haven't changed control flow, we've just made it implicit. | 
|  | MachineInstr *FaultingInstr = insertFaultingInstr( | 
|  | NC.getMemOperation(), NC.getCheckBlock(), NC.getNullSucc()); | 
|  | // Now the values defined by MemOperation, if any, are live-in of | 
|  | // the block of MemOperation. | 
|  | // The original operation may define implicit-defs alongside | 
|  | // the value. | 
|  | MachineBasicBlock *MBB = NC.getMemOperation()->getParent(); | 
|  | for (const MachineOperand &MO : FaultingInstr->operands()) { | 
|  | if (!MO.isReg() || !MO.isDef()) | 
|  | continue; | 
|  | unsigned Reg = MO.getReg(); | 
|  | if (!Reg || MBB->isLiveIn(Reg)) | 
|  | continue; | 
|  | MBB->addLiveIn(Reg); | 
|  | } | 
|  |  | 
|  | if (auto *DepMI = NC.getOnlyDependency()) { | 
|  | for (auto &MO : DepMI->operands()) { | 
|  | if (!MO.isReg() || !MO.getReg() || !MO.isDef()) | 
|  | continue; | 
|  | if (!NC.getNotNullSucc()->isLiveIn(MO.getReg())) | 
|  | NC.getNotNullSucc()->addLiveIn(MO.getReg()); | 
|  | } | 
|  | } | 
|  |  | 
|  | NC.getMemOperation()->eraseFromParent(); | 
|  | NC.getCheckOperation()->eraseFromParent(); | 
|  |  | 
|  | // Insert an *unconditional* branch to not-null successor. | 
|  | TII->insertBranch(*NC.getCheckBlock(), NC.getNotNullSucc(), nullptr, | 
|  | /*Cond=*/None, DL); | 
|  |  | 
|  | NumImplicitNullChecks++; | 
|  | } | 
|  | } | 
|  |  | 
|  | char ImplicitNullChecks::ID = 0; | 
|  |  | 
|  | char &llvm::ImplicitNullChecksID = ImplicitNullChecks::ID; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(ImplicitNullChecks, DEBUG_TYPE, | 
|  | "Implicit null checks", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) | 
|  | INITIALIZE_PASS_END(ImplicitNullChecks, DEBUG_TYPE, | 
|  | "Implicit null checks", false, false) |