blob: ce001746c5bee51cc499d056d707f3539055abb0 [file] [log] [blame]
//===-- ClangASTContext.cpp -------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lldb/Symbol/ClangASTContext.h"
// C Includes
// C++ Includes
#include <mutex> // std::once
#include <string>
// Other libraries and framework includes
// Clang headers like to use NDEBUG inside of them to enable/disable debug
// related features using "#ifndef NDEBUG" preprocessor blocks to do one thing
// or another. This is bad because it means that if clang was built in release
// mode, it assumes that you are building in release mode which is not always
// the case. You can end up with functions that are defined as empty in header
// files when NDEBUG is not defined, and this can cause link errors with the
// clang .a files that you have since you might be missing functions in the .a
// file. So we have to define NDEBUG when including clang headers to avoid any
// mismatches. This is covered by rdar://problem/8691220
#if !defined(NDEBUG) && !defined(LLVM_NDEBUG_OFF)
#define LLDB_DEFINED_NDEBUG_FOR_CLANG
#define NDEBUG
// Need to include assert.h so it is as clang would expect it to be (disabled)
#include <assert.h>
#endif
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTImporter.h"
#include "clang/AST/Attr.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/Type.h"
#include "clang/AST/VTableBuilder.h"
#include "clang/Basic/Builtins.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/FileSystemOptions.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Basic/TargetOptions.h"
#include "clang/Frontend/FrontendOptions.h"
#include "clang/Frontend/LangStandard.h"
#ifdef LLDB_DEFINED_NDEBUG_FOR_CLANG
#undef NDEBUG
#undef LLDB_DEFINED_NDEBUG_FOR_CLANG
// Need to re-include assert.h so it is as _we_ would expect it to be (enabled)
#include <assert.h>
#endif
#include "llvm/Support/Signals.h"
#include "lldb/Core/ArchSpec.h"
#include "lldb/Core/dwarf.h"
#include "lldb/Core/Flags.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/RegularExpression.h"
#include "lldb/Core/StreamFile.h"
#include "lldb/Core/ThreadSafeDenseMap.h"
#include "lldb/Core/UniqueCStringMap.h"
#include "lldb/Expression/ASTDumper.h"
#include "lldb/Symbol/ClangASTContext.h"
#include "lldb/Symbol/ClangExternalASTSourceCommon.h"
#include "lldb/Symbol/VerifyDecl.h"
#include "lldb/Target/ExecutionContext.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/ObjCLanguageRuntime.h"
#include <stdio.h>
#include <mutex>
//#define ENABLE_DEBUG_PRINTF // COMMENT OUT THIS LINE PRIOR TO CHECKIN
#ifdef ENABLE_DEBUG_PRINTF
#include <stdio.h>
#define DEBUG_PRINTF(fmt, ...) printf(fmt, __VA_ARGS__)
#else
#define DEBUG_PRINTF(fmt, ...)
#endif
using namespace lldb;
using namespace lldb_private;
using namespace llvm;
using namespace clang;
typedef lldb_private::ThreadSafeDenseMap<clang::ASTContext *, ClangASTContext*> ClangASTMap;
static ClangASTMap &
GetASTMap()
{
static ClangASTMap *g_map_ptr = nullptr;
static std::once_flag g_once_flag;
std::call_once(g_once_flag, []() {
g_map_ptr = new ClangASTMap(); // leaked on purpose to avoid spins
});
return *g_map_ptr;
}
clang::AccessSpecifier
ClangASTContext::ConvertAccessTypeToAccessSpecifier (AccessType access)
{
switch (access)
{
default: break;
case eAccessNone: return AS_none;
case eAccessPublic: return AS_public;
case eAccessPrivate: return AS_private;
case eAccessProtected: return AS_protected;
}
return AS_none;
}
static void
ParseLangArgs (LangOptions &Opts, InputKind IK, const char* triple)
{
// FIXME: Cleanup per-file based stuff.
// Set some properties which depend solely on the input kind; it would be nice
// to move these to the language standard, and have the driver resolve the
// input kind + language standard.
if (IK == IK_Asm) {
Opts.AsmPreprocessor = 1;
} else if (IK == IK_ObjC ||
IK == IK_ObjCXX ||
IK == IK_PreprocessedObjC ||
IK == IK_PreprocessedObjCXX) {
Opts.ObjC1 = Opts.ObjC2 = 1;
}
LangStandard::Kind LangStd = LangStandard::lang_unspecified;
if (LangStd == LangStandard::lang_unspecified) {
// Based on the base language, pick one.
switch (IK) {
case IK_None:
case IK_AST:
case IK_LLVM_IR:
assert (!"Invalid input kind!");
case IK_OpenCL:
LangStd = LangStandard::lang_opencl;
break;
case IK_CUDA:
case IK_PreprocessedCuda:
LangStd = LangStandard::lang_cuda;
break;
case IK_Asm:
case IK_C:
case IK_PreprocessedC:
case IK_ObjC:
case IK_PreprocessedObjC:
LangStd = LangStandard::lang_gnu99;
break;
case IK_CXX:
case IK_PreprocessedCXX:
case IK_ObjCXX:
case IK_PreprocessedObjCXX:
LangStd = LangStandard::lang_gnucxx98;
break;
}
}
const LangStandard &Std = LangStandard::getLangStandardForKind(LangStd);
Opts.LineComment = Std.hasLineComments();
Opts.C99 = Std.isC99();
Opts.CPlusPlus = Std.isCPlusPlus();
Opts.CPlusPlus11 = Std.isCPlusPlus11();
Opts.Digraphs = Std.hasDigraphs();
Opts.GNUMode = Std.isGNUMode();
Opts.GNUInline = !Std.isC99();
Opts.HexFloats = Std.hasHexFloats();
Opts.ImplicitInt = Std.hasImplicitInt();
Opts.WChar = true;
// OpenCL has some additional defaults.
if (LangStd == LangStandard::lang_opencl) {
Opts.OpenCL = 1;
Opts.AltiVec = 1;
Opts.CXXOperatorNames = 1;
Opts.LaxVectorConversions = 1;
}
// OpenCL and C++ both have bool, true, false keywords.
Opts.Bool = Opts.OpenCL || Opts.CPlusPlus;
// if (Opts.CPlusPlus)
// Opts.CXXOperatorNames = !Args.hasArg(OPT_fno_operator_names);
//
// if (Args.hasArg(OPT_fobjc_gc_only))
// Opts.setGCMode(LangOptions::GCOnly);
// else if (Args.hasArg(OPT_fobjc_gc))
// Opts.setGCMode(LangOptions::HybridGC);
//
// if (Args.hasArg(OPT_print_ivar_layout))
// Opts.ObjCGCBitmapPrint = 1;
//
// if (Args.hasArg(OPT_faltivec))
// Opts.AltiVec = 1;
//
// if (Args.hasArg(OPT_pthread))
// Opts.POSIXThreads = 1;
//
// llvm::StringRef Vis = getLastArgValue(Args, OPT_fvisibility,
// "default");
// if (Vis == "default")
Opts.setValueVisibilityMode(DefaultVisibility);
// else if (Vis == "hidden")
// Opts.setVisibilityMode(LangOptions::Hidden);
// else if (Vis == "protected")
// Opts.setVisibilityMode(LangOptions::Protected);
// else
// Diags.Report(diag::err_drv_invalid_value)
// << Args.getLastArg(OPT_fvisibility)->getAsString(Args) << Vis;
// Opts.OverflowChecking = Args.hasArg(OPT_ftrapv);
// Mimicing gcc's behavior, trigraphs are only enabled if -trigraphs
// is specified, or -std is set to a conforming mode.
Opts.Trigraphs = !Opts.GNUMode;
// if (Args.hasArg(OPT_trigraphs))
// Opts.Trigraphs = 1;
//
// Opts.DollarIdents = Args.hasFlag(OPT_fdollars_in_identifiers,
// OPT_fno_dollars_in_identifiers,
// !Opts.AsmPreprocessor);
// Opts.PascalStrings = Args.hasArg(OPT_fpascal_strings);
// Opts.Microsoft = Args.hasArg(OPT_fms_extensions);
// Opts.WritableStrings = Args.hasArg(OPT_fwritable_strings);
// if (Args.hasArg(OPT_fno_lax_vector_conversions))
// Opts.LaxVectorConversions = 0;
// Opts.Exceptions = Args.hasArg(OPT_fexceptions);
// Opts.RTTI = !Args.hasArg(OPT_fno_rtti);
// Opts.Blocks = Args.hasArg(OPT_fblocks);
Opts.CharIsSigned = ArchSpec(triple).CharIsSignedByDefault();
// Opts.ShortWChar = Args.hasArg(OPT_fshort_wchar);
// Opts.Freestanding = Args.hasArg(OPT_ffreestanding);
// Opts.NoBuiltin = Args.hasArg(OPT_fno_builtin) || Opts.Freestanding;
// Opts.AssumeSaneOperatorNew = !Args.hasArg(OPT_fno_assume_sane_operator_new);
// Opts.HeinousExtensions = Args.hasArg(OPT_fheinous_gnu_extensions);
// Opts.AccessControl = Args.hasArg(OPT_faccess_control);
// Opts.ElideConstructors = !Args.hasArg(OPT_fno_elide_constructors);
// Opts.MathErrno = !Args.hasArg(OPT_fno_math_errno);
// Opts.InstantiationDepth = getLastArgIntValue(Args, OPT_ftemplate_depth, 99,
// Diags);
// Opts.NeXTRuntime = !Args.hasArg(OPT_fgnu_runtime);
// Opts.ObjCConstantStringClass = getLastArgValue(Args,
// OPT_fconstant_string_class);
// Opts.ObjCNonFragileABI = Args.hasArg(OPT_fobjc_nonfragile_abi);
// Opts.CatchUndefined = Args.hasArg(OPT_fcatch_undefined_behavior);
// Opts.EmitAllDecls = Args.hasArg(OPT_femit_all_decls);
// Opts.PICLevel = getLastArgIntValue(Args, OPT_pic_level, 0, Diags);
// Opts.Static = Args.hasArg(OPT_static_define);
Opts.OptimizeSize = 0;
// FIXME: Eliminate this dependency.
// unsigned Opt =
// Args.hasArg(OPT_Os) ? 2 : getLastArgIntValue(Args, OPT_O, 0, Diags);
// Opts.Optimize = Opt != 0;
unsigned Opt = 0;
// This is the __NO_INLINE__ define, which just depends on things like the
// optimization level and -fno-inline, not actually whether the backend has
// inlining enabled.
//
// FIXME: This is affected by other options (-fno-inline).
Opts.NoInlineDefine = !Opt;
// unsigned SSP = getLastArgIntValue(Args, OPT_stack_protector, 0, Diags);
// switch (SSP) {
// default:
// Diags.Report(diag::err_drv_invalid_value)
// << Args.getLastArg(OPT_stack_protector)->getAsString(Args) << SSP;
// break;
// case 0: Opts.setStackProtectorMode(LangOptions::SSPOff); break;
// case 1: Opts.setStackProtectorMode(LangOptions::SSPOn); break;
// case 2: Opts.setStackProtectorMode(LangOptions::SSPReq); break;
// }
}
ClangASTContext::ClangASTContext (const char *target_triple) :
m_target_triple(),
m_ast_ap(),
m_language_options_ap(),
m_source_manager_ap(),
m_diagnostics_engine_ap(),
m_target_options_rp(),
m_target_info_ap(),
m_identifier_table_ap(),
m_selector_table_ap(),
m_builtins_ap(),
m_callback_tag_decl (nullptr),
m_callback_objc_decl (nullptr),
m_callback_baton (nullptr),
m_pointer_byte_size (0),
m_ast_owned(false)
{
if (target_triple && target_triple[0])
SetTargetTriple (target_triple);
}
//----------------------------------------------------------------------
// Destructor
//----------------------------------------------------------------------
ClangASTContext::~ClangASTContext()
{
if (m_ast_ap.get())
{
GetASTMap().Erase(m_ast_ap.get());
if (!m_ast_owned)
m_ast_ap.release();
}
m_builtins_ap.reset();
m_selector_table_ap.reset();
m_identifier_table_ap.reset();
m_target_info_ap.reset();
m_target_options_rp.reset();
m_diagnostics_engine_ap.reset();
m_source_manager_ap.reset();
m_language_options_ap.reset();
m_ast_ap.reset();
}
void
ClangASTContext::Clear()
{
m_ast_ap.reset();
m_language_options_ap.reset();
m_source_manager_ap.reset();
m_diagnostics_engine_ap.reset();
m_target_options_rp.reset();
m_target_info_ap.reset();
m_identifier_table_ap.reset();
m_selector_table_ap.reset();
m_builtins_ap.reset();
m_pointer_byte_size = 0;
}
const char *
ClangASTContext::GetTargetTriple ()
{
return m_target_triple.c_str();
}
void
ClangASTContext::SetTargetTriple (const char *target_triple)
{
Clear();
m_target_triple.assign(target_triple);
}
void
ClangASTContext::SetArchitecture (const ArchSpec &arch)
{
SetTargetTriple(arch.GetTriple().str().c_str());
}
bool
ClangASTContext::HasExternalSource ()
{
ASTContext *ast = getASTContext();
if (ast)
return ast->getExternalSource () != nullptr;
return false;
}
void
ClangASTContext::SetExternalSource (llvm::IntrusiveRefCntPtr<ExternalASTSource> &ast_source_ap)
{
ASTContext *ast = getASTContext();
if (ast)
{
ast->setExternalSource (ast_source_ap);
ast->getTranslationUnitDecl()->setHasExternalLexicalStorage(true);
//ast->getTranslationUnitDecl()->setHasExternalVisibleStorage(true);
}
}
void
ClangASTContext::RemoveExternalSource ()
{
ASTContext *ast = getASTContext();
if (ast)
{
llvm::IntrusiveRefCntPtr<ExternalASTSource> empty_ast_source_ap;
ast->setExternalSource (empty_ast_source_ap);
ast->getTranslationUnitDecl()->setHasExternalLexicalStorage(false);
//ast->getTranslationUnitDecl()->setHasExternalVisibleStorage(false);
}
}
void
ClangASTContext::setASTContext(clang::ASTContext *ast_ctx)
{
if (!m_ast_owned) {
m_ast_ap.release();
}
m_ast_owned = false;
m_ast_ap.reset(ast_ctx);
GetASTMap().Insert(ast_ctx, this);
}
ASTContext *
ClangASTContext::getASTContext()
{
if (m_ast_ap.get() == nullptr)
{
m_ast_owned = true;
m_ast_ap.reset(new ASTContext (*getLanguageOptions(),
*getSourceManager(),
*getIdentifierTable(),
*getSelectorTable(),
*getBuiltinContext()));
m_ast_ap->getDiagnostics().setClient(getDiagnosticConsumer(), false);
// This can be NULL if we don't know anything about the architecture or if the
// target for an architecture isn't enabled in the llvm/clang that we built
TargetInfo *target_info = getTargetInfo();
if (target_info)
m_ast_ap->InitBuiltinTypes(*target_info);
if ((m_callback_tag_decl || m_callback_objc_decl) && m_callback_baton)
{
m_ast_ap->getTranslationUnitDecl()->setHasExternalLexicalStorage();
//m_ast_ap->getTranslationUnitDecl()->setHasExternalVisibleStorage();
}
GetASTMap().Insert(m_ast_ap.get(), this);
}
return m_ast_ap.get();
}
ClangASTContext*
ClangASTContext::GetASTContext (clang::ASTContext* ast)
{
ClangASTContext *clang_ast = GetASTMap().Lookup(ast);
return clang_ast;
}
Builtin::Context *
ClangASTContext::getBuiltinContext()
{
if (m_builtins_ap.get() == nullptr)
m_builtins_ap.reset (new Builtin::Context());
return m_builtins_ap.get();
}
IdentifierTable *
ClangASTContext::getIdentifierTable()
{
if (m_identifier_table_ap.get() == nullptr)
m_identifier_table_ap.reset(new IdentifierTable (*ClangASTContext::getLanguageOptions(), nullptr));
return m_identifier_table_ap.get();
}
LangOptions *
ClangASTContext::getLanguageOptions()
{
if (m_language_options_ap.get() == nullptr)
{
m_language_options_ap.reset(new LangOptions());
ParseLangArgs(*m_language_options_ap, IK_ObjCXX, GetTargetTriple());
// InitializeLangOptions(*m_language_options_ap, IK_ObjCXX);
}
return m_language_options_ap.get();
}
SelectorTable *
ClangASTContext::getSelectorTable()
{
if (m_selector_table_ap.get() == nullptr)
m_selector_table_ap.reset (new SelectorTable());
return m_selector_table_ap.get();
}
clang::FileManager *
ClangASTContext::getFileManager()
{
if (m_file_manager_ap.get() == nullptr)
{
clang::FileSystemOptions file_system_options;
m_file_manager_ap.reset(new clang::FileManager(file_system_options));
}
return m_file_manager_ap.get();
}
clang::SourceManager *
ClangASTContext::getSourceManager()
{
if (m_source_manager_ap.get() == nullptr)
m_source_manager_ap.reset(new clang::SourceManager(*getDiagnosticsEngine(), *getFileManager()));
return m_source_manager_ap.get();
}
clang::DiagnosticsEngine *
ClangASTContext::getDiagnosticsEngine()
{
if (m_diagnostics_engine_ap.get() == nullptr)
{
llvm::IntrusiveRefCntPtr<DiagnosticIDs> diag_id_sp(new DiagnosticIDs());
m_diagnostics_engine_ap.reset(new DiagnosticsEngine(diag_id_sp, new DiagnosticOptions()));
}
return m_diagnostics_engine_ap.get();
}
class NullDiagnosticConsumer : public DiagnosticConsumer
{
public:
NullDiagnosticConsumer ()
{
m_log = lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_EXPRESSIONS);
}
void HandleDiagnostic (DiagnosticsEngine::Level DiagLevel, const Diagnostic &info)
{
if (m_log)
{
llvm::SmallVector<char, 32> diag_str(10);
info.FormatDiagnostic(diag_str);
diag_str.push_back('\0');
m_log->Printf("Compiler diagnostic: %s\n", diag_str.data());
}
}
DiagnosticConsumer *clone (DiagnosticsEngine &Diags) const
{
return new NullDiagnosticConsumer ();
}
private:
Log * m_log;
};
DiagnosticConsumer *
ClangASTContext::getDiagnosticConsumer()
{
if (m_diagnostic_consumer_ap.get() == nullptr)
m_diagnostic_consumer_ap.reset(new NullDiagnosticConsumer);
return m_diagnostic_consumer_ap.get();
}
std::shared_ptr<TargetOptions> &
ClangASTContext::getTargetOptions() {
if (m_target_options_rp.get() == nullptr && !m_target_triple.empty())
{
m_target_options_rp = std::make_shared<TargetOptions>();
if (m_target_options_rp.get() != nullptr)
m_target_options_rp->Triple = m_target_triple;
}
return m_target_options_rp;
}
TargetInfo *
ClangASTContext::getTargetInfo()
{
// target_triple should be something like "x86_64-apple-macosx"
if (m_target_info_ap.get() == nullptr && !m_target_triple.empty())
m_target_info_ap.reset (TargetInfo::CreateTargetInfo(*getDiagnosticsEngine(), getTargetOptions()));
return m_target_info_ap.get();
}
#pragma mark Basic Types
static inline bool
QualTypeMatchesBitSize(const uint64_t bit_size, ASTContext *ast, QualType qual_type)
{
uint64_t qual_type_bit_size = ast->getTypeSize(qual_type);
if (qual_type_bit_size == bit_size)
return true;
return false;
}
CompilerType
ClangASTContext::GetBuiltinTypeForEncodingAndBitSize (Encoding encoding, uint32_t bit_size)
{
return ClangASTContext::GetBuiltinTypeForEncodingAndBitSize (getASTContext(), encoding, bit_size);
}
CompilerType
ClangASTContext::GetBuiltinTypeForEncodingAndBitSize (ASTContext *ast, Encoding encoding, uint32_t bit_size)
{
if (!ast)
return CompilerType();
switch (encoding)
{
case eEncodingInvalid:
if (QualTypeMatchesBitSize (bit_size, ast, ast->VoidPtrTy))
return CompilerType (ast, ast->VoidPtrTy);
break;
case eEncodingUint:
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedCharTy))
return CompilerType (ast, ast->UnsignedCharTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedShortTy))
return CompilerType (ast, ast->UnsignedShortTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedIntTy))
return CompilerType (ast, ast->UnsignedIntTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedLongTy))
return CompilerType (ast, ast->UnsignedLongTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedLongLongTy))
return CompilerType (ast, ast->UnsignedLongLongTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedInt128Ty))
return CompilerType (ast, ast->UnsignedInt128Ty);
break;
case eEncodingSint:
if (QualTypeMatchesBitSize (bit_size, ast, ast->CharTy))
return CompilerType (ast, ast->CharTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->ShortTy))
return CompilerType (ast, ast->ShortTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->IntTy))
return CompilerType (ast, ast->IntTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->LongTy))
return CompilerType (ast, ast->LongTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->LongLongTy))
return CompilerType (ast, ast->LongLongTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->Int128Ty))
return CompilerType (ast, ast->Int128Ty);
break;
case eEncodingIEEE754:
if (QualTypeMatchesBitSize (bit_size, ast, ast->FloatTy))
return CompilerType (ast, ast->FloatTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->DoubleTy))
return CompilerType (ast, ast->DoubleTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->LongDoubleTy))
return CompilerType (ast, ast->LongDoubleTy);
break;
case eEncodingVector:
// Sanity check that bit_size is a multiple of 8's.
if (bit_size && !(bit_size & 0x7u))
return CompilerType (ast, ast->getExtVectorType (ast->UnsignedCharTy, bit_size/8));
break;
}
return CompilerType();
}
lldb::BasicType
ClangASTContext::GetBasicTypeEnumeration (const ConstString &name)
{
if (name)
{
typedef UniqueCStringMap<lldb::BasicType> TypeNameToBasicTypeMap;
static TypeNameToBasicTypeMap g_type_map;
static std::once_flag g_once_flag;
std::call_once(g_once_flag, [](){
// "void"
g_type_map.Append(ConstString("void").GetCString(), eBasicTypeVoid);
// "char"
g_type_map.Append(ConstString("char").GetCString(), eBasicTypeChar);
g_type_map.Append(ConstString("signed char").GetCString(), eBasicTypeSignedChar);
g_type_map.Append(ConstString("unsigned char").GetCString(), eBasicTypeUnsignedChar);
g_type_map.Append(ConstString("wchar_t").GetCString(), eBasicTypeWChar);
g_type_map.Append(ConstString("signed wchar_t").GetCString(), eBasicTypeSignedWChar);
g_type_map.Append(ConstString("unsigned wchar_t").GetCString(), eBasicTypeUnsignedWChar);
// "short"
g_type_map.Append(ConstString("short").GetCString(), eBasicTypeShort);
g_type_map.Append(ConstString("short int").GetCString(), eBasicTypeShort);
g_type_map.Append(ConstString("unsigned short").GetCString(), eBasicTypeUnsignedShort);
g_type_map.Append(ConstString("unsigned short int").GetCString(), eBasicTypeUnsignedShort);
// "int"
g_type_map.Append(ConstString("int").GetCString(), eBasicTypeInt);
g_type_map.Append(ConstString("signed int").GetCString(), eBasicTypeInt);
g_type_map.Append(ConstString("unsigned int").GetCString(), eBasicTypeUnsignedInt);
g_type_map.Append(ConstString("unsigned").GetCString(), eBasicTypeUnsignedInt);
// "long"
g_type_map.Append(ConstString("long").GetCString(), eBasicTypeLong);
g_type_map.Append(ConstString("long int").GetCString(), eBasicTypeLong);
g_type_map.Append(ConstString("unsigned long").GetCString(), eBasicTypeUnsignedLong);
g_type_map.Append(ConstString("unsigned long int").GetCString(), eBasicTypeUnsignedLong);
// "long long"
g_type_map.Append(ConstString("long long").GetCString(), eBasicTypeLongLong);
g_type_map.Append(ConstString("long long int").GetCString(), eBasicTypeLongLong);
g_type_map.Append(ConstString("unsigned long long").GetCString(), eBasicTypeUnsignedLongLong);
g_type_map.Append(ConstString("unsigned long long int").GetCString(), eBasicTypeUnsignedLongLong);
// "int128"
g_type_map.Append(ConstString("__int128_t").GetCString(), eBasicTypeInt128);
g_type_map.Append(ConstString("__uint128_t").GetCString(), eBasicTypeUnsignedInt128);
// Miscellaneous
g_type_map.Append(ConstString("bool").GetCString(), eBasicTypeBool);
g_type_map.Append(ConstString("float").GetCString(), eBasicTypeFloat);
g_type_map.Append(ConstString("double").GetCString(), eBasicTypeDouble);
g_type_map.Append(ConstString("long double").GetCString(), eBasicTypeLongDouble);
g_type_map.Append(ConstString("id").GetCString(), eBasicTypeObjCID);
g_type_map.Append(ConstString("SEL").GetCString(), eBasicTypeObjCSel);
g_type_map.Append(ConstString("nullptr").GetCString(), eBasicTypeNullPtr);
g_type_map.Sort();
});
return g_type_map.Find(name.GetCString(), eBasicTypeInvalid);
}
return eBasicTypeInvalid;
}
CompilerType
ClangASTContext::GetBasicType (ASTContext *ast, const ConstString &name)
{
if (ast)
{
lldb::BasicType basic_type = ClangASTContext::GetBasicTypeEnumeration (name);
return ClangASTContext::GetBasicType (ast, basic_type);
}
return CompilerType();
}
uint32_t
ClangASTContext::GetPointerByteSize ()
{
if (m_pointer_byte_size == 0)
m_pointer_byte_size = GetBasicType(lldb::eBasicTypeVoid).GetPointerType().GetByteSize(nullptr);
return m_pointer_byte_size;
}
CompilerType
ClangASTContext::GetBasicType (lldb::BasicType basic_type)
{
return GetBasicType (getASTContext(), basic_type);
}
CompilerType
ClangASTContext::GetBasicType (ASTContext *ast, lldb::BasicType basic_type)
{
if (ast)
{
clang_type_t clang_type = nullptr;
switch (basic_type)
{
case eBasicTypeInvalid:
case eBasicTypeOther:
break;
case eBasicTypeVoid:
clang_type = ast->VoidTy.getAsOpaquePtr();
break;
case eBasicTypeChar:
clang_type = ast->CharTy.getAsOpaquePtr();
break;
case eBasicTypeSignedChar:
clang_type = ast->SignedCharTy.getAsOpaquePtr();
break;
case eBasicTypeUnsignedChar:
clang_type = ast->UnsignedCharTy.getAsOpaquePtr();
break;
case eBasicTypeWChar:
clang_type = ast->getWCharType().getAsOpaquePtr();
break;
case eBasicTypeSignedWChar:
clang_type = ast->getSignedWCharType().getAsOpaquePtr();
break;
case eBasicTypeUnsignedWChar:
clang_type = ast->getUnsignedWCharType().getAsOpaquePtr();
break;
case eBasicTypeChar16:
clang_type = ast->Char16Ty.getAsOpaquePtr();
break;
case eBasicTypeChar32:
clang_type = ast->Char32Ty.getAsOpaquePtr();
break;
case eBasicTypeShort:
clang_type = ast->ShortTy.getAsOpaquePtr();
break;
case eBasicTypeUnsignedShort:
clang_type = ast->UnsignedShortTy.getAsOpaquePtr();
break;
case eBasicTypeInt:
clang_type = ast->IntTy.getAsOpaquePtr();
break;
case eBasicTypeUnsignedInt:
clang_type = ast->UnsignedIntTy.getAsOpaquePtr();
break;
case eBasicTypeLong:
clang_type = ast->LongTy.getAsOpaquePtr();
break;
case eBasicTypeUnsignedLong:
clang_type = ast->UnsignedLongTy.getAsOpaquePtr();
break;
case eBasicTypeLongLong:
clang_type = ast->LongLongTy.getAsOpaquePtr();
break;
case eBasicTypeUnsignedLongLong:
clang_type = ast->UnsignedLongLongTy.getAsOpaquePtr();
break;
case eBasicTypeInt128:
clang_type = ast->Int128Ty.getAsOpaquePtr();
break;
case eBasicTypeUnsignedInt128:
clang_type = ast->UnsignedInt128Ty.getAsOpaquePtr();
break;
case eBasicTypeBool:
clang_type = ast->BoolTy.getAsOpaquePtr();
break;
case eBasicTypeHalf:
clang_type = ast->HalfTy.getAsOpaquePtr();
break;
case eBasicTypeFloat:
clang_type = ast->FloatTy.getAsOpaquePtr();
break;
case eBasicTypeDouble:
clang_type = ast->DoubleTy.getAsOpaquePtr();
break;
case eBasicTypeLongDouble:
clang_type = ast->LongDoubleTy.getAsOpaquePtr();
break;
case eBasicTypeFloatComplex:
clang_type = ast->FloatComplexTy.getAsOpaquePtr();
break;
case eBasicTypeDoubleComplex:
clang_type = ast->DoubleComplexTy.getAsOpaquePtr();
break;
case eBasicTypeLongDoubleComplex:
clang_type = ast->LongDoubleComplexTy.getAsOpaquePtr();
break;
case eBasicTypeObjCID:
clang_type = ast->getObjCIdType().getAsOpaquePtr();
break;
case eBasicTypeObjCClass:
clang_type = ast->getObjCClassType().getAsOpaquePtr();
break;
case eBasicTypeObjCSel:
clang_type = ast->getObjCSelType().getAsOpaquePtr();
break;
case eBasicTypeNullPtr:
clang_type = ast->NullPtrTy.getAsOpaquePtr();
break;
}
if (clang_type)
return CompilerType (GetASTContext(ast), clang_type);
}
return CompilerType();
}
CompilerType
ClangASTContext::GetBuiltinTypeForDWARFEncodingAndBitSize (const char *type_name, uint32_t dw_ate, uint32_t bit_size)
{
ASTContext *ast = getASTContext();
#define streq(a,b) strcmp(a,b) == 0
assert (ast != nullptr);
if (ast)
{
switch (dw_ate)
{
default:
break;
case DW_ATE_address:
if (QualTypeMatchesBitSize (bit_size, ast, ast->VoidPtrTy))
return CompilerType (ast, ast->VoidPtrTy);
break;
case DW_ATE_boolean:
if (QualTypeMatchesBitSize (bit_size, ast, ast->BoolTy))
return CompilerType (ast, ast->BoolTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedCharTy))
return CompilerType (ast, ast->UnsignedCharTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedShortTy))
return CompilerType (ast, ast->UnsignedShortTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedIntTy))
return CompilerType (ast, ast->UnsignedIntTy);
break;
case DW_ATE_lo_user:
// This has been seen to mean DW_AT_complex_integer
if (type_name)
{
if (::strstr(type_name, "complex"))
{
CompilerType complex_int_clang_type = GetBuiltinTypeForDWARFEncodingAndBitSize ("int", DW_ATE_signed, bit_size/2);
return CompilerType (ast, ast->getComplexType (GetQualType(complex_int_clang_type)));
}
}
break;
case DW_ATE_complex_float:
if (QualTypeMatchesBitSize (bit_size, ast, ast->FloatComplexTy))
return CompilerType (ast, ast->FloatComplexTy);
else if (QualTypeMatchesBitSize (bit_size, ast, ast->DoubleComplexTy))
return CompilerType (ast, ast->DoubleComplexTy);
else if (QualTypeMatchesBitSize (bit_size, ast, ast->LongDoubleComplexTy))
return CompilerType (ast, ast->LongDoubleComplexTy);
else
{
CompilerType complex_float_clang_type = GetBuiltinTypeForDWARFEncodingAndBitSize ("float", DW_ATE_float, bit_size/2);
return CompilerType (ast, ast->getComplexType (GetQualType(complex_float_clang_type)));
}
break;
case DW_ATE_float:
if (streq(type_name, "float") && QualTypeMatchesBitSize (bit_size, ast, ast->FloatTy))
return CompilerType (ast, ast->FloatTy);
if (streq(type_name, "double") && QualTypeMatchesBitSize (bit_size, ast, ast->DoubleTy))
return CompilerType (ast, ast->DoubleTy);
if (streq(type_name, "long double") && QualTypeMatchesBitSize (bit_size, ast, ast->LongDoubleTy))
return CompilerType (ast, ast->LongDoubleTy);
// Fall back to not requiring a name match
if (QualTypeMatchesBitSize (bit_size, ast, ast->FloatTy))
return CompilerType (ast, ast->FloatTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->DoubleTy))
return CompilerType (ast, ast->DoubleTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->LongDoubleTy))
return CompilerType (ast, ast->LongDoubleTy);
break;
case DW_ATE_signed:
if (type_name)
{
if (streq(type_name, "wchar_t") &&
QualTypeMatchesBitSize (bit_size, ast, ast->WCharTy) &&
(getTargetInfo() && TargetInfo::isTypeSigned (getTargetInfo()->getWCharType())))
return CompilerType (ast, ast->WCharTy);
if (streq(type_name, "void") &&
QualTypeMatchesBitSize (bit_size, ast, ast->VoidTy))
return CompilerType (ast, ast->VoidTy);
if (strstr(type_name, "long long") &&
QualTypeMatchesBitSize (bit_size, ast, ast->LongLongTy))
return CompilerType (ast, ast->LongLongTy);
if (strstr(type_name, "long") &&
QualTypeMatchesBitSize (bit_size, ast, ast->LongTy))
return CompilerType (ast, ast->LongTy);
if (strstr(type_name, "short") &&
QualTypeMatchesBitSize (bit_size, ast, ast->ShortTy))
return CompilerType (ast, ast->ShortTy);
if (strstr(type_name, "char"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->CharTy))
return CompilerType (ast, ast->CharTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->SignedCharTy))
return CompilerType (ast, ast->SignedCharTy);
}
if (strstr(type_name, "int"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->IntTy))
return CompilerType (ast, ast->IntTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->Int128Ty))
return CompilerType (ast, ast->Int128Ty);
}
}
// We weren't able to match up a type name, just search by size
if (QualTypeMatchesBitSize (bit_size, ast, ast->CharTy))
return CompilerType (ast, ast->CharTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->ShortTy))
return CompilerType (ast, ast->ShortTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->IntTy))
return CompilerType (ast, ast->IntTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->LongTy))
return CompilerType (ast, ast->LongTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->LongLongTy))
return CompilerType (ast, ast->LongLongTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->Int128Ty))
return CompilerType (ast, ast->Int128Ty);
break;
case DW_ATE_signed_char:
if (ast->getLangOpts().CharIsSigned && type_name && streq(type_name, "char"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->CharTy))
return CompilerType (ast, ast->CharTy);
}
if (QualTypeMatchesBitSize (bit_size, ast, ast->SignedCharTy))
return CompilerType (ast, ast->SignedCharTy);
break;
case DW_ATE_unsigned:
if (type_name)
{
if (streq(type_name, "wchar_t"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->WCharTy))
{
if (!(getTargetInfo() && TargetInfo::isTypeSigned (getTargetInfo()->getWCharType())))
return CompilerType (ast, ast->WCharTy);
}
}
if (strstr(type_name, "long long"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedLongLongTy))
return CompilerType (ast, ast->UnsignedLongLongTy);
}
else if (strstr(type_name, "long"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedLongTy))
return CompilerType (ast, ast->UnsignedLongTy);
}
else if (strstr(type_name, "short"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedShortTy))
return CompilerType (ast, ast->UnsignedShortTy);
}
else if (strstr(type_name, "char"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedCharTy))
return CompilerType (ast, ast->UnsignedCharTy);
}
else if (strstr(type_name, "int"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedIntTy))
return CompilerType (ast, ast->UnsignedIntTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedInt128Ty))
return CompilerType (ast, ast->UnsignedInt128Ty);
}
}
// We weren't able to match up a type name, just search by size
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedCharTy))
return CompilerType (ast, ast->UnsignedCharTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedShortTy))
return CompilerType (ast, ast->UnsignedShortTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedIntTy))
return CompilerType (ast, ast->UnsignedIntTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedLongTy))
return CompilerType (ast, ast->UnsignedLongTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedLongLongTy))
return CompilerType (ast, ast->UnsignedLongLongTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedInt128Ty))
return CompilerType (ast, ast->UnsignedInt128Ty);
break;
case DW_ATE_unsigned_char:
if (!ast->getLangOpts().CharIsSigned && type_name && streq(type_name, "char"))
{
if (QualTypeMatchesBitSize (bit_size, ast, ast->CharTy))
return CompilerType (ast, ast->CharTy);
}
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedCharTy))
return CompilerType (ast, ast->UnsignedCharTy);
if (QualTypeMatchesBitSize (bit_size, ast, ast->UnsignedShortTy))
return CompilerType (ast, ast->UnsignedShortTy);
break;
case DW_ATE_imaginary_float:
break;
case DW_ATE_UTF:
if (type_name)
{
if (streq(type_name, "char16_t"))
{
return CompilerType (ast, ast->Char16Ty);
}
else if (streq(type_name, "char32_t"))
{
return CompilerType (ast, ast->Char32Ty);
}
}
break;
}
}
// This assert should fire for anything that we don't catch above so we know
// to fix any issues we run into.
if (type_name)
{
Host::SystemLog (Host::eSystemLogError, "error: need to add support for DW_TAG_base_type '%s' encoded with DW_ATE = 0x%x, bit_size = %u\n", type_name, dw_ate, bit_size);
}
else
{
Host::SystemLog (Host::eSystemLogError, "error: need to add support for DW_TAG_base_type encoded with DW_ATE = 0x%x, bit_size = %u\n", dw_ate, bit_size);
}
return CompilerType ();
}
CompilerType
ClangASTContext::GetUnknownAnyType(clang::ASTContext *ast)
{
if (ast)
return CompilerType (ast, ast->UnknownAnyTy);
return CompilerType();
}
CompilerType
ClangASTContext::GetCStringType (bool is_const)
{
ASTContext *ast = getASTContext();
QualType char_type(ast->CharTy);
if (is_const)
char_type.addConst();
return CompilerType (ast, ast->getPointerType(char_type));
}
clang::DeclContext *
ClangASTContext::GetTranslationUnitDecl (clang::ASTContext *ast)
{
return ast->getTranslationUnitDecl();
}
CompilerType
ClangASTContext::CopyType (ASTContext *dst_ast,
CompilerType src)
{
FileSystemOptions file_system_options;
ClangASTContext *src_ast = src.GetTypeSystem()->AsClangASTContext();
if (src_ast == nullptr)
return CompilerType();
FileManager file_manager (file_system_options);
ASTImporter importer(*dst_ast, file_manager,
*src_ast->getASTContext(), file_manager,
false);
QualType dst (importer.Import(GetQualType(src)));
return CompilerType (dst_ast, dst);
}
clang::Decl *
ClangASTContext::CopyDecl (ASTContext *dst_ast,
ASTContext *src_ast,
clang::Decl *source_decl)
{
FileSystemOptions file_system_options;
FileManager file_manager (file_system_options);
ASTImporter importer(*dst_ast, file_manager,
*src_ast, file_manager,
false);
return importer.Import(source_decl);
}
bool
ClangASTContext::AreTypesSame (CompilerType type1,
CompilerType type2,
bool ignore_qualifiers)
{
TypeSystem *ast = type1.GetTypeSystem();
if (!ast->AsClangASTContext() || ast != type2.GetTypeSystem())
return false;
if (type1.GetOpaqueQualType() == type2.GetOpaqueQualType())
return true;
QualType type1_qual = GetQualType(type1);
QualType type2_qual = GetQualType(type2);
if (ignore_qualifiers)
{
type1_qual = type1_qual.getUnqualifiedType();
type2_qual = type2_qual.getUnqualifiedType();
}
return ast->AsClangASTContext()->getASTContext()->hasSameType (type1_qual, type2_qual);
}
CompilerType
ClangASTContext::GetTypeForDecl (clang::NamedDecl *decl)
{
if (clang::ObjCInterfaceDecl *interface_decl = llvm::dyn_cast<clang::ObjCInterfaceDecl>(decl))
return GetTypeForDecl(interface_decl);
if (clang::TagDecl *tag_decl = llvm::dyn_cast<clang::TagDecl>(decl))
return GetTypeForDecl(tag_decl);
return CompilerType();
}
CompilerType
ClangASTContext::GetTypeForDecl (TagDecl *decl)
{
// No need to call the getASTContext() accessor (which can create the AST
// if it isn't created yet, because we can't have created a decl in this
// AST if our AST didn't already exist...
ASTContext *ast = &decl->getASTContext();
if (ast)
return CompilerType (ast, ast->getTagDeclType(decl));
return CompilerType();
}
CompilerType
ClangASTContext::GetTypeForDecl (ObjCInterfaceDecl *decl)
{
// No need to call the getASTContext() accessor (which can create the AST
// if it isn't created yet, because we can't have created a decl in this
// AST if our AST didn't already exist...
ASTContext *ast = &decl->getASTContext();
if (ast)
return CompilerType (ast, ast->getObjCInterfaceType(decl));
return CompilerType();
}
#pragma mark Structure, Unions, Classes
CompilerType
ClangASTContext::CreateRecordType (DeclContext *decl_ctx,
AccessType access_type,
const char *name,
int kind,
LanguageType language,
ClangASTMetadata *metadata)
{
ASTContext *ast = getASTContext();
assert (ast != nullptr);
if (decl_ctx == nullptr)
decl_ctx = ast->getTranslationUnitDecl();
if (language == eLanguageTypeObjC || language == eLanguageTypeObjC_plus_plus)
{
bool isForwardDecl = true;
bool isInternal = false;
return CreateObjCClass (name, decl_ctx, isForwardDecl, isInternal, metadata);
}
// NOTE: Eventually CXXRecordDecl will be merged back into RecordDecl and
// we will need to update this code. I was told to currently always use
// the CXXRecordDecl class since we often don't know from debug information
// if something is struct or a class, so we default to always use the more
// complete definition just in case.
bool is_anonymous = (!name) || (!name[0]);
CXXRecordDecl *decl = CXXRecordDecl::Create (*ast,
(TagDecl::TagKind)kind,
decl_ctx,
SourceLocation(),
SourceLocation(),
is_anonymous ? nullptr : &ast->Idents.get(name));
if (is_anonymous)
decl->setAnonymousStructOrUnion(true);
if (decl)
{
if (metadata)
SetMetadata(ast, decl, *metadata);
if (access_type != eAccessNone)
decl->setAccess (ConvertAccessTypeToAccessSpecifier (access_type));
if (decl_ctx)
decl_ctx->addDecl (decl);
return CompilerType(ast, ast->getTagDeclType(decl));
}
return CompilerType();
}
static TemplateParameterList *
CreateTemplateParameterList (ASTContext *ast,
const ClangASTContext::TemplateParameterInfos &template_param_infos,
llvm::SmallVector<NamedDecl *, 8> &template_param_decls)
{
const bool parameter_pack = false;
const bool is_typename = false;
const unsigned depth = 0;
const size_t num_template_params = template_param_infos.GetSize();
for (size_t i=0; i<num_template_params; ++i)
{
const char *name = template_param_infos.names[i];
IdentifierInfo *identifier_info = nullptr;
if (name && name[0])
identifier_info = &ast->Idents.get(name);
if (template_param_infos.args[i].getKind() == TemplateArgument::Integral)
{
template_param_decls.push_back (NonTypeTemplateParmDecl::Create (*ast,
ast->getTranslationUnitDecl(), // Is this the right decl context?, SourceLocation StartLoc,
SourceLocation(),
SourceLocation(),
depth,
i,
identifier_info,
template_param_infos.args[i].getIntegralType(),
parameter_pack,
nullptr));
}
else
{
template_param_decls.push_back (TemplateTypeParmDecl::Create (*ast,
ast->getTranslationUnitDecl(), // Is this the right decl context?
SourceLocation(),
SourceLocation(),
depth,
i,
identifier_info,
is_typename,
parameter_pack));
}
}
TemplateParameterList *template_param_list = TemplateParameterList::Create (*ast,
SourceLocation(),
SourceLocation(),
&template_param_decls.front(),
template_param_decls.size(),
SourceLocation());
return template_param_list;
}
clang::FunctionTemplateDecl *
ClangASTContext::CreateFunctionTemplateDecl (clang::DeclContext *decl_ctx,
clang::FunctionDecl *func_decl,
const char *name,
const TemplateParameterInfos &template_param_infos)
{
// /// \brief Create a function template node.
ASTContext *ast = getASTContext();
llvm::SmallVector<NamedDecl *, 8> template_param_decls;
TemplateParameterList *template_param_list = CreateTemplateParameterList (ast,
template_param_infos,
template_param_decls);
FunctionTemplateDecl *func_tmpl_decl = FunctionTemplateDecl::Create (*ast,
decl_ctx,
func_decl->getLocation(),
func_decl->getDeclName(),
template_param_list,
func_decl);
for (size_t i=0, template_param_decl_count = template_param_decls.size();
i < template_param_decl_count;
++i)
{
// TODO: verify which decl context we should put template_param_decls into..
template_param_decls[i]->setDeclContext (func_decl);
}
return func_tmpl_decl;
}
void
ClangASTContext::CreateFunctionTemplateSpecializationInfo (FunctionDecl *func_decl,
clang::FunctionTemplateDecl *func_tmpl_decl,
const TemplateParameterInfos &infos)
{
TemplateArgumentList template_args (TemplateArgumentList::OnStack,
infos.args.data(),
infos.args.size());
func_decl->setFunctionTemplateSpecialization (func_tmpl_decl,
&template_args,
nullptr);
}
ClassTemplateDecl *
ClangASTContext::CreateClassTemplateDecl (DeclContext *decl_ctx,
lldb::AccessType access_type,
const char *class_name,
int kind,
const TemplateParameterInfos &template_param_infos)
{
ASTContext *ast = getASTContext();
ClassTemplateDecl *class_template_decl = nullptr;
if (decl_ctx == nullptr)
decl_ctx = ast->getTranslationUnitDecl();
IdentifierInfo &identifier_info = ast->Idents.get(class_name);
DeclarationName decl_name (&identifier_info);
clang::DeclContext::lookup_result result = decl_ctx->lookup(decl_name);
for (NamedDecl *decl : result)
{
class_template_decl = dyn_cast<clang::ClassTemplateDecl>(decl);
if (class_template_decl)
return class_template_decl;
}
llvm::SmallVector<NamedDecl *, 8> template_param_decls;
TemplateParameterList *template_param_list = CreateTemplateParameterList (ast,
template_param_infos,
template_param_decls);
CXXRecordDecl *template_cxx_decl = CXXRecordDecl::Create (*ast,
(TagDecl::TagKind)kind,
decl_ctx, // What decl context do we use here? TU? The actual decl context?
SourceLocation(),
SourceLocation(),
&identifier_info);
for (size_t i=0, template_param_decl_count = template_param_decls.size();
i < template_param_decl_count;
++i)
{
template_param_decls[i]->setDeclContext (template_cxx_decl);
}
// With templated classes, we say that a class is templated with
// specializations, but that the bare class has no functions.
//template_cxx_decl->startDefinition();
//template_cxx_decl->completeDefinition();
class_template_decl = ClassTemplateDecl::Create (*ast,
decl_ctx, // What decl context do we use here? TU? The actual decl context?
SourceLocation(),
decl_name,
template_param_list,
template_cxx_decl,
nullptr);
if (class_template_decl)
{
if (access_type != eAccessNone)
class_template_decl->setAccess (ConvertAccessTypeToAccessSpecifier (access_type));
//if (TagDecl *ctx_tag_decl = dyn_cast<TagDecl>(decl_ctx))
// CompleteTagDeclarationDefinition(GetTypeForDecl(ctx_tag_decl));
decl_ctx->addDecl (class_template_decl);
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(class_template_decl);
#endif
}
return class_template_decl;
}
ClassTemplateSpecializationDecl *
ClangASTContext::CreateClassTemplateSpecializationDecl (DeclContext *decl_ctx,
ClassTemplateDecl *class_template_decl,
int kind,
const TemplateParameterInfos &template_param_infos)
{
ASTContext *ast = getASTContext();
ClassTemplateSpecializationDecl *class_template_specialization_decl = ClassTemplateSpecializationDecl::Create (*ast,
(TagDecl::TagKind)kind,
decl_ctx,
SourceLocation(),
SourceLocation(),
class_template_decl,
&template_param_infos.args.front(),
template_param_infos.args.size(),
nullptr);
class_template_specialization_decl->setSpecializationKind(TSK_ExplicitSpecialization);
return class_template_specialization_decl;
}
CompilerType
ClangASTContext::CreateClassTemplateSpecializationType (ClassTemplateSpecializationDecl *class_template_specialization_decl)
{
if (class_template_specialization_decl)
{
ASTContext *ast = getASTContext();
if (ast)
return CompilerType(ast, ast->getTagDeclType(class_template_specialization_decl));
}
return CompilerType();
}
static inline bool
check_op_param (uint32_t op_kind, bool unary, bool binary, uint32_t num_params)
{
// Special-case call since it can take any number of operands
if(op_kind == OO_Call)
return true;
// The parameter count doesn't include "this"
if (num_params == 0)
return unary;
if (num_params == 1)
return binary;
else
return false;
}
bool
ClangASTContext::CheckOverloadedOperatorKindParameterCount (uint32_t op_kind, uint32_t num_params)
{
switch (op_kind)
{
default:
break;
// C++ standard allows any number of arguments to new/delete
case OO_New:
case OO_Array_New:
case OO_Delete:
case OO_Array_Delete:
return true;
}
#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) case OO_##Name: return check_op_param (op_kind, Unary, Binary, num_params);
switch (op_kind)
{
#include "clang/Basic/OperatorKinds.def"
default: break;
}
return false;
}
clang::AccessSpecifier
ClangASTContext::UnifyAccessSpecifiers (clang::AccessSpecifier lhs, clang::AccessSpecifier rhs)
{
clang::AccessSpecifier ret = lhs;
// Make the access equal to the stricter of the field and the nested field's access
switch (ret)
{
case clang::AS_none:
break;
case clang::AS_private:
break;
case clang::AS_protected:
if (rhs == AS_private)
ret = AS_private;
break;
case clang::AS_public:
ret = rhs;
break;
}
return ret;
}
bool
ClangASTContext::FieldIsBitfield (FieldDecl* field, uint32_t& bitfield_bit_size)
{
return FieldIsBitfield(getASTContext(), field, bitfield_bit_size);
}
bool
ClangASTContext::FieldIsBitfield
(
ASTContext *ast,
FieldDecl* field,
uint32_t& bitfield_bit_size
)
{
if (ast == nullptr || field == nullptr)
return false;
if (field->isBitField())
{
Expr* bit_width_expr = field->getBitWidth();
if (bit_width_expr)
{
llvm::APSInt bit_width_apsint;
if (bit_width_expr->isIntegerConstantExpr(bit_width_apsint, *ast))
{
bitfield_bit_size = bit_width_apsint.getLimitedValue(UINT32_MAX);
return true;
}
}
}
return false;
}
bool
ClangASTContext::RecordHasFields (const RecordDecl *record_decl)
{
if (record_decl == nullptr)
return false;
if (!record_decl->field_empty())
return true;
// No fields, lets check this is a CXX record and check the base classes
const CXXRecordDecl *cxx_record_decl = dyn_cast<CXXRecordDecl>(record_decl);
if (cxx_record_decl)
{
CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
const CXXRecordDecl *base_class_decl = cast<CXXRecordDecl>(base_class->getType()->getAs<RecordType>()->getDecl());
if (RecordHasFields(base_class_decl))
return true;
}
}
return false;
}
#pragma mark Objective C Classes
CompilerType
ClangASTContext::CreateObjCClass
(
const char *name,
DeclContext *decl_ctx,
bool isForwardDecl,
bool isInternal,
ClangASTMetadata *metadata
)
{
ASTContext *ast = getASTContext();
assert (ast != nullptr);
assert (name && name[0]);
if (decl_ctx == nullptr)
decl_ctx = ast->getTranslationUnitDecl();
ObjCInterfaceDecl *decl = ObjCInterfaceDecl::Create (*ast,
decl_ctx,
SourceLocation(),
&ast->Idents.get(name),
nullptr,
nullptr,
SourceLocation(),
/*isForwardDecl,*/
isInternal);
if (decl && metadata)
SetMetadata(ast, decl, *metadata);
return CompilerType (ast, ast->getObjCInterfaceType(decl));
}
static inline bool
BaseSpecifierIsEmpty (const CXXBaseSpecifier *b)
{
return ClangASTContext::RecordHasFields(b->getType()->getAsCXXRecordDecl()) == false;
}
uint32_t
ClangASTContext::GetNumBaseClasses (const CXXRecordDecl *cxx_record_decl, bool omit_empty_base_classes)
{
uint32_t num_bases = 0;
if (cxx_record_decl)
{
if (omit_empty_base_classes)
{
CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
// Skip empty base classes
if (omit_empty_base_classes)
{
if (BaseSpecifierIsEmpty (base_class))
continue;
}
++num_bases;
}
}
else
num_bases = cxx_record_decl->getNumBases();
}
return num_bases;
}
#pragma mark Namespace Declarations
NamespaceDecl *
ClangASTContext::GetUniqueNamespaceDeclaration (const char *name, DeclContext *decl_ctx)
{
NamespaceDecl *namespace_decl = nullptr;
ASTContext *ast = getASTContext();
TranslationUnitDecl *translation_unit_decl = ast->getTranslationUnitDecl ();
if (decl_ctx == nullptr)
decl_ctx = translation_unit_decl;
if (name)
{
IdentifierInfo &identifier_info = ast->Idents.get(name);
DeclarationName decl_name (&identifier_info);
clang::DeclContext::lookup_result result = decl_ctx->lookup(decl_name);
for (NamedDecl *decl : result)
{
namespace_decl = dyn_cast<clang::NamespaceDecl>(decl);
if (namespace_decl)
return namespace_decl;
}
namespace_decl = NamespaceDecl::Create(*ast,
decl_ctx,
false,
SourceLocation(),
SourceLocation(),
&identifier_info,
nullptr);
decl_ctx->addDecl (namespace_decl);
}
else
{
if (decl_ctx == translation_unit_decl)
{
namespace_decl = translation_unit_decl->getAnonymousNamespace();
if (namespace_decl)
return namespace_decl;
namespace_decl = NamespaceDecl::Create(*ast,
decl_ctx,
false,
SourceLocation(),
SourceLocation(),
nullptr,
nullptr);
translation_unit_decl->setAnonymousNamespace (namespace_decl);
translation_unit_decl->addDecl (namespace_decl);
assert (namespace_decl == translation_unit_decl->getAnonymousNamespace());
}
else
{
NamespaceDecl *parent_namespace_decl = cast<NamespaceDecl>(decl_ctx);
if (parent_namespace_decl)
{
namespace_decl = parent_namespace_decl->getAnonymousNamespace();
if (namespace_decl)
return namespace_decl;
namespace_decl = NamespaceDecl::Create(*ast,
decl_ctx,
false,
SourceLocation(),
SourceLocation(),
nullptr,
nullptr);
parent_namespace_decl->setAnonymousNamespace (namespace_decl);
parent_namespace_decl->addDecl (namespace_decl);
assert (namespace_decl == parent_namespace_decl->getAnonymousNamespace());
}
else
{
// BAD!!!
}
}
if (namespace_decl)
{
// If we make it here, we are creating the anonymous namespace decl
// for the first time, so we need to do the using directive magic
// like SEMA does
UsingDirectiveDecl* using_directive_decl = UsingDirectiveDecl::Create (*ast,
decl_ctx,
SourceLocation(),
SourceLocation(),
NestedNameSpecifierLoc(),
SourceLocation(),
namespace_decl,
decl_ctx);
using_directive_decl->setImplicit();
decl_ctx->addDecl(using_directive_decl);
}
}
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(namespace_decl);
#endif
return namespace_decl;
}
#pragma mark Function Types
FunctionDecl *
ClangASTContext::CreateFunctionDeclaration (DeclContext *decl_ctx,
const char *name,
const CompilerType &function_clang_type,
int storage,
bool is_inline)
{
FunctionDecl *func_decl = nullptr;
ASTContext *ast = getASTContext();
if (decl_ctx == nullptr)
decl_ctx = ast->getTranslationUnitDecl();
const bool hasWrittenPrototype = true;
const bool isConstexprSpecified = false;
if (name && name[0])
{
func_decl = FunctionDecl::Create (*ast,
decl_ctx,
SourceLocation(),
SourceLocation(),
DeclarationName (&ast->Idents.get(name)),
GetQualType(function_clang_type),
nullptr,
(clang::StorageClass)storage,
is_inline,
hasWrittenPrototype,
isConstexprSpecified);
}
else
{
func_decl = FunctionDecl::Create (*ast,
decl_ctx,
SourceLocation(),
SourceLocation(),
DeclarationName (),
GetQualType(function_clang_type),
nullptr,
(clang::StorageClass)storage,
is_inline,
hasWrittenPrototype,
isConstexprSpecified);
}
if (func_decl)
decl_ctx->addDecl (func_decl);
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(func_decl);
#endif
return func_decl;
}
CompilerType
ClangASTContext::CreateFunctionType (ASTContext *ast,
const CompilerType& result_type,
const CompilerType *args,
unsigned num_args,
bool is_variadic,
unsigned type_quals)
{
assert (ast != nullptr);
std::vector<QualType> qual_type_args;
for (unsigned i=0; i<num_args; ++i)
qual_type_args.push_back (GetQualType(args[i]));
// TODO: Detect calling convention in DWARF?
FunctionProtoType::ExtProtoInfo proto_info;
proto_info.Variadic = is_variadic;
proto_info.ExceptionSpec = EST_None;
proto_info.TypeQuals = type_quals;
proto_info.RefQualifier = RQ_None;
return CompilerType (ast, ast->getFunctionType (GetQualType(result_type),
qual_type_args,
proto_info));
}
ParmVarDecl *
ClangASTContext::CreateParameterDeclaration (const char *name, const CompilerType &param_type, int storage)
{
ASTContext *ast = getASTContext();
assert (ast != nullptr);
return ParmVarDecl::Create(*ast,
ast->getTranslationUnitDecl(),
SourceLocation(),
SourceLocation(),
name && name[0] ? &ast->Idents.get(name) : nullptr,
GetQualType(param_type),
nullptr,
(clang::StorageClass)storage,
nullptr);
}
void
ClangASTContext::SetFunctionParameters (FunctionDecl *function_decl, ParmVarDecl **params, unsigned num_params)
{
if (function_decl)
function_decl->setParams (ArrayRef<ParmVarDecl*>(params, num_params));
}
#pragma mark Array Types
CompilerType
ClangASTContext::CreateArrayType (const CompilerType &element_type,
size_t element_count,
bool is_vector)
{
if (element_type.IsValid())
{
ASTContext *ast = getASTContext();
assert (ast != nullptr);
if (is_vector)
{
return CompilerType (ast, ast->getExtVectorType(GetQualType(element_type), element_count));
}
else
{
llvm::APInt ap_element_count (64, element_count);
if (element_count == 0)
{
return CompilerType (ast, ast->getIncompleteArrayType (GetQualType(element_type),
ArrayType::Normal,
0));
}
else
{
return CompilerType (ast, ast->getConstantArrayType (GetQualType(element_type),
ap_element_count,
ArrayType::Normal,
0));
}
}
}
return CompilerType();
}
CompilerType
ClangASTContext::GetOrCreateStructForIdentifier (const ConstString &type_name,
const std::initializer_list< std::pair < const char *, CompilerType > >& type_fields,
bool packed)
{
CompilerType type;
if ((type = GetTypeForIdentifier<clang::CXXRecordDecl>(type_name)).IsValid())
return type;
type = CreateRecordType(nullptr, lldb::eAccessPublic, type_name.GetCString(), clang::TTK_Struct, lldb::eLanguageTypeC);
StartTagDeclarationDefinition(type);
for (const auto& field : type_fields)
AddFieldToRecordType(type, field.first, field.second, lldb::eAccessPublic, 0);
if (packed)
SetIsPacked(type);
CompleteTagDeclarationDefinition(type);
return type;
}
#pragma mark Enumeration Types
CompilerType
ClangASTContext::CreateEnumerationType
(
const char *name,
DeclContext *decl_ctx,
const Declaration &decl,
const CompilerType &integer_clang_type
)
{
// TODO: Do something intelligent with the Declaration object passed in
// like maybe filling in the SourceLocation with it...
ASTContext *ast = getASTContext();
// TODO: ask about these...
// const bool IsScoped = false;
// const bool IsFixed = false;
EnumDecl *enum_decl = EnumDecl::Create (*ast,
decl_ctx,
SourceLocation(),
SourceLocation(),
name && name[0] ? &ast->Idents.get(name) : nullptr,
nullptr,
false, // IsScoped
false, // IsScopedUsingClassTag
false); // IsFixed
if (enum_decl)
{
// TODO: check if we should be setting the promotion type too?
enum_decl->setIntegerType(GetQualType(integer_clang_type));
enum_decl->setAccess(AS_public); // TODO respect what's in the debug info
return CompilerType (ast, ast->getTagDeclType(enum_decl));
}
return CompilerType();
}
// Disable this for now since I can't seem to get a nicely formatted float
// out of the APFloat class without just getting the float, double or quad
// and then using a formatted print on it which defeats the purpose. We ideally
// would like to get perfect string values for any kind of float semantics
// so we can support remote targets. The code below also requires a patch to
// llvm::APInt.
//bool
//ClangASTContext::ConvertFloatValueToString (ASTContext *ast, clang_type_t clang_type, const uint8_t* bytes, size_t byte_size, int apint_byte_order, std::string &float_str)
//{
// uint32_t count = 0;
// bool is_complex = false;
// if (ClangASTContext::IsFloatingPointType (clang_type, count, is_complex))
// {
// unsigned num_bytes_per_float = byte_size / count;
// unsigned num_bits_per_float = num_bytes_per_float * 8;
//
// float_str.clear();
// uint32_t i;
// for (i=0; i<count; i++)
// {
// APInt ap_int(num_bits_per_float, bytes + i * num_bytes_per_float, (APInt::ByteOrder)apint_byte_order);
// bool is_ieee = false;
// APFloat ap_float(ap_int, is_ieee);
// char s[1024];
// unsigned int hex_digits = 0;
// bool upper_case = false;
//
// if (ap_float.convertToHexString(s, hex_digits, upper_case, APFloat::rmNearestTiesToEven) > 0)
// {
// if (i > 0)
// float_str.append(", ");
// float_str.append(s);
// if (i == 1 && is_complex)
// float_str.append(1, 'i');
// }
// }
// return !float_str.empty();
// }
// return false;
//}
CompilerType
ClangASTContext::GetIntTypeFromBitSize (clang::ASTContext *ast,
size_t bit_size, bool is_signed)
{
if (ast)
{
if (is_signed)
{
if (bit_size == ast->getTypeSize(ast->SignedCharTy))
return CompilerType(ast, ast->SignedCharTy);
if (bit_size == ast->getTypeSize(ast->ShortTy))
return CompilerType(ast, ast->ShortTy);
if (bit_size == ast->getTypeSize(ast->IntTy))
return CompilerType(ast, ast->IntTy);
if (bit_size == ast->getTypeSize(ast->LongTy))
return CompilerType(ast, ast->LongTy);
if (bit_size == ast->getTypeSize(ast->LongLongTy))
return CompilerType(ast, ast->LongLongTy);
if (bit_size == ast->getTypeSize(ast->Int128Ty))
return CompilerType(ast, ast->Int128Ty);
}
else
{
if (bit_size == ast->getTypeSize(ast->UnsignedCharTy))
return CompilerType(ast, ast->UnsignedCharTy);
if (bit_size == ast->getTypeSize(ast->UnsignedShortTy))
return CompilerType(ast, ast->UnsignedShortTy);
if (bit_size == ast->getTypeSize(ast->UnsignedIntTy))
return CompilerType(ast, ast->UnsignedIntTy);
if (bit_size == ast->getTypeSize(ast->UnsignedLongTy))
return CompilerType(ast, ast->UnsignedLongTy);
if (bit_size == ast->getTypeSize(ast->UnsignedLongLongTy))
return CompilerType(ast, ast->UnsignedLongLongTy);
if (bit_size == ast->getTypeSize(ast->UnsignedInt128Ty))
return CompilerType(ast, ast->UnsignedInt128Ty);
}
}
return CompilerType();
}
CompilerType
ClangASTContext::GetPointerSizedIntType (clang::ASTContext *ast, bool is_signed)
{
if (ast)
return GetIntTypeFromBitSize(ast, ast->getTypeSize(ast->VoidPtrTy), is_signed);
return CompilerType();
}
CompilerType
ClangASTContext::GetFloatTypeFromBitSize (clang::ASTContext *ast,
size_t bit_size)
{
if (ast)
{
if (bit_size == ast->getTypeSize(ast->FloatTy))
return CompilerType(ast, ast->FloatTy);
else if (bit_size == ast->getTypeSize(ast->DoubleTy))
return CompilerType(ast, ast->DoubleTy);
else if (bit_size == ast->getTypeSize(ast->LongDoubleTy))
return CompilerType(ast, ast->LongDoubleTy);
else if (bit_size == ast->getTypeSize(ast->HalfTy))
return CompilerType(ast, ast->HalfTy);
}
return CompilerType();
}
bool
ClangASTContext::GetCompleteDecl (clang::ASTContext *ast,
clang::Decl *decl)
{
if (!decl)
return false;
ExternalASTSource *ast_source = ast->getExternalSource();
if (!ast_source)
return false;
if (clang::TagDecl *tag_decl = llvm::dyn_cast<clang::TagDecl>(decl))
{
if (tag_decl->isCompleteDefinition())
return true;
if (!tag_decl->hasExternalLexicalStorage())
return false;
ast_source->CompleteType(tag_decl);
return !tag_decl->getTypeForDecl()->isIncompleteType();
}
else if (clang::ObjCInterfaceDecl *objc_interface_decl = llvm::dyn_cast<clang::ObjCInterfaceDecl>(decl))
{
if (objc_interface_decl->getDefinition())
return true;
if (!objc_interface_decl->hasExternalLexicalStorage())
return false;
ast_source->CompleteType(objc_interface_decl);
return !objc_interface_decl->getTypeForDecl()->isIncompleteType();
}
else
{
return false;
}
}
void
ClangASTContext::SetMetadataAsUserID (const void *object,
user_id_t user_id)
{
ClangASTMetadata meta_data;
meta_data.SetUserID (user_id);
SetMetadata (object, meta_data);
}
void
ClangASTContext::SetMetadata (clang::ASTContext *ast,
const void *object,
ClangASTMetadata &metadata)
{
ClangExternalASTSourceCommon *external_source =
ClangExternalASTSourceCommon::Lookup(ast->getExternalSource());
if (external_source)
external_source->SetMetadata(object, metadata);
}
ClangASTMetadata *
ClangASTContext::GetMetadata (clang::ASTContext *ast,
const void *object)
{
ClangExternalASTSourceCommon *external_source =
ClangExternalASTSourceCommon::Lookup(ast->getExternalSource());
if (external_source && external_source->HasMetadata(object))
return external_source->GetMetadata(object);
else
return nullptr;
}
clang::DeclContext *
ClangASTContext::GetAsDeclContext (clang::CXXMethodDecl *cxx_method_decl)
{
return llvm::dyn_cast<clang::DeclContext>(cxx_method_decl);
}
clang::DeclContext *
ClangASTContext::GetAsDeclContext (clang::ObjCMethodDecl *objc_method_decl)
{
return llvm::dyn_cast<clang::DeclContext>(objc_method_decl);
}
bool
ClangASTContext::GetClassMethodInfoForDeclContext (clang::DeclContext *decl_ctx,
lldb::LanguageType &language,
bool &is_instance_method,
ConstString &language_object_name)
{
language_object_name.Clear();
language = eLanguageTypeUnknown;
is_instance_method = false;
if (decl_ctx)
{
if (clang::CXXMethodDecl *method_decl = llvm::dyn_cast<clang::CXXMethodDecl>(decl_ctx))
{
if (method_decl->isStatic())
{
is_instance_method = false;
}
else
{
language_object_name.SetCString("this");
is_instance_method = true;
}
language = eLanguageTypeC_plus_plus;
return true;
}
else if (clang::ObjCMethodDecl *method_decl = llvm::dyn_cast<clang::ObjCMethodDecl>(decl_ctx))
{
// Both static and instance methods have a "self" object in objective C
language_object_name.SetCString("self");
if (method_decl->isInstanceMethod())
{
is_instance_method = true;
}
else
{
is_instance_method = false;
}
language = eLanguageTypeObjC;
return true;
}
else if (clang::FunctionDecl *function_decl = llvm::dyn_cast<clang::FunctionDecl>(decl_ctx))
{
ClangASTMetadata *metadata = GetMetadata (&decl_ctx->getParentASTContext(), function_decl);
if (metadata && metadata->HasObjectPtr())
{
language_object_name.SetCString (metadata->GetObjectPtrName());
language = eLanguageTypeObjC;
is_instance_method = true;
}
return true;
}
}
return false;
}
bool
ClangASTContext::SetTagTypeKind (clang::QualType tag_qual_type, int kind) const
{
const clang::Type *clang_type = tag_qual_type.getTypePtr();
if (clang_type)
{
const clang::TagType *tag_type = llvm::dyn_cast<clang::TagType>(clang_type);
if (tag_type)
{
clang::TagDecl *tag_decl = llvm::dyn_cast<clang::TagDecl>(tag_type->getDecl());
if (tag_decl)
{
tag_decl->setTagKind ((clang::TagDecl::TagKind)kind);
return true;
}
}
}
return false;
}
bool
ClangASTContext::SetDefaultAccessForRecordFields (clang::RecordDecl* record_decl,
int default_accessibility,
int *assigned_accessibilities,
size_t num_assigned_accessibilities)
{
if (record_decl)
{
uint32_t field_idx;
clang::RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end(), field_idx = 0;
field != field_end;
++field, ++field_idx)
{
// If no accessibility was assigned, assign the correct one
if (field_idx < num_assigned_accessibilities && assigned_accessibilities[field_idx] == clang::AS_none)
field->setAccess ((clang::AccessSpecifier)default_accessibility);
}
return true;
}
return false;
}
clang::DeclContext *
ClangASTContext::GetDeclContextForType (clang::QualType type)
{
if (type.isNull())
return nullptr;
clang::QualType qual_type = type.getCanonicalType();
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::UnaryTransform: break;
case clang::Type::FunctionNoProto: break;
case clang::Type::FunctionProto: break;
case clang::Type::IncompleteArray: break;
case clang::Type::VariableArray: break;
case clang::Type::ConstantArray: break;
case clang::Type::DependentSizedArray: break;
case clang::Type::ExtVector: break;
case clang::Type::DependentSizedExtVector: break;
case clang::Type::Vector: break;
case clang::Type::Builtin: break;
case clang::Type::BlockPointer: break;
case clang::Type::Pointer: break;
case clang::Type::LValueReference: break;
case clang::Type::RValueReference: break;
case clang::Type::MemberPointer: break;
case clang::Type::Complex: break;
case clang::Type::ObjCObject: break;
case clang::Type::ObjCInterface: return llvm::cast<clang::ObjCObjectType>(qual_type.getTypePtr())->getInterface();
case clang::Type::ObjCObjectPointer: return GetDeclContextForType (llvm::cast<clang::ObjCObjectPointerType>(qual_type.getTypePtr())->getPointeeType());
case clang::Type::Record: return llvm::cast<clang::RecordType>(qual_type)->getDecl();
case clang::Type::Enum: return llvm::cast<clang::EnumType>(qual_type)->getDecl();
case clang::Type::Typedef: return GetDeclContextForType (llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType());
case clang::Type::Elaborated: return GetDeclContextForType (llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType());
case clang::Type::Paren: return GetDeclContextForType (llvm::cast<clang::ParenType>(qual_type)->desugar());
case clang::Type::TypeOfExpr: break;
case clang::Type::TypeOf: break;
case clang::Type::Decltype: break;
//case clang::Type::QualifiedName: break;
case clang::Type::TemplateSpecialization: break;
case clang::Type::DependentTemplateSpecialization: break;
case clang::Type::TemplateTypeParm: break;
case clang::Type::SubstTemplateTypeParm: break;
case clang::Type::SubstTemplateTypeParmPack:break;
case clang::Type::PackExpansion: break;
case clang::Type::UnresolvedUsing: break;
case clang::Type::Attributed: break;
case clang::Type::Auto: break;
case clang::Type::InjectedClassName: break;
case clang::Type::DependentName: break;
case clang::Type::Atomic: break;
case clang::Type::Adjusted: break;
// pointer type decayed from an array or function type.
case clang::Type::Decayed: break;
}
// No DeclContext in this type...
return nullptr;
}
static bool
GetCompleteQualType (clang::ASTContext *ast, clang::QualType qual_type, bool allow_completion = true)
{
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::ConstantArray:
case clang::Type::IncompleteArray:
case clang::Type::VariableArray:
{
const clang::ArrayType *array_type = llvm::dyn_cast<clang::ArrayType>(qual_type.getTypePtr());
if (array_type)
return GetCompleteQualType (ast, array_type->getElementType(), allow_completion);
}
break;
case clang::Type::Record:
case clang::Type::Enum:
{
const clang::TagType *tag_type = llvm::dyn_cast<clang::TagType>(qual_type.getTypePtr());
if (tag_type)
{
clang::TagDecl *tag_decl = tag_type->getDecl();
if (tag_decl)
{
if (tag_decl->isCompleteDefinition())
return true;
if (!allow_completion)
return false;
if (tag_decl->hasExternalLexicalStorage())
{
if (ast)
{
clang::ExternalASTSource *external_ast_source = ast->getExternalSource();
if (external_ast_source)
{
external_ast_source->CompleteType(tag_decl);
return !tag_type->isIncompleteType();
}
}
}
return false;
}
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
{
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type);
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
// We currently can't complete objective C types through the newly added ASTContext
// because it only supports TagDecl objects right now...
if (class_interface_decl)
{
if (class_interface_decl->getDefinition())
return true;
if (!allow_completion)
return false;
if (class_interface_decl->hasExternalLexicalStorage())
{
if (ast)
{
clang::ExternalASTSource *external_ast_source = ast->getExternalSource();
if (external_ast_source)
{
external_ast_source->CompleteType (class_interface_decl);
return !objc_class_type->isIncompleteType();
}
}
}
return false;
}
}
}
break;
case clang::Type::Typedef:
return GetCompleteQualType (ast, llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType(), allow_completion);
case clang::Type::Elaborated:
return GetCompleteQualType (ast, llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType(), allow_completion);
case clang::Type::Paren:
return GetCompleteQualType (ast, llvm::cast<clang::ParenType>(qual_type)->desugar(), allow_completion);
default:
break;
}
return true;
}
static clang::ObjCIvarDecl::AccessControl
ConvertAccessTypeToObjCIvarAccessControl (AccessType access)
{
switch (access)
{
case eAccessNone: return clang::ObjCIvarDecl::None;
case eAccessPublic: return clang::ObjCIvarDecl::Public;
case eAccessPrivate: return clang::ObjCIvarDecl::Private;
case eAccessProtected: return clang::ObjCIvarDecl::Protected;
case eAccessPackage: return clang::ObjCIvarDecl::Package;
}
return clang::ObjCIvarDecl::None;
}
//----------------------------------------------------------------------
// Tests
//----------------------------------------------------------------------
bool
ClangASTContext::IsAggregateType (void* type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::IncompleteArray:
case clang::Type::VariableArray:
case clang::Type::ConstantArray:
case clang::Type::ExtVector:
case clang::Type::Vector:
case clang::Type::Record:
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
return true;
case clang::Type::Elaborated:
return IsAggregateType(llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr());
case clang::Type::Typedef:
return IsAggregateType(llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr());
case clang::Type::Paren:
return IsAggregateType(llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr());
default:
break;
}
// The clang type does have a value
return false;
}
bool
ClangASTContext::IsArrayType (void* type,
CompilerType *element_type_ptr,
uint64_t *size,
bool *is_incomplete)
{
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
default:
break;
case clang::Type::ConstantArray:
if (element_type_ptr)
element_type_ptr->SetClangType (getASTContext(), llvm::cast<clang::ConstantArrayType>(qual_type)->getElementType());
if (size)
*size = llvm::cast<clang::ConstantArrayType>(qual_type)->getSize().getLimitedValue(ULLONG_MAX);
return true;
case clang::Type::IncompleteArray:
if (element_type_ptr)
element_type_ptr->SetClangType (getASTContext(), llvm::cast<clang::IncompleteArrayType>(qual_type)->getElementType());
if (size)
*size = 0;
if (is_incomplete)
*is_incomplete = true;
return true;
case clang::Type::VariableArray:
if (element_type_ptr)
element_type_ptr->SetClangType (getASTContext(), llvm::cast<clang::VariableArrayType>(qual_type)->getElementType());
if (size)
*size = 0;
return true;
case clang::Type::DependentSizedArray:
if (element_type_ptr)
element_type_ptr->SetClangType (getASTContext(), llvm::cast<clang::DependentSizedArrayType>(qual_type)->getElementType());
if (size)
*size = 0;
return true;
case clang::Type::Typedef:
return IsArrayType(llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(),
element_type_ptr,
size,
is_incomplete);
case clang::Type::Elaborated:
return IsArrayType(llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(),
element_type_ptr,
size,
is_incomplete);
case clang::Type::Paren:
return IsArrayType(llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr(),
element_type_ptr,
size,
is_incomplete);
}
if (element_type_ptr)
element_type_ptr->Clear();
if (size)
*size = 0;
if (is_incomplete)
*is_incomplete = false;
return 0;
}
bool
ClangASTContext::IsVectorType (void* type,
CompilerType *element_type,
uint64_t *size)
{
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Vector:
{
const clang::VectorType *vector_type = qual_type->getAs<clang::VectorType>();
if (vector_type)
{
if (size)
*size = vector_type->getNumElements();
if (element_type)
*element_type = CompilerType(getASTContext(), vector_type->getElementType());
}
return true;
}
break;
case clang::Type::ExtVector:
{
const clang::ExtVectorType *ext_vector_type = qual_type->getAs<clang::ExtVectorType>();
if (ext_vector_type)
{
if (size)
*size = ext_vector_type->getNumElements();
if (element_type)
*element_type = CompilerType(getASTContext(), ext_vector_type->getElementType());
}
return true;
}
default:
break;
}
return false;
}
bool
ClangASTContext::IsRuntimeGeneratedType (void* type)
{
clang::DeclContext* decl_ctx = ClangASTContext::GetASTContext(getASTContext())->GetDeclContextForType(GetQualType(type));
if (!decl_ctx)
return false;
if (!llvm::isa<clang::ObjCInterfaceDecl>(decl_ctx))
return false;
clang::ObjCInterfaceDecl *result_iface_decl = llvm::dyn_cast<clang::ObjCInterfaceDecl>(decl_ctx);
ClangASTMetadata* ast_metadata = ClangASTContext::GetMetadata(getASTContext(), result_iface_decl);
if (!ast_metadata)
return false;
return (ast_metadata->GetISAPtr() != 0);
}
bool
ClangASTContext::IsCharType (void* type)
{
return GetQualType(type).getUnqualifiedType()->isCharType();
}
bool
ClangASTContext::IsCompleteType (void* type)
{
const bool allow_completion = false;
return GetCompleteQualType (getASTContext(), GetQualType(type), allow_completion);
}
bool
ClangASTContext::IsConst(void* type)
{
return GetQualType(type).isConstQualified();
}
bool
ClangASTContext::IsCStringType (void* type, uint32_t &length)
{
CompilerType pointee_or_element_clang_type;
length = 0;
Flags type_flags (GetTypeInfo (type, &pointee_or_element_clang_type));
if (!pointee_or_element_clang_type.IsValid())
return false;
if (type_flags.AnySet (eTypeIsArray | eTypeIsPointer))
{
if (pointee_or_element_clang_type.IsCharType())
{
if (type_flags.Test (eTypeIsArray))
{
// We know the size of the array and it could be a C string
// since it is an array of characters
length = llvm::cast<clang::ConstantArrayType>(GetCanonicalQualType(type).getTypePtr())->getSize().getLimitedValue();
}
return true;
}
}
return false;
}
bool
ClangASTContext::IsFunctionType (void* type, bool *is_variadic_ptr)
{
if (type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
if (qual_type->isFunctionType())
{
if (is_variadic_ptr)
{
const clang::FunctionProtoType *function_proto_type = llvm::dyn_cast<clang::FunctionProtoType>(qual_type.getTypePtr());
if (function_proto_type)
*is_variadic_ptr = function_proto_type->isVariadic();
else
*is_variadic_ptr = false;
}
return true;
}
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
default:
break;
case clang::Type::Typedef:
return IsFunctionType(llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(), nullptr);
case clang::Type::Elaborated:
return IsFunctionType(llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(), nullptr);
case clang::Type::Paren:
return IsFunctionType(llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr(), nullptr);
case clang::Type::LValueReference:
case clang::Type::RValueReference:
{
const clang::ReferenceType *reference_type = llvm::cast<clang::ReferenceType>(qual_type.getTypePtr());
if (reference_type)
return IsFunctionType(reference_type->getPointeeType().getAsOpaquePtr(), nullptr);
}
break;
}
}
return false;
}
// Used to detect "Homogeneous Floating-point Aggregates"
uint32_t
ClangASTContext::IsHomogeneousAggregate (void* type, CompilerType* base_type_ptr)
{
if (!type)
return 0;
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteType (type))
{
const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
if (cxx_record_decl->getNumBases() ||
cxx_record_decl->isDynamicClass())
return 0;
}
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
if (record_type)
{
const clang::RecordDecl *record_decl = record_type->getDecl();
if (record_decl)
{
// We are looking for a structure that contains only floating point types
clang::RecordDecl::field_iterator field_pos, field_end = record_decl->field_end();
uint32_t num_fields = 0;
bool is_hva = false;
bool is_hfa = false;
clang::QualType base_qual_type;
for (field_pos = record_decl->field_begin(); field_pos != field_end; ++field_pos)
{
clang::QualType field_qual_type = field_pos->getType();
if (field_qual_type->isFloatingType())
{
if (field_qual_type->isComplexType())
return 0;
else
{
if (num_fields == 0)
base_qual_type = field_qual_type;
else
{
if (is_hva)
return 0;
is_hfa = true;
if (field_qual_type.getTypePtr() != base_qual_type.getTypePtr())
return 0;
}
}
}
else if (field_qual_type->isVectorType() || field_qual_type->isExtVectorType())
{
const clang::VectorType *array = field_qual_type.getTypePtr()->getAs<clang::VectorType>();
if (array && array->getNumElements() <= 4)
{
if (num_fields == 0)
base_qual_type = array->getElementType();
else
{
if (is_hfa)
return 0;
is_hva = true;
if (field_qual_type.getTypePtr() != base_qual_type.getTypePtr())
return 0;
}
}
else
return 0;
}
else
return 0;
++num_fields;
}
if (base_type_ptr)
*base_type_ptr = CompilerType (getASTContext(), base_qual_type);
return num_fields;
}
}
}
break;
case clang::Type::Typedef:
return IsHomogeneousAggregate(llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(), base_type_ptr);
case clang::Type::Elaborated:
return IsHomogeneousAggregate(llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(), base_type_ptr);
default:
break;
}
return 0;
}
size_t
ClangASTContext::GetNumberOfFunctionArguments (void* type)
{
if (type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::FunctionProtoType* func = llvm::dyn_cast<clang::FunctionProtoType>(qual_type.getTypePtr());
if (func)
return func->getNumParams();
}
return 0;
}
CompilerType
ClangASTContext::GetFunctionArgumentAtIndex (void* type, const size_t index)
{
if (type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::FunctionProtoType* func = llvm::dyn_cast<clang::FunctionProtoType>(qual_type.getTypePtr());
if (func)
{
if (index < func->getNumParams())
return CompilerType(getASTContext(), func->getParamType(index));
}
}
return CompilerType();
}
bool
ClangASTContext::IsFunctionPointerType (void* type)
{
if (type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
if (qual_type->isFunctionPointerType())
return true;
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
default:
break;
case clang::Type::Typedef:
return IsFunctionPointerType (llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr());
case clang::Type::Elaborated:
return IsFunctionPointerType (llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr());
case clang::Type::Paren:
return IsFunctionPointerType (llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr());
case clang::Type::LValueReference:
case clang::Type::RValueReference:
{
const clang::ReferenceType *reference_type = llvm::cast<clang::ReferenceType>(qual_type.getTypePtr());
if (reference_type)
return IsFunctionPointerType(reference_type->getPointeeType().getAsOpaquePtr());
}
break;
}
}
return false;
}
bool
ClangASTContext::IsIntegerType (void* type, bool &is_signed)
{
if (!type)
return false;
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::BuiltinType *builtin_type = llvm::dyn_cast<clang::BuiltinType>(qual_type->getCanonicalTypeInternal());
if (builtin_type)
{
if (builtin_type->isInteger())
{
is_signed = builtin_type->isSignedInteger();
return true;
}
}
return false;
}
bool
ClangASTContext::IsPointerType (void* type, CompilerType *pointee_type)
{
if (type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind())
{
default:
break;
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
return true;
}
return false;
case clang::Type::ObjCObjectPointer:
if (pointee_type)
pointee_type->SetClangType (getASTContext(), llvm::cast<clang::ObjCObjectPointerType>(qual_type)->getPointeeType());
return true;
case clang::Type::BlockPointer:
if (pointee_type)
pointee_type->SetClangType (getASTContext(), llvm::cast<clang::BlockPointerType>(qual_type)->getPointeeType());
return true;
case clang::Type::Pointer:
if (pointee_type)
pointee_type->SetClangType (getASTContext(), llvm::cast<clang::PointerType>(qual_type)->getPointeeType());
return true;
case clang::Type::MemberPointer:
if (pointee_type)
pointee_type->SetClangType (getASTContext(), llvm::cast<clang::MemberPointerType>(qual_type)->getPointeeType());
return true;
case clang::Type::Typedef:
return IsPointerType (llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(), pointee_type);
case clang::Type::Elaborated:
return IsPointerType (llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(), pointee_type);
case clang::Type::Paren:
return IsPointerType (llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr(), pointee_type);
default:
break;
}
}
if (pointee_type)
pointee_type->Clear();
return false;
}
bool
ClangASTContext::IsPointerOrReferenceType (void* type, CompilerType *pointee_type)
{
if (type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind())
{
default:
break;
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
return true;
}
return false;
case clang::Type::ObjCObjectPointer:
if (pointee_type)
pointee_type->SetClangType(getASTContext(), llvm::cast<clang::ObjCObjectPointerType>(qual_type)->getPointeeType());
return true;
case clang::Type::BlockPointer:
if (pointee_type)
pointee_type->SetClangType(getASTContext(), llvm::cast<clang::BlockPointerType>(qual_type)->getPointeeType());
return true;
case clang::Type::Pointer:
if (pointee_type)
pointee_type->SetClangType(getASTContext(), llvm::cast<clang::PointerType>(qual_type)->getPointeeType());
return true;
case clang::Type::MemberPointer:
if (pointee_type)
pointee_type->SetClangType(getASTContext(), llvm::cast<clang::MemberPointerType>(qual_type)->getPointeeType());
return true;
case clang::Type::LValueReference:
if (pointee_type)
pointee_type->SetClangType(getASTContext(), llvm::cast<clang::LValueReferenceType>(qual_type)->desugar());
return true;
case clang::Type::RValueReference:
if (pointee_type)
pointee_type->SetClangType(getASTContext(), llvm::cast<clang::RValueReferenceType>(qual_type)->desugar());
return true;
case clang::Type::Typedef:
return IsPointerOrReferenceType(llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(), pointee_type);
case clang::Type::Elaborated:
return IsPointerOrReferenceType(llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(), pointee_type);
case clang::Type::Paren:
return IsPointerOrReferenceType(llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr(), pointee_type);
default:
break;
}
}
if (pointee_type)
pointee_type->Clear();
return false;
}
bool
ClangASTContext::IsReferenceType (void* type, CompilerType *pointee_type, bool* is_rvalue)
{
if (type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::LValueReference:
if (pointee_type)
pointee_type->SetClangType(getASTContext(), llvm::cast<clang::LValueReferenceType>(qual_type)->desugar());
if (is_rvalue)
*is_rvalue = false;
return true;
case clang::Type::RValueReference:
if (pointee_type)
pointee_type->SetClangType(getASTContext(), llvm::cast<clang::RValueReferenceType>(qual_type)->desugar());
if (is_rvalue)
*is_rvalue = true;
return true;
case clang::Type::Typedef:
return IsReferenceType (llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(), pointee_type, is_rvalue);
case clang::Type::Elaborated:
return IsReferenceType (llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(), pointee_type, is_rvalue);
case clang::Type::Paren:
return IsReferenceType (llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr(), pointee_type, is_rvalue);
default:
break;
}
}
if (pointee_type)
pointee_type->Clear();
return false;
}
bool
ClangASTContext::IsFloatingPointType (void* type, uint32_t &count, bool &is_complex)
{
if (type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
if (const clang::BuiltinType *BT = llvm::dyn_cast<clang::BuiltinType>(qual_type->getCanonicalTypeInternal()))
{
clang::BuiltinType::Kind kind = BT->getKind();
if (kind >= clang::BuiltinType::Float && kind <= clang::BuiltinType::LongDouble)
{
count = 1;
is_complex = false;
return true;
}
}
else if (const clang::ComplexType *CT = llvm::dyn_cast<clang::ComplexType>(qual_type->getCanonicalTypeInternal()))
{
if (IsFloatingPointType (CT->getElementType().getAsOpaquePtr(), count, is_complex))
{
count = 2;
is_complex = true;
return true;
}
}
else if (const clang::VectorType *VT = llvm::dyn_cast<clang::VectorType>(qual_type->getCanonicalTypeInternal()))
{
if (IsFloatingPointType (VT->getElementType().getAsOpaquePtr(), count, is_complex))
{
count = VT->getNumElements();
is_complex = false;
return true;
}
}
}
count = 0;
is_complex = false;
return false;
}
bool
ClangASTContext::IsDefined(void* type)
{
if (!type)
return false;
clang::QualType qual_type(GetQualType(type));
const clang::TagType *tag_type = llvm::dyn_cast<clang::TagType>(qual_type.getTypePtr());
if (tag_type)
{
clang::TagDecl *tag_decl = tag_type->getDecl();
if (tag_decl)
return tag_decl->isCompleteDefinition();
return false;
}
else
{
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type);
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
return class_interface_decl->getDefinition() != nullptr;
return false;
}
}
return true;
}
bool
ClangASTContext::IsObjCClassType (const CompilerType& type)
{
if (type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::ObjCObjectPointerType *obj_pointer_type = llvm::dyn_cast<clang::ObjCObjectPointerType>(qual_type);
if (obj_pointer_type)
return obj_pointer_type->isObjCClassType();
}
return false;
}
bool
ClangASTContext::IsObjCObjectOrInterfaceType (const CompilerType& type)
{
if (type)
return GetCanonicalQualType(type)->isObjCObjectOrInterfaceType();
return false;
}
bool
ClangASTContext::IsPolymorphicClass (void* type)
{
if (type)
{
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteType(type))
{
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
if (record_decl)
{
const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl)
return cxx_record_decl->isPolymorphic();
}
}
break;
default:
break;
}
}
return false;
}
bool
ClangASTContext::IsPossibleDynamicType (void* type, CompilerType *dynamic_pointee_type,
bool check_cplusplus,
bool check_objc)
{
clang::QualType pointee_qual_type;
if (type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
bool success = false;
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Builtin:
if (check_objc && llvm::cast<clang::BuiltinType>(qual_type)->getKind() == clang::BuiltinType::ObjCId)
{
if (dynamic_pointee_type)
dynamic_pointee_type->SetClangType(this, type);
return true;
}
break;
case clang::Type::ObjCObjectPointer:
if (check_objc)
{
if (dynamic_pointee_type)
dynamic_pointee_type->SetClangType(getASTContext(), llvm::cast<clang::ObjCObjectPointerType>(qual_type)->getPointeeType());
return true;
}
break;
case clang::Type::Pointer:
pointee_qual_type = llvm::cast<clang::PointerType>(qual_type)->getPointeeType();
success = true;
break;
case clang::Type::LValueReference:
case clang::Type::RValueReference:
pointee_qual_type = llvm::cast<clang::ReferenceType>(qual_type)->getPointeeType();
success = true;
break;
case clang::Type::Typedef:
return IsPossibleDynamicType (llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(),
dynamic_pointee_type,
check_cplusplus,
check_objc);
case clang::Type::Elaborated:
return IsPossibleDynamicType (llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(),
dynamic_pointee_type,
check_cplusplus,
check_objc);
case clang::Type::Paren:
return IsPossibleDynamicType (llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr(),
dynamic_pointee_type,
check_cplusplus,
check_objc);
default:
break;
}
if (success)
{
// Check to make sure what we are pointing too is a possible dynamic C++ type
// We currently accept any "void *" (in case we have a class that has been
// watered down to an opaque pointer) and virtual C++ classes.
const clang::Type::TypeClass pointee_type_class = pointee_qual_type.getCanonicalType()->getTypeClass();
switch (pointee_type_class)
{
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(pointee_qual_type)->getKind())
{
case clang::BuiltinType::UnknownAny:
case clang::BuiltinType::Void:
if (dynamic_pointee_type)
dynamic_pointee_type->SetClangType(getASTContext(), pointee_qual_type);
return true;
case clang::BuiltinType::NullPtr:
case clang::BuiltinType::Bool:
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::WChar_U:
case clang::BuiltinType::Char16:
case clang::BuiltinType::Char32:
case clang::BuiltinType::UShort:
case clang::BuiltinType::UInt:
case clang::BuiltinType::ULong:
case clang::BuiltinType::ULongLong:
case clang::BuiltinType::UInt128:
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::WChar_S:
case clang::BuiltinType::Short:
case clang::BuiltinType::Int:
case clang::BuiltinType::Long:
case clang::BuiltinType::LongLong:
case clang::BuiltinType::Int128:
case clang::BuiltinType::Float:
case clang::BuiltinType::Double:
case clang::BuiltinType::LongDouble:
case clang::BuiltinType::Dependent:
case clang::BuiltinType::Overload:
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
case clang::BuiltinType::ObjCSel:
case clang::BuiltinType::BoundMember:
case clang::BuiltinType::Half:
case clang::BuiltinType::ARCUnbridgedCast:
case clang::BuiltinType::PseudoObject:
case clang::BuiltinType::BuiltinFn:
case clang::BuiltinType::OCLEvent:
case clang::BuiltinType::OCLImage1d:
case clang::BuiltinType::OCLImage1dArray:
case clang::BuiltinType::OCLImage1dBuffer:
case clang::BuiltinType::OCLImage2d:
case clang::BuiltinType::OCLImage2dArray:
case clang::BuiltinType::OCLImage3d:
case clang::BuiltinType::OCLSampler:
break;
}
break;
case clang::Type::Record:
if (check_cplusplus)
{
clang::CXXRecordDecl *cxx_record_decl = pointee_qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
bool is_complete = cxx_record_decl->isCompleteDefinition();
if (is_complete)
success = cxx_record_decl->isDynamicClass();
else
{
ClangASTMetadata *metadata = ClangASTContext::GetMetadata (getASTContext(), cxx_record_decl);
if (metadata)
success = metadata->GetIsDynamicCXXType();
else
{
is_complete = CompilerType(getASTContext(), pointee_qual_type).GetCompleteType();
if (is_complete)
success = cxx_record_decl->isDynamicClass();
else
success = false;
}
}
if (success)
{
if (dynamic_pointee_type)
dynamic_pointee_type->SetClangType(getASTContext(), pointee_qual_type);
return true;
}
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (check_objc)
{
if (dynamic_pointee_type)
dynamic_pointee_type->SetClangType(getASTContext(), pointee_qual_type);
return true;
}
break;
default:
break;
}
}
}
if (dynamic_pointee_type)
dynamic_pointee_type->Clear();
return false;
}
bool
ClangASTContext::IsScalarType (void* type)
{
if (!type)
return false;
return (GetTypeInfo (type, nullptr) & eTypeIsScalar) != 0;
}
bool
ClangASTContext::IsTypedefType (void* type)
{
if (!type)
return false;
return GetQualType(type)->getTypeClass() == clang::Type::Typedef;
}
bool
ClangASTContext::IsVoidType (void* type)
{
if (!type)
return false;
return GetCanonicalQualType(type)->isVoidType();
}
bool
ClangASTContext::GetCXXClassName (const CompilerType& type, std::string &class_name)
{
if (type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
class_name.assign (cxx_record_decl->getIdentifier()->getNameStart());
return true;
}
}
class_name.clear();
return false;
}
bool
ClangASTContext::IsCXXClassType (const CompilerType& type)
{
if (!type)
return false;
clang::QualType qual_type (GetCanonicalQualType(type));
if (qual_type->getAsCXXRecordDecl() != nullptr)
return true;
return false;
}
bool
ClangASTContext::IsBeingDefined (void* type)
{
if (!type)
return false;
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::TagType *tag_type = llvm::dyn_cast<clang::TagType>(qual_type);
if (tag_type)
return tag_type->isBeingDefined();
return false;
}
bool
ClangASTContext::IsObjCObjectPointerType (const CompilerType& type, CompilerType *class_type_ptr)
{
if (!type)
return false;
clang::QualType qual_type (GetCanonicalQualType(type));
if (qual_type->isObjCObjectPointerType())
{
if (class_type_ptr)
{
if (!qual_type->isObjCClassType() &&
!qual_type->isObjCIdType())
{
const clang::ObjCObjectPointerType *obj_pointer_type = llvm::dyn_cast<clang::ObjCObjectPointerType>(qual_type);
if (obj_pointer_type == nullptr)
class_type_ptr->Clear();
else
class_type_ptr->SetClangType (type.GetTypeSystem(), clang::QualType(obj_pointer_type->getInterfaceType(), 0).getAsOpaquePtr());
}
}
return true;
}
if (class_type_ptr)
class_type_ptr->Clear();
return false;
}
bool
ClangASTContext::GetObjCClassName (const CompilerType& type, std::string &class_name)
{
if (!type)
return false;
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::ObjCObjectType *object_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type);
if (object_type)
{
const clang::ObjCInterfaceDecl *interface = object_type->getInterface();
if (interface)
{
class_name = interface->getNameAsString();
return true;
}
}
return false;
}
//----------------------------------------------------------------------
// Type Completion
//----------------------------------------------------------------------
bool
ClangASTContext::GetCompleteType (void* type)
{
if (!type)
return false;
const bool allow_completion = true;
return GetCompleteQualType (getASTContext(), GetQualType(type), allow_completion);
}
ConstString
ClangASTContext::GetTypeName (void* type)
{
std::string type_name;
if (type)
{
clang::PrintingPolicy printing_policy (getASTContext()->getPrintingPolicy());
clang::QualType qual_type(GetQualType(type));
printing_policy.SuppressTagKeyword = true;
printing_policy.LangOpts.WChar = true;
const clang::TypedefType *typedef_type = qual_type->getAs<clang::TypedefType>();
if (typedef_type)
{
const clang::TypedefNameDecl *typedef_decl = typedef_type->getDecl();
type_name = typedef_decl->getQualifiedNameAsString();
}
else
{
type_name = qual_type.getAsString(printing_policy);
}
}
return ConstString(type_name);
}
uint32_t
ClangASTContext::GetTypeInfo (void* type, CompilerType *pointee_or_element_clang_type)
{
if (!type)
return 0;
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->Clear();
clang::QualType qual_type (GetQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Builtin:
{
const clang::BuiltinType *builtin_type = llvm::dyn_cast<clang::BuiltinType>(qual_type->getCanonicalTypeInternal());
uint32_t builtin_type_flags = eTypeIsBuiltIn | eTypeHasValue;
switch (builtin_type->getKind())
{
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->SetClangType(getASTContext(), getASTContext()->ObjCBuiltinClassTy);
builtin_type_flags |= eTypeIsPointer | eTypeIsObjC;
break;
case clang::BuiltinType::ObjCSel:
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->SetClangType(getASTContext(), getASTContext()->CharTy);
builtin_type_flags |= eTypeIsPointer | eTypeIsObjC;
break;
case clang::BuiltinType::Bool:
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::WChar_U:
case clang::BuiltinType::Char16:
case clang::BuiltinType::Char32:
case clang::BuiltinType::UShort:
case clang::BuiltinType::UInt:
case clang::BuiltinType::ULong:
case clang::BuiltinType::ULongLong:
case clang::BuiltinType::UInt128:
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::WChar_S:
case clang::BuiltinType::Short:
case clang::BuiltinType::Int:
case clang::BuiltinType::Long:
case clang::BuiltinType::LongLong:
case clang::BuiltinType::Int128:
case clang::BuiltinType::Float:
case clang::BuiltinType::Double:
case clang::BuiltinType::LongDouble:
builtin_type_flags |= eTypeIsScalar;
if (builtin_type->isInteger())
{
builtin_type_flags |= eTypeIsInteger;
if (builtin_type->isSignedInteger())
builtin_type_flags |= eTypeIsSigned;
}
else if (builtin_type->isFloatingPoint())
builtin_type_flags |= eTypeIsFloat;
break;
default:
break;
}
return builtin_type_flags;
}
case clang::Type::BlockPointer:
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->SetClangType(getASTContext(), qual_type->getPointeeType());
return eTypeIsPointer | eTypeHasChildren | eTypeIsBlock;
case clang::Type::Complex:
{
uint32_t complex_type_flags = eTypeIsBuiltIn | eTypeHasValue | eTypeIsComplex;
const clang::ComplexType *complex_type = llvm::dyn_cast<clang::ComplexType>(qual_type->getCanonicalTypeInternal());
if (complex_type)
{
clang::QualType complex_element_type (complex_type->getElementType());
if (complex_element_type->isIntegerType())
complex_type_flags |= eTypeIsFloat;
else if (complex_element_type->isFloatingType())
complex_type_flags |= eTypeIsInteger;
}
return complex_type_flags;
}
break;
case clang::Type::ConstantArray:
case clang::Type::DependentSizedArray:
case clang::Type::IncompleteArray:
case clang::Type::VariableArray:
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->SetClangType(getASTContext(), llvm::cast<clang::ArrayType>(qual_type.getTypePtr())->getElementType());
return eTypeHasChildren | eTypeIsArray;
case clang::Type::DependentName: return 0;
case clang::Type::DependentSizedExtVector: return eTypeHasChildren | eTypeIsVector;
case clang::Type::DependentTemplateSpecialization: return eTypeIsTemplate;
case clang::Type::Decltype: return 0;
case clang::Type::Enum:
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->SetClangType(getASTContext(), llvm::cast<clang::EnumType>(qual_type)->getDecl()->getIntegerType());
return eTypeIsEnumeration | eTypeHasValue;
case clang::Type::Elaborated:
return CompilerType (getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType()).GetTypeInfo (pointee_or_element_clang_type);
case clang::Type::Paren:
return CompilerType (getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar()).GetTypeInfo (pointee_or_element_clang_type);
case clang::Type::FunctionProto: return eTypeIsFuncPrototype | eTypeHasValue;
case clang::Type::FunctionNoProto: return eTypeIsFuncPrototype | eTypeHasValue;
case clang::Type::InjectedClassName: return 0;
case clang::Type::LValueReference:
case clang::Type::RValueReference:
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->SetClangType(getASTContext(), llvm::cast<clang::ReferenceType>(qual_type.getTypePtr())->getPointeeType());
return eTypeHasChildren | eTypeIsReference | eTypeHasValue;
case clang::Type::MemberPointer: return eTypeIsPointer | eTypeIsMember | eTypeHasValue;
case clang::Type::ObjCObjectPointer:
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->SetClangType(getASTContext(), qual_type->getPointeeType());
return eTypeHasChildren | eTypeIsObjC | eTypeIsClass | eTypeIsPointer | eTypeHasValue;
case clang::Type::ObjCObject: return eTypeHasChildren | eTypeIsObjC | eTypeIsClass;
case clang::Type::ObjCInterface: return eTypeHasChildren | eTypeIsObjC | eTypeIsClass;
case clang::Type::Pointer:
if (pointee_or_element_clang_type)
pointee_or_element_clang_type->SetClangType(getASTContext(), qual_type->getPointeeType());
return eTypeHasChildren | eTypeIsPointer | eTypeHasValue;
case clang::Type::Record:
if (qual_type->getAsCXXRecordDecl())
return eTypeHasChildren | eTypeIsClass | eTypeIsCPlusPlus;
else
return eTypeHasChildren | eTypeIsStructUnion;
break;
case clang::Type::SubstTemplateTypeParm: return eTypeIsTemplate;
case clang::Type::TemplateTypeParm: return eTypeIsTemplate;
case clang::Type::TemplateSpecialization: return eTypeIsTemplate;
case clang::Type::Typedef:
return eTypeIsTypedef | CompilerType (getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType()).GetTypeInfo (pointee_or_element_clang_type);
case clang::Type::TypeOfExpr: return 0;
case clang::Type::TypeOf: return 0;
case clang::Type::UnresolvedUsing: return 0;
case clang::Type::ExtVector:
case clang::Type::Vector:
{
uint32_t vector_type_flags = eTypeHasChildren | eTypeIsVector;
const clang::VectorType *vector_type = llvm::dyn_cast<clang::VectorType>(qual_type->getCanonicalTypeInternal());
if (vector_type)
{
if (vector_type->isIntegerType())
vector_type_flags |= eTypeIsFloat;
else if (vector_type->isFloatingType())
vector_type_flags |= eTypeIsInteger;
}
return vector_type_flags;
}
default: return 0;
}
return 0;
}
lldb::LanguageType
ClangASTContext::GetMinimumLanguage (void* type)
{
if (!type)
return lldb::eLanguageTypeC;
// If the type is a reference, then resolve it to what it refers to first:
clang::QualType qual_type (GetCanonicalQualType(type).getNonReferenceType());
if (qual_type->isAnyPointerType())
{
if (qual_type->isObjCObjectPointerType())
return lldb::eLanguageTypeObjC;
clang::QualType pointee_type (qual_type->getPointeeType());
if (pointee_type->getPointeeCXXRecordDecl() != nullptr)
return lldb::eLanguageTypeC_plus_plus;
if (pointee_type->isObjCObjectOrInterfaceType())
return lldb::eLanguageTypeObjC;
if (pointee_type->isObjCClassType())
return lldb::eLanguageTypeObjC;
if (pointee_type.getTypePtr() == getASTContext()->ObjCBuiltinIdTy.getTypePtr())
return lldb::eLanguageTypeObjC;
}
else
{
if (qual_type->isObjCObjectOrInterfaceType())
return lldb::eLanguageTypeObjC;
if (qual_type->getAsCXXRecordDecl())
return lldb::eLanguageTypeC_plus_plus;
switch (qual_type->getTypeClass())
{
default:
break;
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind())
{
default:
case clang::BuiltinType::Void:
case clang::BuiltinType::Bool:
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::WChar_U:
case clang::BuiltinType::Char16:
case clang::BuiltinType::Char32:
case clang::BuiltinType::UShort:
case clang::BuiltinType::UInt:
case clang::BuiltinType::ULong:
case clang::BuiltinType::ULongLong:
case clang::BuiltinType::UInt128:
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::WChar_S:
case clang::BuiltinType::Short:
case clang::BuiltinType::Int:
case clang::BuiltinType::Long:
case clang::BuiltinType::LongLong:
case clang::BuiltinType::Int128:
case clang::BuiltinType::Float:
case clang::BuiltinType::Double:
case clang::BuiltinType::LongDouble:
break;
case clang::BuiltinType::NullPtr:
return eLanguageTypeC_plus_plus;
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
case clang::BuiltinType::ObjCSel:
return eLanguageTypeObjC;
case clang::BuiltinType::Dependent:
case clang::BuiltinType::Overload:
case clang::BuiltinType::BoundMember:
case clang::BuiltinType::UnknownAny:
break;
}
break;
case clang::Type::Typedef:
return CompilerType(getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType()).GetMinimumLanguage();
}
}
return lldb::eLanguageTypeC;
}
lldb::TypeClass
ClangASTContext::GetTypeClass (void* type)
{
if (!type)
return lldb::eTypeClassInvalid;
clang::QualType qual_type(GetQualType(type));
switch (qual_type->getTypeClass())
{
case clang::Type::UnaryTransform: break;
case clang::Type::FunctionNoProto: return lldb::eTypeClassFunction;
case clang::Type::FunctionProto: return lldb::eTypeClassFunction;
case clang::Type::IncompleteArray: return lldb::eTypeClassArray;
case clang::Type::VariableArray: return lldb::eTypeClassArray;
case clang::Type::ConstantArray: return lldb::eTypeClassArray;
case clang::Type::DependentSizedArray: return lldb::eTypeClassArray;
case clang::Type::DependentSizedExtVector: return lldb::eTypeClassVector;
case clang::Type::ExtVector: return lldb::eTypeClassVector;
case clang::Type::Vector: return lldb::eTypeClassVector;
case clang::Type::Builtin: return lldb::eTypeClassBuiltin;
case clang::Type::ObjCObjectPointer: return lldb::eTypeClassObjCObjectPointer;
case clang::Type::BlockPointer: return lldb::eTypeClassBlockPointer;
case clang::Type::Pointer: return lldb::eTypeClassPointer;
case clang::Type::LValueReference: return lldb::eTypeClassReference;
case clang::Type::RValueReference: return lldb::eTypeClassReference;
case clang::Type::MemberPointer: return lldb::eTypeClassMemberPointer;
case clang::Type::Complex:
if (qual_type->isComplexType())
return lldb::eTypeClassComplexFloat;
else
return lldb::eTypeClassComplexInteger;
case clang::Type::ObjCObject: return lldb::eTypeClassObjCObject;
case clang::Type::ObjCInterface: return lldb::eTypeClassObjCInterface;
case clang::Type::Record:
{
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
if (record_decl->isUnion())
return lldb::eTypeClassUnion;
else if (record_decl->isStruct())
return lldb::eTypeClassStruct;
else
return lldb::eTypeClassClass;
}
break;
case clang::Type::Enum: return lldb::eTypeClassEnumeration;
case clang::Type::Typedef: return lldb::eTypeClassTypedef;
case clang::Type::UnresolvedUsing: break;
case clang::Type::Paren:
return CompilerType(getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar()).GetTypeClass();
case clang::Type::Elaborated:
return CompilerType(getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType()).GetTypeClass();
case clang::Type::Attributed: break;
case clang::Type::TemplateTypeParm: break;
case clang::Type::SubstTemplateTypeParm: break;
case clang::Type::SubstTemplateTypeParmPack:break;
case clang::Type::Auto: break;
case clang::Type::InjectedClassName: break;
case clang::Type::DependentName: break;
case clang::Type::DependentTemplateSpecialization: break;
case clang::Type::PackExpansion: break;
case clang::Type::TypeOfExpr: break;
case clang::Type::TypeOf: break;
case clang::Type::Decltype: break;
case clang::Type::TemplateSpecialization: break;
case clang::Type::Atomic: break;
// pointer type decayed from an array or function type.
case clang::Type::Decayed: break;
case clang::Type::Adjusted: break;
}
// We don't know hot to display this type...
return lldb::eTypeClassOther;
}
unsigned
ClangASTContext::GetTypeQualifiers(void* type)
{
if (type)
return GetQualType(type).getQualifiers().getCVRQualifiers();
return 0;
}
//----------------------------------------------------------------------
// Creating related types
//----------------------------------------------------------------------
CompilerType
ClangASTContext::AddConstModifier (const CompilerType& type)
{
if (type && type.GetTypeSystem()->AsClangASTContext())
{
clang::QualType result(GetQualType(type));
result.addConst();
return CompilerType (type.GetTypeSystem(), result.getAsOpaquePtr());
}
return CompilerType();
}
CompilerType
ClangASTContext::AddRestrictModifier (const CompilerType& type)
{
if (type && type.GetTypeSystem()->AsClangASTContext())
{
clang::QualType result(GetQualType(type));
result.getQualifiers().setRestrict (true);
return CompilerType (type.GetTypeSystem(), result.getAsOpaquePtr());
}
return CompilerType();
}
CompilerType
ClangASTContext::AddVolatileModifier (const CompilerType& type)
{
if (type && type.GetTypeSystem()->AsClangASTContext())
{
clang::QualType result(GetQualType(type));
result.getQualifiers().setVolatile (true);
return CompilerType (type.GetTypeSystem(), result.getAsOpaquePtr());
}
return CompilerType();
}
CompilerType
ClangASTContext::GetArrayElementType (void* type, uint64_t *stride)
{
if (type)
{
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type *array_eletype = qual_type.getTypePtr()->getArrayElementTypeNoTypeQual();
if (!array_eletype)
return CompilerType();
CompilerType element_type (getASTContext(), array_eletype->getCanonicalTypeUnqualified());
// TODO: the real stride will be >= this value.. find the real one!
if (stride)
*stride = element_type.GetByteSize(nullptr);
return element_type;
}
return CompilerType();
}
CompilerType
ClangASTContext::GetCanonicalType (void* type)
{
if (type)
return CompilerType (getASTContext(), GetCanonicalQualType(type));
return CompilerType();
}
static clang::QualType
GetFullyUnqualifiedType_Impl (clang::ASTContext *ast, clang::QualType qual_type)
{
if (qual_type->isPointerType())
qual_type = ast->getPointerType(GetFullyUnqualifiedType_Impl(ast, qual_type->getPointeeType()));
else
qual_type = qual_type.getUnqualifiedType();
qual_type.removeLocalConst();
qual_type.removeLocalRestrict();
qual_type.removeLocalVolatile();
return qual_type;
}
CompilerType
ClangASTContext::GetFullyUnqualifiedType (void* type)
{
if (type)
return CompilerType(getASTContext(), GetFullyUnqualifiedType_Impl(getASTContext(), GetQualType(type)));
return CompilerType();
}
int
ClangASTContext::GetFunctionArgumentCount (void* type)
{
if (type)
{
const clang::FunctionProtoType* func = llvm::dyn_cast<clang::FunctionProtoType>(GetCanonicalQualType(type));
if (func)
return func->getNumParams();
}
return -1;
}
CompilerType
ClangASTContext::GetFunctionArgumentTypeAtIndex (void* type, size_t idx)
{
if (type)
{
const clang::FunctionProtoType* func = llvm::dyn_cast<clang::FunctionProtoType>(GetCanonicalQualType(type));
if (func)
{
const uint32_t num_args = func->getNumParams();
if (idx < num_args)
return CompilerType(getASTContext(), func->getParamType(idx));
}
}
return CompilerType();
}
CompilerType
ClangASTContext::GetFunctionReturnType (void* type)
{
if (type)
{
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::FunctionProtoType* func = llvm::dyn_cast<clang::FunctionProtoType>(qual_type.getTypePtr());
if (func)
return CompilerType(getASTContext(), func->getReturnType());
}
return CompilerType();
}
size_t
ClangASTContext::GetNumMemberFunctions (void* type)
{
size_t num_functions = 0;
if (type)
{
clang::QualType qual_type(GetCanonicalQualType(type));
switch (qual_type->getTypeClass()) {
case clang::Type::Record:
if (GetCompleteQualType (getASTContext(), qual_type))
{
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl)
num_functions = std::distance(cxx_record_decl->method_begin(), cxx_record_decl->method_end());
}
break;
case clang::Type::ObjCObjectPointer:
if (GetCompleteType(type))
{
const clang::ObjCObjectPointerType *objc_class_type = qual_type->getAsObjCInterfacePointerType();
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterfaceDecl();
if (class_interface_decl)
num_functions = std::distance(class_interface_decl->meth_begin(), class_interface_decl->meth_end());
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteType(type))
{
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
num_functions = std::distance(class_interface_decl->meth_begin(), class_interface_decl->meth_end());
}
}
break;
case clang::Type::Typedef:
return CompilerType (getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType()).GetNumMemberFunctions();
case clang::Type::Elaborated:
return CompilerType (getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType()).GetNumMemberFunctions();
case clang::Type::Paren:
return CompilerType (getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar()).GetNumMemberFunctions();
default:
break;
}
}
return num_functions;
}
TypeMemberFunctionImpl
ClangASTContext::GetMemberFunctionAtIndex (void* type, size_t idx)
{
std::string name("");
MemberFunctionKind kind(MemberFunctionKind::eMemberFunctionKindUnknown);
CompilerType clang_type{};
clang::ObjCMethodDecl *method_decl(nullptr);
if (type)
{
clang::QualType qual_type(GetCanonicalQualType(type));
switch (qual_type->getTypeClass()) {
case clang::Type::Record:
if (GetCompleteQualType (getASTContext(), qual_type))
{
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl)
{
auto method_iter = cxx_record_decl->method_begin();
auto method_end = cxx_record_decl->method_end();
if (idx < static_cast<size_t>(std::distance(method_iter, method_end)))
{
std::advance(method_iter, idx);
auto method_decl = method_iter->getCanonicalDecl();
if (method_decl)
{
if (!method_decl->getName().empty())
name.assign(method_decl->getName().data());
else
name.clear();
if (method_decl->isStatic())
kind = lldb::eMemberFunctionKindStaticMethod;
else if (llvm::isa<clang::CXXConstructorDecl>(method_decl))
kind = lldb::eMemberFunctionKindConstructor;
else if (llvm::isa<clang::CXXDestructorDecl>(method_decl))
kind = lldb::eMemberFunctionKindDestructor;
else
kind = lldb::eMemberFunctionKindInstanceMethod;
clang_type = CompilerType(getASTContext(),method_decl->getType());
}
}
}
}
break;
case clang::Type::ObjCObjectPointer:
if (GetCompleteType(type))
{
const clang::ObjCObjectPointerType *objc_class_type = qual_type->getAsObjCInterfacePointerType();
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterfaceDecl();
if (class_interface_decl)
{
auto method_iter = class_interface_decl->meth_begin();
auto method_end = class_interface_decl->meth_end();
if (idx < static_cast<size_t>(std::distance(method_iter, method_end)))
{
std::advance(method_iter, idx);
method_decl = method_iter->getCanonicalDecl();
if (method_decl)
{
name = method_decl->getSelector().getAsString();
if (method_decl->isClassMethod())
kind = lldb::eMemberFunctionKindStaticMethod;
else
kind = lldb::eMemberFunctionKindInstanceMethod;
}
}
}
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteType(type))
{
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
auto method_iter = class_interface_decl->meth_begin();
auto method_end = class_interface_decl->meth_end();
if (idx < static_cast<size_t>(std::distance(method_iter, method_end)))
{
std::advance(method_iter, idx);
method_decl = method_iter->getCanonicalDecl();
if (method_decl)
{
name = method_decl->getSelector().getAsString();
if (method_decl->isClassMethod())
kind = lldb::eMemberFunctionKindStaticMethod;
else
kind = lldb::eMemberFunctionKindInstanceMethod;
}
}
}
}
}
break;
case clang::Type::Typedef:
return GetMemberFunctionAtIndex(llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(), idx);
case clang::Type::Elaborated:
return GetMemberFunctionAtIndex(llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(), idx);
case clang::Type::Paren:
return GetMemberFunctionAtIndex(llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr(), idx);
default:
break;
}
}
if (kind == eMemberFunctionKindUnknown)
return TypeMemberFunctionImpl();
if (method_decl)
return TypeMemberFunctionImpl(method_decl, name, kind);
if (type)
return TypeMemberFunctionImpl(clang_type, name, kind);
return TypeMemberFunctionImpl();
}
CompilerType
ClangASTContext::GetLValueReferenceType (const CompilerType& type)
{
if (type)
{
ClangASTContext* ast = type.GetTypeSystem()->AsClangASTContext();
if (ast)
return CompilerType(ast->getASTContext(), ast->getASTContext()->getLValueReferenceType(GetQualType(type)));
}
return CompilerType();
}
CompilerType
ClangASTContext::GetRValueReferenceType (const CompilerType& type)
{
if (type)
{
ClangASTContext* ast = type.GetTypeSystem()->AsClangASTContext();
if (ast)
return CompilerType(ast->getASTContext(), ast->getASTContext()->getRValueReferenceType(GetQualType(type)));
}
return CompilerType();
}
CompilerType
ClangASTContext::GetNonReferenceType (void* type)
{
if (type)
return CompilerType(getASTContext(), GetQualType(type).getNonReferenceType());
return CompilerType();
}
CompilerType
ClangASTContext::CreateTypedefType (const CompilerType& type,
const char *typedef_name,
clang::DeclContext *decl_ctx)
{
if (type && typedef_name && typedef_name[0])
{
ClangASTContext* ast = type.GetTypeSystem()->AsClangASTContext();
if (!ast)
return CompilerType();
clang::ASTContext* clang_ast = ast->getASTContext();
clang::QualType qual_type (GetQualType(type));
if (decl_ctx == nullptr)
decl_ctx = ast->getASTContext()->getTranslationUnitDecl();
clang::TypedefDecl *decl = clang::TypedefDecl::Create (*clang_ast,
decl_ctx,
clang::SourceLocation(),
clang::SourceLocation(),
&clang_ast->Idents.get(typedef_name),
clang_ast->getTrivialTypeSourceInfo(qual_type));
decl->setAccess(clang::AS_public); // TODO respect proper access specifier
// Get a uniqued clang::QualType for the typedef decl type
return CompilerType (clang_ast, clang_ast->getTypedefType (decl));
}
return CompilerType();
}
CompilerType
ClangASTContext::GetPointeeType (void* type)
{
if (type)
{
clang::QualType qual_type(GetQualType(type));
return CompilerType (getASTContext(), qual_type.getTypePtr()->getPointeeType());
}
return CompilerType();
}
CompilerType
ClangASTContext::GetPointerType (void* type)
{
if (type)
{
clang::QualType qual_type (GetQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
return CompilerType(getASTContext(), getASTContext()->getObjCObjectPointerType(qual_type));
default:
return CompilerType(getASTContext(), getASTContext()->getPointerType(qual_type));
}
}
return CompilerType();
}
CompilerType
ClangASTContext::GetTypedefedType (void* type)
{
if (type)
{
const clang::TypedefType *typedef_type = llvm::dyn_cast<clang::TypedefType>(GetQualType(type));
if (typedef_type)
return CompilerType (getASTContext(), typedef_type->getDecl()->getUnderlyingType());
}
return CompilerType();
}
CompilerType
ClangASTContext::RemoveFastQualifiers (const CompilerType& type)
{
if (type && type.GetTypeSystem()->AsClangASTContext())
{
clang::QualType qual_type(GetQualType(type));
qual_type.getQualifiers().removeFastQualifiers();
return CompilerType (type.GetTypeSystem(), qual_type.getAsOpaquePtr());
}
return type;
}
//----------------------------------------------------------------------
// Create related types using the current type's AST
//----------------------------------------------------------------------
CompilerType
ClangASTContext::GetBasicTypeFromAST (void* type, lldb::BasicType basic_type)
{
if (type)
return ClangASTContext::GetBasicType(getASTContext(), basic_type);
return CompilerType();
}
//----------------------------------------------------------------------
// Exploring the type
//----------------------------------------------------------------------
uint64_t
ClangASTContext::GetBitSize (void* type, ExecutionContextScope *exe_scope)
{
if (GetCompleteType (type))
{
clang::QualType qual_type(GetCanonicalQualType(type));
switch (qual_type->getTypeClass())
{
case clang::Type::ObjCInterface:
case clang::Type::ObjCObject:
{
ExecutionContext exe_ctx (exe_scope);
Process *process = exe_ctx.GetProcessPtr();
if (process)
{
ObjCLanguageRuntime *objc_runtime = process->GetObjCLanguageRuntime();
if (objc_runtime)
{
uint64_t bit_size = 0;
if (objc_runtime->GetTypeBitSize(CompilerType(getASTContext(), qual_type), bit_size))
return bit_size;
}
}
else
{
static bool g_printed = false;
if (!g_printed)
{
StreamString s;
DumpTypeDescription(&s);
llvm::outs() << "warning: trying to determine the size of type ";
llvm::outs() << s.GetString() << "\n";
llvm::outs() << "without a valid ExecutionContext. this is not reliable. please file a bug against LLDB.\n";
llvm::outs() << "backtrace:\n";
llvm::sys::PrintStackTrace(llvm::outs());
llvm::outs() << "\n";
g_printed = true;
}
}
}
// fallthrough
default:
const uint32_t bit_size = getASTContext()->getTypeSize (qual_type);
if (bit_size == 0)
{
if (qual_type->isIncompleteArrayType())
return getASTContext()->getTypeSize (qual_type->getArrayElementTypeNoTypeQual()->getCanonicalTypeUnqualified());
}
if (qual_type->isObjCObjectOrInterfaceType())
return bit_size + getASTContext()->getTypeSize(getASTContext()->ObjCBuiltinClassTy);
return bit_size;
}
}
return 0;
}
size_t
ClangASTContext::GetTypeBitAlign (void* type)
{
if (GetCompleteType(type))
return getASTContext()->getTypeAlign(GetQualType(type));
return 0;
}
lldb::Encoding
ClangASTContext::GetEncoding (void* type, uint64_t &count)
{
if (!type)
return lldb::eEncodingInvalid;
count = 1;
clang::QualType qual_type(GetCanonicalQualType(type));
switch (qual_type->getTypeClass())
{
case clang::Type::UnaryTransform:
break;
case clang::Type::FunctionNoProto:
case clang::Type::FunctionProto:
break;
case clang::Type::IncompleteArray:
case clang::Type::VariableArray:
break;
case clang::Type::ConstantArray:
break;
case clang::Type::ExtVector:
case clang::Type::Vector:
// TODO: Set this to more than one???
break;
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind())
{
default: assert(0 && "Unknown builtin type!");
case clang::BuiltinType::Void:
break;
case clang::BuiltinType::Bool:
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::WChar_S:
case clang::BuiltinType::Char16:
case clang::BuiltinType::Char32:
case clang::BuiltinType::Short:
case clang::BuiltinType::Int:
case clang::BuiltinType::Long:
case clang::BuiltinType::LongLong:
case clang::BuiltinType::Int128: return lldb::eEncodingSint;
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::WChar_U:
case clang::BuiltinType::UShort:
case clang::BuiltinType::UInt:
case clang::BuiltinType::ULong:
case clang::BuiltinType::ULongLong:
case clang::BuiltinType::UInt128: return lldb::eEncodingUint;
case clang::BuiltinType::Float:
case clang::BuiltinType::Double:
case clang::BuiltinType::LongDouble: return lldb::eEncodingIEEE754;
case clang::BuiltinType::ObjCClass:
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCSel: return lldb::eEncodingUint;
case clang::BuiltinType::NullPtr: return lldb::eEncodingUint;
case clang::BuiltinType::Kind::ARCUnbridgedCast:
case clang::BuiltinType::Kind::BoundMember:
case clang::BuiltinType::Kind::BuiltinFn:
case clang::BuiltinType::Kind::Dependent:
case clang::BuiltinType::Kind::Half:
case clang::BuiltinType::Kind::OCLEvent:
case clang::BuiltinType::Kind::OCLImage1d:
case clang::BuiltinType::Kind::OCLImage1dArray:
case clang::BuiltinType::Kind::OCLImage1dBuffer:
case clang::BuiltinType::Kind::OCLImage2d:
case clang::BuiltinType::Kind::OCLImage2dArray:
case clang::BuiltinType::Kind::OCLImage3d:
case clang::BuiltinType::Kind::OCLSampler:
case clang::BuiltinType::Kind::Overload:
case clang::BuiltinType::Kind::PseudoObject:
case clang::BuiltinType::Kind::UnknownAny:
break;
}
break;
// All pointer types are represented as unsigned integer encodings.
// We may nee to add a eEncodingPointer if we ever need to know the
// difference
case clang::Type::ObjCObjectPointer:
case clang::Type::BlockPointer:
case clang::Type::Pointer:
case clang::Type::LValueReference:
case clang::Type::RValueReference:
case clang::Type::MemberPointer: return lldb::eEncodingUint;
case clang::Type::Complex:
{
lldb::Encoding encoding = lldb::eEncodingIEEE754;
if (qual_type->isComplexType())
encoding = lldb::eEncodingIEEE754;
else
{
const clang::ComplexType *complex_type = qual_type->getAsComplexIntegerType();
if (complex_type)
encoding = CompilerType(getASTContext(), complex_type->getElementType()).GetEncoding(count);
else
encoding = lldb::eEncodingSint;
}
count = 2;
return encoding;
}
case clang::Type::ObjCInterface: break;
case clang::Type::Record: break;
case clang::Type::Enum: return lldb::eEncodingSint;
case clang::Type::Typedef:
return CompilerType(getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType()).GetEncoding(count);
case clang::Type::Elaborated:
return CompilerType(getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType()).GetEncoding(count);
case clang::Type::Paren:
return CompilerType(getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar()).GetEncoding(count);
case clang::Type::DependentSizedArray:
case clang::Type::DependentSizedExtVector:
case clang::Type::UnresolvedUsing:
case clang::Type::Attributed:
case clang::Type::TemplateTypeParm:
case clang::Type::SubstTemplateTypeParm:
case clang::Type::SubstTemplateTypeParmPack:
case clang::Type::Auto:
case clang::Type::InjectedClassName:
case clang::Type::DependentName:
case clang::Type::DependentTemplateSpecialization:
case clang::Type::PackExpansion:
case clang::Type::ObjCObject:
case clang::Type::TypeOfExpr:
case clang::Type::TypeOf:
case clang::Type::Decltype:
case clang::Type::TemplateSpecialization:
case clang::Type::Atomic:
case clang::Type::Adjusted:
break;
// pointer type decayed from an array or function type.
case clang::Type::Decayed:
break;
}
count = 0;
return lldb::eEncodingInvalid;
}
lldb::Format
ClangASTContext::GetFormat (void* type)
{
if (!type)
return lldb::eFormatDefault;
clang::QualType qual_type(GetCanonicalQualType(type));
switch (qual_type->getTypeClass())
{
case clang::Type::UnaryTransform:
break;
case clang::Type::FunctionNoProto:
case clang::Type::FunctionProto:
break;
case clang::Type::IncompleteArray:
case clang::Type::VariableArray:
break;
case clang::Type::ConstantArray:
return lldb::eFormatVoid; // no value
case clang::Type::ExtVector:
case clang::Type::Vector:
break;
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind())
{
//default: assert(0 && "Unknown builtin type!");
case clang::BuiltinType::UnknownAny:
case clang::BuiltinType::Void:
case clang::BuiltinType::BoundMember:
break;
case clang::BuiltinType::Bool: return lldb::eFormatBoolean;
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::WChar_S:
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::WChar_U: return lldb::eFormatChar;
case clang::BuiltinType::Char16: return lldb::eFormatUnicode16;
case clang::BuiltinType::Char32: return lldb::eFormatUnicode32;
case clang::BuiltinType::UShort: return lldb::eFormatUnsigned;
case clang::BuiltinType::Short: return lldb::eFormatDecimal;
case clang::BuiltinType::UInt: return lldb::eFormatUnsigned;
case clang::BuiltinType::Int: return lldb::eFormatDecimal;
case clang::BuiltinType::ULong: return lldb::eFormatUnsigned;
case clang::BuiltinType::Long: return lldb::eFormatDecimal;
case clang::BuiltinType::ULongLong: return lldb::eFormatUnsigned;
case clang::BuiltinType::LongLong: return lldb::eFormatDecimal;
case clang::BuiltinType::UInt128: return lldb::eFormatUnsigned;
case clang::BuiltinType::Int128: return lldb::eFormatDecimal;
case clang::BuiltinType::Float: return lldb::eFormatFloat;
case clang::BuiltinType::Double: return lldb::eFormatFloat;
case clang::BuiltinType::LongDouble: return lldb::eFormatFloat;
case clang::BuiltinType::NullPtr:
case clang::BuiltinType::Overload:
case clang::BuiltinType::Dependent:
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
case clang::BuiltinType::ObjCSel:
case clang::BuiltinType::Half:
case clang::BuiltinType::ARCUnbridgedCast:
case clang::BuiltinType::PseudoObject:
case clang::BuiltinType::BuiltinFn:
case clang::BuiltinType::OCLEvent:
case clang::BuiltinType::OCLImage1d:
case clang::BuiltinType::OCLImage1dArray:
case clang::BuiltinType::OCLImage1dBuffer:
case clang::BuiltinType::OCLImage2d:
case clang::BuiltinType::OCLImage2dArray:
case clang::BuiltinType::OCLImage3d:
case clang::BuiltinType::OCLSampler:
return lldb::eFormatHex;
}
break;
case clang::Type::ObjCObjectPointer: return lldb::eFormatHex;
case clang::Type::BlockPointer: return lldb::eFormatHex;
case clang::Type::Pointer: return lldb::eFormatHex;
case clang::Type::LValueReference:
case clang::Type::RValueReference: return lldb::eFormatHex;
case clang::Type::MemberPointer: break;
case clang::Type::Complex:
{
if (qual_type->isComplexType())
return lldb::eFormatComplex;
else
return lldb::eFormatComplexInteger;
}
case clang::Type::ObjCInterface: break;
case clang::Type::Record: break;
case clang::Type::Enum: return lldb::eFormatEnum;
case clang::Type::Typedef:
return CompilerType (getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType()).GetFormat();
case clang::Type::Auto:
return CompilerType (getASTContext(), llvm::cast<clang::AutoType>(qual_type)->desugar()).GetFormat();
case clang::Type::Paren:
return CompilerType (getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar()).GetFormat();
case clang::Type::Elaborated:
return CompilerType (getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType()).GetFormat();
case clang::Type::DependentSizedArray:
case clang::Type::DependentSizedExtVector:
case clang::Type::UnresolvedUsing:
case clang::Type::Attributed:
case clang::Type::TemplateTypeParm:
case clang::Type::SubstTemplateTypeParm:
case clang::Type::SubstTemplateTypeParmPack:
case clang::Type::InjectedClassName:
case clang::Type::DependentName:
case clang::Type::DependentTemplateSpecialization:
case clang::Type::PackExpansion:
case clang::Type::ObjCObject:
case clang::Type::TypeOfExpr:
case clang::Type::TypeOf:
case clang::Type::Decltype:
case clang::Type::TemplateSpecialization:
case clang::Type::Atomic:
case clang::Type::Adjusted:
break;
// pointer type decayed from an array or function type.
case clang::Type::Decayed:
break;
}
// We don't know hot to display this type...
return lldb::eFormatBytes;
}
static bool
ObjCDeclHasIVars (clang::ObjCInterfaceDecl *class_interface_decl, bool check_superclass)
{
while (class_interface_decl)
{
if (class_interface_decl->ivar_size() > 0)
return true;
if (check_superclass)
class_interface_decl = class_interface_decl->getSuperClass();
else
break;
}
return false;
}
uint32_t
ClangASTContext::GetNumChildren (void* type, bool omit_empty_base_classes)
{
if (!type)
return 0;
uint32_t num_children = 0;
clang::QualType qual_type(GetQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind())
{
case clang::BuiltinType::ObjCId: // child is Class
case clang::BuiltinType::ObjCClass: // child is Class
num_children = 1;
break;
default:
break;
}
break;
case clang::Type::Complex: return 0;
case clang::Type::Record:
if (GetCompleteQualType (getASTContext(), qual_type))
{
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl)
{
if (omit_empty_base_classes)
{
// Check each base classes to see if it or any of its
// base classes contain any fields. This can help
// limit the noise in variable views by not having to
// show base classes that contain no members.
clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
const clang::CXXRecordDecl *base_class_decl = llvm::cast<clang::CXXRecordDecl>(base_class->getType()->getAs<clang::RecordType>()->getDecl());
// Skip empty base classes
if (ClangASTContext::RecordHasFields(base_class_decl) == false)
continue;
num_children++;
}
}
else
{
// Include all base classes
num_children += cxx_record_decl->getNumBases();
}
}
clang::RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field)
++num_children;
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteQualType (getASTContext(), qual_type))
{
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
assert (objc_class_type);
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
clang::ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass();
if (superclass_interface_decl)
{
if (omit_empty_base_classes)
{
if (ObjCDeclHasIVars (superclass_interface_decl, true))
++num_children;
}
else
++num_children;
}
num_children += class_interface_decl->ivar_size();
}
}
}
break;
case clang::Type::ObjCObjectPointer:
{
const clang::ObjCObjectPointerType *pointer_type = llvm::cast<clang::ObjCObjectPointerType>(qual_type.getTypePtr());
clang::QualType pointee_type = pointer_type->getPointeeType();
uint32_t num_pointee_children = CompilerType (getASTContext(),pointee_type).GetNumChildren (omit_empty_base_classes);
// If this type points to a simple type, then it has 1 child
if (num_pointee_children == 0)
num_children = 1;
else
num_children = num_pointee_children;
}
break;
case clang::Type::Vector:
case clang::Type::ExtVector:
num_children = llvm::cast<clang::VectorType>(qual_type.getTypePtr())->getNumElements();
break;
case clang::Type::ConstantArray:
num_children = llvm::cast<clang::ConstantArrayType>(qual_type.getTypePtr())->getSize().getLimitedValue();
break;
case clang::Type::Pointer:
{
const clang::PointerType *pointer_type = llvm::cast<clang::PointerType>(qual_type.getTypePtr());
clang::QualType pointee_type (pointer_type->getPointeeType());
uint32_t num_pointee_children = CompilerType (getASTContext(),pointee_type).GetNumChildren (omit_empty_base_classes);
if (num_pointee_children == 0)
{
// We have a pointer to a pointee type that claims it has no children.
// We will want to look at
num_children = GetNumPointeeChildren (pointee_type);
}
else
num_children = num_pointee_children;
}
break;
case clang::Type::LValueReference:
case clang::Type::RValueReference:
{
const clang::ReferenceType *reference_type = llvm::cast<clang::ReferenceType>(qual_type.getTypePtr());
clang::QualType pointee_type = reference_type->getPointeeType();
uint32_t num_pointee_children = CompilerType (getASTContext(), pointee_type).GetNumChildren (omit_empty_base_classes);
// If this type points to a simple type, then it has 1 child
if (num_pointee_children == 0)
num_children = 1;
else
num_children = num_pointee_children;
}
break;
case clang::Type::Typedef:
num_children = CompilerType (getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType()).GetNumChildren (omit_empty_base_classes);
break;
case clang::Type::Elaborated:
num_children = CompilerType (getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType()).GetNumChildren (omit_empty_base_classes);
break;
case clang::Type::Paren:
num_children = CompilerType (getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar()).GetNumChildren (omit_empty_base_classes);
break;
default:
break;
}
return num_children;
}
lldb::BasicType
ClangASTContext::GetBasicTypeEnumeration (void* type)
{
if (type)
{
clang::QualType qual_type(GetQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
if (type_class == clang::Type::Builtin)
{
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind())
{
case clang::BuiltinType::Void: return eBasicTypeVoid;
case clang::BuiltinType::Bool: return eBasicTypeBool;
case clang::BuiltinType::Char_S: return eBasicTypeSignedChar;
case clang::BuiltinType::Char_U: return eBasicTypeUnsignedChar;
case clang::BuiltinType::Char16: return eBasicTypeChar16;
case clang::BuiltinType::Char32: return eBasicTypeChar32;
case clang::BuiltinType::UChar: return eBasicTypeUnsignedChar;
case clang::BuiltinType::SChar: return eBasicTypeSignedChar;
case clang::BuiltinType::WChar_S: return eBasicTypeSignedWChar;
case clang::BuiltinType::WChar_U: return eBasicTypeUnsignedWChar;
case clang::BuiltinType::Short: return eBasicTypeShort;
case clang::BuiltinType::UShort: return eBasicTypeUnsignedShort;
case clang::BuiltinType::Int: return eBasicTypeInt;
case clang::BuiltinType::UInt: return eBasicTypeUnsignedInt;
case clang::BuiltinType::Long: return eBasicTypeLong;
case clang::BuiltinType::ULong: return eBasicTypeUnsignedLong;
case clang::BuiltinType::LongLong: return eBasicTypeLongLong;
case clang::BuiltinType::ULongLong: return eBasicTypeUnsignedLongLong;
case clang::BuiltinType::Int128: return eBasicTypeInt128;
case clang::BuiltinType::UInt128: return eBasicTypeUnsignedInt128;
case clang::BuiltinType::Half: return eBasicTypeHalf;
case clang::BuiltinType::Float: return eBasicTypeFloat;
case clang::BuiltinType::Double: return eBasicTypeDouble;
case clang::BuiltinType::LongDouble:return eBasicTypeLongDouble;
case clang::BuiltinType::NullPtr: return eBasicTypeNullPtr;
case clang::BuiltinType::ObjCId: return eBasicTypeObjCID;
case clang::BuiltinType::ObjCClass: return eBasicTypeObjCClass;
case clang::BuiltinType::ObjCSel: return eBasicTypeObjCSel;
case clang::BuiltinType::Dependent:
case clang::BuiltinType::Overload:
case clang::BuiltinType::BoundMember:
case clang::BuiltinType::PseudoObject:
case clang::BuiltinType::UnknownAny:
case clang::BuiltinType::BuiltinFn:
case clang::BuiltinType::ARCUnbridgedCast:
case clang::BuiltinType::OCLEvent:
case clang::BuiltinType::OCLImage1d:
case clang::BuiltinType::OCLImage1dArray:
case clang::BuiltinType::OCLImage1dBuffer:
case clang::BuiltinType::OCLImage2d:
case clang::BuiltinType::OCLImage2dArray:
case clang::BuiltinType::OCLImage3d:
case clang::BuiltinType::OCLSampler:
return eBasicTypeOther;
}
}
}
return eBasicTypeInvalid;
}
#pragma mark Aggregate Types
uint32_t
ClangASTContext::GetNumDirectBaseClasses (const CompilerType& type)
{
if (!type)
return 0;
ClangASTContext *ast = type.GetTypeSystem()->AsClangASTContext();
if (!ast)
return 0;
uint32_t count = 0;
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (ast->GetCompleteType(type.GetOpaqueQualType()))
{
const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
count = cxx_record_decl->getNumBases();
}
break;
case clang::Type::ObjCObjectPointer:
count = GetNumDirectBaseClasses(ast->GetPointeeType(type.GetOpaqueQualType()));
break;
case clang::Type::ObjCObject:
if (ast->GetCompleteType(type.GetOpaqueQualType()))
{
const clang::ObjCObjectType *objc_class_type = qual_type->getAsObjCQualifiedInterfaceType();
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl && class_interface_decl->getSuperClass())
count = 1;
}
}
break;
case clang::Type::ObjCInterface:
if (ast->GetCompleteType(type.GetOpaqueQualType()))
{
const clang::ObjCInterfaceType *objc_interface_type = qual_type->getAs<clang::ObjCInterfaceType>();
if (objc_interface_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_interface_type->getInterface();
if (class_interface_decl && class_interface_decl->getSuperClass())
count = 1;
}
}
break;
case clang::Type::Typedef:
count = GetNumDirectBaseClasses(CompilerType (ast->getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType()));
break;
case clang::Type::Elaborated:
count = GetNumDirectBaseClasses(CompilerType (ast->getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType()));
break;
case clang::Type::Paren:
return GetNumDirectBaseClasses(CompilerType (ast->getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar()));
default:
break;
}
return count;
}
uint32_t
ClangASTContext::GetNumVirtualBaseClasses (const CompilerType& type)
{
if (!type)
return 0;
ClangASTContext *ast = type.GetTypeSystem()->AsClangASTContext();
if (!ast)
return 0;
uint32_t count = 0;
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (ast->GetCompleteType(type.GetOpaqueQualType()))
{
const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
count = cxx_record_decl->getNumVBases();
}
break;
case clang::Type::Typedef:
count = GetNumVirtualBaseClasses(CompilerType (ast->getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType()));
break;
case clang::Type::Elaborated:
count = GetNumVirtualBaseClasses(CompilerType (ast->getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType()));
break;
case clang::Type::Paren:
count = GetNumVirtualBaseClasses(CompilerType (ast->getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar()));
break;
default:
break;
}
return count;
}
uint32_t
ClangASTContext::GetNumFields (void* type)
{
if (!type)
return 0;
uint32_t count = 0;
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteType(type))
{
const clang::RecordType *record_type = llvm::dyn_cast<clang::RecordType>(qual_type.getTypePtr());
if (record_type)
{
clang::RecordDecl *record_decl = record_type->getDecl();
if (record_decl)
{
uint32_t field_idx = 0;
clang::RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field)
++field_idx;
count = field_idx;
}
}
}
break;
case clang::Type::Typedef:
count = CompilerType (getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType()).GetNumFields();
break;
case clang::Type::Elaborated:
count = CompilerType (getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType()).GetNumFields();
break;
case clang::Type::Paren:
count = CompilerType (getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar()).GetNumFields();
break;
case clang::Type::ObjCObjectPointer:
if (GetCompleteType(type))
{
const clang::ObjCObjectPointerType *objc_class_type = qual_type->getAsObjCInterfacePointerType();
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterfaceDecl();
if (class_interface_decl)
count = class_interface_decl->ivar_size();
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteType(type))
{
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
count = class_interface_decl->ivar_size();
}
}
break;
default:
break;
}
return count;
}
CompilerType
ClangASTContext::GetDirectBaseClassAtIndex (const CompilerType& type, size_t idx, uint32_t *bit_offset_ptr)
{
if (!type)
return CompilerType();
ClangASTContext *ast = type.GetTypeSystem()->AsClangASTContext();
if (!ast)
return CompilerType();
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (ast->GetCompleteType(type.GetOpaqueQualType()))
{
const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
uint32_t curr_idx = 0;
clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class, ++curr_idx)
{
if (curr_idx == idx)
{
if (bit_offset_ptr)
{
const clang::ASTRecordLayout &record_layout = ast->getASTContext()->getASTRecordLayout(cxx_record_decl);
const clang::CXXRecordDecl *base_class_decl = llvm::cast<clang::CXXRecordDecl>(base_class->getType()->getAs<clang::RecordType>()->getDecl());
if (base_class->isVirtual())
*bit_offset_ptr = record_layout.getVBaseClassOffset(base_class_decl).getQuantity() * 8;
else
*bit_offset_ptr = record_layout.getBaseClassOffset(base_class_decl).getQuantity() * 8;
}
return CompilerType (ast, base_class->getType().getAsOpaquePtr());
}
}
}
}
break;
case clang::Type::ObjCObjectPointer:
return GetDirectBaseClassAtIndex(ast->GetPointeeType(type.GetOpaqueQualType()), idx, bit_offset_ptr);
case clang::Type::ObjCObject:
if (idx == 0 && ast->GetCompleteType(type.GetOpaqueQualType()))
{
const clang::ObjCObjectType *objc_class_type = qual_type->getAsObjCQualifiedInterfaceType();
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
clang::ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass();
if (superclass_interface_decl)
{
if (bit_offset_ptr)
*bit_offset_ptr = 0;
return CompilerType (ast->getASTContext(), ast->getASTContext()->getObjCInterfaceType(superclass_interface_decl));
}
}
}
}
break;
case clang::Type::ObjCInterface:
if (idx == 0 && ast->GetCompleteType(type.GetOpaqueQualType()))
{
const clang::ObjCObjectType *objc_interface_type = qual_type->getAs<clang::ObjCInterfaceType>();
if (objc_interface_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_interface_type->getInterface();
if (class_interface_decl)
{
clang::ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass();
if (superclass_interface_decl)
{
if (bit_offset_ptr)
*bit_offset_ptr = 0;
return CompilerType (ast->getASTContext(), ast->getASTContext()->getObjCInterfaceType(superclass_interface_decl));
}
}
}
}
break;
case clang::Type::Typedef:
return GetDirectBaseClassAtIndex (CompilerType (ast, llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr()), idx, bit_offset_ptr);
case clang::Type::Elaborated:
return GetDirectBaseClassAtIndex (CompilerType (ast, llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr()), idx, bit_offset_ptr);
case clang::Type::Paren:
return GetDirectBaseClassAtIndex (CompilerType (ast, llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr()), idx, bit_offset_ptr);
default:
break;
}
return CompilerType();
}
CompilerType
ClangASTContext::GetVirtualBaseClassAtIndex (const CompilerType& type, size_t idx, uint32_t *bit_offset_ptr)
{
if (!type)
return CompilerType();
ClangASTContext *ast = type.GetTypeSystem()->AsClangASTContext();
if (!ast)
return CompilerType();
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (ast->GetCompleteType(type.GetOpaqueQualType()))
{
const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
uint32_t curr_idx = 0;
clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->vbases_begin(), base_class_end = cxx_record_decl->vbases_end();
base_class != base_class_end;
++base_class, ++curr_idx)
{
if (curr_idx == idx)
{
if (bit_offset_ptr)
{
const clang::ASTRecordLayout &record_layout = ast->getASTContext()->getASTRecordLayout(cxx_record_decl);
const clang::CXXRecordDecl *base_class_decl = llvm::cast<clang::CXXRecordDecl>(base_class->getType()->getAs<clang::RecordType>()->getDecl());
*bit_offset_ptr = record_layout.getVBaseClassOffset(base_class_decl).getQuantity() * 8;
}
return CompilerType (ast, base_class->getType().getAsOpaquePtr());
}
}
}
}
break;
case clang::Type::Typedef:
return GetVirtualBaseClassAtIndex (CompilerType (ast, llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr()), idx, bit_offset_ptr);
case clang::Type::Elaborated:
return GetVirtualBaseClassAtIndex (CompilerType (ast, llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr()), idx, bit_offset_ptr);
case clang::Type::Paren:
return GetVirtualBaseClassAtIndex (CompilerType (ast, llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr()), idx, bit_offset_ptr);
default:
break;
}
return CompilerType();
}
static clang_type_t
GetObjCFieldAtIndex (clang::ASTContext *ast,
clang::ObjCInterfaceDecl *class_interface_decl,
size_t idx,
std::string& name,
uint64_t *bit_offset_ptr,
uint32_t *bitfield_bit_size_ptr,
bool *is_bitfield_ptr)
{
if (class_interface_decl)
{
if (idx < (class_interface_decl->ivar_size()))
{
clang::ObjCInterfaceDecl::ivar_iterator ivar_pos, ivar_end = class_interface_decl->ivar_end();
uint32_t ivar_idx = 0;
for (ivar_pos = class_interface_decl->ivar_begin(); ivar_pos != ivar_end; ++ivar_pos, ++ivar_idx)
{
if (ivar_idx == idx)
{
const clang::ObjCIvarDecl* ivar_decl = *ivar_pos;
clang::QualType ivar_qual_type(ivar_decl->getType());
name.assign(ivar_decl->getNameAsString());
if (bit_offset_ptr)
{
const clang::ASTRecordLayout &interface_layout = ast->getASTObjCInterfaceLayout(class_interface_decl);
*bit_offset_ptr = interface_layout.getFieldOffset (ivar_idx);
}
const bool is_bitfield = ivar_pos->isBitField();
if (bitfield_bit_size_ptr)
{
*bitfield_bit_size_ptr = 0;
if (is_bitfield && ast)
{
clang::Expr *bitfield_bit_size_expr = ivar_pos->getBitWidth();
llvm::APSInt bitfield_apsint;
if (bitfield_bit_size_expr && bitfield_bit_size_expr->EvaluateAsInt(bitfield_apsint, *ast))
{
*bitfield_bit_size_ptr = bitfield_apsint.getLimitedValue();
}
}
}
if (is_bitfield_ptr)
*is_bitfield_ptr = is_bitfield;
return ivar_qual_type.getAsOpaquePtr();
}
}
}
}
return nullptr;
}
CompilerType
ClangASTContext::GetFieldAtIndex (void* type, size_t idx,
std::string& name,
uint64_t *bit_offset_ptr,
uint32_t *bitfield_bit_size_ptr,
bool *is_bitfield_ptr)
{
if (!type)
return CompilerType();
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteType(type))
{
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
uint32_t field_idx = 0;
clang::RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field, ++field_idx)
{
if (idx == field_idx)
{
// Print the member type if requested
// Print the member name and equal sign
name.assign(field->getNameAsString());
// Figure out the type byte size (field_type_info.first) and
// alignment (field_type_info.second) from the AST context.
if (bit_offset_ptr)
{
const clang::ASTRecordLayout &record_layout = getASTContext()->getASTRecordLayout(record_decl);
*bit_offset_ptr = record_layout.getFieldOffset (field_idx);
}
const bool is_bitfield = field->isBitField();
if (bitfield_bit_size_ptr)
{
*bitfield_bit_size_ptr = 0;
if (is_bitfield)
{
clang::Expr *bitfield_bit_size_expr = field->getBitWidth();
llvm::APSInt bitfield_apsint;
if (bitfield_bit_size_expr && bitfield_bit_size_expr->EvaluateAsInt(bitfield_apsint, *getASTContext()))
{
*bitfield_bit_size_ptr = bitfield_apsint.getLimitedValue();
}
}
}
if (is_bitfield_ptr)
*is_bitfield_ptr = is_bitfield;
return CompilerType (getASTContext(), field->getType());
}
}
}
break;
case clang::Type::ObjCObjectPointer:
if (GetCompleteType(type))
{
const clang::ObjCObjectPointerType *objc_class_type = qual_type->getAsObjCInterfacePointerType();
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterfaceDecl();
return CompilerType (this, GetObjCFieldAtIndex(getASTContext(), class_interface_decl, idx, name, bit_offset_ptr, bitfield_bit_size_ptr, is_bitfield_ptr));
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteType(type))
{
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
assert (objc_class_type);
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
return CompilerType (this, GetObjCFieldAtIndex(getASTContext(), class_interface_decl, idx, name, bit_offset_ptr, bitfield_bit_size_ptr, is_bitfield_ptr));
}
}
break;
case clang::Type::Typedef:
return CompilerType (getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType()).
GetFieldAtIndex (idx,
name,
bit_offset_ptr,
bitfield_bit_size_ptr,
is_bitfield_ptr);
case clang::Type::Elaborated:
return CompilerType (getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType()).
GetFieldAtIndex (idx,
name,
bit_offset_ptr,
bitfield_bit_size_ptr,
is_bitfield_ptr);
case clang::Type::Paren:
return CompilerType (getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar()).
GetFieldAtIndex (idx,
name,
bit_offset_ptr,
bitfield_bit_size_ptr,
is_bitfield_ptr);
default:
break;
}
return CompilerType();
}
// If a pointer to a pointee type (the clang_type arg) says that it has no
// children, then we either need to trust it, or override it and return a
// different result. For example, an "int *" has one child that is an integer,
// but a function pointer doesn't have any children. Likewise if a Record type
// claims it has no children, then there really is nothing to show.
uint32_t
ClangASTContext::GetNumPointeeChildren (clang::QualType type)
{
if (type.isNull())
return 0;
clang::QualType qual_type(type.getCanonicalType());
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Builtin:
switch (llvm::cast<clang::BuiltinType>(qual_type)->getKind())
{
case clang::BuiltinType::UnknownAny:
case clang::BuiltinType::Void:
case clang::BuiltinType::NullPtr:
case clang::BuiltinType::OCLEvent:
case clang::BuiltinType::OCLImage1d:
case clang::BuiltinType::OCLImage1dArray:
case clang::BuiltinType::OCLImage1dBuffer:
case clang::BuiltinType::OCLImage2d:
case clang::BuiltinType::OCLImage2dArray:
case clang::BuiltinType::OCLImage3d:
case clang::BuiltinType::OCLSampler:
return 0;
case clang::BuiltinType::Bool:
case clang::BuiltinType::Char_U:
case clang::BuiltinType::UChar:
case clang::BuiltinType::WChar_U:
case clang::BuiltinType::Char16:
case clang::BuiltinType::Char32:
case clang::BuiltinType::UShort:
case clang::BuiltinType::UInt:
case clang::BuiltinType::ULong:
case clang::BuiltinType::ULongLong:
case clang::BuiltinType::UInt128:
case clang::BuiltinType::Char_S:
case clang::BuiltinType::SChar:
case clang::BuiltinType::WChar_S:
case clang::BuiltinType::Short:
case clang::BuiltinType::Int:
case clang::BuiltinType::Long:
case clang::BuiltinType::LongLong:
case clang::BuiltinType::Int128:
case clang::BuiltinType::Float:
case clang::BuiltinType::Double:
case clang::BuiltinType::LongDouble:
case clang::BuiltinType::Dependent:
case clang::BuiltinType::Overload:
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
case clang::BuiltinType::ObjCSel:
case clang::BuiltinType::BoundMember:
case clang::BuiltinType::Half:
case clang::BuiltinType::ARCUnbridgedCast:
case clang::BuiltinType::PseudoObject:
case clang::BuiltinType::BuiltinFn:
return 1;
}
break;
case clang::Type::Complex: return 1;
case clang::Type::Pointer: return 1;
case clang::Type::BlockPointer: return 0; // If block pointers don't have debug info, then no children for them
case clang::Type::LValueReference: return 1;
case clang::Type::RValueReference: return 1;
case clang::Type::MemberPointer: return 0;
case clang::Type::ConstantArray: return 0;
case clang::Type::IncompleteArray: return 0;
case clang::Type::VariableArray: return 0;
case clang::Type::DependentSizedArray: return 0;
case clang::Type::DependentSizedExtVector: return 0;
case clang::Type::Vector: return 0;
case clang::Type::ExtVector: return 0;
case clang::Type::FunctionProto: return 0; // When we function pointers, they have no children...
case clang::Type::FunctionNoProto: return 0; // When we function pointers, they have no children...
case clang::Type::UnresolvedUsing: return 0;
case clang::Type::Paren: return GetNumPointeeChildren (llvm::cast<clang::ParenType>(qual_type)->desugar());
case clang::Type::Typedef: return GetNumPointeeChildren (llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType());
case clang::Type::Elaborated: return GetNumPointeeChildren (llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType());
case clang::Type::TypeOfExpr: return 0;
case clang::Type::TypeOf: return 0;
case clang::Type::Decltype: return 0;
case clang::Type::Record: return 0;
case clang::Type::Enum: return 1;
case clang::Type::TemplateTypeParm: return 1;
case clang::Type::SubstTemplateTypeParm: return 1;
case clang::Type::TemplateSpecialization: return 1;
case clang::Type::InjectedClassName: return 0;
case clang::Type::DependentName: return 1;
case clang::Type::DependentTemplateSpecialization: return 1;
case clang::Type::ObjCObject: return 0;
case clang::Type::ObjCInterface: return 0;
case clang::Type::ObjCObjectPointer: return 1;
default:
break;
}
return 0;
}
CompilerType
ClangASTContext::GetChildClangTypeAtIndex (void* type, ExecutionContext *exe_ctx,
size_t idx,
bool transparent_pointers,
bool omit_empty_base_classes,
bool ignore_array_bounds,
std::string& child_name,
uint32_t &child_byte_size,
int32_t &child_byte_offset,
uint32_t &child_bitfield_bit_size,
uint32_t &child_bitfield_bit_offset,
bool &child_is_base_class,
bool &child_is_deref_of_parent,
ValueObject *valobj)
{
if (!type)
return CompilerType();
clang::QualType parent_qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass parent_type_class = parent_qual_type->getTypeClass();
child_bitfield_bit_size = 0;
child_bitfield_bit_offset = 0;
child_is_base_class = false;
const bool idx_is_valid = idx < GetNumChildren (type, omit_empty_base_classes);
uint32_t bit_offset;
switch (parent_type_class)
{
case clang::Type::Builtin:
if (idx_is_valid)
{
switch (llvm::cast<clang::BuiltinType>(parent_qual_type)->getKind())
{
case clang::BuiltinType::ObjCId:
case clang::BuiltinType::ObjCClass:
child_name = "isa";
child_byte_size = getASTContext()->getTypeSize(getASTContext()->ObjCBuiltinClassTy) / CHAR_BIT;
return CompilerType (getASTContext(), getASTContext()->ObjCBuiltinClassTy);
default:
break;
}
}
break;
case clang::Type::Record:
if (idx_is_valid && GetCompleteType(type))
{
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(parent_qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
const clang::ASTRecordLayout &record_layout = getASTContext()->getASTRecordLayout(record_decl);
uint32_t child_idx = 0;
const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl)
{
// We might have base classes to print out first
clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
const clang::CXXRecordDecl *base_class_decl = nullptr;
// Skip empty base classes
if (omit_empty_base_classes)
{
base_class_decl = llvm::cast<clang::CXXRecordDecl>(base_class->getType()->getAs<clang::RecordType>()->getDecl());
if (ClangASTContext::RecordHasFields(base_class_decl) == false)
continue;
}
if (idx == child_idx)
{
if (base_class_decl == nullptr)
base_class_decl = llvm::cast<clang::CXXRecordDecl>(base_class->getType()->getAs<clang::RecordType>()->getDecl());
if (base_class->isVirtual())
{
bool handled = false;
if (valobj)
{
Error err;
AddressType addr_type = eAddressTypeInvalid;
lldb::addr_t vtable_ptr_addr = valobj->GetCPPVTableAddress(addr_type);
if (vtable_ptr_addr != LLDB_INVALID_ADDRESS && addr_type == eAddressTypeLoad)
{
ExecutionContext exe_ctx (valobj->GetExecutionContextRef());
Process *process = exe_ctx.GetProcessPtr();
if (process)
{
clang::VTableContextBase *vtable_ctx = getASTContext()->getVTableContext();
if (vtable_ctx)
{
if (vtable_ctx->isMicrosoft())
{
clang::MicrosoftVTableContext *msoft_vtable_ctx = static_cast<clang::MicrosoftVTableContext *>(vtable_ctx);
if (vtable_ptr_addr)
{
const lldb::addr_t vbtable_ptr_addr = vtable_ptr_addr + record_layout.getVBPtrOffset().getQuantity();
const lldb::addr_t vbtable_ptr = process->ReadPointerFromMemory(vbtable_ptr_addr, err);
if (vbtable_ptr != LLDB_INVALID_ADDRESS)
{
// Get the index into the virtual base table. The index is the index in uint32_t from vbtable_ptr
const unsigned vbtable_index = msoft_vtable_ctx->getVBTableIndex(cxx_record_decl, base_class_decl);
const lldb::addr_t base_offset_addr = vbtable_ptr + vbtable_index * 4;
const uint32_t base_offset = process->ReadUnsignedIntegerFromMemory(base_offset_addr, 4, UINT32_MAX, err);
if (base_offset != UINT32_MAX)
{
handled = true;
bit_offset = base_offset * 8;
}
}
}
}
else
{
clang::ItaniumVTableContext *itanium_vtable_ctx = static_cast<clang::ItaniumVTableContext *>(vtable_ctx);
if (vtable_ptr_addr)
{
const lldb::addr_t vtable_ptr = process->ReadPointerFromMemory(vtable_ptr_addr, err);
if (vtable_ptr != LLDB_INVALID_ADDRESS)
{
clang::CharUnits base_offset_offset = itanium_vtable_ctx->getVirtualBaseOffsetOffset(cxx_record_decl, base_class_decl);
const lldb::addr_t base_offset_addr = vtable_ptr + base_offset_offset.getQuantity();
const uint32_t base_offset = process->ReadUnsignedIntegerFromMemory(base_offset_addr, 4, UINT32_MAX, err);
if (base_offset != UINT32_MAX)
{
handled = true;
bit_offset = base_offset * 8;
}
}
}
}
}
}
}
}
if (!handled)
bit_offset = record_layout.getVBaseClassOffset(base_class_decl).getQuantity() * 8;
}
else
bit_offset = record_layout.getBaseClassOffset(base_class_decl).getQuantity() * 8;
// Base classes should be a multiple of 8 bits in size
child_byte_offset = bit_offset/8;
CompilerType base_class_clang_type(getASTContext(), base_class->getType());
child_name = base_class_clang_type.GetTypeName().AsCString("");
uint64_t base_class_clang_type_bit_size = base_class_clang_type.GetBitSize(exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL);
// Base classes bit sizes should be a multiple of 8 bits in size
assert (base_class_clang_type_bit_size % 8 == 0);
child_byte_size = base_class_clang_type_bit_size / 8;
child_is_base_class = true;
return base_class_clang_type;
}
// We don't increment the child index in the for loop since we might
// be skipping empty base classes
++child_idx;
}
}
// Make sure index is in range...
uint32_t field_idx = 0;
clang::RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field, ++field_idx, ++child_idx)
{
if (idx == child_idx)
{
// Print the member type if requested
// Print the member name and equal sign
child_name.assign(field->getNameAsString().c_str());
// Figure out the type byte size (field_type_info.first) and
// alignment (field_type_info.second) from the AST context.
CompilerType field_clang_type (getASTContext(), field->getType());
assert(field_idx < record_layout.getFieldCount());
child_byte_size = field_clang_type.GetByteSize(exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL);
// Figure out the field offset within the current struct/union/class type
bit_offset = record_layout.getFieldOffset (field_idx);
child_byte_offset = bit_offset / 8;
if (ClangASTContext::FieldIsBitfield (getASTContext(), *field, child_bitfield_bit_size))
child_bitfield_bit_offset = bit_offset % 8;
return field_clang_type;
}
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (idx_is_valid && GetCompleteType(type))
{
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(parent_qual_type.getTypePtr());
assert (objc_class_type);
if (objc_class_type)
{
uint32_t child_idx = 0;
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
const clang::ASTRecordLayout &interface_layout = getASTContext()->getASTObjCInterfaceLayout(class_interface_decl);
clang::ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass();
if (superclass_interface_decl)
{
if (omit_empty_base_classes)
{
CompilerType base_class_clang_type (getASTContext(), getASTContext()->getObjCInterfaceType(superclass_interface_decl));
if (base_class_clang_type.GetNumChildren(omit_empty_base_classes) > 0)
{
if (idx == 0)
{
clang::QualType ivar_qual_type(getASTContext()->getObjCInterfaceType(superclass_interface_decl));
child_name.assign(superclass_interface_decl->getNameAsString().c_str());
clang::TypeInfo ivar_type_info = getASTContext()->getTypeInfo(ivar_qual_type.getTypePtr());
child_byte_size = ivar_type_info.Width / 8;
child_byte_offset = 0;
child_is_base_class = true;
return CompilerType (getASTContext(), ivar_qual_type);
}
++child_idx;
}
}
else
++child_idx;
}
const uint32_t superclass_idx = child_idx;
if (idx < (child_idx + class_interface_decl->ivar_size()))
{
clang::ObjCInterfaceDecl::ivar_iterator ivar_pos, ivar_end = class_interface_decl->ivar_end();
for (ivar_pos = class_interface_decl->ivar_begin(); ivar_pos != ivar_end; ++ivar_pos)
{
if (child_idx == idx)
{
clang::ObjCIvarDecl* ivar_decl = *ivar_pos;
clang::QualType ivar_qual_type(ivar_decl->getType());
child_name.assign(ivar_decl->getNameAsString().c_str());
clang::TypeInfo ivar_type_info = getASTContext()->getTypeInfo(ivar_qual_type.getTypePtr());
child_byte_size = ivar_type_info.Width / 8;
// Figure out the field offset within the current struct/union/class type
// For ObjC objects, we can't trust the bit offset we get from the Clang AST, since
// that doesn't account for the space taken up by unbacked properties, or from
// the changing size of base classes that are newer than this class.
// So if we have a process around that we can ask about this object, do so.
child_byte_offset = LLDB_INVALID_IVAR_OFFSET;
Process *process = nullptr;
if (exe_ctx)
process = exe_ctx->GetProcessPtr();
if (process)
{
ObjCLanguageRuntime *objc_runtime = process->GetObjCLanguageRuntime();
if (objc_runtime != nullptr)
{
CompilerType parent_ast_type (getASTContext(), parent_qual_type);
child_byte_offset = objc_runtime->GetByteOffsetForIvar (parent_ast_type, ivar_decl->getNameAsString().c_str());
}
}
// Setting this to UINT32_MAX to make sure we don't compute it twice...
bit_offset = UINT32_MAX;
if (child_byte_offset == static_cast<int32_t>(LLDB_INVALID_IVAR_OFFSET))
{
bit_offset = interface_layout.getFieldOffset (child_idx - superclass_idx);
child_byte_offset = bit_offset / 8;
}
// Note, the ObjC Ivar Byte offset is just that, it doesn't account for the bit offset
// of a bitfield within its containing object. So regardless of where we get the byte
// offset from, we still need to get the bit offset for bitfields from the layout.
if (ClangASTContext::FieldIsBitfield (getASTContext(), ivar_decl, child_bitfield_bit_size))
{
if (bit_offset == UINT32_MAX)
bit_offset = interface_layout.getFieldOffset (child_idx - superclass_idx);
child_bitfield_bit_offset = bit_offset % 8;
}
return CompilerType (getASTContext(), ivar_qual_type);
}
++child_idx;
}
}
}
}
}
break;
case clang::Type::ObjCObjectPointer:
if (idx_is_valid)
{
CompilerType pointee_clang_type (GetPointeeType(type));
if (transparent_pointers && pointee_clang_type.IsAggregateType())
{
child_is_deref_of_parent = false;
bool tmp_child_is_deref_of_parent = false;
return pointee_clang_type.GetChildClangTypeAtIndex (exe_ctx,
idx,
transparent_pointers,
omit_empty_base_classes,
ignore_array_bounds,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
tmp_child_is_deref_of_parent,
valobj);
}
else
{
child_is_deref_of_parent = true;
const char *parent_name = valobj ? valobj->GetName().GetCString() : NULL;
if (parent_name)
{
child_name.assign(1, '*');
child_name += parent_name;
}
// We have a pointer to an simple type
if (idx == 0 && pointee_clang_type.GetCompleteType())
{
child_byte_size = pointee_clang_type.GetByteSize(exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL);
child_byte_offset = 0;
return pointee_clang_type;
}
}
}
break;
case clang::Type::Vector:
case clang::Type::ExtVector:
if (idx_is_valid)
{
const clang::VectorType *array = llvm::cast<clang::VectorType>(parent_qual_type.getTypePtr());
if (array)
{
CompilerType element_type (getASTContext(), array->getElementType());
if (element_type.GetCompleteType())
{
char element_name[64];
::snprintf (element_name, sizeof (element_name), "[%" PRIu64 "]", static_cast<uint64_t>(idx));
child_name.assign(element_name);
child_byte_size = element_type.GetByteSize(exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL);
child_byte_offset = (int32_t)idx * (int32_t)child_byte_size;
return element_type;
}
}
}
break;
case clang::Type::ConstantArray:
case clang::Type::IncompleteArray:
if (ignore_array_bounds || idx_is_valid)
{
const clang::ArrayType *array = GetQualType(type)->getAsArrayTypeUnsafe();
if (array)
{
CompilerType element_type (getASTContext(), array->getElementType());
if (element_type.GetCompleteType())
{
char element_name[64];
::snprintf (element_name, sizeof (element_name), "[%" PRIu64 "]", static_cast<uint64_t>(idx));
child_name.assign(element_name);
child_byte_size = element_type.GetByteSize(exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL);
child_byte_offset = (int32_t)idx * (int32_t)child_byte_size;
return element_type;
}
}
}
break;
case clang::Type::Pointer:
if (idx_is_valid)
{
CompilerType pointee_clang_type (GetPointeeType(type));
// Don't dereference "void *" pointers
if (pointee_clang_type.IsVoidType())
return CompilerType();
if (transparent_pointers && pointee_clang_type.IsAggregateType ())
{
child_is_deref_of_parent = false;
bool tmp_child_is_deref_of_parent = false;
return pointee_clang_type.GetChildClangTypeAtIndex (exe_ctx,
idx,
transparent_pointers,
omit_empty_base_classes,
ignore_array_bounds,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
tmp_child_is_deref_of_parent,
valobj);
}
else
{
child_is_deref_of_parent = true;
const char *parent_name = valobj ? valobj->GetName().GetCString() : NULL;
if (parent_name)
{
child_name.assign(1, '*');
child_name += parent_name;
}
// We have a pointer to an simple type
if (idx == 0)
{
child_byte_size = pointee_clang_type.GetByteSize(exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL);
child_byte_offset = 0;
return pointee_clang_type;
}
}
}
break;
case clang::Type::LValueReference:
case clang::Type::RValueReference:
if (idx_is_valid)
{
const clang::ReferenceType *reference_type = llvm::cast<clang::ReferenceType>(parent_qual_type.getTypePtr());
CompilerType pointee_clang_type (getASTContext(), reference_type->getPointeeType());
if (transparent_pointers && pointee_clang_type.IsAggregateType ())
{
child_is_deref_of_parent = false;
bool tmp_child_is_deref_of_parent = false;
return pointee_clang_type.GetChildClangTypeAtIndex (exe_ctx,
idx,
transparent_pointers,
omit_empty_base_classes,
ignore_array_bounds,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
tmp_child_is_deref_of_parent,
valobj);
}
else
{
const char *parent_name = valobj ? valobj->GetName().GetCString() : NULL;
if (parent_name)
{
child_name.assign(1, '&');
child_name += parent_name;
}
// We have a pointer to an simple type
if (idx == 0)
{
child_byte_size = pointee_clang_type.GetByteSize(exe_ctx ? exe_ctx->GetBestExecutionContextScope() : NULL);
child_byte_offset = 0;
return pointee_clang_type;
}
}
}
break;
case clang::Type::Typedef:
{
CompilerType typedefed_clang_type (getASTContext(), llvm::cast<clang::TypedefType>(parent_qual_type)->getDecl()->getUnderlyingType());
return typedefed_clang_type.GetChildClangTypeAtIndex (exe_ctx,
idx,
transparent_pointers,
omit_empty_base_classes,
ignore_array_bounds,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
child_is_deref_of_parent,
valobj);
}
break;
case clang::Type::Elaborated:
{
CompilerType elaborated_clang_type (getASTContext(), llvm::cast<clang::ElaboratedType>(parent_qual_type)->getNamedType());
return elaborated_clang_type.GetChildClangTypeAtIndex (exe_ctx,
idx,
transparent_pointers,
omit_empty_base_classes,
ignore_array_bounds,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
child_is_deref_of_parent,
valobj);
}
case clang::Type::Paren:
{
CompilerType paren_clang_type (getASTContext(), llvm::cast<clang::ParenType>(parent_qual_type)->desugar());
return paren_clang_type.GetChildClangTypeAtIndex (exe_ctx,
idx,
transparent_pointers,
omit_empty_base_classes,
ignore_array_bounds,
child_name,
child_byte_size,
child_byte_offset,
child_bitfield_bit_size,
child_bitfield_bit_offset,
child_is_base_class,
child_is_deref_of_parent,
valobj);
}
default:
break;
}
return CompilerType();
}
static uint32_t
GetIndexForRecordBase
(
const clang::RecordDecl *record_decl,
const clang::CXXBaseSpecifier *base_spec,
bool omit_empty_base_classes
)
{
uint32_t child_idx = 0;
const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
// const char *super_name = record_decl->getNameAsCString();
// const char *base_name = base_spec->getType()->getAs<clang::RecordType>()->getDecl()->getNameAsCString();
// printf ("GetIndexForRecordChild (%s, %s)\n", super_name, base_name);
//
if (cxx_record_decl)
{
clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
if (omit_empty_base_classes)
{
if (BaseSpecifierIsEmpty (base_class))
continue;
}
// printf ("GetIndexForRecordChild (%s, %s) base[%u] = %s\n", super_name, base_name,
// child_idx,
// base_class->getType()->getAs<clang::RecordType>()->getDecl()->getNameAsCString());
//
//
if (base_class == base_spec)
return child_idx;
++child_idx;
}
}
return UINT32_MAX;
}
static uint32_t
GetIndexForRecordChild (const clang::RecordDecl *record_decl,
clang::NamedDecl *canonical_decl,
bool omit_empty_base_classes)
{
uint32_t child_idx = ClangASTContext::GetNumBaseClasses (llvm::dyn_cast<clang::CXXRecordDecl>(record_decl),
omit_empty_base_classes);
clang::RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end();
field != field_end;
++field, ++child_idx)
{
if (field->getCanonicalDecl() == canonical_decl)
return child_idx;
}
return UINT32_MAX;
}
// Look for a child member (doesn't include base classes, but it does include
// their members) in the type hierarchy. Returns an index path into "clang_type"
// on how to reach the appropriate member.
//
// class A
// {
// public:
// int m_a;
// int m_b;
// };
//
// class B
// {
// };
//
// class C :
// public B,
// public A
// {
// };
//
// If we have a clang type that describes "class C", and we wanted to looked
// "m_b" in it:
//
// With omit_empty_base_classes == false we would get an integer array back with:
// { 1, 1 }
// The first index 1 is the child index for "class A" within class C
// The second index 1 is the child index for "m_b" within class A
//
// With omit_empty_base_classes == true we would get an integer array back with:
// { 0, 1 }
// The first index 0 is the child index for "class A" within class C (since class B doesn't have any members it doesn't count)
// The second index 1 is the child index for "m_b" within class A
size_t
ClangASTContext::GetIndexOfChildMemberWithName (void* type, const char *name,
bool omit_empty_base_classes,
std::vector<uint32_t>& child_indexes)
{
if (type && name && name[0])
{
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteType(type))
{
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
uint32_t child_idx = 0;
const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
// Try and find a field that matches NAME
clang::RecordDecl::field_iterator field, field_end;
llvm::StringRef name_sref(name);
for (field = record_decl->field_begin(), field_end = record_decl->field_end();
field != field_end;
++field, ++child_idx)
{
llvm::StringRef field_name = field->getName();
if (field_name.empty())
{
CompilerType field_type(getASTContext(),field->getType());
child_indexes.push_back(child_idx);
if (field_type.GetIndexOfChildMemberWithName(name, omit_empty_base_classes, child_indexes))
return child_indexes.size();
child_indexes.pop_back();
}
else if (field_name.equals (name_sref))
{
// We have to add on the number of base classes to this index!
child_indexes.push_back (child_idx + ClangASTContext::GetNumBaseClasses (cxx_record_decl, omit_empty_base_classes));
return child_indexes.size();
}
}
if (cxx_record_decl)
{
const clang::RecordDecl *parent_record_decl = cxx_record_decl;
//printf ("parent = %s\n", parent_record_decl->getNameAsCString());
//const Decl *root_cdecl = cxx_record_decl->getCanonicalDecl();
// Didn't find things easily, lets let clang do its thang...
clang::IdentifierInfo & ident_ref = getASTContext()->Idents.get(name_sref);
clang::DeclarationName decl_name(&ident_ref);
clang::CXXBasePaths paths;
if (cxx_record_decl->lookupInBases([decl_name](const clang::CXXBaseSpecifier *specifier, clang::CXXBasePath &path) {
return clang::CXXRecordDecl::FindOrdinaryMember(specifier, path, decl_name);
},
paths))
{
clang::CXXBasePaths::const_paths_iterator path, path_end = paths.end();
for (path = paths.begin(); path != path_end; ++path)
{
const size_t num_path_elements = path->size();
for (size_t e=0; e<num_path_elements; ++e)
{
clang::CXXBasePathElement elem = (*path)[e];
child_idx = GetIndexForRecordBase (parent_record_decl, elem.Base, omit_empty_base_classes);
if (child_idx == UINT32_MAX)
{
child_indexes.clear();
return 0;
}
else
{
child_indexes.push_back (child_idx);
parent_record_decl = llvm::cast<clang::RecordDecl>(elem.Base->getType()->getAs<clang::RecordType>()->getDecl());
}
}
for (clang::NamedDecl *path_decl : path->Decls)
{
child_idx = GetIndexForRecordChild (parent_record_decl, path_decl, omit_empty_base_classes);
if (child_idx == UINT32_MAX)
{
child_indexes.clear();
return 0;
}
else
{
child_indexes.push_back (child_idx);
}
}
}
return child_indexes.size();
}
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteType(type))
{
llvm::StringRef name_sref(name);
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
assert (objc_class_type);
if (objc_class_type)
{
uint32_t child_idx = 0;
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
clang::ObjCInterfaceDecl::ivar_iterator ivar_pos, ivar_end = class_interface_decl->ivar_end();
clang::ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass();
for (ivar_pos = class_interface_decl->ivar_begin(); ivar_pos != ivar_end; ++ivar_pos, ++child_idx)
{
const clang::ObjCIvarDecl* ivar_decl = *ivar_pos;
if (ivar_decl->getName().equals (name_sref))
{
if ((!omit_empty_base_classes && superclass_interface_decl) ||
( omit_empty_base_classes && ObjCDeclHasIVars (superclass_interface_decl, true)))
++child_idx;
child_indexes.push_back (child_idx);
return child_indexes.size();
}
}
if (superclass_interface_decl)
{
// The super class index is always zero for ObjC classes,
// so we push it onto the child indexes in case we find
// an ivar in our superclass...
child_indexes.push_back (0);
CompilerType superclass_clang_type (getASTContext(), getASTContext()->getObjCInterfaceType(superclass_interface_decl));
if (superclass_clang_type.GetIndexOfChildMemberWithName (name,
omit_empty_base_classes,
child_indexes))
{
// We did find an ivar in a superclass so just
// return the results!
return child_indexes.size();
}
// We didn't find an ivar matching "name" in our
// superclass, pop the superclass zero index that
// we pushed on above.
child_indexes.pop_back();
}
}
}
}
break;
case clang::Type::ObjCObjectPointer:
{
CompilerType objc_object_clang_type (getASTContext(), llvm::cast<clang::ObjCObjectPointerType>(qual_type.getTypePtr())->getPointeeType());
return objc_object_clang_type.GetIndexOfChildMemberWithName (name,
omit_empty_base_classes,
child_indexes);
}
break;
case clang::Type::ConstantArray:
{
// const clang::ConstantArrayType *array = llvm::cast<clang::ConstantArrayType>(parent_qual_type.getTypePtr());
// const uint64_t element_count = array->getSize().getLimitedValue();
//
// if (idx < element_count)
// {
// std::pair<uint64_t, unsigned> field_type_info = ast->getTypeInfo(array->getElementType());
//
// char element_name[32];
// ::snprintf (element_name, sizeof (element_name), "%s[%u]", parent_name ? parent_name : "", idx);
//
// child_name.assign(element_name);
// assert(field_type_info.first % 8 == 0);
// child_byte_size = field_type_info.first / 8;
// child_byte_offset = idx * child_byte_size;
// return array->getElementType().getAsOpaquePtr();
// }
}
break;
// case clang::Type::MemberPointerType:
// {
// MemberPointerType *mem_ptr_type = llvm::cast<MemberPointerType>(qual_type.getTypePtr());
// clang::QualType pointee_type = mem_ptr_type->getPointeeType();
//
// if (ClangASTContext::IsAggregateType (pointee_type.getAsOpaquePtr()))
// {
// return GetIndexOfChildWithName (ast,
// mem_ptr_type->getPointeeType().getAsOpaquePtr(),
// name);
// }
// }
// break;
//
case clang::Type::LValueReference:
case clang::Type::RValueReference:
{
const clang::ReferenceType *reference_type = llvm::cast<clang::ReferenceType>(qual_type.getTypePtr());
clang::QualType pointee_type(reference_type->getPointeeType());
CompilerType pointee_clang_type (getASTContext(), pointee_type);
if (pointee_clang_type.IsAggregateType ())
{
return pointee_clang_type.GetIndexOfChildMemberWithName (name,
omit_empty_base_classes,
child_indexes);
}
}
break;
case clang::Type::Pointer:
{
CompilerType pointee_clang_type (GetPointeeType(type));
if (pointee_clang_type.IsAggregateType ())
{
return pointee_clang_type.GetIndexOfChildMemberWithName (name,
omit_empty_base_classes,
child_indexes);
}
}
break;
case clang::Type::Typedef:
return CompilerType (getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType()).GetIndexOfChildMemberWithName (name,
omit_empty_base_classes,
child_indexes);
case clang::Type::Elaborated:
return CompilerType (getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType()).GetIndexOfChildMemberWithName (name,
omit_empty_base_classes,
child_indexes);
case clang::Type::Paren:
return CompilerType (getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar()).GetIndexOfChildMemberWithName (name,
omit_empty_base_classes,
child_indexes);
default:
break;
}
}
return 0;
}
// Get the index of the child of "clang_type" whose name matches. This function
// doesn't descend into the children, but only looks one level deep and name
// matches can include base class names.
uint32_t
ClangASTContext::GetIndexOfChildWithName (void* type, const char *name, bool omit_empty_base_classes)
{
if (type && name && name[0])
{
clang::QualType qual_type(GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteType(type))
{
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
uint32_t child_idx = 0;
const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl)
{
clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
// Skip empty base classes
clang::CXXRecordDecl *base_class_decl = llvm::cast<clang::CXXRecordDecl>(base_class->getType()->getAs<clang::RecordType>()->getDecl());
if (omit_empty_base_classes && ClangASTContext::RecordHasFields(base_class_decl) == false)
continue;
CompilerType base_class_clang_type (getASTContext(), base_class->getType());
std::string base_class_type_name (base_class_clang_type.GetTypeName().AsCString(""));
if (base_class_type_name.compare (name) == 0)
return child_idx;
++child_idx;
}
}
// Try and find a field that matches NAME
clang::RecordDecl::field_iterator field, field_end;
llvm::StringRef name_sref(name);
for (field = record_decl->field_begin(), field_end = record_decl->field_end();
field != field_end;
++field, ++child_idx)
{
if (field->getName().equals (name_sref))
return child_idx;
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
if (GetCompleteType(type))
{
llvm::StringRef name_sref(name);
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
assert (objc_class_type);
if (objc_class_type)
{
uint32_t child_idx = 0;
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
clang::ObjCInterfaceDecl::ivar_iterator ivar_pos, ivar_end = class_interface_decl->ivar_end();
clang::ObjCInterfaceDecl *superclass_interface_decl = class_interface_decl->getSuperClass();
for (ivar_pos = class_interface_decl->ivar_begin(); ivar_pos != ivar_end; ++ivar_pos, ++child_idx)
{
const clang::ObjCIvarDecl* ivar_decl = *ivar_pos;
if (ivar_decl->getName().equals (name_sref))
{
if ((!omit_empty_base_classes && superclass_interface_decl) ||
( omit_empty_base_classes && ObjCDeclHasIVars (superclass_interface_decl, true)))
++child_idx;
return child_idx;
}
}
if (superclass_interface_decl)
{
if (superclass_interface_decl->getName().equals (name_sref))
return 0;
}
}
}
}
break;
case clang::Type::ObjCObjectPointer:
{
CompilerType pointee_clang_type (getASTContext(), llvm::cast<clang::ObjCObjectPointerType>(qual_type.getTypePtr())->getPointeeType());
return pointee_clang_type.GetIndexOfChildWithName (name, omit_empty_base_classes);
}
break;
case clang::Type::ConstantArray:
{
// const clang::ConstantArrayType *array = llvm::cast<clang::ConstantArrayType>(parent_qual_type.getTypePtr());
// const uint64_t element_count = array->getSize().getLimitedValue();
//
// if (idx < element_count)
// {
// std::pair<uint64_t, unsigned> field_type_info = ast->getTypeInfo(array->getElementType());
//
// char element_name[32];
// ::snprintf (element_name, sizeof (element_name), "%s[%u]", parent_name ? parent_name : "", idx);
//
// child_name.assign(element_name);
// assert(field_type_info.first % 8 == 0);
// child_byte_size = field_type_info.first / 8;
// child_byte_offset = idx * child_byte_size;
// return array->getElementType().getAsOpaquePtr();
// }
}
break;
// case clang::Type::MemberPointerType:
// {
// MemberPointerType *mem_ptr_type = llvm::cast<MemberPointerType>(qual_type.getTypePtr());
// clang::QualType pointee_type = mem_ptr_type->getPointeeType();
//
// if (ClangASTContext::IsAggregateType (pointee_type.getAsOpaquePtr()))
// {
// return GetIndexOfChildWithName (ast,
// mem_ptr_type->getPointeeType().getAsOpaquePtr(),
// name);
// }
// }
// break;
//
case clang::Type::LValueReference:
case clang::Type::RValueReference:
{
const clang::ReferenceType *reference_type = llvm::cast<clang::ReferenceType>(qual_type.getTypePtr());
CompilerType pointee_type (getASTContext(), reference_type->getPointeeType());
if (pointee_type.IsAggregateType ())
{
return pointee_type.GetIndexOfChildWithName (name, omit_empty_base_classes);
}
}
break;
case clang::Type::Pointer:
{
const clang::PointerType *pointer_type = llvm::cast<clang::PointerType>(qual_type.getTypePtr());
CompilerType pointee_type (getASTContext(), pointer_type->getPointeeType());
if (pointee_type.IsAggregateType ())
{
return pointee_type.GetIndexOfChildWithName (name, omit_empty_base_classes);
}
else
{
// if (parent_name)
// {
// child_name.assign(1, '*');
// child_name += parent_name;
// }
//
// // We have a pointer to an simple type
// if (idx == 0)
// {
// std::pair<uint64_t, unsigned> clang_type_info = ast->getTypeInfo(pointee_type);
// assert(clang_type_info.first % 8 == 0);
// child_byte_size = clang_type_info.first / 8;
// child_byte_offset = 0;
// return pointee_type.getAsOpaquePtr();
// }
}
}
break;
case clang::Type::Elaborated:
return CompilerType (getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType()).GetIndexOfChildWithName (name, omit_empty_base_classes);
case clang::Type::Paren:
return CompilerType (getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar()).GetIndexOfChildWithName (name, omit_empty_base_classes);
case clang::Type::Typedef:
return CompilerType (getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType()).GetIndexOfChildWithName (name, omit_empty_base_classes);
default:
break;
}
}
return UINT32_MAX;
}
size_t
ClangASTContext::GetNumTemplateArguments (void* type)
{
if (!type)
return 0;
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteType(type))
{
const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
const clang::ClassTemplateSpecializationDecl *template_decl = llvm::dyn_cast<clang::ClassTemplateSpecializationDecl>(cxx_record_decl);
if (template_decl)
return template_decl->getTemplateArgs().size();
}
}
break;
case clang::Type::Typedef:
return (CompilerType (getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType())).GetNumTemplateArguments();
case clang::Type::Elaborated:
return (CompilerType (getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType())).GetNumTemplateArguments();
case clang::Type::Paren:
return (CompilerType (getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar())).GetNumTemplateArguments();
default:
break;
}
return 0;
}
CompilerType
ClangASTContext::GetTemplateArgument (void* type, size_t arg_idx, lldb::TemplateArgumentKind &kind)
{
if (!type)
return CompilerType();
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
if (GetCompleteType(type))
{
const clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
const clang::ClassTemplateSpecializationDecl *template_decl = llvm::dyn_cast<clang::ClassTemplateSpecializationDecl>(cxx_record_decl);
if (template_decl && arg_idx < template_decl->getTemplateArgs().size())
{
const clang::TemplateArgument &template_arg = template_decl->getTemplateArgs()[arg_idx];
switch (template_arg.getKind())
{
case clang::TemplateArgument::Null:
kind = eTemplateArgumentKindNull;
return CompilerType();
case clang::TemplateArgument::Type:
kind = eTemplateArgumentKindType;
return CompilerType(getASTContext(), template_arg.getAsType());
case clang::TemplateArgument::Declaration:
kind = eTemplateArgumentKindDeclaration;
return CompilerType();
case clang::TemplateArgument::Integral:
kind = eTemplateArgumentKindIntegral;
return CompilerType(getASTContext(), template_arg.getIntegralType());
case clang::TemplateArgument::Template:
kind = eTemplateArgumentKindTemplate;
return CompilerType();
case clang::TemplateArgument::TemplateExpansion:
kind = eTemplateArgumentKindTemplateExpansion;
return CompilerType();
case clang::TemplateArgument::Expression:
kind = eTemplateArgumentKindExpression;
return CompilerType();
case clang::TemplateArgument::Pack:
kind = eTemplateArgumentKindPack;
return CompilerType();
default:
assert (!"Unhandled clang::TemplateArgument::ArgKind");
break;
}
}
}
}
break;
case clang::Type::Typedef:
return (CompilerType (getASTContext(), llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType())).GetTemplateArgument(arg_idx, kind);
case clang::Type::Elaborated:
return (CompilerType (getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType())).GetTemplateArgument(arg_idx, kind);
case clang::Type::Paren:
return (CompilerType (getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar())).GetTemplateArgument(arg_idx, kind);
default:
break;
}
kind = eTemplateArgumentKindNull;
return CompilerType ();
}
static bool
IsOperator (const char *name, clang::OverloadedOperatorKind &op_kind)
{
if (name == nullptr || name[0] == '\0')
return false;
#define OPERATOR_PREFIX "operator"
#define OPERATOR_PREFIX_LENGTH (sizeof (OPERATOR_PREFIX) - 1)
const char *post_op_name = nullptr;
bool no_space = true;
if (::strncmp(name, OPERATOR_PREFIX, OPERATOR_PREFIX_LENGTH))
return false;
post_op_name = name + OPERATOR_PREFIX_LENGTH;
if (post_op_name[0] == ' ')
{
post_op_name++;
no_space = false;
}
#undef OPERATOR_PREFIX
#undef OPERATOR_PREFIX_LENGTH
// This is an operator, set the overloaded operator kind to invalid
// in case this is a conversion operator...
op_kind = clang::NUM_OVERLOADED_OPERATORS;
switch (post_op_name[0])
{
default:
if (no_space)
return false;
break;
case 'n':
if (no_space)
return false;
if (strcmp (post_op_name, "new") == 0)
op_kind = clang::OO_New;
else if (strcmp (post_op_name, "new[]") == 0)
op_kind = clang::OO_Array_New;
break;
case 'd':
if (no_space)
return false;
if (strcmp (post_op_name, "delete") == 0)
op_kind = clang::OO_Delete;
else if (strcmp (post_op_name, "delete[]") == 0)
op_kind = clang::OO_Array_Delete;
break;
case '+':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Plus;
else if (post_op_name[2] == '\0')
{
if (post_op_name[1] == '=')
op_kind = clang::OO_PlusEqual;
else if (post_op_name[1] == '+')
op_kind = clang::OO_PlusPlus;
}
break;
case '-':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Minus;
else if (post_op_name[2] == '\0')
{
switch (post_op_name[1])
{
case '=': op_kind = clang::OO_MinusEqual; break;
case '-': op_kind = clang::OO_MinusMinus; break;
case '>': op_kind = clang::OO_Arrow; break;
}
}
else if (post_op_name[3] == '\0')
{
if (post_op_name[2] == '*')
op_kind = clang::OO_ArrowStar; break;
}
break;
case '*':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Star;
else if (post_op_name[1] == '=' && post_op_name[2] == '\0')
op_kind = clang::OO_StarEqual;
break;
case '/':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Slash;
else if (post_op_name[1] == '=' && post_op_name[2] == '\0')
op_kind = clang::OO_SlashEqual;
break;
case '%':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Percent;
else if (post_op_name[1] == '=' && post_op_name[2] == '\0')
op_kind = clang::OO_PercentEqual;
break;
case '^':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Caret;
else if (post_op_name[1] == '=' && post_op_name[2] == '\0')
op_kind = clang::OO_CaretEqual;
break;
case '&':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Amp;
else if (post_op_name[2] == '\0')
{
switch (post_op_name[1])
{
case '=': op_kind = clang::OO_AmpEqual; break;
case '&': op_kind = clang::OO_AmpAmp; break;
}
}
break;
case '|':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Pipe;
else if (post_op_name[2] == '\0')
{
switch (post_op_name[1])
{
case '=': op_kind = clang::OO_PipeEqual; break;
case '|': op_kind = clang::OO_PipePipe; break;
}
}
break;
case '~':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Tilde;
break;
case '!':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Exclaim;
else if (post_op_name[1] == '=' && post_op_name[2] == '\0')
op_kind = clang::OO_ExclaimEqual;
break;
case '=':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Equal;
else if (post_op_name[1] == '=' && post_op_name[2] == '\0')
op_kind = clang::OO_EqualEqual;
break;
case '<':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Less;
else if (post_op_name[2] == '\0')
{
switch (post_op_name[1])
{
case '<': op_kind = clang::OO_LessLess; break;
case '=': op_kind = clang::OO_LessEqual; break;
}
}
else if (post_op_name[3] == '\0')
{
if (post_op_name[2] == '=')
op_kind = clang::OO_LessLessEqual;
}
break;
case '>':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Greater;
else if (post_op_name[2] == '\0')
{
switch (post_op_name[1])
{
case '>': op_kind = clang::OO_GreaterGreater; break;
case '=': op_kind = clang::OO_GreaterEqual; break;
}
}
else if (post_op_name[1] == '>' &&
post_op_name[2] == '=' &&
post_op_name[3] == '\0')
{
op_kind = clang::OO_GreaterGreaterEqual;
}
break;
case ',':
if (post_op_name[1] == '\0')
op_kind = clang::OO_Comma;
break;
case '(':
if (post_op_name[1] == ')' && post_op_name[2] == '\0')
op_kind = clang::OO_Call;
break;
case '[':
if (post_op_name[1] == ']' && post_op_name[2] == '\0')
op_kind = clang::OO_Subscript;
break;
}
return true;
}
clang::EnumDecl *
ClangASTContext::GetAsEnumDecl (const CompilerType& type)
{
const clang::EnumType *enutype = llvm::dyn_cast<clang::EnumType>(GetCanonicalQualType(type));
if (enutype)
return enutype->getDecl();
return NULL;
}
clang::RecordDecl *
ClangASTContext::GetAsRecordDecl (const CompilerType& type)
{
const clang::RecordType *record_type = llvm::dyn_cast<clang::RecordType>(GetCanonicalQualType(type));
if (record_type)
return record_type->getDecl();
return nullptr;
}
clang::CXXRecordDecl *
ClangASTContext::GetAsCXXRecordDecl (void* type)
{
return GetCanonicalQualType(type)->getAsCXXRecordDecl();
}
clang::ObjCInterfaceDecl *
ClangASTContext::GetAsObjCInterfaceDecl (const CompilerType& type)
{
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(GetCanonicalQualType(type));
if (objc_class_type)
return objc_class_type->getInterface();
return nullptr;
}
clang::FieldDecl *
ClangASTContext::AddFieldToRecordType (const CompilerType& type, const char *name,
const CompilerType &field_clang_type,
AccessType access,
uint32_t bitfield_bit_size)
{
if (!type.IsValid() || !field_clang_type.IsValid())
return nullptr;
ClangASTContext* ast = type.GetTypeSystem()->AsClangASTContext();
if (!ast)
return nullptr;
clang::ASTContext* clang_ast = ast->getASTContext();
clang::FieldDecl *field = nullptr;
clang::Expr *bit_width = nullptr;
if (bitfield_bit_size != 0)
{
llvm::APInt bitfield_bit_size_apint(clang_ast->getTypeSize(clang_ast->IntTy), bitfield_bit_size);
bit_width = new (*clang_ast)clang::IntegerLiteral (*clang_ast, bitfield_bit_size_apint, clang_ast->IntTy, clang::SourceLocation());
}
clang::RecordDecl *record_decl = ast->GetAsRecordDecl (type);
if (record_decl)
{
field = clang::FieldDecl::Create (*clang_ast,
record_decl,
clang::SourceLocation(),
clang::SourceLocation(),
name ? &clang_ast->Idents.get(name) : nullptr, // Identifier
GetQualType(field_clang_type), // Field type
nullptr, // TInfo *
bit_width, // BitWidth
false, // Mutable
clang::ICIS_NoInit); // HasInit
if (!name)
{
// Determine whether this field corresponds to an anonymous
// struct or union.
if (const clang::TagType *TagT = field->getType()->getAs<clang::TagType>()) {
if (clang::RecordDecl *Rec = llvm::dyn_cast<clang::RecordDecl>(TagT->getDecl()))
if (!Rec->getDeclName()) {
Rec->setAnonymousStructOrUnion(true);
field->setImplicit();
}
}
}
if (field)
{
field->setAccess (ClangASTContext::ConvertAccessTypeToAccessSpecifier (access));
record_decl->addDecl(field);
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(field);
#endif
}
}
else
{
clang::ObjCInterfaceDecl *class_interface_decl = ast->GetAsObjCInterfaceDecl (type);
if (class_interface_decl)
{
const bool is_synthesized = false;
field_clang_type.GetCompleteType();
field = clang::ObjCIvarDecl::Create (*clang_ast,
class_interface_decl,
clang::SourceLocation(),
clang::SourceLocation(),
name ? &clang_ast->Idents.get(name) : nullptr, // Identifier
GetQualType(field_clang_type), // Field type
nullptr, // TypeSourceInfo *
ConvertAccessTypeToObjCIvarAccessControl (access),
bit_width,
is_synthesized);
if (field)
{
class_interface_decl->addDecl(field);
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(field);
#endif
}
}
}
return field;
}
void
ClangASTContext::BuildIndirectFields (const CompilerType& type)
{
ClangASTContext* ast = nullptr;
if (type)
ast = type.GetTypeSystem()->AsClangASTContext();
if (!ast)
return;
clang::RecordDecl *record_decl = ast->GetAsRecordDecl(type);
if (!record_decl)
return;
typedef llvm::SmallVector <clang::IndirectFieldDecl *, 1> IndirectFieldVector;
IndirectFieldVector indirect_fields;
clang::RecordDecl::field_iterator field_pos;
clang::RecordDecl::field_iterator field_end_pos = record_decl->field_end();
clang::RecordDecl::field_iterator last_field_pos = field_end_pos;
for (field_pos = record_decl->field_begin(); field_pos != field_end_pos; last_field_pos = field_pos++)
{
if (field_pos->isAnonymousStructOrUnion())
{
clang::QualType field_qual_type = field_pos->getType();
const clang::RecordType *field_record_type = field_qual_type->getAs<clang::RecordType>();
if (!field_record_type)
continue;
clang::RecordDecl *field_record_decl = field_record_type->getDecl();
if (!field_record_decl)
continue;
for (clang::RecordDecl::decl_iterator di = field_record_decl->decls_begin(), de = field_record_decl->decls_end();
di != de;
++di)
{
if (clang::FieldDecl *nested_field_decl = llvm::dyn_cast<clang::FieldDecl>(*di))
{
clang::NamedDecl **chain = new (*ast->getASTContext()) clang::NamedDecl*[2];
chain[0] = *field_pos;
chain[1] = nested_field_decl;
clang::IndirectFieldDecl *indirect_field = clang::IndirectFieldDecl::Create(*ast->getASTContext(),
record_decl,
clang::SourceLocation(),
nested_field_decl->getIdentifier(),
nested_field_decl->getType(),
chain,
2);
indirect_field->setImplicit();
indirect_field->setAccess(ClangASTContext::UnifyAccessSpecifiers(field_pos->getAccess(),
nested_field_decl->getAccess()));
indirect_fields.push_back(indirect_field);
}
else if (clang::IndirectFieldDecl *nested_indirect_field_decl = llvm::dyn_cast<clang::IndirectFieldDecl>(*di))
{
int nested_chain_size = nested_indirect_field_decl->getChainingSize();
clang::NamedDecl **chain = new (*ast->getASTContext()) clang::NamedDecl*[nested_chain_size + 1];
chain[0] = *field_pos;
int chain_index = 1;
for (clang::IndirectFieldDecl::chain_iterator nci = nested_indirect_field_decl->chain_begin(),
nce = nested_indirect_field_decl->chain_end();
nci < nce;
++nci)
{
chain[chain_index] = *nci;
chain_index++;
}
clang::IndirectFieldDecl *indirect_field = clang::IndirectFieldDecl::Create(*ast->getASTContext(),
record_decl,
clang::SourceLocation(),
nested_indirect_field_decl->getIdentifier(),
nested_indirect_field_decl->getType(),
chain,
nested_chain_size + 1);
indirect_field->setImplicit();
indirect_field->setAccess(ClangASTContext::UnifyAccessSpecifiers(field_pos->getAccess(),
nested_indirect_field_decl->getAccess()));
indirect_fields.push_back(indirect_field);
}
}
}
}
// Check the last field to see if it has an incomplete array type as its
// last member and if it does, the tell the record decl about it
if (last_field_pos != field_end_pos)
{
if (last_field_pos->getType()->isIncompleteArrayType())
record_decl->hasFlexibleArrayMember();
}
for (IndirectFieldVector::iterator ifi = indirect_fields.begin(), ife = indirect_fields.end();
ifi < ife;
++ifi)
{
record_decl->addDecl(*ifi);
}
}
void
ClangASTContext::SetIsPacked (const CompilerType& type)
{
clang::RecordDecl *record_decl = GetAsRecordDecl(type);
if (!record_decl)
return;
record_decl->addAttr(clang::PackedAttr::CreateImplicit(*type.GetTypeSystem()->AsClangASTContext()->getASTContext()));
}
clang::VarDecl *
ClangASTContext::AddVariableToRecordType (const CompilerType& type, const char *name,
const CompilerType &var_type,
AccessType access)
{
clang::VarDecl *var_decl = nullptr;
if (!type.IsValid() || !var_type.IsValid())
return nullptr;
ClangASTContext* ast = type.GetTypeSystem()->AsClangASTContext();
if (!ast)
return nullptr;
clang::RecordDecl *record_decl = ast->GetAsRecordDecl (type);
if (record_decl)
{
var_decl = clang::VarDecl::Create (*ast->getASTContext(), // ASTContext &
record_decl, // DeclContext *
clang::SourceLocation(), // clang::SourceLocation StartLoc
clang::SourceLocation(), // clang::SourceLocation IdLoc
name ? &ast->getASTContext()->Idents.get(name) : nullptr, // clang::IdentifierInfo *
GetQualType(var_type), // Variable clang::QualType
nullptr, // TypeSourceInfo *
clang::SC_Static); // StorageClass
if (var_decl)
{
var_decl->setAccess(ClangASTContext::ConvertAccessTypeToAccessSpecifier (access));
record_decl->addDecl(var_decl);
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(var_decl);
#endif
}
}
return var_decl;
}
clang::CXXMethodDecl *
ClangASTContext::AddMethodToCXXRecordType (void* type, const char *name,
const CompilerType &method_clang_type,
lldb::AccessType access,
bool is_virtual,
bool is_static,
bool is_inline,
bool is_explicit,
bool is_attr_used,
bool is_artificial)
{
if (!type || !method_clang_type.IsValid() || name == nullptr || name[0] == '\0')
return nullptr;
clang::QualType record_qual_type(GetCanonicalQualType(type));
clang::CXXRecordDecl *cxx_record_decl = record_qual_type->getAsCXXRecordDecl();
if (cxx_record_decl == nullptr)
return nullptr;
clang::QualType method_qual_type (GetQualType(method_clang_type));
clang::CXXMethodDecl *cxx_method_decl = nullptr;
clang::DeclarationName decl_name (&getASTContext()->Idents.get(name));
const clang::FunctionType *function_type = llvm::dyn_cast<clang::FunctionType>(method_qual_type.getTypePtr());
if (function_type == nullptr)
return nullptr;
const clang::FunctionProtoType *method_function_prototype (llvm::dyn_cast<clang::FunctionProtoType>(function_type));
if (!method_function_prototype)
return nullptr;
unsigned int num_params = method_function_prototype->getNumParams();
clang::CXXDestructorDecl *cxx_dtor_decl(nullptr);
clang::CXXConstructorDecl *cxx_ctor_decl(nullptr);
if (is_artificial)
return nullptr; // skip everything artificial
if (name[0] == '~')
{
cxx_dtor_decl = clang::CXXDestructorDecl::Create (*getASTContext(),
cxx_record_decl,
clang::SourceLocation(),
clang::DeclarationNameInfo (getASTContext()->DeclarationNames.getCXXDestructorName (getASTContext()->getCanonicalType (record_qual_type)), clang::SourceLocation()),
method_qual_type,
nullptr,
is_inline,
is_artificial);
cxx_method_decl = cxx_dtor_decl;
}
else if (decl_name == cxx_record_decl->getDeclName())
{
cxx_ctor_decl = clang::CXXConstructorDecl::Create (*getASTContext(),
cxx_record_decl,
clang::SourceLocation(),
clang::DeclarationNameInfo (getASTContext()->DeclarationNames.getCXXConstructorName (getASTContext()->getCanonicalType (record_qual_type)), clang::SourceLocation()),
method_qual_type,
nullptr, // TypeSourceInfo *
is_explicit,
is_inline,
is_artificial,
false /*is_constexpr*/);
cxx_method_decl = cxx_ctor_decl;
}
else
{
clang::StorageClass SC = is_static ? clang::SC_Static : clang::SC_None;
clang::OverloadedOperatorKind op_kind = clang::NUM_OVERLOADED_OPERATORS;
if (IsOperator (name, op_kind))
{
if (op_kind != clang::NUM_OVERLOADED_OPERATORS)
{
// Check the number of operator parameters. Sometimes we have
// seen bad DWARF that doesn't correctly describe operators and
// if we try to create a method and add it to the class, clang
// will assert and crash, so we need to make sure things are
// acceptable.
if (!ClangASTContext::CheckOverloadedOperatorKindParameterCount (op_kind, num_params))
return nullptr;
cxx_method_decl = clang::CXXMethodDecl::Create (*getASTContext(),
cxx_record_decl,
clang::SourceLocation(),
clang::DeclarationNameInfo (getASTContext()->DeclarationNames.getCXXOperatorName (op_kind), clang::SourceLocation()),
method_qual_type,
nullptr, // TypeSourceInfo *
SC,
is_inline,
false /*is_constexpr*/,
clang::SourceLocation());
}
else if (num_params == 0)
{
// Conversion operators don't take params...
cxx_method_decl = clang::CXXConversionDecl::Create (*getASTContext(),
cxx_record_decl,
clang::SourceLocation(),
clang::DeclarationNameInfo (getASTContext()->DeclarationNames.getCXXConversionFunctionName (getASTContext()->getCanonicalType (function_type->getReturnType())), clang::SourceLocation()),
method_qual_type,
nullptr, // TypeSourceInfo *
is_inline,
is_explicit,
false /*is_constexpr*/,
clang::SourceLocation());
}
}
if (cxx_method_decl == nullptr)
{
cxx_method_decl = clang::CXXMethodDecl::Create (*getASTContext(),
cxx_record_decl,
clang::SourceLocation(),
clang::DeclarationNameInfo (decl_name, clang::SourceLocation()),
method_qual_type,
nullptr, // TypeSourceInfo *
SC,
is_inline,
false /*is_constexpr*/,
clang::SourceLocation());
}
}
clang::AccessSpecifier access_specifier = ClangASTContext::ConvertAccessTypeToAccessSpecifier (access);
cxx_method_decl->setAccess (access_specifier);
cxx_method_decl->setVirtualAsWritten (is_virtual);
if (is_attr_used)
cxx_method_decl->addAttr(clang::UsedAttr::CreateImplicit(*getASTContext()));
// Populate the method decl with parameter decls
llvm::SmallVector<clang::ParmVarDecl *, 12> params;
for (unsigned param_index = 0;
param_index < num_params;
++param_index)
{
params.push_back (clang::ParmVarDecl::Create (*getASTContext(),
cxx_method_decl,
clang::SourceLocation(),
clang::SourceLocation(),
nullptr, // anonymous
method_function_prototype->getParamType(param_index),
nullptr,
clang::SC_None,
nullptr));
}
cxx_method_decl->setParams (llvm::ArrayRef<clang::ParmVarDecl*>(params));
cxx_record_decl->addDecl (cxx_method_decl);
// Sometimes the debug info will mention a constructor (default/copy/move),
// destructor, or assignment operator (copy/move) but there won't be any
// version of this in the code. So we check if the function was artificially
// generated and if it is trivial and this lets the compiler/backend know
// that it can inline the IR for these when it needs to and we can avoid a
// "missing function" error when running expressions.
if (is_artificial)
{
if (cxx_ctor_decl &&
((cxx_ctor_decl->isDefaultConstructor() && cxx_record_decl->hasTrivialDefaultConstructor ()) ||
(cxx_ctor_decl->isCopyConstructor() && cxx_record_decl->hasTrivialCopyConstructor ()) ||
(cxx_ctor_decl->isMoveConstructor() && cxx_record_decl->hasTrivialMoveConstructor ()) ))
{
cxx_ctor_decl->setDefaulted();
cxx_ctor_decl->setTrivial(true);
}
else if (cxx_dtor_decl)
{
if (cxx_record_decl->hasTrivialDestructor())
{
cxx_dtor_decl->setDefaulted();
cxx_dtor_decl->setTrivial(true);
}
}
else if ((cxx_method_decl->isCopyAssignmentOperator() && cxx_record_decl->hasTrivialCopyAssignment()) ||
(cxx_method_decl->isMoveAssignmentOperator() && cxx_record_decl->hasTrivialMoveAssignment()))
{
cxx_method_decl->setDefaulted();
cxx_method_decl->setTrivial(true);
}
}
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(cxx_method_decl);
#endif
// printf ("decl->isPolymorphic() = %i\n", cxx_record_decl->isPolymorphic());
// printf ("decl->isAggregate() = %i\n", cxx_record_decl->isAggregate());
// printf ("decl->isPOD() = %i\n", cxx_record_decl->isPOD());
// printf ("decl->isEmpty() = %i\n", cxx_record_decl->isEmpty());
// printf ("decl->isAbstract() = %i\n", cxx_record_decl->isAbstract());
// printf ("decl->hasTrivialConstructor() = %i\n", cxx_record_decl->hasTrivialConstructor());
// printf ("decl->hasTrivialCopyConstructor() = %i\n", cxx_record_decl->hasTrivialCopyConstructor());
// printf ("decl->hasTrivialCopyAssignment() = %i\n", cxx_record_decl->hasTrivialCopyAssignment());
// printf ("decl->hasTrivialDestructor() = %i\n", cxx_record_decl->hasTrivialDestructor());
return cxx_method_decl;
}
#pragma mark C++ Base Classes
clang::CXXBaseSpecifier *
ClangASTContext::CreateBaseClassSpecifier (void* type, AccessType access, bool is_virtual, bool base_of_class)
{
if (type)
return new clang::CXXBaseSpecifier (clang::SourceRange(),
is_virtual,
base_of_class,
ClangASTContext::ConvertAccessTypeToAccessSpecifier (access),
getASTContext()->getTrivialTypeSourceInfo (GetQualType(type)),
clang::SourceLocation());
return nullptr;
}
void
ClangASTContext::DeleteBaseClassSpecifiers (clang::CXXBaseSpecifier **base_classes, unsigned num_base_classes)
{
for (unsigned i=0; i<num_base_classes; ++i)
{
delete base_classes[i];
base_classes[i] = nullptr;
}
}
bool
ClangASTContext::SetBaseClassesForClassType (void* type, clang::CXXBaseSpecifier const * const *base_classes,
unsigned num_base_classes)
{
if (type)
{
clang::CXXRecordDecl *cxx_record_decl = GetAsCXXRecordDecl(type);
if (cxx_record_decl)
{
cxx_record_decl->setBases(base_classes, num_base_classes);
return true;
}
}
return false;
}
bool
ClangASTContext::SetObjCSuperClass (const CompilerType& type, const CompilerType &superclass_clang_type)
{
ClangASTContext* ast = type.GetTypeSystem()->AsClangASTContext();
if (!ast)
return false;
clang::ASTContext* clang_ast = ast->getASTContext();
if (type && superclass_clang_type.IsValid() && superclass_clang_type.GetTypeSystem() == type.GetTypeSystem())
{
clang::ObjCInterfaceDecl *class_interface_decl = GetAsObjCInterfaceDecl (type);
clang::ObjCInterfaceDecl *super_interface_decl = GetAsObjCInterfaceDecl (superclass_clang_type);
if (class_interface_decl && super_interface_decl)
{
class_interface_decl->setSuperClass(clang_ast->getTrivialTypeSourceInfo(clang_ast->getObjCInterfaceType(super_interface_decl)));
return true;
}
}
return false;
}
bool
ClangASTContext::AddObjCClassProperty (const CompilerType& type,
const char *property_name,
const CompilerType &property_clang_type,
clang::ObjCIvarDecl *ivar_decl,
const char *property_setter_name,
const char *property_getter_name,
uint32_t property_attributes,
ClangASTMetadata *metadata)
{
if (!type || !property_clang_type.IsValid() || property_name == nullptr || property_name[0] == '\0')
return false;
ClangASTContext* ast = type.GetTypeSystem()->AsClangASTContext();
if (!ast)
return false;
clang::ASTContext* clang_ast = ast->getASTContext();
clang::ObjCInterfaceDecl *class_interface_decl = GetAsObjCInterfaceDecl (type);
if (class_interface_decl)
{
CompilerType property_clang_type_to_access;
if (property_clang_type.IsValid())
property_clang_type_to_access = property_clang_type;
else if (ivar_decl)
property_clang_type_to_access = CompilerType (clang_ast, ivar_decl->getType());
if (class_interface_decl && property_clang_type_to_access.IsValid())
{
clang::TypeSourceInfo *prop_type_source;
if (ivar_decl)
prop_type_source = clang_ast->getTrivialTypeSourceInfo (ivar_decl->getType());
else
prop_type_source = clang_ast->getTrivialTypeSourceInfo (GetQualType(property_clang_type));
clang::ObjCPropertyDecl *property_decl = clang::ObjCPropertyDecl::Create (*clang_ast,
class_interface_decl,
clang::SourceLocation(), // Source Location
&clang_ast->Idents.get(property_name),
clang::SourceLocation(), //Source Location for AT
clang::SourceLocation(), //Source location for (
ivar_decl ? ivar_decl->getType() : ClangASTContext::GetQualType(property_clang_type),
prop_type_source);
if (property_decl)
{
if (metadata)
ClangASTContext::SetMetadata(clang_ast, property_decl, *metadata);
class_interface_decl->addDecl (property_decl);
clang::Selector setter_sel, getter_sel;
if (property_setter_name != nullptr)
{
std::string property_setter_no_colon(property_setter_name, strlen(property_setter_name) - 1);
clang::IdentifierInfo *setter_ident = &clang_ast->Idents.get(property_setter_no_colon.c_str());
setter_sel = clang_ast->Selectors.getSelector(1, &setter_ident);
}
else if (!(property_attributes & DW_APPLE_PROPERTY_readonly))
{
std::string setter_sel_string("set");
setter_sel_string.push_back(::toupper(property_name[0]));
setter_sel_string.append(&property_name[1]);
clang::IdentifierInfo *setter_ident = &clang_ast->Idents.get(setter_sel_string.c_str());
setter_sel = clang_ast->Selectors.getSelector(1, &setter_ident);
}
property_decl->setSetterName(setter_sel);
property_decl->setPropertyAttributes (clang::ObjCPropertyDecl::OBJC_PR_setter);
if (property_getter_name != nullptr)
{
clang::IdentifierInfo *getter_ident = &clang_ast->Idents.get(property_getter_name);
getter_sel = clang_ast->Selectors.getSelector(0, &getter_ident);
}
else
{
clang::IdentifierInfo *getter_ident = &clang_ast->Idents.get(property_name);
getter_sel = clang_ast->Selectors.getSelector(0, &getter_ident);
}
property_decl->setGetterName(getter_sel);
property_decl->setPropertyAttributes (clang::ObjCPropertyDecl::OBJC_PR_getter);
if (ivar_decl)
property_decl->setPropertyIvarDecl (ivar_decl);
if (property_attributes & DW_APPLE_PROPERTY_readonly)
property_decl->setPropertyAttributes (clang::ObjCPropertyDecl::OBJC_PR_readonly);
if (property_attributes & DW_APPLE_PROPERTY_readwrite)
property_decl->setPropertyAttributes (clang::ObjCPropertyDecl::OBJC_PR_readwrite);
if (property_attributes & DW_APPLE_PROPERTY_assign)
property_decl->setPropertyAttributes (clang::ObjCPropertyDecl::OBJC_PR_assign);
if (property_attributes & DW_APPLE_PROPERTY_retain)
property_decl->setPropertyAttributes (clang::ObjCPropertyDecl::OBJC_PR_retain);
if (property_attributes & DW_APPLE_PROPERTY_copy)
property_decl->setPropertyAttributes (clang::ObjCPropertyDecl::OBJC_PR_copy);
if (property_attributes & DW_APPLE_PROPERTY_nonatomic)
property_decl->setPropertyAttributes (clang::ObjCPropertyDecl::OBJC_PR_nonatomic);
if (!getter_sel.isNull() && !class_interface_decl->lookupInstanceMethod(getter_sel))
{
const bool isInstance = true;
const bool isVariadic = false;
const bool isSynthesized = false;
const bool isImplicitlyDeclared = true;
const bool isDefined = false;
const clang::ObjCMethodDecl::ImplementationControl impControl = clang::ObjCMethodDecl::None;
const bool HasRelatedResultType = false;
clang::ObjCMethodDecl *getter = clang::ObjCMethodDecl::Create (*clang_ast,
clang::SourceLocation(),
clang::SourceLocation(),
getter_sel,
GetQualType(property_clang_type_to_access),
nullptr,
class_interface_decl,
isInstance,
isVariadic,
isSynthesized,
isImplicitlyDeclared,
isDefined,
impControl,
HasRelatedResultType);
if (getter && metadata)
ClangASTContext::SetMetadata(clang_ast, getter, *metadata);
if (getter)
{
getter->setMethodParams(*clang_ast, llvm::ArrayRef<clang::ParmVarDecl*>(), llvm::ArrayRef<clang::SourceLocation>());
class_interface_decl->addDecl(getter);
}
}
if (!setter_sel.isNull() && !class_interface_decl->lookupInstanceMethod(setter_sel))
{
clang::QualType result_type = clang_ast->VoidTy;
const bool isInstance = true;
const bool isVariadic = false;
const bool isSynthesized = false;
const bool isImplicitlyDeclared = true;
const bool isDefined = false;
const clang::ObjCMethodDecl::ImplementationControl impControl = clang::ObjCMethodDecl::None;
const bool HasRelatedResultType = false;
clang::ObjCMethodDecl *setter = clang::ObjCMethodDecl::Create (*clang_ast,
clang::SourceLocation(),
clang::SourceLocation(),
setter_sel,
result_type,
nullptr,
class_interface_decl,
isInstance,
isVariadic,
isSynthesized,
isImplicitlyDeclared,
isDefined,
impControl,
HasRelatedResultType);
if (setter && metadata)
ClangASTContext::SetMetadata(clang_ast, setter, *metadata);
llvm::SmallVector<clang::ParmVarDecl *, 1> params;
params.push_back (clang::ParmVarDecl::Create (*clang_ast,
setter,
clang::SourceLocation(),
clang::SourceLocation(),
nullptr, // anonymous
GetQualType(property_clang_type_to_access),
nullptr,
clang::SC_Auto,
nullptr));
if (setter)
{
setter->setMethodParams(*clang_ast, llvm::ArrayRef<clang::ParmVarDecl*>(params), llvm::ArrayRef<clang::SourceLocation>());
class_interface_decl->addDecl(setter);
}
}
return true;
}
}
}
return false;
}
bool
ClangASTContext::IsObjCClassTypeAndHasIVars (const CompilerType& type, bool check_superclass)
{
clang::ObjCInterfaceDecl *class_interface_decl = GetAsObjCInterfaceDecl (type);
if (class_interface_decl)
return ObjCDeclHasIVars (class_interface_decl, check_superclass);
return false;
}
clang::ObjCMethodDecl *
ClangASTContext::AddMethodToObjCObjectType (const CompilerType& type,
const char *name, // the full symbol name as seen in the symbol table (void* type, "-[NString stringWithCString:]")
const CompilerType &method_clang_type,
lldb::AccessType access,
bool is_artificial)
{
if (!type || !method_clang_type.IsValid())
return nullptr;
clang::ObjCInterfaceDecl *class_interface_decl = GetAsObjCInterfaceDecl(type);
if (class_interface_decl == nullptr)
return nullptr;
clang::ASTContext* ast = type.GetTypeSystem()->AsClangASTContext()->getASTContext();
const char *selector_start = ::strchr (name, ' ');
if (selector_start == nullptr)
return nullptr;
selector_start++;
llvm::SmallVector<clang::IdentifierInfo *, 12> selector_idents;
size_t len = 0;
const char *start;
//printf ("name = '%s'\n", name);
unsigned num_selectors_with_args = 0;
for (start = selector_start;
start && *start != '\0' && *start != ']';
start += len)
{
len = ::strcspn(start, ":]");
bool has_arg = (start[len] == ':');
if (has_arg)
++num_selectors_with_args;
selector_idents.push_back (&ast->Idents.get (llvm::StringRef (start, len)));
if (has_arg)
len += 1;
}
if (selector_idents.size() == 0)
return nullptr;
clang::Selector method_selector = ast->Selectors.getSelector (num_selectors_with_args ? selector_idents.size() : 0,
selector_idents.data());
clang::QualType method_qual_type (GetQualType(method_clang_type));
// Populate the method decl with parameter decls
const clang::Type *method_type(method_qual_type.getTypePtr());
if (method_type == nullptr)
return nullptr;
const clang::FunctionProtoType *method_function_prototype (llvm::dyn_cast<clang::FunctionProtoType>(method_type));
if (!method_function_prototype)
return nullptr;
bool is_variadic = false;
bool is_synthesized = false;
bool is_defined = false;
clang::ObjCMethodDecl::ImplementationControl imp_control = clang::ObjCMethodDecl::None;
const unsigned num_args = method_function_prototype->getNumParams();
if (num_args != num_selectors_with_args)
return nullptr; // some debug information is corrupt. We are not going to deal with it.
clang::ObjCMethodDecl *objc_method_decl = clang::ObjCMethodDecl::Create (*ast,
clang::SourceLocation(), // beginLoc,
clang::SourceLocation(), // endLoc,
method_selector,
method_function_prototype->getReturnType(),
nullptr, // TypeSourceInfo *ResultTInfo,
ClangASTContext::GetASTContext(ast)->GetDeclContextForType(GetQualType(type)),
name[0] == '-',
is_variadic,
is_synthesized,
true, // is_implicitly_declared; we force this to true because we don't have source locations
is_defined,
imp_control,
false /*has_related_result_type*/);
if (objc_method_decl == nullptr)
return nullptr;
if (num_args > 0)
{
llvm::SmallVector<clang::ParmVarDecl *, 12> params;
for (unsigned param_index = 0; param_index < num_args; ++param_index)
{
params.push_back (clang::ParmVarDecl::Create (*ast,
objc_method_decl,
clang::SourceLocation(),
clang::SourceLocation(),
nullptr, // anonymous
method_function_prototype->getParamType(param_index),
nullptr,
clang::SC_Auto,
nullptr));
}
objc_method_decl->setMethodParams(*ast, llvm::ArrayRef<clang::ParmVarDecl*>(params), llvm::ArrayRef<clang::SourceLocation>());
}
class_interface_decl->addDecl (objc_method_decl);
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(objc_method_decl);
#endif
return objc_method_decl;
}
bool
ClangASTContext::SetHasExternalStorage (void* type, bool has_extern)
{
if (!type)
return false;
clang::QualType qual_type (GetCanonicalQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Record:
{
clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
cxx_record_decl->setHasExternalLexicalStorage (has_extern);
cxx_record_decl->setHasExternalVisibleStorage (has_extern);
return true;
}
}
break;
case clang::Type::Enum:
{
clang::EnumDecl *enum_decl = llvm::cast<clang::EnumType>(qual_type)->getDecl();
if (enum_decl)
{
enum_decl->setHasExternalLexicalStorage (has_extern);
enum_decl->setHasExternalVisibleStorage (has_extern);
return true;
}
}
break;
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
{
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
assert (objc_class_type);
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
class_interface_decl->setHasExternalLexicalStorage (has_extern);
class_interface_decl->setHasExternalVisibleStorage (has_extern);
return true;
}
}
}
break;
case clang::Type::Typedef:
return SetHasExternalStorage(llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType().getAsOpaquePtr(), has_extern);
case clang::Type::Elaborated:
return SetHasExternalStorage (llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType().getAsOpaquePtr(), has_extern);
case clang::Type::Paren:
return SetHasExternalStorage (llvm::cast<clang::ParenType>(qual_type)->desugar().getAsOpaquePtr(), has_extern);
default:
break;
}
return false;
}
#pragma mark TagDecl
bool
ClangASTContext::StartTagDeclarationDefinition (const CompilerType &type)
{
if (type)
{
clang::QualType qual_type (GetQualType(type));
const clang::Type *t = qual_type.getTypePtr();
if (t)
{
const clang::TagType *tag_type = llvm::dyn_cast<clang::TagType>(t);
if (tag_type)
{
clang::TagDecl *tag_decl = tag_type->getDecl();
if (tag_decl)
{
tag_decl->startDefinition();
return true;
}
}
const clang::ObjCObjectType *object_type = llvm::dyn_cast<clang::ObjCObjectType>(t);
if (object_type)
{
clang::ObjCInterfaceDecl *interface_decl = object_type->getInterface();
if (interface_decl)
{
interface_decl->startDefinition();
return true;
}
}
}
}
return false;
}
bool
ClangASTContext::CompleteTagDeclarationDefinition (const CompilerType& type)
{
if (type)
{
clang::QualType qual_type (GetQualType(type));
if (qual_type.isNull())
return false;
clang::ASTContext* ast = type.GetTypeSystem()->AsClangASTContext()->getASTContext();
clang::CXXRecordDecl *cxx_record_decl = qual_type->getAsCXXRecordDecl();
if (cxx_record_decl)
{
cxx_record_decl->completeDefinition();
return true;
}
const clang::EnumType *enutype = llvm::dyn_cast<clang::EnumType>(qual_type.getTypePtr());
if (enutype)
{
clang::EnumDecl *enum_decl = enutype->getDecl();
if (enum_decl)
{
/// TODO This really needs to be fixed.
unsigned NumPositiveBits = 1;
unsigned NumNegativeBits = 0;
clang::QualType promotion_qual_type;
// If the enum integer type is less than an integer in bit width,
// then we must promote it to an integer size.
if (ast->getTypeSize(enum_decl->getIntegerType()) < ast->getTypeSize(ast->IntTy))
{
if (enum_decl->getIntegerType()->isSignedIntegerType())
promotion_qual_type = ast->IntTy;
else
promotion_qual_type = ast->UnsignedIntTy;
}
else
promotion_qual_type = enum_decl->getIntegerType();
enum_decl->completeDefinition(enum_decl->getIntegerType(), promotion_qual_type, NumPositiveBits, NumNegativeBits);
return true;
}
}
}
return false;
}
bool
ClangASTContext::AddEnumerationValueToEnumerationType (void* type,
const CompilerType &enumerator_clang_type,
const Declaration &decl,
const char *name,
int64_t enum_value,
uint32_t enum_value_bit_size)
{
if (type && enumerator_clang_type.IsValid() && name && name[0])
{
clang::QualType enum_qual_type (GetCanonicalQualType(type));
bool is_signed = false;
enumerator_clang_type.IsIntegerType (is_signed);
const clang::Type *clang_type = enum_qual_type.getTypePtr();
if (clang_type)
{
const clang::EnumType *enutype = llvm::dyn_cast<clang::EnumType>(clang_type);
if (enutype)
{
llvm::APSInt enum_llvm_apsint(enum_value_bit_size, is_signed);
enum_llvm_apsint = enum_value;
clang::EnumConstantDecl *enumerator_decl =
clang::EnumConstantDecl::Create (*getASTContext(),
enutype->getDecl(),
clang::SourceLocation(),
name ? &getASTContext()->Idents.get(name) : nullptr, // Identifier
GetQualType(enumerator_clang_type),
nullptr,
enum_llvm_apsint);
if (enumerator_decl)
{
enutype->getDecl()->addDecl(enumerator_decl);
#ifdef LLDB_CONFIGURATION_DEBUG
VerifyDecl(enumerator_decl);
#endif
return true;
}
}
}
}
return false;
}
CompilerType
ClangASTContext::GetEnumerationIntegerType (void* type)
{
clang::QualType enum_qual_type (GetCanonicalQualType(type));
const clang::Type *clang_type = enum_qual_type.getTypePtr();
if (clang_type)
{
const clang::EnumType *enutype = llvm::dyn_cast<clang::EnumType>(clang_type);
if (enutype)
{
clang::EnumDecl *enum_decl = enutype->getDecl();
if (enum_decl)
return CompilerType (getASTContext(), enum_decl->getIntegerType());
}
}
return CompilerType();
}
CompilerType
ClangASTContext::CreateMemberPointerType (const CompilerType& type, const CompilerType &pointee_type)
{
if (type && pointee_type.IsValid() && type.GetTypeSystem() == pointee_type.GetTypeSystem())
{
ClangASTContext* ast = type.GetTypeSystem()->AsClangASTContext();
if (!ast)
return CompilerType();
return CompilerType (ast->getASTContext(),
ast->getASTContext()->getMemberPointerType (GetQualType(pointee_type),
GetQualType(type).getTypePtr()));
}
return CompilerType();
}
size_t
ClangASTContext::ConvertStringToFloatValue (void* type, const char *s, uint8_t *dst, size_t dst_size)
{
if (type)
{
clang::QualType qual_type (GetCanonicalQualType(type));
uint32_t count = 0;
bool is_complex = false;
if (IsFloatingPointType (type, count, is_complex))
{
// TODO: handle complex and vector types
if (count != 1)
return false;
llvm::StringRef s_sref(s);
llvm::APFloat ap_float(getASTContext()->getFloatTypeSemantics(qual_type), s_sref);
const uint64_t bit_size = getASTContext()->getTypeSize (qual_type);
const uint64_t byte_size = bit_size / 8;
if (dst_size >= byte_size)
{
if (bit_size == sizeof(float)*8)
{
float float32 = ap_float.convertToFloat();
::memcpy (dst, &float32, byte_size);
return byte_size;
}
else if (bit_size >= 64)
{
llvm::APInt ap_int(ap_float.bitcastToAPInt());
::memcpy (dst, ap_int.getRawData(), byte_size);
return byte_size;
}
}
}
}
return 0;
}
//----------------------------------------------------------------------
// Dumping types
//----------------------------------------------------------------------
#define DEPTH_INCREMENT 2
void
ClangASTContext::DumpValue (void* type, ExecutionContext *exe_ctx,
Stream *s,
lldb::Format format,
const lldb_private::DataExtractor &data,
lldb::offset_t data_byte_offset,
size_t data_byte_size,
uint32_t bitfield_bit_size,
uint32_t bitfield_bit_offset,
bool show_types,
bool show_summary,
bool verbose,
uint32_t depth)
{
if (!type)
return;
clang::QualType qual_type(GetQualType(type));
switch (qual_type->getTypeClass())
{
case clang::Type::Record:
if (GetCompleteType(type))
{
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
assert(record_decl);
uint32_t field_bit_offset = 0;
uint32_t field_byte_offset = 0;
const clang::ASTRecordLayout &record_layout = getASTContext()->getASTRecordLayout(record_decl);
uint32_t child_idx = 0;
const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl)
{
// We might have base classes to print out first
clang::CXXRecordDecl::base_class_const_iterator base_class, base_class_end;
for (base_class = cxx_record_decl->bases_begin(), base_class_end = cxx_record_decl->bases_end();
base_class != base_class_end;
++base_class)
{
const clang::CXXRecordDecl *base_class_decl = llvm::cast<clang::CXXRecordDecl>(base_class->getType()->getAs<clang::RecordType>()->getDecl());
// Skip empty base classes
if (verbose == false && ClangASTContext::RecordHasFields(base_class_decl) == false)
continue;
if (base_class->isVirtual())
field_bit_offset = record_layout.getVBaseClassOffset(base_class_decl).getQuantity() * 8;
else
field_bit_offset = record_layout.getBaseClassOffset(base_class_decl).getQuantity() * 8;
field_byte_offset = field_bit_offset / 8;
assert (field_bit_offset % 8 == 0);
if (child_idx == 0)
s->PutChar('{');
else
s->PutChar(',');
clang::QualType base_class_qual_type = base_class->getType();
std::string base_class_type_name(base_class_qual_type.getAsString());
// Indent and print the base class type name
s->Printf("\n%*s%s ", depth + DEPTH_INCREMENT, "", base_class_type_name.c_str());
clang::TypeInfo base_class_type_info = getASTContext()->getTypeInfo(base_class_qual_type);
// Dump the value of the member
CompilerType base_clang_type(getASTContext(), base_class_qual_type);
base_clang_type.DumpValue (exe_ctx,
s, // Stream to dump to
base_clang_type.GetFormat(), // The format with which to display the member
data, // Data buffer containing all bytes for this type
data_byte_offset + field_byte_offset,// Offset into "data" where to grab value from
base_class_type_info.Width / 8, // Size of this type in bytes
0, // Bitfield bit size
0, // Bitfield bit offset
show_types, // Boolean indicating if we should show the variable types
show_summary, // Boolean indicating if we should show a summary for the current type
verbose, // Verbose output?
depth + DEPTH_INCREMENT); // Scope depth for any types that have children
++child_idx;
}
}
uint32_t field_idx = 0;
clang::RecordDecl::field_iterator field, field_end;
for (field = record_decl->field_begin(), field_end = record_decl->field_end(); field != field_end; ++field, ++field_idx, ++child_idx)
{
// Print the starting squiggly bracket (if this is the
// first member) or comma (for member 2 and beyond) for
// the struct/union/class member.
if (child_idx == 0)
s->PutChar('{');
else
s->PutChar(',');
// Indent
s->Printf("\n%*s", depth + DEPTH_INCREMENT, "");
clang::QualType field_type = field->getType();
// Print the member type if requested
// Figure out the type byte size (field_type_info.first) and
// alignment (field_type_info.second) from the AST context.
clang::TypeInfo field_type_info = getASTContext()->getTypeInfo(field_type);
assert(field_idx < record_layout.getFieldCount());
// Figure out the field offset within the current struct/union/class type
field_bit_offset = record_layout.getFieldOffset (field_idx);
field_byte_offset = field_bit_offset / 8;
uint32_t field_bitfield_bit_size = 0;
uint32_t field_bitfield_bit_offset = 0;
if (ClangASTContext::FieldIsBitfield (getASTContext(), *field, field_bitfield_bit_size))
field_bitfield_bit_offset = field_bit_offset % 8;
if (show_types)
{
std::string field_type_name(field_type.getAsString());
if (field_bitfield_bit_size > 0)
s->Printf("(%s:%u) ", field_type_name.c_str(), field_bitfield_bit_size);
else
s->Printf("(%s) ", field_type_name.c_str());
}
// Print the member name and equal sign
s->Printf("%s = ", field->getNameAsString().c_str());
// Dump the value of the member
CompilerType field_clang_type (getASTContext(), field_type);
field_clang_type.DumpValue (exe_ctx,
s, // Stream to dump to
field_clang_type.GetFormat(), // The format with which to display the member
data, // Data buffer containing all bytes for this type
data_byte_offset + field_byte_offset,// Offset into "data" where to grab value from
field_type_info.Width / 8, // Size of this type in bytes
field_bitfield_bit_size, // Bitfield bit size
field_bitfield_bit_offset, // Bitfield bit offset
show_types, // Boolean indicating if we should show the variable types
show_summary, // Boolean indicating if we should show a summary for the current type
verbose, // Verbose output?
depth + DEPTH_INCREMENT); // Scope depth for any types that have children
}
// Indent the trailing squiggly bracket
if (child_idx > 0)
s->Printf("\n%*s}", depth, "");
}
return;
case clang::Type::Enum:
if (GetCompleteType(type))
{
const clang::EnumType *enutype = llvm::cast<clang::EnumType>(qual_type.getTypePtr());
const clang::EnumDecl *enum_decl = enutype->getDecl();
assert(enum_decl);
clang::EnumDecl::enumerator_iterator enum_pos, enum_end_pos;
lldb::offset_t offset = data_byte_offset;
const int64_t enum_value = data.GetMaxU64Bitfield(&offset, data_byte_size, bitfield_bit_size, bitfield_bit_offset);
for (enum_pos = enum_decl->enumerator_begin(), enum_end_pos = enum_decl->enumerator_end(); enum_pos != enum_end_pos; ++enum_pos)
{
if (enum_pos->getInitVal() == enum_value)
{
s->Printf("%s", enum_pos->getNameAsString().c_str());
return;
}
}
// If we have gotten here we didn't get find the enumerator in the
// enum decl, so just print the integer.
s->Printf("%" PRIi64, enum_value);
}
return;
case clang::Type::ConstantArray:
{
const clang::ConstantArrayType *array = llvm::cast<clang::ConstantArrayType>(qual_type.getTypePtr());
bool is_array_of_characters = false;
clang::QualType element_qual_type = array->getElementType();
const clang::Type *canonical_type = element_qual_type->getCanonicalTypeInternal().getTypePtr();
if (canonical_type)
is_array_of_characters = canonical_type->isCharType();
const uint64_t element_count = array->getSize().getLimitedValue();
clang::TypeInfo field_type_info = getASTContext()->getTypeInfo(element_qual_type);
uint32_t element_idx = 0;
uint32_t element_offset = 0;
uint64_t element_byte_size = field_type_info.Width / 8;
uint32_t element_stride = element_byte_size;
if (is_array_of_characters)
{
s->PutChar('"');
data.Dump(s, data_byte_offset, lldb::eFormatChar, element_byte_size, element_count, UINT32_MAX, LLDB_INVALID_ADDRESS, 0, 0);
s->PutChar('"');
return;
}
else
{
CompilerType element_clang_type(getASTContext(), element_qual_type);
lldb::Format element_format = element_clang_type.GetFormat();
for (element_idx = 0; element_idx < element_count; ++element_idx)
{
// Print the starting squiggly bracket (if this is the
// first member) or comman (for member 2 and beyong) for
// the struct/union/class member.
if (element_idx == 0)
s->PutChar('{');
else
s->PutChar(',');
// Indent and print the index
s->Printf("\n%*s[%u] ", depth + DEPTH_INCREMENT, "", element_idx);
// Figure out the field offset within the current struct/union/class type
element_offset = element_idx * element_stride;
// Dump the value of the member
element_clang_type.DumpValue (exe_ctx,
s, // Stream to dump to
element_format, // The format with which to display the element
data, // Data buffer containing all bytes for this type
data_byte_offset + element_offset,// Offset into "data" where to grab value from
element_byte_size, // Size of this type in bytes
0, // Bitfield bit size
0, // Bitfield bit offset
show_types, // Boolean indicating if we should show the variable types
show_summary, // Boolean indicating if we should show a summary for the current type
verbose, // Verbose output?
depth + DEPTH_INCREMENT); // Scope depth for any types that have children
}
// Indent the trailing squiggly bracket
if (element_idx > 0)
s->Printf("\n%*s}", depth, "");
}
}
return;
case clang::Type::Typedef:
{
clang::QualType typedef_qual_type = llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType();
CompilerType typedef_clang_type (getASTContext(), typedef_qual_type);
lldb::Format typedef_format = typedef_clang_type.GetFormat();
clang::TypeInfo typedef_type_info = getASTContext()->getTypeInfo(typedef_qual_type);
uint64_t typedef_byte_size = typedef_type_info.Width / 8;
return typedef_clang_type.DumpValue (exe_ctx,
s, // Stream to dump to
typedef_format, // The format with which to display the element
data, // Data buffer containing all bytes for this type
data_byte_offset, // Offset into "data" where to grab value from
typedef_byte_size, // Size of this type in bytes
bitfield_bit_size, // Bitfield bit size
bitfield_bit_offset,// Bitfield bit offset
show_types, // Boolean indicating if we should show the variable types
show_summary, // Boolean indicating if we should show a summary for the current type
verbose, // Verbose output?
depth); // Scope depth for any types that have children
}
break;
case clang::Type::Elaborated:
{
clang::QualType elaborated_qual_type = llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType();
CompilerType elaborated_clang_type (getASTContext(), elaborated_qual_type);
lldb::Format elaborated_format = elaborated_clang_type.GetFormat();
clang::TypeInfo elaborated_type_info = getASTContext()->getTypeInfo(elaborated_qual_type);
uint64_t elaborated_byte_size = elaborated_type_info.Width / 8;
return elaborated_clang_type.DumpValue (exe_ctx,
s, // Stream to dump to
elaborated_format, // The format with which to display the element
data, // Data buffer containing all bytes for this type
data_byte_offset, // Offset into "data" where to grab value from
elaborated_byte_size, // Size of this type in bytes
bitfield_bit_size, // Bitfield bit size
bitfield_bit_offset,// Bitfield bit offset
show_types, // Boolean indicating if we should show the variable types
show_summary, // Boolean indicating if we should show a summary for the current type
verbose, // Verbose output?
depth); // Scope depth for any types that have children
}
break;
case clang::Type::Paren:
{
clang::QualType desugar_qual_type = llvm::cast<clang::ParenType>(qual_type)->desugar();
CompilerType desugar_clang_type (getASTContext(), desugar_qual_type);
lldb::Format desugar_format = desugar_clang_type.GetFormat();
clang::TypeInfo desugar_type_info = getASTContext()->getTypeInfo(desugar_qual_type);
uint64_t desugar_byte_size = desugar_type_info.Width / 8;
return desugar_clang_type.DumpValue (exe_ctx,
s, // Stream to dump to
desugar_format, // The format with which to display the element
data, // Data buffer containing all bytes for this type
data_byte_offset, // Offset into "data" where to grab value from
desugar_byte_size, // Size of this type in bytes
bitfield_bit_size, // Bitfield bit size
bitfield_bit_offset,// Bitfield bit offset
show_types, // Boolean indicating if we should show the variable types
show_summary, // Boolean indicating if we should show a summary for the current type
verbose, // Verbose output?
depth); // Scope depth for any types that have children
}
break;
default:
// We are down to a scalar type that we just need to display.
data.Dump(s,
data_byte_offset,
format,
data_byte_size,
1,
UINT32_MAX,
LLDB_INVALID_ADDRESS,
bitfield_bit_size,
bitfield_bit_offset);
if (show_summary)
DumpSummary (type, exe_ctx, s, data, data_byte_offset, data_byte_size);
break;
}
}
bool
ClangASTContext::DumpTypeValue (void* type, Stream *s,
lldb::Format format,
const lldb_private::DataExtractor &data,
lldb::offset_t byte_offset,
size_t byte_size,
uint32_t bitfield_bit_size,
uint32_t bitfield_bit_offset,
ExecutionContextScope *exe_scope)
{
if (!type)
return false;
if (IsAggregateType(type))
{
return false;
}
else
{
clang::QualType qual_type(GetQualType(type));
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::Typedef:
{
clang::QualType typedef_qual_type = llvm::cast<clang::TypedefType>(qual_type)->getDecl()->getUnderlyingType();
CompilerType typedef_clang_type (getASTContext(), typedef_qual_type);
if (format == eFormatDefault)
format = typedef_clang_type.GetFormat();
clang::TypeInfo typedef_type_info = getASTContext()->getTypeInfo(typedef_qual_type);
uint64_t typedef_byte_size = typedef_type_info.Width / 8;
return typedef_clang_type.DumpTypeValue (s,
format, // The format with which to display the element
data, // Data buffer containing all bytes for this type
byte_offset, // Offset into "data" where to grab value from
typedef_byte_size, // Size of this type in bytes
bitfield_bit_size, // Size in bits of a bitfield value, if zero don't treat as a bitfield
bitfield_bit_offset, // Offset in bits of a bitfield value if bitfield_bit_size != 0
exe_scope);
}
break;
case clang::Type::Enum:
// If our format is enum or default, show the enumeration value as
// its enumeration string value, else just display it as requested.
if ((format == eFormatEnum || format == eFormatDefault) && GetCompleteType(type))
{
const clang::EnumType *enutype = llvm::cast<clang::EnumType>(qual_type.getTypePtr());
const clang::EnumDecl *enum_decl = enutype->getDecl();
assert(enum_decl);
clang::EnumDecl::enumerator_iterator enum_pos, enum_end_pos;
const bool is_signed = qual_type->isSignedIntegerOrEnumerationType();
lldb::offset_t offset = byte_offset;
if (is_signed)
{
const int64_t enum_svalue = data.GetMaxS64Bitfield (&offset, byte_size, bitfield_bit_size, bitfield_bit_offset);
for (enum_pos = enum_decl->enumerator_begin(), enum_end_pos = enum_decl->enumerator_end(); enum_pos != enum_end_pos; ++enum_pos)
{
if (enum_pos->getInitVal().getSExtValue() == enum_svalue)
{
s->PutCString (enum_pos->getNameAsString().c_str());
return true;
}
}
// If we have gotten here we didn't get find the enumerator in the
// enum decl, so just print the integer.
s->Printf("%" PRIi64, enum_svalue);
}
else
{
const uint64_t enum_uvalue = data.GetMaxU64Bitfield (&offset, byte_size, bitfield_bit_size, bitfield_bit_offset);
for (enum_pos = enum_decl->enumerator_begin(), enum_end_pos = enum_decl->enumerator_end(); enum_pos != enum_end_pos; ++enum_pos)
{
if (enum_pos->getInitVal().getZExtValue() == enum_uvalue)
{
s->PutCString (enum_pos->getNameAsString().c_str());
return true;
}
}
// If we have gotten here we didn't get find the enumerator in the
// enum decl, so just print the integer.
s->Printf("%" PRIu64, enum_uvalue);
}
return true;
}
// format was not enum, just fall through and dump the value as requested....
default:
// We are down to a scalar type that we just need to display.
{
uint32_t item_count = 1;
// A few formats, we might need to modify our size and count for depending
// on how we are trying to display the value...
switch (format)
{
default:
case eFormatBoolean:
case eFormatBinary:
case eFormatComplex:
case eFormatCString: // NULL terminated C strings
case eFormatDecimal:
case eFormatEnum:
case eFormatHex:
case eFormatHexUppercase:
case eFormatFloat:
case eFormatOctal:
case eFormatOSType:
case eFormatUnsigned:
case eFormatPointer:
case eFormatVectorOfChar:
case eFormatVectorOfSInt8:
case eFormatVectorOfUInt8:
case eFormatVectorOfSInt16:
case eFormatVectorOfUInt16:
case eFormatVectorOfSInt32:
case eFormatVectorOfUInt32:
case eFormatVectorOfSInt64:
case eFormatVectorOfUInt64:
case eFormatVectorOfFloat32:
case eFormatVectorOfFloat64:
case eFormatVectorOfUInt128:
break;
case eFormatChar:
case eFormatCharPrintable:
case eFormatCharArray:
case eFormatBytes:
case eFormatBytesWithASCII:
item_count = byte_size;
byte_size = 1;
break;
case eFormatUnicode16:
item_count = byte_size / 2;
byte_size = 2;
break;
case eFormatUnicode32:
item_count = byte_size / 4;
byte_size = 4;
break;
}
return data.Dump (s,
byte_offset,
format,
byte_size,
item_count,
UINT32_MAX,
LLDB_INVALID_ADDRESS,
bitfield_bit_size,
bitfield_bit_offset,
exe_scope);
}
break;
}
}
return 0;
}
void
ClangASTContext::DumpSummary (void* type, ExecutionContext *exe_ctx,
Stream *s,
const lldb_private::DataExtractor &data,
lldb::offset_t data_byte_offset,
size_t data_byte_size)
{
uint32_t length = 0;
if (IsCStringType (type, length))
{
if (exe_ctx)
{
Process *process = exe_ctx->GetProcessPtr();
if (process)
{
lldb::offset_t offset = data_byte_offset;
lldb::addr_t pointer_address = data.GetMaxU64(&offset, data_byte_size);
std::vector<uint8_t> buf;
if (length > 0)
buf.resize (length);
else
buf.resize (256);
lldb_private::DataExtractor cstr_data(&buf.front(), buf.size(), process->GetByteOrder(), 4);
buf.back() = '\0';
size_t bytes_read;
size_t total_cstr_len = 0;
Error error;
while ((bytes_read = process->ReadMemory (pointer_address, &buf.front(), buf.size(), error)) > 0)
{
const size_t len = strlen((const char *)&buf.front());
if (len == 0)
break;
if (total_cstr_len == 0)
s->PutCString (" \"");
cstr_data.Dump(s, 0, lldb::eFormatChar, 1, len, UINT32_MAX, LLDB_INVALID_ADDRESS, 0, 0);
total_cstr_len += len;
if (len < buf.size())
break;
pointer_address += total_cstr_len;
}
if (total_cstr_len > 0)
s->PutChar ('"');
}
}
}
}
void
ClangASTContext::DumpTypeDescription (void* type)
{
StreamFile s (stdout, false);
DumpTypeDescription (&s);
ClangASTMetadata *metadata = ClangASTContext::GetMetadata (getASTContext(), type);
if (metadata)
{
metadata->Dump (&s);
}
}
void
ClangASTContext::DumpTypeDescription (void* type, Stream *s)
{
if (type)
{
clang::QualType qual_type(GetQualType(type));
llvm::SmallVector<char, 1024> buf;
llvm::raw_svector_ostream llvm_ostrm (buf);
const clang::Type::TypeClass type_class = qual_type->getTypeClass();
switch (type_class)
{
case clang::Type::ObjCObject:
case clang::Type::ObjCInterface:
{
GetCompleteType(type);
const clang::ObjCObjectType *objc_class_type = llvm::dyn_cast<clang::ObjCObjectType>(qual_type.getTypePtr());
assert (objc_class_type);
if (objc_class_type)
{
clang::ObjCInterfaceDecl *class_interface_decl = objc_class_type->getInterface();
if (class_interface_decl)
{
clang::PrintingPolicy policy = getASTContext()->getPrintingPolicy();
class_interface_decl->print(llvm_ostrm, policy, s->GetIndentLevel());
}
}
}
break;
case clang::Type::Typedef:
{
const clang::TypedefType *typedef_type = qual_type->getAs<clang::TypedefType>();
if (typedef_type)
{
const clang::TypedefNameDecl *typedef_decl = typedef_type->getDecl();
std::string clang_typedef_name (typedef_decl->getQualifiedNameAsString());
if (!clang_typedef_name.empty())
{
s->PutCString ("typedef ");
s->PutCString (clang_typedef_name.c_str());
}
}
}
break;
case clang::Type::Elaborated:
CompilerType (getASTContext(), llvm::cast<clang::ElaboratedType>(qual_type)->getNamedType()).DumpTypeDescription(s);
return;
case clang::Type::Paren:
CompilerType (getASTContext(), llvm::cast<clang::ParenType>(qual_type)->desugar()).DumpTypeDescription(s);
return;
case clang::Type::Record:
{
GetCompleteType(type);
const clang::RecordType *record_type = llvm::cast<clang::RecordType>(qual_type.getTypePtr());
const clang::RecordDecl *record_decl = record_type->getDecl();
const clang::CXXRecordDecl *cxx_record_decl = llvm::dyn_cast<clang::CXXRecordDecl>(record_decl);
if (cxx_record_decl)
cxx_record_decl->print(llvm_ostrm, getASTContext()->getPrintingPolicy(), s->GetIndentLevel());
else
record_decl->print(llvm_ostrm, getASTContext()->getPrintingPolicy(), s->GetIndentLevel());
}
break;
default:
{
const clang::TagType *tag_type = llvm::dyn_cast<clang::TagType>(qual_type.getTypePtr());
if (tag_type)
{
clang::TagDecl *tag_decl = tag_type->getDecl();
if (tag_decl)
tag_decl->print(llvm_ostrm, 0);
}
else
{
std::string clang_type_name(qual_type.getAsString());
if (!clang_type_name.empty())
s->PutCString (clang_type_name.c_str());
}
}
}
if (buf.size() > 0)
{
s->Write (buf.data(), buf.size());
}
}
}
// DWARF parsing functions
#pragma mark DWARF Parsing
#include "lldb/Core/Module.h"
#include "lldb/Symbol/CompileUnit.h"
#include "lldb/Symbol/Function.h"
#include "lldb/Symbol/ObjectFile.h"
#include "lldb/Symbol/TypeList.h"
#include "plugins/SymbolFile/DWARF/DWARFCompileUnit.h"
#include "plugins/SymbolFile/DWARF/DWARFDebugInfo.h"
#include "plugins/SymbolFile/DWARF/DWARFDebugInfoEntry.h"
#include "plugins/SymbolFile/DWARF/DWARFDeclContext.h"
#include "plugins/SymbolFile/DWARF/DWARFDefines.h"
#include "plugins/SymbolFile/DWARF/DWARFDIECollection.h"
#include "plugins/SymbolFile/DWARF/SymbolFileDWARF.h"
#include "plugins/SymbolFile/DWARF/SymbolFileDWARFDebugMap.h"
#include "plugins/SymbolFile/DWARF/UniqueDWARFASTType.h"
class ClangASTContext::DelayedAddObjCClassProperty
{
public:
DelayedAddObjCClassProperty(const CompilerType &class_opaque_type,
const char *property_name,
const CompilerType &property_opaque_type, // The property type is only required if you don't have an ivar decl
clang::ObjCIvarDecl *ivar_decl,
const char *property_setter_name,
const char *property_getter_name,
uint32_t property_attributes,
const ClangASTMetadata *metadata) :
m_class_opaque_type (class_opaque_type),
m_property_name (property_name),
m_property_opaque_type (property_opaque_type),
m_ivar_decl (ivar_decl),
m_property_setter_name (property_setter_name),
m_property_getter_name (property_getter_name),
m_property_attributes (property_attributes)
{
if (metadata != NULL)
{
m_metadata_ap.reset(new ClangASTMetadata());
*m_metadata_ap = *metadata;
}
}
DelayedAddObjCClassProperty (const DelayedAddObjCClassProperty &rhs)
{
*this = rhs;
}
DelayedAddObjCClassProperty& operator= (const DelayedAddObjCClassProperty &rhs)
{
m_class_opaque_type = rhs.m_class_opaque_type;
m_property_name = rhs.m_property_name;
m_property_opaque_type = rhs.m_property_opaque_type;
m_ivar_decl = rhs.m_ivar_decl;
m_property_setter_name = rhs.m_property_setter_name;
m_property_getter_name = rhs.m_property_getter_name;
m_property_attributes = rhs.m_property_attributes;
if (rhs.m_metadata_ap.get())
{
m_metadata_ap.reset (new ClangASTMetadata());
*m_metadata_ap = *rhs.m_metadata_ap;
}
return *this;
}
bool
Finalize()
{
ClangASTContext* ast = m_class_opaque_type.GetTypeSystem()->AsClangASTContext();
assert(ast);
return ast->AddObjCClassProperty (m_class_opaque_type,
m_property_name,
m_property_opaque_type,
m_ivar_decl,
m_property_setter_name,
m_property_getter_name,
m_property_attributes,
m_metadata_ap.get());
}
private:
CompilerType m_class_opaque_type;
const char *m_property_name;
CompilerType m_property_opaque_type;
clang::ObjCIvarDecl *m_ivar_decl;
const char *m_property_setter_name;
const char *m_property_getter_name;
uint32_t m_property_attributes;
std::unique_ptr<ClangASTMetadata> m_metadata_ap;
};
bool
ClangASTContext::ParseTemplateDIE (SymbolFileDWARF *dwarf,
DWARFCompileUnit* dwarf_cu,
const DWARFDebugInfoEntry *die,
ClangASTContext::TemplateParameterInfos &template_param_infos)
{
const dw_tag_t tag = die->Tag();
switch (tag)
{
case DW_TAG_template_type_parameter:
case DW_TAG_template_value_parameter:
{
const uint8_t *fixed_form_sizes = DWARFFormValue::GetFixedFormSizesForAddressSize (dwarf_cu->GetAddressByteSize(), dwarf_cu->IsDWARF64());
DWARFDebugInfoEntry::Attributes attributes;
const size_t num_attributes = die->GetAttributes (dwarf,
dwarf_cu,
fixed_form_sizes,
attributes);
const char *name = NULL;
Type *lldb_type = NULL;
CompilerType clang_type;
uint64_t uval64 = 0;
bool uval64_valid = false;
if (num_attributes > 0)
{
DWARFFormValue form_value;
for (size_t i=0; i<num_attributes; ++i)
{
const dw_attr_t attr = attributes.AttributeAtIndex(i);
switch (attr)
{
case DW_AT_name:
if (attributes.ExtractFormValueAtIndex(dwarf, i, form_value))
name = form_value.AsCString(&dwarf->get_debug_str_data());
break;
case DW_AT_type:
if (attributes.ExtractFormValueAtIndex(dwarf, i, form_value))
{
const dw_offset_t type_die_offset = form_value.Reference();
lldb_type = dwarf->ResolveTypeUID(type_die_offset);
if (lldb_type)
clang_type = lldb_type->GetClangForwardType();
}
break;
case DW_AT_const_value:
if (attributes.ExtractFormValueAtIndex(dwarf, i, form_value))
{
uval64_valid = true;
uval64 = form_value.Unsigned();
}
break;
default:
break;
}
}
clang::ASTContext *ast = getASTContext();
if (!clang_type)
clang_type = GetBasicType(eBasicTypeVoid);
if (clang_type)
{
bool is_signed = false;
if (name && name[0])
template_param_infos.names.push_back(name);
else
template_param_infos.names.push_back(NULL);
if (tag == DW_TAG_template_value_parameter &&
lldb_type != NULL &&
clang_type.IsIntegerType (is_signed) &&
uval64_valid)
{
llvm::APInt apint (lldb_type->GetByteSize() * 8, uval64, is_signed);
template_param_infos.args.push_back (clang::TemplateArgument (*ast,
llvm::APSInt(apint),
ClangASTContext::GetQualType(clang_type)));
}
else
{
template_param_infos.args.push_back (clang::TemplateArgument (ClangASTContext::GetQualType(clang_type)));
}
}
else
{
return false;
}
}
}
return true;
default:
break;
}
return false;
}
bool
ClangASTContext::ParseTemplateParameterInfos (SymbolFileDWARF *dwarf,
DWARFCompileUnit* dwarf_cu,
const DWARFDebugInfoEntry *parent_die,
ClangASTContext::TemplateParameterInfos &template_param_infos)
{
if (parent_die == NULL)
return false;
Args template_parameter_names;
for (const DWARFDebugInfoEntry *die = parent_die->GetFirstChild();
die != NULL;
die = die->GetSibling())
{
const dw_tag_t tag = die->Tag();
switch (tag)
{
case DW_TAG_template_type_parameter:
case DW_TAG_template_value_parameter:
ParseTemplateDIE (dwarf, dwarf_cu, die, template_param_infos);
break;
default:
break;
}
}
if (template_param_infos.args.empty())
return false;
return template_param_infos.args.size() == template_param_infos.names.size();
}
clang::ClassTemplateDecl *
ClangASTContext::ParseClassTemplateDecl (SymbolFileDWARF *dwarf,
clang::DeclContext *decl_ctx,
lldb::AccessType access_type,
const char *parent_name,
int tag_decl_kind,
const ClangASTContext::TemplateParameterInfos &template_param_infos)
{
if (template_param_infos.IsValid())
{
std::string template_basename(parent_name);
template_basename.erase (template_basename.find('<'));
return CreateClassTemplateDecl (decl_ctx,
access_type,
template_basename.c_str(),
tag_decl_kind,
template_param_infos);
}
return NULL;
}
bool
ClangASTContext::ResolveClangOpaqueTypeDefinition (SymbolFileDWARF *dwarf,
DWARFCompileUnit *dwarf_cu,
const DWARFDebugInfoEntry* die,
Type *type,
CompilerType &clang_type)
{
// Disable external storage for this type so we don't get anymore
// clang::ExternalASTSource queries for this type.
SetHasExternalStorage (clang_type.GetOpaqueQualType(), false);
if (dwarf == nullptr || dwarf_cu == nullptr || die == nullptr)
return false;
const dw_tag_t tag = die->Tag();
Log *log = nullptr; // (LogChannelDWARF::GetLogIfAny(DWARF_LOG_DEBUG_INFO|DWARF_LOG_TYPE_COMPLETION));
if (log)
dwarf->GetObjectFile()->GetModule()->LogMessageVerboseBacktrace (log,
"0x%8.8" PRIx64 ": %s '%s' resolving forward declaration...",
dwarf->MakeUserID(die->GetOffset()),
DW_TAG_value_to_name(tag),
type->GetName().AsCString());
assert (clang_type);
DWARFDebugInfoEntry::Attributes attributes;
switch (tag)
{
case DW_TAG_structure_type:
case DW_TAG_union_type:
case DW_TAG_class_type:
{
LayoutInfo layout_info;
{
if (die->HasChildren())
{
LanguageType class_language = eLanguageTypeUnknown;
if (ClangASTContext::IsObjCObjectOrInterfaceType(clang_type))
{
class_language = eLanguageTypeObjC;
// For objective C we don't start the definition when
// the class is created.
ClangASTContext::StartTagDeclarationDefinition (clang_type);
}
int tag_decl_kind = -1;
AccessType default_accessibility = eAccessNone;
if (tag == DW_TAG_structure_type)
{
tag_decl_kind = clang::TTK_Struct;
default_accessibility = eAccessPublic;
}
else if (tag == DW_TAG_union_type)
{
tag_decl_kind = clang::TTK_Union;
default_accessibility = eAccessPublic;
}
else if (tag == DW_TAG_class_type)
{
tag_decl_kind = clang::TTK_Class;
default_accessibility = eAccessPrivate;
}
SymbolContext sc(dwarf->GetCompUnitForDWARFCompUnit(dwarf_cu));
std::vector<clang::CXXBaseSpecifier *> base_classes;
std::vector<int> member_accessibilities;
bool is_a_class = false;
// Parse members and base classes first
DWARFDIECollection member_function_dies;
DelayedPropertyList delayed_properties;
ParseChildMembers (sc,
dwarf,
dwarf_cu,
die,
clang_type,
class_language,
base_classes,
member_accessibilities,
member_function_dies,
delayed_properties,
default_accessibility,
is_a_class,
layout_info);
// Now parse any methods if there were any...
size_t num_functions = member_function_dies.Size();
if (num_functions > 0)
{
for (size_t i=0; i<num_functions; ++i)
{
dwarf->ResolveType(dwarf_cu, member_function_dies.GetDIEPtrAtIndex(i));
}
}
if (class_language == eLanguageTypeObjC)
{
ConstString class_name (clang_type.GetTypeName());
if (class_name)
{
DIEArray method_die_offsets;
dwarf->GetObjCMethodDIEOffsets(class_name, method_die_offsets);
if (!method_die_offsets.empty())
{
DWARFDebugInfo* debug_info = dwarf->DebugInfo();
DWARFCompileUnit* method_cu = NULL;
const size_t num_matches = method_die_offsets.size();
for (size_t i=0; i<num_matches; ++i)
{
const dw_offset_t die_offset = method_die_offsets[i];
DWARFDebugInfoEntry *method_die = debug_info->GetDIEPtrWithCompileUnitHint (die_offset, &method_cu);
if (method_die)
dwarf->ResolveType (method_cu, method_die);
}
}
for (DelayedPropertyList::iterator pi = delayed_properties.begin(), pe = delayed_properties.end();
pi != pe;
++pi)
pi->Finalize();
}
}
// If we have a DW_TAG_structure_type instead of a DW_TAG_class_type we
// need to tell the clang type it is actually a class.
if (class_language != eLanguageTypeObjC)
{
if (is_a_class && tag_decl_kind != clang::TTK_Class)
SetTagTypeKind (ClangASTContext::GetQualType(clang_type), clang::TTK_Class);
}
// Since DW_TAG_structure_type gets used for both classes
// and structures, we may need to set any DW_TAG_member
// fields to have a "private" access if none was specified.
// When we parsed the child members we tracked that actual
// accessibility value for each DW_TAG_member in the
// "member_accessibilities" array. If the value for the
// member is zero, then it was set to the "default_accessibility"
// which for structs was "public". Below we correct this
// by setting any fields to "private" that weren't correctly
// set.
if (is_a_class && !member_accessibilities.empty())
{
// This is a class and all members that didn't have
// their access specified are private.
SetDefaultAccessForRecordFields (GetAsRecordDecl(clang_type),
eAccessPrivate,
&member_accessibilities.front(),
member_accessibilities.size());
}
if (!base_classes.empty())
{
// Make sure all base classes refer to complete types and not
// forward declarations. If we don't do this, clang will crash
// with an assertion in the call to clang_type.SetBaseClassesForClassType()
bool base_class_error = false;
for (auto &base_class : base_classes)
{
clang::TypeSourceInfo *type_source_info = base_class->getTypeSourceInfo();
if (type_source_info)
{
CompilerType base_class_type (this, type_source_info->getType().getAsOpaquePtr());
if (base_class_type.GetCompleteType() == false)
{
if (!base_class_error)
{
dwarf->GetObjectFile()->GetModule()->ReportError ("DWARF DIE at 0x%8.8x for class '%s' has a base class '%s' that is a forward declaration, not a complete definition.\nPlease file a bug against the compiler and include the preprocessed output for %s",
die->GetOffset(),
die->GetName(dwarf, dwarf_cu),
base_class_type.GetTypeName().GetCString(),
sc.comp_unit ? sc.comp_unit->GetPath().c_str() : "the source file");
}
// We have no choice other than to pretend that the base class
// is complete. If we don't do this, clang will crash when we
// call setBases() inside of "clang_type.SetBaseClassesForClassType()"
// below. Since we provide layout assistance, all ivars in this
// class and other classes will be fine, this is the best we can do
// short of crashing.
ClangASTContext::StartTagDeclarationDefinition (base_class_type);
ClangASTContext::CompleteTagDeclarationDefinition (base_class_type);
}
}
}
SetBaseClassesForClassType (clang_type.GetOpaqueQualType(),
&base_classes.front(),
base_classes.size());
// Clang will copy each CXXBaseSpecifier in "base_classes"
// so we have to free them all.
ClangASTContext::DeleteBaseClassSpecifiers (&base_classes.front(),
base_classes.size());
}
}
}
ClangASTContext::BuildIndirectFields (clang_type);
ClangASTContext::CompleteTagDeclarationDefinition (clang_type);
if (!layout_info.field_offsets.empty() ||
!layout_info.base_offsets.empty() ||
!layout_info.vbase_offsets.empty() )
{
if (type)
layout_info.bit_size = type->GetByteSize() * 8;
if (layout_info.bit_size == 0)
layout_info.bit_size = die->GetAttributeValueAsUnsigned(dwarf, dwarf_cu, DW_AT_byte_size, 0) * 8;
clang::CXXRecordDecl *record_decl = GetAsCXXRecordDecl(clang_type.GetOpaqueQualType());
if (record_decl)
{
if (log)
{
ModuleSP module_sp = dwarf->GetObjectFile()->GetModule();
if (module_sp)
{
module_sp->LogMessage (log,
"SymbolFileDWARF::ResolveClangOpaqueTypeDefinition (clang_type = %p) caching layout info for record_decl = %p, bit_size = %" PRIu64 ", alignment = %" PRIu64 ", field_offsets[%u], base_offsets[%u], vbase_offsets[%u])",
static_cast<void*>(clang_type.GetOpaqueQualType()),
static_cast<void*>(record_decl),
layout_info.bit_size,
layout_info.alignment,
static_cast<uint32_t>(layout_info.field_offsets.size()),
static_cast<uint32_t>(layout_info.base_offsets.size()),
static_cast<uint32_t>(layout_info.vbase_offsets.size()));
uint32_t idx;
{
llvm::DenseMap<const clang::FieldDecl *, uint64_t>::const_iterator pos,
end = layout_info.field_offsets.end();
for (idx = 0, pos = layout_info.field_offsets.begin(); pos != end; ++pos, ++idx)
{
module_sp->LogMessage(log,
"SymbolFileDWARF::ResolveClangOpaqueTypeDefinition (clang_type = %p) field[%u] = { bit_offset=%u, name='%s' }",
static_cast<void *>(clang_type.GetOpaqueQualType()),
idx,
static_cast<uint32_t>(pos->second),
pos->first->getNameAsString().c_str());
}
}
{
llvm::DenseMap<const clang::CXXRecordDecl *, clang::CharUnits>::const_iterator base_pos,
base_end = layout_info.base_offsets.end();
for (idx = 0, base_pos = layout_info.base_offsets.begin(); base_pos != base_end; ++base_pos, ++idx)
{
module_sp->LogMessage(log,
"SymbolFileDWARF::ResolveClangOpaqueTypeDefinition (clang_type = %p) base[%u] = { byte_offset=%u, name='%s' }",
clang_type.GetOpaqueQualType(), idx, (uint32_t)base_pos->second.getQuantity(),
base_pos->first->getNameAsString().c_str());
}
}
{
llvm::DenseMap<const clang::CXXRecordDecl *, clang::CharUnits>::const_iterator vbase_pos,
vbase_end = layout_info.vbase_offsets.end();
for (idx = 0, vbase_pos = layout_info.vbase_offsets.begin(); vbase_pos != vbase_end; ++vbase_pos, ++idx)
{
module_sp->LogMessage(log,
"SymbolFileDWARF::ResolveClangOpaqueTypeDefinition (clang_type = %p) vbase[%u] = { byte_offset=%u, name='%s' }",
static_cast<void *>(clang_type.GetOpaqueQualType()), idx,
static_cast<uint32_t>(vbase_pos->second.getQuantity()),
vbase_pos->first->getNameAsString().c_str());
}
}
}
}
m_record_decl_to_layout_map.insert(std::make_pair(record_decl, layout_info));
}
}
}
return (bool)clang_type;
case DW_TAG_enumeration_type:
ClangASTContext::StartTagDeclarationDefinition (clang_type);
if (die->HasChildren())
{
SymbolContext sc(dwarf->GetCompUnitForDWARFCompUnit(dwarf_cu));
bool is_signed = false;
clang_type.IsIntegerType(is_signed);
ParseChildEnumerators(sc, clang_type, is_signed, type->GetByteSize(), dwarf, dwarf_cu, die);
}
ClangASTContext::CompleteTagDeclarationDefinition (clang_type);
return (bool)clang_type;
default:
assert(false && "not a forward clang type decl!");
break;
}
return false;
}
bool
ClangASTContext::LayoutRecordType(SymbolFileDWARF *dwarf,
const clang::RecordDecl *record_decl,
uint64_t &bit_size,
uint64_t &alignment,
llvm::DenseMap<const clang::FieldDecl *, uint64_t> &field_offsets,
llvm::DenseMap<const clang::CXXRecordDecl *, clang::CharUnits> &base_offsets,
llvm::DenseMap<const clang::CXXRecordDecl *, clang::CharUnits> &vbase_offsets)
{
RecordDeclToLayoutMap::iterator pos = m_record_decl_to_layout_map.find (record_decl);
bool success = false;
base_offsets.clear();
vbase_offsets.clear();
if (pos != m_record_decl_to_layout_map.end())
{
bit_size = pos->second.bit_size;
alignment = pos->second.alignment;
field_offsets.swap(pos->second.field_offsets);
base_offsets.swap (pos->second.base_offsets);
vbase_offsets.swap (pos->second.vbase_offsets);
m_record_decl_to_layout_map.erase(pos);
success = true;
}
else
{
bit_size = 0;
alignment = 0;
field_offsets.clear();
}
return success;
}
size_t
ClangASTContext::ParseChildEnumerators (const SymbolContext& sc,
lldb_private::CompilerType &clang_type,
bool is_signed,
uint32_t enumerator_byte_size,
SymbolFileDWARF *dwarf,
DWARFCompileUnit* dwarf_cu,
const DWARFDebugInfoEntry *parent_die)
{
if (parent_die == NULL)
return 0;
size_t enumerators_added = 0;
const DWARFDebugInfoEntry *die;
const uint8_t *fixed_form_sizes = DWARFFormValue::GetFixedFormSizesForAddressSize (dwarf_cu->GetAddressByteSize(), dwarf_cu->IsDWARF64());
for (die = parent_die->GetFirstChild(); die != NULL; die = die->GetSibling())
{
const dw_tag_t tag = die->Tag();
if (tag == DW_TAG_enumerator)
{
DWARFDebugInfoEntry::Attributes attributes;
const size_t num_child_attributes = die->GetAttributes(dwarf, dwarf_cu, fixed_form_sizes, attributes);
if (num_child_attributes > 0)
{
const char *name = NULL;
bool got_value = false;
int64_t enum_value = 0;
Declaration decl;
uint32_t i;
for (i=0; i<num_child_attributes; ++i)
{
const dw_attr_t attr = attributes.AttributeAtIndex(i);
DWARFFormValue form_value;
if (attributes.ExtractFormValueAtIndex(dwarf, i, form_value))
{
switch (attr)
{
case DW_AT_const_value:
got_value = true;
if (is_signed)
enum_value = form_value.Signed();
else
enum_value = form_value.Unsigned();
break;
case DW_AT_name:
name = form_value.AsCString(&dwarf->get_debug_str_data());
break;
case DW_AT_description:
default:
case DW_AT_decl_file: decl.SetFile(sc.comp_unit->GetSupportFiles().GetFileSpecAtIndex(form_value.Unsigned())); break;
case DW_AT_decl_line: decl.SetLine(form_value.Unsigned()); break;
case DW_AT_decl_column: decl.SetColumn(form_value.Unsigned()); break;
case DW_AT_sibling:
break;
}
}
}
if (name && name[0] && got_value)
{
AddEnumerationValueToEnumerationType (clang_type.GetOpaqueQualType(),
GetEnumerationIntegerType(clang_type.GetOpaqueQualType()),
decl,
name,
enum_value,
enumerator_byte_size * 8);
++enumerators_added;
}
}
}
}
return enumerators_added;
}
#if defined(LLDB_CONFIGURATION_DEBUG) || defined(LLDB_CONFIGURATION_RELEASE)
class DIEStack
{
public:
void Push (DWARFCompileUnit *cu, const DWARFDebugInfoEntry *die)
{
m_dies.push_back (DIEInfo(cu, die));
}
void LogDIEs (Log *log, SymbolFileDWARF *dwarf)
{
StreamString log_strm;
const size_t n = m_dies.size();
log_strm.Printf("DIEStack[%" PRIu64 "]:\n", (uint64_t)n);
for (size_t i=0; i<n; i++)
{
DWARFCompileUnit *cu = m_dies[i].cu;
const DWARFDebugInfoEntry *die = m_dies[i].die;
std::string qualified_name;
die->GetQualifiedName(dwarf, cu, qualified_name);
log_strm.Printf ("[%" PRIu64 "] 0x%8.8x: %s name='%s'\n",
(uint64_t)i,
die->GetOffset(),
DW_TAG_value_to_name(die->Tag()),
qualified_name.c_str());
}
log->PutCString(log_strm.GetData());
}
void Pop ()
{
m_dies.pop_back();
}
class ScopedPopper
{
public:
ScopedPopper (DIEStack &die_stack) :
m_die_stack (die_stack),
m_valid (false)
{
}
void
Push (DWARFCompileUnit *cu, const DWARFDebugInfoEntry *die)
{
m_valid = true;
m_die_stack.Push (cu, die);
}
~ScopedPopper ()
{
if (m_valid)
m_die_stack.Pop();
}
protected:
DIEStack &m_die_stack;
bool m_valid;
};
protected:
struct DIEInfo {
DIEInfo (DWARFCompileUnit *c, const DWARFDebugInfoEntry *d) :
cu(c),
die(d)
{
}
DWARFCompileUnit *cu;
const DWARFDebugInfoEntry *die;
};
typedef std::vector<DIEInfo> Stack;
Stack m_dies;
};
#endif
static AccessType
DW_ACCESS_to_AccessType (uint32_t dwarf_accessibility)
{
switch (dwarf_accessibility)
{
case DW_ACCESS_public: return eAccessPublic;
case DW_ACCESS_private: return eAccessPrivate;
case DW_ACCESS_protected: return eAccessProtected;
default: break;
}
return eAccessNone;
}
static bool
DeclKindIsCXXClass (clang::Decl::Kind decl_kind)
{
switch (decl_kind)
{
case clang::Decl::CXXRecord:
case clang::Decl::ClassTemplateSpecialization:
return true;
default:
break;
}
return false;
}
struct BitfieldInfo
{
uint64_t bit_size;
uint64_t bit_offset;
BitfieldInfo () :
bit_size (LLDB_INVALID_ADDRESS),
bit_offset (LLDB_INVALID_ADDRESS)
{
}
void
Clear()
{
bit_size = LLDB_INVALID_ADDRESS;
bit_offset = LLDB_INVALID_ADDRESS;
}
bool IsValid ()
{
return (bit_size != LLDB_INVALID_ADDRESS) &&
(bit_offset != LLDB_INVALID_ADDRESS);
}
};
Function *
ClangASTContext::ParseFunctionFromDWARF (const SymbolContext& sc,
SymbolFileDWARF *dwarf,
DWARFCompileUnit* dwarf_cu,
const DWARFDebugInfoEntry *die)
{
DWARFDebugRanges::RangeList func_ranges;
const char *name = NULL;
const char *mangled = NULL;
int decl_file = 0;
int decl_line = 0;
int decl_column = 0;
int call_file = 0;
int call_line = 0;
int call_column = 0;
DWARFExpression frame_base;
assert (die->Tag() == DW_TAG_subprogram);
if (die->Tag() != DW_TAG_subprogram)
return NULL;
if (die->GetDIENamesAndRanges (dwarf,
dwarf_cu,
name,
mangled,
func_ranges,
decl_file,
decl_line,
decl_column,
call_file,
call_line,
call_column,
&frame_base))
{
// Union of all ranges in the function DIE (if the function is discontiguous)
AddressRange func_range;
lldb::addr_t lowest_func_addr = func_ranges.GetMinRangeBase (0);
lldb::addr_t highest_func_addr = func_ranges.GetMaxRangeEnd (0);
if (lowest_func_addr != LLDB_INVALID_ADDRESS && lowest_func_addr <= highest_func_addr)
{
ModuleSP module_sp (dwarf->GetObjectFile()->GetModule());
func_range.GetBaseAddress().ResolveAddressUsingFileSections (lowest_func_addr, module_sp->GetSectionList());
if (func_range.GetBaseAddress().IsValid())
func_range.SetByteSize(highest_func_addr - lowest_func_addr);
}
if (func_range.GetBaseAddress().IsValid())
{
Mangled func_name;
if (mangled)
func_name.SetValue(ConstString(mangled), true);
else if (die->GetParent()->Tag() == DW_TAG_compile_unit &&
LanguageRuntime::LanguageIsCPlusPlus(dwarf_cu->GetLanguageType()) &&
name && strcmp(name, "main") != 0)
{
// If the mangled name is not present in the DWARF, generate the demangled name
// using the decl context. We skip if the function is "main" as its name is
// never mangled.
bool is_static = false;
bool is_variadic = false;
unsigned type_quals = 0;
std::vector<CompilerType> param_types;
std::vector<clang::ParmVarDecl*> param_decls;
const DWARFDebugInfoEntry *decl_ctx_die = NULL;
DWARFDeclContext decl_ctx;
StreamString sstr;
die->GetDWARFDeclContext(dwarf, dwarf_cu, decl_ctx);
sstr << decl_ctx.GetQualifiedName();
clang::DeclContext *containing_decl_ctx = GetClangDeclContextContainingDIE(dwarf,
dwarf_cu,
die,
&decl_ctx_die);
ParseChildParameters(sc,
containing_decl_ctx,
dwarf,
dwarf_cu,
die,
true,
is_static,
is_variadic,
param_types,
param_decls,
type_quals);
sstr << "(";
for (size_t i = 0; i < param_types.size(); i++)
{
if (i > 0)
sstr << ", ";
sstr << param_types[i].GetTypeName();
}
if (is_variadic)
sstr << ", ...";
sstr << ")";
if (type_quals & clang::Qualifiers::Const)
sstr << " const";
func_name.SetValue(ConstString(sstr.GetData()), false);
}
else
func_name.SetValue(ConstString(name), false);
FunctionSP func_sp;
std::unique_ptr<Declaration> decl_ap;
if (decl_file != 0 || decl_line != 0 || decl_column != 0)
decl_ap.reset(new Declaration (sc.comp_unit->GetSupportFiles().GetFileSpecAtIndex(decl_file),
decl_line,
decl_column));
// Supply the type _only_ if it has already been parsed
Type *func_type = dwarf->m_die_to_type.lookup (die);
assert(func_type == NULL || func_type != DIE_IS_BEING_PARSED);
if (dwarf->FixupAddress (func_range.GetBaseAddress()))
{
const user_id_t func_user_id = dwarf->MakeUserID(die->GetOffset());
func_sp.reset(new Function (sc.comp_unit,
dwarf->MakeUserID(func_user_id), // UserID is the DIE offset
dwarf->MakeUserID(func_user_id),
func_name,
func_type,
func_range)); // first address range
if (func_sp.get() != NULL)
{
if (frame_base.IsValid())
func_sp->GetFrameBaseExpression() = frame_base;
sc.comp_unit->AddFunction(func_sp);
return func_sp.get();
}
}
}
}
return NULL;
}
size_t
ClangASTContext::ParseChildMembers (const SymbolContext& sc,
SymbolFileDWARF *dwarf,
DWARFCompileUnit* dwarf_cu,
const DWARFDebugInfoEntry *parent_die,
CompilerType &class_clang_type,
const LanguageType class_language,
std::vector<clang::CXXBaseSpecifier *>& base_classes,
std::vector<int>& member_accessibilities,
DWARFDIECollection& member_function_dies,
DelayedPropertyList& delayed_properties,
AccessType& default_accessibility,
bool &is_a_class,
LayoutInfo &layout_info)
{
if (parent_die == NULL)
return 0;
size_t count = 0;
const DWARFDebugInfoEntry *die;
const uint8_t *fixed_form_sizes = DWARFFormValue::GetFixedFormSizesForAddressSize (dwarf_cu->GetAddressByteSize(), dwarf_cu->IsDWARF64());
uint32_t member_idx = 0;
BitfieldInfo last_field_info;
ModuleSP module_sp = dwarf->GetObjectFile()->GetModule();
ClangASTContext* ast = class_clang_type.GetTypeSystem()->AsClangASTContext();
if (ast == nullptr)
return 0;
for (die = parent_die->GetFirstChild(); die != NULL; die = die->GetSibling())
{
dw_tag_t tag = die->Tag();
switch (tag)
{
case DW_TAG_member:
case DW_TAG_APPLE_property:
{
DWARFDebugInfoEntry::Attributes attributes;
const size_t num_attributes = die->GetAttributes (dwarf,
dwarf_cu,
fixed_form_sizes,
attributes);
if (num_attributes > 0)
{
Declaration decl;
//DWARFExpression location;
const char *name = NULL;
const char *prop_name = NULL;
const char *prop_getter_name = NULL;
const char *prop_setter_name = NULL;
uint32_t prop_attributes = 0;
bool is_artificial = false;
lldb::user_id_t encoding_uid = LLDB_INVALID_UID;
AccessType accessibility = eAccessNone;
uint32_t member_byte_offset = UINT32_MAX;
size_t byte_size = 0;
size_t bit_offset = 0;
size_t bit_size = 0;
bool is_external = false; // On DW_TAG_members, this means the member is static
uint32_t i;
for (i=0; i<num_attributes && !is_artificial; ++i)
{
const dw_attr_t attr = attributes.AttributeAtIndex(i);
DWARFFormValue form_value;
if (attributes.ExtractFormValueAtIndex(dwarf, i, form_value))
{
switch (attr)
{
case DW_AT_decl_file: decl.SetFile(sc.comp_unit->GetSupportFiles().GetFileSpecAtIndex(form_value.Unsigned())); break;
case DW_AT_decl_line: decl.SetLine(form_value.Unsigned()); break;
case DW_AT_decl_column: decl.SetColumn(form_value.Unsigned()); break;
case DW_AT_name: name = form_value.AsCString(&dwarf->get_debug_str_data()); break;
case DW_AT_type: encoding_uid = form_value.Reference(); break;
case DW_AT_bit_offset: bit_offset = form_value.Unsigned(); break;
case DW_AT_bit_size: bit_size = form_value.Unsigned(); break;
case DW_AT_byte_size: byte_size = form_value.Unsigned(); break;
case DW_AT_data_member_location:
if (form_value.BlockData())
{
Value initialValue(0);
Value memberOffset(0);
const DWARFDataExtractor& debug_info_data = dwarf->get_debug_info_data();
uint32_t block_length = form_value.Unsigned();
uint32_t block_offset = form_value.BlockData() - debug_info_data.GetDataStart();
if (DWARFExpression::Evaluate(NULL, // ExecutionContext *
NULL, // ClangExpressionVariableList *
NULL, // ClangExpressionDeclMap *
NULL, // RegisterContext *
module_sp,
debug_info_data,
block_offset,
block_length,
eRegisterKindDWARF,
&initialValue,
memberOffset,
NULL))
{
member_byte_offset = memberOffset.ResolveValue(NULL).UInt();
}
}
else
{
// With DWARF 3 and later, if the value is an integer constant,
// this form value is the offset in bytes from the beginning
// of the containing entity.
member_byte_offset = form_value.Unsigned();
}
break;
case DW_AT_accessibility: accessibility = DW_ACCESS_to_AccessType (form_value.Unsigned()); break;
case DW_AT_artificial: is_artificial = form_value.Boolean(); break;
case DW_AT_APPLE_property_name: prop_name = form_value.AsCString(&dwarf->get_debug_str_data()); break;
case DW_AT_APPLE_property_getter: prop_getter_name = form_value.AsCString(&dwarf->get_debug_str_data()); break;
case DW_AT_APPLE_property_setter: prop_setter_name = form_value.AsCString(&dwarf->get_debug_str_data()); break;
case DW_AT_APPLE_property_attribute: prop_attributes = form_value.Unsigned(); break;
case DW_AT_external: is_external = form_value.Boolean(); break;
default:
case DW_AT_declaration:
case DW_AT_description:
case DW_AT_mutable:
case DW_AT_visibility:
case DW_AT_sibling:
break;
}
}
}
if (prop_name)
{
ConstString fixed_getter;
ConstString fixed_setter;
// Check if the property getter/setter were provided as full
// names. We want basenames, so we extract them.
if (prop_getter_name && prop_getter_name[0] == '-')
{
ObjCLanguageRuntime::MethodName prop_getter_method(prop_getter_name, true);
prop_getter_name = prop_getter_method.GetSelector().GetCString();
}
if (prop_setter_name && prop_setter_name[0] == '-')
{
ObjCLanguageRuntime::MethodName prop_setter_method(prop_setter_name, true);
prop_setter_name = prop_setter_method.GetSelector().GetCString();
}
// If the names haven't been provided, they need to be
// filled in.
if (!prop_getter_name)
{
prop_getter_name = prop_name;
}
if (!prop_setter_name && prop_name[0] && !(prop_attributes & DW_APPLE_PROPERTY_readonly))
{
StreamString ss;
ss.Printf("set%c%s:",
toupper(prop_name[0]),
&prop_name[1]);
fixed_setter.SetCString(ss.GetData());
prop_setter_name = fixed_setter.GetCString();
}
}
// Clang has a DWARF generation bug where sometimes it
// represents fields that are references with bad byte size
// and bit size/offset information such as:
//
// DW_AT_byte_size( 0x00 )
// DW_AT_bit_size( 0x40 )
// DW_AT_bit_offset( 0xffffffffffffffc0 )
//
// So check the bit offset to make sure it is sane, and if
// the values are not sane, remove them. If we don't do this
// then we will end up with a crash if we try to use this
// type in an expression when clang becomes unhappy with its
// recycled debug info.
if (bit_offset > 128)
{
bit_size = 0;
bit_offset = 0;
}
// FIXME: Make Clang ignore Objective-C accessibility for expressions
if (class_language == eLanguageTypeObjC ||
class_language == eLanguageTypeObjC_plus_plus)
accessibility = eAccessNone;
if (member_idx == 0 && !is_artificial && name && (strstr (name, "_vptr$") == name))
{
// Not all compilers will mark the vtable pointer
// member as artificial (llvm-gcc). We can't have
// the virtual members in our classes otherwise it
// throws off all child offsets since we end up
// having and extra pointer sized member in our
// class layouts.
is_artificial = true;
}
// Handle static members
if (is_external && member_byte_offset == UINT32_MAX)
{
Type *var_type = dwarf->ResolveTypeUID(encoding_uid);
if (var_type)
{
if (accessibility == eAccessNone)
accessibility = eAccessPublic;
ClangASTContext::AddVariableToRecordType (class_clang_type,
name,
var_type->GetClangLayoutType(),
accessibility);
}
break;
}
if (is_artificial == false)
{
Type *member_type = dwarf->ResolveTypeUID(encoding_uid);
clang::FieldDecl *field_decl = NULL;
if (tag == DW_TAG_member)
{
if (member_type)
{
if (accessibility == eAccessNone)
accessibility = default_accessibility;
member_accessibilities.push_back(accessibility);
uint64_t field_bit_offset = (member_byte_offset == UINT32_MAX ? 0 : (member_byte_offset * 8));
if (bit_size > 0)
{
BitfieldInfo this_field_info;
this_field_info.bit_offset = field_bit_offset;
this_field_info.bit_size = bit_size;
/////////////////////////////////////////////////////////////
// How to locate a field given the DWARF debug information
//
// AT_byte_size indicates the size of the word in which the
// bit offset must be interpreted.
//
// AT_data_member_location indicates the byte offset of the
// word from the base address of the structure.
//
// AT_bit_offset indicates how many bits into the word
// (according to the host endianness) the low-order bit of
// the field starts. AT_bit_offset can be negative.
//
// AT_bit_size indicates the size of the field in bits.
/////////////////////////////////////////////////////////////
if (byte_size == 0)
byte_size = member_type->GetByteSize();
if (dwarf->GetObjectFile()->GetByteOrder() == eByteOrderLittle)
{
this_field_info.bit_offset += byte_size * 8;
this_field_info.bit_offset -= (bit_offset + bit_size);
}
else
{
this_field_info.bit_offset += bit_offset;
}
// Update the field bit offset we will report for layout
field_bit_offset = this_field_info.bit_offset;
// If the member to be emitted did not start on a character boundary and there is
// empty space between the last field and this one, then we need to emit an
// anonymous member filling up the space up to its start. There are three cases
// here:
//
// 1 If the previous member ended on a character boundary, then we can emit an
// anonymous member starting at the most recent character boundary.
//
// 2 If the previous member did not end on a character boundary and the distance
// from the end of the previous member to the current member is less than a
// word width, then we can emit an anonymous member starting right after the
// previous member and right before this member.
//
// 3 If the previous member did not end on a character boundary and the distance
// from the end of the previous member to the current member is greater than
// or equal a word width, then we act as in Case 1.
const uint64_t character_width = 8;
const uint64_t word_width = 32;
// Objective-C has invalid DW_AT_bit_offset values in older versions
// of clang, so we have to be careful and only insert unnamed bitfields
// if we have a new enough clang.
bool detect_unnamed_bitfields = true;
if (class_language == eLanguageTypeObjC || class_language == eLanguageTypeObjC_plus_plus)
detect_unnamed_bitfields = dwarf_cu->Supports_unnamed_objc_bitfields ();
if (detect_unnamed_bitfields)
{
BitfieldInfo anon_field_info;
if ((this_field_info.bit_offset % character_width) != 0) // not char aligned
{
uint64_t last_field_end = 0;
if (last_field_info.IsValid())
last_field_end = last_field_info.bit_offset + last_field_info.bit_size;
if (this_field_info.bit_offset != last_field_end)
{
if (((last_field_end % character_width) == 0) || // case 1
(this_field_info.bit_offset - last_field_end >= word_width)) // case 3
{
anon_field_info.bit_size = this_field_info.bit_offset % character_width;
anon_field_info.bit_offset = this_field_info.bit_offset - anon_field_info.bit_size;
}
else // case 2
{
anon_field_info.bit_size = this_field_info.bit_offset - last_field_end;
anon_field_info.bit_offset = last_field_end;
}
}
}
if (anon_field_info.IsValid())
{
clang::FieldDecl *unnamed_bitfield_decl =
ClangASTContext::AddFieldToRecordType (class_clang_type,
NULL,
GetBuiltinTypeForEncodingAndBitSize(eEncodingSint, word_width),
accessibility,
anon_field_info.bit_size);
layout_info.field_offsets.insert(
std::make_pair(unnamed_bitfield_decl, anon_field_info.bit_offset));
}
}
last_field_info = this_field_info;
}
else
{
last_field_info.Clear();
}
CompilerType member_clang_type = member_type->GetClangLayoutType();
{
// Older versions of clang emit array[0] and array[1] in the same way (<rdar://problem/12566646>).
// If the current field is at the end of the structure, then there is definitely no room for extra
// elements and we override the type to array[0].
CompilerType member_array_element_type;
uint64_t member_array_size;
bool member_array_is_incomplete;
if (member_clang_type.IsArrayType(&member_array_element_type,
&member_array_size,
&member_array_is_incomplete) &&
!member_array_is_incomplete)
{
uint64_t parent_byte_size = parent_die->GetAttributeValueAsUnsigned(dwarf, dwarf_cu, DW_AT_byte_size, UINT64_MAX);
if (member_byte_offset >= parent_byte_size)
{
if (member_array_size != 1)
{
module_sp->ReportError ("0x%8.8" PRIx64 ": DW_TAG_member '%s' refers to type 0x%8.8" PRIx64 " which extends beyond the bounds of 0x%8.8" PRIx64,
dwarf->MakeUserID(die->GetOffset()),
name,
encoding_uid,
dwarf->MakeUserID(parent_die->GetOffset()));
}
member_clang_type = CreateArrayType(member_array_element_type, 0, false);
}
}
}
field_decl = ClangASTContext::AddFieldToRecordType (class_clang_type,
name,
member_clang_type,
accessibility,
bit_size);
SetMetadataAsUserID (field_decl, dwarf->MakeUserID(die->GetOffset()));
layout_info.field_offsets.insert(std::make_pair(field_decl, field_bit_offset));
}
else
{
if (name)
module_sp->ReportError ("0x%8.8" PRIx64 ": DW_TAG_member '%s' refers to type 0x%8.8" PRIx64 " which was unable to be parsed",
dwarf->MakeUserID(die->GetOffset()),
name,
encoding_uid);
else
module_sp->ReportError ("0x%8.8" PRIx64 ": DW_TAG_member refers to type 0x%8.8" PRIx64 " which was unable to be parsed",
dwarf->MakeUserID(die->GetOffset()),
encoding_uid);
}
}
if (prop_name != NULL && member_type)
{
clang::ObjCIvarDecl *ivar_decl = NULL;
if (field_decl)
{
ivar_decl = clang::dyn_cast<clang::ObjCIvarDecl>(field_decl);
assert (ivar_decl != NULL);
}
ClangASTMetadata metadata;
metadata.SetUserID (dwarf->MakeUserID(die->GetOffset()));
delayed_properties.push_back(DelayedAddObjCClassProperty(class_clang_type,
prop_name,
member_type->GetClangLayoutType(),
ivar_decl,
prop_setter_name,
prop_getter_name,
prop_attributes,
&metadata));
if (ivar_decl)
SetMetadataAsUserID (ivar_decl, dwarf->MakeUserID(die->GetOffset()));
}
}
}
++member_idx;
}
break;
case DW_TAG_subprogram:
// Let the type parsing code handle this one for us.
member_function_dies.Append (die);
break;
case DW_TAG_inheritance:
{
is_a_class = true;
if (default_accessibility == eAccessNone)
default_accessibility = eAccessPrivate;
// TODO: implement DW_TAG_inheritance type parsing
DWARFDebugInfoEntry::Attributes attributes;
const size_t num_attributes = die->GetAttributes (dwarf,
dwarf_cu,
fixed_form_sizes,
attributes);
if (num_attributes > 0)
{
Declaration decl;
DWARFExpression location;
lldb::user_id_t encoding_uid = LLDB_INVALID_UID;
AccessType accessibility = default_accessibility;
bool is_virtual = false;
bool is_base_of_class = true;
off_t member_byte_offset = 0;
uint32_t i;
for (i=0; i<num_attributes; ++i)
{
const dw_attr_t attr = attributes.AttributeAtIndex(i);
DWARFFormValue form_value;
if (attributes.ExtractFormValueAtIndex(dwarf, i, form_value))
{
switch (attr)
{
case DW_AT_decl_file: decl.SetFile(sc.comp_unit->GetSupportFiles().GetFileSpecAtIndex(form_value.Unsigned())); break;
case DW_AT_decl_line: decl.SetLine(form_value.Unsigned()); break;
case DW_AT_decl_column: decl.SetColumn(form_value.Unsigned()); break;
case DW_AT_type: encoding_uid = form_value.Reference(); break;
case DW_AT_data_member_location:
if (form_value.BlockData())
{
Value initialValue(0);
Value memberOffset(0);
const DWARFDataExtractor& debug_info_data = dwarf->get_debug_info_data();
uint32_t block_length = form_value.Unsigned();
uint32_t block_offset = form_value.BlockData() - debug_info_data.GetDataStart();
if (DWARFExpression::Evaluate (NULL,
NULL,
NULL,
NULL,
module_sp,
debug_info_data,
block_offset,
block_length,
eRegisterKindDWARF,
&initialValue,
memberOffset,
NULL))
{
member_byte_offset = memberOffset.ResolveValue(NULL).UInt();
}
}
else
{
// With DWARF 3 and later, if the value is an integer constant,
// this form value is the offset in bytes from the beginning
// of the containing entity.
member_byte_offset = form_value.Unsigned();
}
break;
case DW_AT_accessibility:
accessibility = DW_ACCESS_to_AccessType(form_value.Unsigned());
break;
case DW_AT_virtuality:
is_virtual = form_value.Boolean();
break;
case DW_AT_sibling:
break;
default:
break;
}
}
}
Type *base_class_type = dwarf->ResolveTypeUID(encoding_uid);
if (base_class_type == NULL)
{
module_sp->ReportError("0x%8.8x: DW_TAG_inheritance failed to resolve the base class at 0x%8.8" PRIx64 " from enclosing type 0x%8.8x. \nPlease file a bug and attach the file at the start of this error message",
die->GetOffset(),
encoding_uid,
parent_die->GetOffset());
break;
}
CompilerType base_class_clang_type = base_class_type->GetClangFullType();
assert (base_class_clang_type);
if (class_language == eLanguageTypeObjC)
{
ast->SetObjCSuperClass(class_clang_type, base_class_clang_type);
}
else
{
base_classes.push_back (ast->CreateBaseClassSpecifier (base_class_clang_type.GetOpaqueQualType(),
accessibility,
is_virtual,
is_base_of_class));
if (is_virtual)
{
// Do not specify any offset for virtual inheritance. The DWARF produced by clang doesn't
// give us a constant offset, but gives us a DWARF expressions that requires an actual object
// in memory. the DW_AT_data_member_location for a virtual base class looks like:
// DW_AT_data_member_location( DW_OP_dup, DW_OP_deref, DW_OP_constu(0x00000018), DW_OP_minus, DW_OP_deref, DW_OP_plus )
// Given this, there is really no valid response we can give to clang for virtual base
// class offsets, and this should eventually be removed from LayoutRecordType() in the external
// AST source in clang.
}
else
{
layout_info.base_offsets.insert(
std::make_pair(ast->GetAsCXXRecordDecl(base_class_clang_type.GetOpaqueQualType()),
clang::CharUnits::fromQuantity(member_byte_offset)));
}
}
}
}
break;
default:
break;
}
}
return count;
}
size_t
ClangASTContext::ParseChildParameters (const SymbolContext& sc,
clang::DeclContext *containing_decl_ctx,
SymbolFileDWARF *dwarf,
DWARFCompileUnit* dwarf_cu,
const DWARFDebugInfoEntry *parent_die,
bool skip_artificial,
bool &is_static,
bool &is_variadic,
std::vector<CompilerType>& function_param_types,
std::vector<clang::ParmVarDecl*>& function_param_decls,
unsigned &type_quals)
{
if (parent_die == NULL)
return 0;
const uint8_t *fixed_form_sizes = DWARFFormValue::GetFixedFormSizesForAddressSize (dwarf_cu->GetAddressByteSize(), dwarf_cu->IsDWARF64());
size_t arg_idx = 0;
const DWARFDebugInfoEntry *die;
for (die = parent_die->GetFirstChild(); die != NULL; die = die->GetSibling())
{
dw_tag_t tag = die->Tag();
switch (tag)
{
case DW_TAG_formal_parameter:
{
DWARFDebugInfoEntry::Attributes attributes;
const size_t num_attributes = die->GetAttributes(dwarf, dwarf_cu, fixed_form_sizes, attributes);
if (num_attributes > 0)
{
const char *name = NULL;
Declaration decl;
dw_offset_t param_type_die_offset = DW_INVALID_OFFSET;
bool is_artificial = false;
// one of None, Auto, Register, Extern, Static, PrivateExtern
clang::StorageClass storage = clang::SC_None;
uint32_t i;
for (i=0; i<num_attributes; ++i)
{
const dw_attr_t attr = attributes.AttributeAtIndex(i);
DWARFFormValue form_value;
if (attributes.ExtractFormValueAtIndex(dwarf, i, form_value))
{
switch (attr)
{
case DW_AT_decl_file: decl.SetFile(sc.comp_unit->GetSupportFiles().GetFileSpecAtIndex(form_value.Unsigned())); break;
case DW_AT_decl_line: decl.SetLine(form_value.Unsigned()); break;
case DW_AT_decl_column: decl.SetColumn(form_value.Unsigned()); break;
case DW_AT_name: name = form_value.AsCString(&dwarf->get_debug_str_data()); break;
case DW_AT_type: param_type_die_offset = form_value.Reference(); break;
case DW_AT_artificial: is_artificial = form_value.Boolean(); break;
case DW_AT_location:
// if (form_value.BlockData())
// {
// const DWARFDataExtractor& debug_info_data = debug_info();
// uint32_t block_length = form_value.Unsigned();
// DWARFDataExtractor location(debug_info_data, form_value.BlockData() - debug_info_data.GetDataStart(), block_length);
// }
// else
// {
// }
// break;
case DW_AT_const_value:
case DW_AT_default_value:
case DW_AT_description:
case DW_AT_endianity:
case DW_AT_is_optional:
case DW_AT_segment:
case DW_AT_variable_parameter:
default:
case DW_AT_abstract_origin:
case DW_AT_sibling:
break;
}
}
}
bool skip = false;
if (skip_artificial)
{
if (is_artificial)
{
// In order to determine if a C++ member function is
// "const" we have to look at the const-ness of "this"...
// Ugly, but that
if (arg_idx == 0)
{
if (DeclKindIsCXXClass(containing_decl_ctx->getDeclKind()))
{
// Often times compilers omit the "this" name for the
// specification DIEs, so we can't rely upon the name
// being in the formal parameter DIE...
if (name == NULL || ::strcmp(name, "this")==0)
{
Type *this_type = dwarf->ResolveTypeUID (param_type_die_offset);
if (this_type)
{
uint32_t encoding_mask = this_type->GetEncodingMask();
if (encoding_mask & Type::eEncodingIsPointerUID)
{
is_static = false;
if (encoding_mask & (1u << Type::eEncodingIsConstUID))
type_quals |= clang::Qualifiers::Const;
if (encoding_mask & (1u << Type::eEncodingIsVolatileUID))
type_quals |= clang::Qualifiers::Volatile;
}
}
}
}
}
skip = true;
}
else
{
// HACK: Objective C formal parameters "self" and "_cmd"
// are not marked as artificial in the DWARF...
CompileUnit *comp_unit = dwarf->GetCompUnitForDWARFCompUnit(dwarf_cu, UINT32_MAX);
if (comp_unit)
{
switch (comp_unit->GetLanguage())
{
case eLanguageTypeObjC:
case eLanguageTypeObjC_plus_plus:
if (name && name[0] && (strcmp (name, "self") == 0 || strcmp (name, "_cmd") == 0))
skip = true;
break;
default:
break;
}
}
}
}
if (!skip)
{
Type *type = dwarf->ResolveTypeUID(param_type_die_offset);
if (type)
{
function_param_types.push_back (type->GetClangForwardType());
clang::ParmVarDecl *param_var_decl = CreateParameterDeclaration (name,
type->GetClangForwardType(),
storage);
assert(param_var_decl);
function_param_decls.push_back(param_var_decl);
SetMetadataAsUserID (param_var_decl, dwarf->MakeUserID(die->GetOffset()));
}
}
}
arg_idx++;
}
break;
case DW_TAG_unspecified_parameters:
is_variadic = true;
break;
case DW_TAG_template_type_parameter:
case DW_TAG_template_value_parameter:
// The one caller of this was never using the template_param_infos,
// and the local variable was taking up a large amount of stack space
// in SymbolFileDWARF::ParseType() so this was removed. If we ever need
// the template params back, we can add them back.
// ParseTemplateDIE (dwarf_cu, die, template_param_infos);
break;
default:
break;
}
}
return arg_idx;
}
void
ClangASTContext::ParseChildArrayInfo (const SymbolContext& sc,
SymbolFileDWARF *dwarf,
DWARFCompileUnit* dwarf_cu,
const DWARFDebugInfoEntry *parent_die,
int64_t& first_index,
std::vector<uint64_t>& element_orders,
uint32_t& byte_stride,
uint32_t& bit_stride)
{
if (parent_die == NULL)
return;
const DWARFDebugInfoEntry *die;
const uint8_t *fixed_form_sizes = DWARFFormValue::GetFixedFormSizesForAddressSize (dwarf_cu->GetAddressByteSize(), dwarf_cu->IsDWARF64());
for (die = parent_die->GetFirstChild(); die != NULL; die = die->GetSibling())
{
const dw_tag_t tag = die->Tag();
switch (tag)
{
case DW_TAG_subrange_type:
{
DWARFDebugInfoEntry::Attributes attributes;
const size_t num_child_attributes = die->GetAttributes(dwarf, dwarf_cu, fixed_form_sizes, attributes);
if (num_child_attributes > 0)
{
uint64_t num_elements = 0;
uint64_t lower_bound = 0;
uint64_t upper_bound = 0;
bool upper_bound_valid = false;
uint32_t i;
for (i=0; i<num_child_attributes; ++i)
{
const dw_attr_t attr = attributes.AttributeAtIndex(i);
DWARFFormValue form_value;
if (attributes.ExtractFormValueAtIndex(dwarf, i, form_value))
{
switch (attr)
{
case DW_AT_name:
break;
case DW_AT_count:
num_elements = form_value.Unsigned();
break;
case DW_AT_bit_stride:
bit_stride = form_value.Unsigned();
break;
case DW_AT_byte_stride:
byte_stride = form_value.Unsigned();
break;
case DW_AT_lower_bound:
lower_bound = form_value.Unsigned();
break;
case DW_AT_upper_bound:
upper_bound_valid = true;
upper_bound = form_value.Unsigned();
break;
default:
case DW_AT_abstract_origin:
case DW_AT_accessibility:
case DW_AT_allocated:
case DW_AT_associated:
case DW_AT_data_location:
case DW_AT_declaration:
case DW_AT_description:
case DW_AT_sibling:
case DW_AT_threads_scaled:
case DW_AT_type:
case DW_AT_visibility:
break;
}
}
}
if (num_elements == 0)
{
if (upper_bound_valid && upper_bound >= lower_bound)
num_elements = upper_bound - lower_bound + 1;
}
element_orders.push_back (num_elements);
}
}
break;
}
}
}
clang::DeclContext*
ClangASTContext::GetClangDeclContextContainingTypeUID (SymbolFileDWARF *dwarf, lldb::user_id_t type_uid)
{
DWARFDebugInfo* debug_info = dwarf->DebugInfo();
if (debug_info && dwarf->UserIDMatches(type_uid))
{
DWARFCompileUnitSP cu_sp;
const DWARFDebugInfoEntry* die = debug_info->GetDIEPtr(type_uid, &cu_sp);
if (die)
return GetClangDeclContextContainingDIE (dwarf, cu_sp.get(), die, NULL);
}
return NULL;
}
clang::DeclContext*
ClangASTContext::GetClangDeclContextForTypeUID (SymbolFileDWARF *dwarf, const lldb_private::SymbolContext &sc, lldb::user_id_t type_uid)
{
if (dwarf->UserIDMatches(type_uid))
return GetClangDeclContextForDIEOffset (dwarf, sc, type_uid);
return NULL;
}
clang::DeclContext *
ClangASTContext::GetClangDeclContextForDIE (SymbolFileDWARF *dwarf,
const SymbolContext &sc,
DWARFCompileUnit *cu,
const DWARFDebugInfoEntry *die)
{
clang::DeclContext *clang_decl_ctx = dwarf->GetCachedClangDeclContextForDIE (die);
if (clang_decl_ctx)
return clang_decl_ctx;
// If this DIE has a specification, or an abstract origin, then trace to those.
dw_offset_t die_offset = die->GetAttributeValueAsReference(dwarf, cu, DW_AT_specification, DW_INVALID_OFFSET);
if (die_offset != DW_INVALID_OFFSET)
return GetClangDeclContextForDIEOffset (dwarf, sc, die_offset);
die_offset = die->GetAttributeValueAsReference(dwarf, cu, DW_AT_abstract_origin, DW_INVALID_OFFSET);
if (die_offset != DW_INVALID_OFFSET)
return GetClangDeclContextForDIEOffset (dwarf, sc, die_offset);
Log *log = nullptr; //(LogChannelDWARF::GetLogIfAll(DWARF_LOG_DEBUG_INFO));
if (log)
dwarf->GetObjectFile()->GetModule()->LogMessage(log, "SymbolFileDWARF::GetClangDeclContextForDIE (die = 0x%8.8x) %s '%s'", die->GetOffset(), DW_TAG_value_to_name(die->Tag()), die->GetName(dwarf, cu));
// This is the DIE we want. Parse it, then query our map.
bool assert_not_being_parsed = true;
dwarf->ResolveTypeUID (cu, die, assert_not_being_parsed);
clang_decl_ctx = dwarf->GetCachedClangDeclContextForDIE (die);
return clang_decl_ctx;
}
clang::DeclContext *
ClangASTContext::GetClangDeclContextContainingDIEOffset (SymbolFileDWARF *dwarf,
dw_offset_t die_offset)
{
if (die_offset != DW_INVALID_OFFSET)
{
DWARFCompileUnitSP cu_sp;
const DWARFDebugInfoEntry* die = dwarf->DebugInfo()->GetDIEPtr(die_offset, &cu_sp);
return GetClangDeclContextContainingDIE (dwarf, cu_sp.get(), die, NULL);
}
return NULL;
}
clang::DeclContext *
ClangASTContext::GetClangDeclContextForDIEOffset (SymbolFileDWARF *dwarf,
const SymbolContext &sc,
dw_offset_t die_offset)
{
if (die_offset != DW_INVALID_OFFSET)
{
DWARFDebugInfo* debug_info = dwarf->DebugInfo();
if (debug_info)
{
DWARFCompileUnitSP cu_sp;
const DWARFDebugInfoEntry* die = debug_info->GetDIEPtr(die_offset, &cu_sp);
if (die)
return GetClangDeclContextForDIE (dwarf, sc, cu_sp.get(), die);
}
}
return NULL;
}
clang::NamespaceDecl *
ClangASTContext::ResolveNamespaceDIE (SymbolFileDWARF *dwarf,
DWARFCompileUnit *dwarf_cu,
const DWARFDebugInfoEntry *die)
{
if (die && die->Tag() == DW_TAG_namespace)
{
// See if we already parsed this namespace DIE and associated it with a
// uniqued namespace declaration
clang::NamespaceDecl *namespace_decl = static_cast<clang::NamespaceDecl *>(dwarf->m_die_to_decl_ctx[die]);
if (namespace_decl)
return namespace_decl;
else
{
const char *namespace_name = die->GetAttributeValueAsString(dwarf, dwarf_cu, DW_AT_name, NULL);
clang::DeclContext *containing_decl_ctx = GetClangDeclContextContainingDIE (dwarf, dwarf_cu, die, NULL);
namespace_decl = GetUniqueNamespaceDeclaration (namespace_name, containing_decl_ctx);
Log *log = nullptr;// (LogChannelDWARF::GetLogIfAll(DWARF_LOG_DEBUG_INFO));
if (log)
{
if (namespace_name)
{
dwarf->GetObjectFile()->GetModule()->LogMessage (log,
"ASTContext => %p: 0x%8.8" PRIx64 ": DW_TAG_namespace with DW_AT_name(\"%s\") => clang::NamespaceDecl *%p (original = %p)",
static_cast<void*>(getASTContext()),
dwarf->MakeUserID(die->GetOffset()),
namespace_name,
static_cast<void*>(namespace_decl),
static_cast<void*>(namespace_decl->getOriginalNamespace()));
}
else
{
dwarf->GetObjectFile()->GetModule()->LogMessage (log,
"ASTContext => %p: 0x%8.8" PRIx64 ": DW_TAG_namespace (anonymous) => clang::NamespaceDecl *%p (original = %p)",
static_cast<void*>(getASTContext()),
dwarf->MakeUserID(die->GetOffset()),
static_cast<void*>(namespace_decl),
static_cast<void*>(namespace_decl->getOriginalNamespace()));
}
}
if (namespace_decl)
dwarf->LinkDeclContextToDIE((clang::DeclContext*)namespace_decl, die);
return namespace_decl;
}
}
return NULL;
}
clang::DeclContext *
ClangASTContext::GetClangDeclContextContainingDIE (SymbolFileDWARF *dwarf,
DWARFCompileUnit *cu,
const DWARFDebugInfoEntry *die,
const DWARFDebugInfoEntry **decl_ctx_die_copy)
{
if (dwarf->m_clang_tu_decl == NULL)
dwarf->m_clang_tu_decl = getASTContext()->getTranslationUnitDecl();
const DWARFDebugInfoEntry *decl_ctx_die = dwarf->GetDeclContextDIEContainingDIE (cu, die);
if (decl_ctx_die_copy)
*decl_ctx_die_copy = decl_ctx_die;
if (decl_ctx_die)
{
SymbolFileDWARF::DIEToDeclContextMap::iterator pos = dwarf->m_die_to_decl_ctx.find (decl_ctx_die);
if (pos != dwarf->m_die_to_decl_ctx.end())
return pos->second;
switch (decl_ctx_die->Tag())
{
case DW_TAG_compile_unit:
return dwarf->m_clang_tu_decl;
case DW_TAG_namespace:
return ResolveNamespaceDIE (dwarf, cu, decl_ctx_die);
case DW_TAG_structure_type:
case DW_TAG_union_type:
case DW_TAG_class_type:
{
Type* type = dwarf->ResolveType (cu, decl_ctx_die);
if (type)
{
clang::DeclContext *decl_ctx = GetDeclContextForType(type->GetClangForwardType());
if (decl_ctx)
{
dwarf->LinkDeclContextToDIE (decl_ctx, decl_ctx_die);
if (decl_ctx)
return decl_ctx;
}
}
}
break;
default:
break;
}
}
return dwarf->m_clang_tu_decl;
}
TypeSP
ClangASTContext::ParseTypeFromDWARF (const SymbolContext& sc,
SymbolFileDWARF *dwarf,
DWARFCompileUnit* dwarf_cu,
const DWARFDebugInfoEntry *die,
Log *log,
bool *type_is_new_ptr)
{
TypeSP type_sp;
if (type_is_new_ptr)
*type_is_new_ptr = false;
#if defined(LLDB_CONFIGURATION_DEBUG) || defined(LLDB_CONFIGURATION_RELEASE)
static DIEStack g_die_stack;
DIEStack::ScopedPopper scoped_die_logger(g_die_stack);
#endif
AccessType accessibility = eAccessNone;
if (die != NULL)
{
if (log)
{
const DWARFDebugInfoEntry *context_die;
clang::DeclContext *context = GetClangDeclContextContainingDIE (dwarf, dwarf_cu, die, &context_die);
dwarf->GetObjectFile()->GetModule()->LogMessage (log, "SymbolFileDWARF::ParseType (die = 0x%8.8x, decl_ctx = %p (die 0x%8.8x)) %s name = '%s')",
die->GetOffset(),
static_cast<void*>(context),
context_die->GetOffset(),
DW_TAG_value_to_name(die->Tag()),
die->GetName(dwarf, dwarf_cu));
#if defined(LLDB_CONFIGURATION_DEBUG) || defined(LLDB_CONFIGURATION_RELEASE)
scoped_die_logger.Push (dwarf_cu, die);
g_die_stack.LogDIEs(log, dwarf);
#endif
}
//
// Log *log (LogChannelDWARF::GetLogIfAll(DWARF_LOG_DEBUG_INFO));
// if (log && dwarf_cu)
// {
// StreamString s;
// die->DumpLocation (this, dwarf_cu, s);
// dwarf->GetObjectFile()->GetModule()->LogMessage (log, "SymbolFileDwarf::%s %s", __FUNCTION__, s.GetData());
//
// }
Type *type_ptr = dwarf->m_die_to_type.lookup (die);
TypeList* type_list = dwarf->GetTypeList();
if (type_ptr == NULL)
{
if (type_is_new_ptr)
*type_is_new_ptr = true;
const dw_tag_t tag = die->Tag();
bool is_forward_declaration = false;
DWARFDebugInfoEntry::Attributes attributes;
const char *type_name_cstr = NULL;
ConstString type_name_const_str;
Type::ResolveState resolve_state = Type::eResolveStateUnresolved;
uint64_t byte_size = 0;
Declaration decl;
Type::EncodingDataType encoding_data_type = Type::eEncodingIsUID;
CompilerType clang_type;
DWARFFormValue form_value;
dw_attr_t attr;
switch (tag)
{
case DW_TAG_base_type:
case DW_TAG_pointer_type:
case DW_TAG_reference_type:
case DW_TAG_rvalue_reference_type:
case DW_TAG_typedef:
case DW_TAG_const_type:
case DW_TAG_restrict_type:
case DW_TAG_volatile_type:
case DW_TAG_unspecified_type:
{
// Set a bit that lets us know that we are currently parsing this
dwarf->m_die_to_type[die] = DIE_IS_BEING_PARSED;
const size_t num_attributes = die->GetAttributes(dwarf, dwarf_cu, NULL, attributes);
uint32_t encoding = 0;
lldb::user_id_t encoding_uid = LLDB_INVALID_UID;
if (num_attributes > 0)
{
uint32_t i;
for (i=0; i<num_attributes; ++i)
{
attr = attributes.AttributeAtIndex(i);
if (attributes.ExtractFormValueAtIndex(dwarf, i, form_value))
{
switch (attr)
{
case DW_AT_decl_file: decl.SetFile(sc.comp_unit->GetSupportFiles().GetFileSpecAtIndex(form_value.Unsigned())); break;
case DW_AT_decl_line: decl.SetLine(form_value.Unsigned()); break;
case DW_AT_decl_column: decl.SetColumn(form_value.Unsigned()); break;
case DW_AT_name:
type_name_cstr = form_value.AsCString(&dwarf->get_debug_str_data());
// Work around a bug in llvm-gcc where they give a name to a reference type which doesn't
// include the "&"...
if (tag == DW_TAG_reference_type)
{
if (strchr (type_name_cstr, '&') == NULL)
type_name_cstr = NULL;
}
if (type_name_cstr)
type_name_const_str.SetCString(type_name_cstr);
break;
case DW_AT_byte_size: byte_size = form_value.Unsigned(); break;
case DW_AT_encoding: encoding = form_value.Unsigned(); break;
case DW_AT_type: encoding_uid = form_value.Reference(); break;
default:
case DW_AT_sibling:
break;
}
}
}
}
DEBUG_PRINTF ("0x%8.8" PRIx64 ": %s (\"%s\") type => 0x%8.8lx\n", dwarf->MakeUserID(die->GetOffset()), DW_TAG_value_to_name(tag), type_name_cstr, encoding_uid);
switch (tag)
{
default:
break;
case DW_TAG_unspecified_type:
if (strcmp(type_name_cstr, "nullptr_t") == 0 ||
strcmp(type_name_cstr, "decltype(nullptr)") == 0 )
{
resolve_state = Type::eResolveStateFull;
clang_type = GetBasicType(eBasicTypeNullPtr);
break;
}
// Fall through to base type below in case we can handle the type there...
case DW_TAG_base_type:
resolve_state = Type::eResolveStateFull;
clang_type = GetBuiltinTypeForDWARFEncodingAndBitSize (type_name_cstr,
encoding,
byte_size * 8);
break;
case DW_TAG_pointer_type: encoding_data_type = Type::eEncodingIsPointerUID; break;
case DW_TAG_reference_type: encoding_data_type = Type::eEncodingIsLValueReferenceUID; break;
case DW_TAG_rvalue_reference_type: encoding_data_type = Type::eEncodingIsRValueReferenceUID; break;
case DW_TAG_typedef: encoding_data_type = Type::eEncodingIsTypedefUID; break;
case DW_TAG_const_type: encoding_data_type = Type::eEncodingIsConstUID; break;
case DW_TAG_restrict_type: encoding_data_type = Type::eEncodingIsRestrictUID; break;
case DW_TAG_volatile_type: encoding_data_type = Type::eEncodingIsVolatileUID; break;
}
if (!clang_type && (encoding_data_type == Type::eEncodingIsPointerUID || encoding_data_type == Type::eEncodingIsTypedefUID) && sc.comp_unit != NULL)
{
bool translation_unit_is_objc = (sc.comp_unit->GetLanguage() == eLanguageTypeObjC || sc.comp_unit->GetLanguage() == eLanguageTypeObjC_plus_plus);
if (translation_unit_is_objc)
{
if (type_name_cstr != NULL)
{
static ConstString g_objc_type_name_id("id");
static ConstString g_objc_type_name_Class("Class");
static ConstString g_objc_type_name_selector("SEL");
if (type_name_const_str == g_objc_type_name_id)
{
if (log)
dwarf->GetObjectFile()->GetModule()->LogMessage (log, "SymbolFileDWARF::ParseType (die = 0x%8.8x) %s '%s' is Objective C 'id' built-in type.",
die->GetOffset(),
DW_TAG_value_to_name(die->Tag()),
die->GetName(dwarf, dwarf_cu));
clang_type = GetBasicType(eBasicTypeObjCID);
encoding_data_type = Type::eEncodingIsUID;
encoding_uid = LLDB_INVALID_UID;
resolve_state = Type::eResolveStateFull;
}
else if (type_name_const_str == g_objc_type_name_Class)
{
if (log)
dwarf->GetObjectFile()->GetModule()->LogMessage (log, "SymbolFileDWARF::ParseType (die = 0x%8.8x) %s '%s' is Objective C 'Class' built-in type.",
die->GetOffset(),
DW_TAG_value_to_name(die->Tag()),
die->GetName(dwarf, dwarf_cu));
clang_type = GetBasicType(eBasicTypeObjCClass);
encoding_data_type = Type::eEncodingIsUID;
encoding_uid = LLDB_INVALID_UID;
resolve_state = Type::eResolveStateFull;
}
else if (type_name_const_str == g_objc_type_name_selector)
{
if (log)
dwarf->GetObjectFile()->GetModule()->LogMessage (log, "SymbolFileDWARF::ParseType (die = 0x%8.8x) %s '%s' is Objective C 'selector' built-in type.",
die->GetOffset(),
DW_TAG_value_to_name(die->Tag()),
die->GetName(dwarf, dwarf_cu));
clang_type = GetBasicType(eBasicTypeObjCSel);
encoding_data_type = Type::eEncodingIsUID;
encoding_uid = LLDB_INVALID_UID;
resolve_state = Type::eResolveStateFull;
}
}
else if (encoding_data_type == Type::eEncodingIsPointerUID && encoding_uid != LLDB_INVALID_UID)
{
// Clang sometimes erroneously emits id as objc_object*. In that case we fix up the type to "id".
DWARFDebugInfoEntry* encoding_die = dwarf_cu->GetDIEPtr(encoding_uid);
if (encoding_die && encoding_die->Tag() == DW_TAG_structure_type)
{
if (const char *struct_name = encoding_die->GetAttributeValueAsString(dwarf, dwarf_cu, DW_AT_name, NULL))
{
if (!strcmp(struct_name, "objc_object"))
{
if (log)
dwarf->GetObjectFile()->GetModule()->LogMessage (log, "SymbolFileDWARF::ParseType (die = 0x%8.8x) %s '%s' is 'objc_object*', which we overrode to 'id'.",
die->GetOffset(),
DW_TAG_value_to_name(die->Tag()),
die->GetName(dwarf, dwarf_cu));
clang_type = GetBasicType(eBasicTypeObjCID);
encoding_data_type = Type::eEncodingIsUID;
encoding_uid = LLDB_INVALID_UID;
resolve_state = Type::eResolveStateFull;
}
}
}
}
}
}
type_sp.reset( new Type (dwarf->MakeUserID(die->GetOffset()),
dwarf,
type_name_const_str,
byte_size,
NULL,
encoding_uid,
encoding_data_type,
&decl,
clang_type,
resolve_state));
dwarf->m_die_to_type[die] = type_sp.get();
// Type* encoding_type = GetUniquedTypeForDIEOffset(encoding_uid, type_sp, NULL, 0, 0, false);
// if (encoding_type != NULL)
// {
// if (encoding_type != DIE_IS_BEING_PARSED)
// type_sp->SetEncodingType(encoding_type);
// else
// m_indirect_fixups.push_back(type_sp.get());
// }
}
break;
case DW_TAG_structure_type:
case DW_TAG_union_type:
case DW_TAG_class_type:
{
// Set a bit that lets us know that we are currently parsing this
dwarf->m_die_to_type[die] = DIE_IS_BEING_PARSED;
bool byte_size_valid = false;
LanguageType class_language = eLanguageTypeUnknown;
bool is_complete_objc_class = false;
//bool struct_is_class = false;
const size_t num_attributes = die->GetAttributes(dwarf, dwarf_cu, NULL, attributes);
if (num_attributes > 0)
{
uint32_t i;
for (i=0; i<num_attributes; ++i)
{
attr = attributes.AttributeAtIndex(i);
if (attributes.ExtractFormValueAtIndex(dwarf, i, form_value))
{
switch (attr)
{
case DW_AT_decl_file:
if (dwarf_cu->DW_AT_decl_file_attributes_are_invalid())
{
// llvm-gcc outputs invalid DW_AT_decl_file attributes that always
// point to the compile unit file, so we clear this invalid value
// so that we can still unique types efficiently.
decl.SetFile(FileSpec ("<invalid>", false));
}
else
decl.SetFile(sc.comp_unit->GetSupportFiles().GetFileSpecAtIndex(form_value.Unsigned()));
break;
case DW_AT_decl_line:
decl.SetLine(form_value.Unsigned());
break;
case DW_AT_decl_column:
decl.SetColumn(form_value.Unsigned());
break;
case DW_AT_name:
type_name_cstr = form_value.AsCString(&dwarf->get_debug_str_data());
type_name_const_str.SetCString(type_name_cstr);
break;
case DW_AT_byte_size:
byte_size = form_value.Unsigned();
byte_size_valid = true;
break;
case DW_AT_accessibility:
accessibility = DW_ACCESS_to_AccessType(form_value.Unsigned());
break;
case DW_AT_declaration:
is_forward_declaration = form_value.Boolean();
break;
case DW_AT_APPLE_runtime_class:
class_language = (LanguageType)form_value.Signed();
break;
case DW_AT_APPLE_objc_complete_type:
is_complete_objc_class = form_value.Signed();
break;
case DW_AT_allocated:
case DW_AT_associated:
case DW_AT_data_location:
case DW_AT_description:
case DW_AT_start_scope:
case DW_AT_visibility:
default:
case DW_AT_sibling:
break;
}
}
}
}
// UniqueDWARFASTType is large, so don't create a local variables on the
// stack, put it on the heap. This function is often called recursively
// and clang isn't good and sharing the stack space for variables in different blocks.
std::unique_ptr<UniqueDWARFASTType> unique_ast_entry_ap(new UniqueDWARFASTType());
// Only try and unique the type if it has a name.
if (type_name_const_str &&
dwarf->GetUniqueDWARFASTTypeMap().Find (type_name_const_str,
dwarf,
dwarf_cu,
die,
decl,
byte_size_valid ? byte_size : -1,
*unique_ast_entry_ap))
{
// We have already parsed this type or from another
// compile unit. GCC loves to use the "one definition
// rule" which can result in multiple definitions
// of the same class over and over in each compile
// unit.
type_sp = unique_ast_entry_ap->m_type_sp;
if (type_sp)
{
dwarf->m_die_to_type[die] = type_sp.get();
return type_sp;
}
}
DEBUG_PRINTF ("0x%8.8" PRIx64 ": %s (\"%s\")\n", dwarf->MakeUserID(die->GetOffset()), DW_TAG_value_to_name(tag), type_name_cstr);
int tag_decl_kind = -1;
AccessType default_accessibility = eAccessNone;
if (tag == DW_TAG_structure_type)
{
tag_decl_kind = clang::TTK_Struct;
default_accessibility = eAccessPublic;
}
else if (tag == DW_TAG_union_type)
{
tag_decl_kind = clang::TTK_Union;
default_accessibility = eAccessPublic;
}
else if (tag == DW_TAG_class_type)
{
tag_decl_kind = clang::TTK_Class;
default_accessibility = eAccessPrivate;
}
if (byte_size_valid && byte_size == 0 && type_name_cstr &&
die->HasChildren() == false &&
sc.comp_unit->GetLanguage() == eLanguageTypeObjC)
{
// Work around an issue with clang at the moment where
// forward declarations for objective C classes are emitted
// as:
// DW_TAG_structure_type [2]
// DW_AT_name( "ForwardObjcClass" )
// DW_AT_byte_size( 0x00 )
// DW_AT_decl_file( "..." )
// DW_AT_decl_line( 1 )
//
// Note that there is no DW_AT_declaration and there are
// no children, and the byte size is zero.
is_forward_declaration = true;
}
if (class_language == eLanguageTypeObjC ||
class_language == eLanguageTypeObjC_plus_plus)
{
if (!is_complete_objc_class && dwarf->Supports_DW_AT_APPLE_objc_complete_type(dwarf_cu))
{
// We have a valid eSymbolTypeObjCClass class symbol whose
// name matches the current objective C class that we
// are trying to find and this DIE isn't the complete
// definition (we checked is_complete_objc_class above and
// know it is false), so the real definition is in here somewhere
type_sp = dwarf->FindCompleteObjCDefinitionTypeForDIE (die, type_name_const_str, true);
if (!type_sp)
{
SymbolFileDWARFDebugMap *debug_map_symfile = dwarf->GetDebugMapSymfile();
if (debug_map_symfile)
{
// We weren't able to find a full declaration in
// this DWARF, see if we have a declaration anywhere
// else...
type_sp = debug_map_symfile->FindCompleteObjCDefinitionTypeForDIE (die, type_name_const_str, true);
}
}
if (type_sp)
{
if (log)
{
dwarf->GetObjectFile()->GetModule()->LogMessage (log,
"SymbolFileDWARF(%p) - 0x%8.8x: %s type \"%s\" is an incomplete objc type, complete type is 0x%8.8" PRIx64,
static_cast<void*>(this),
die->GetOffset(),
DW_TAG_value_to_name(tag),
type_name_cstr,
type_sp->GetID());
}
// We found a real definition for this type elsewhere
// so lets use it and cache the fact that we found
// a complete type for this die
dwarf->m_die_to_type[die] = type_sp.get();
return type_sp;
}
}
}
if (is_forward_declaration)
{
// We have a forward declaration to a type and we need
// to try and find a full declaration. We look in the
// current type index just in case we have a forward
// declaration followed by an actual declarations in the
// DWARF. If this fails, we need to look elsewhere...
if (log)
{
dwarf->GetObjectFile()->GetModule()->LogMessage (log,
"SymbolFileDWARF(%p) - 0x%8.8x: %s type \"%s\" is a forward declaration, trying to find complete type",
static_cast<void*>(this),
die->GetOffset(),
DW_TAG_value_to_name(tag),
type_name_cstr);
}
DWARFDeclContext die_decl_ctx;
die->GetDWARFDeclContext(dwarf, dwarf_cu, die_decl_ctx);
//type_sp = FindDefinitionTypeForDIE (dwarf_cu, die, type_name_const_str);
type_sp = dwarf->FindDefinitionTypeForDWARFDeclContext (die_decl_ctx);
if (!type_sp)
{
SymbolFileDWARFDebugMap *debug_map_symfile = dwarf->GetDebugMapSymfile();
if (debug_map_symfile)
{
// We weren't able to find a full declaration in
// this DWARF, see if we have a declaration anywhere
// else...
type_sp = debug_map_symfile->FindDefinitionTypeForDWARFDeclContext (die_decl_ctx);
}
}
if (type_sp)
{
if (log)
{
dwarf->GetObjectFile()->GetModule()->LogMessage (log,
"SymbolFileDWARF(%p) - 0x%8.8x: %s type \"%s\" is a forward declaration, complete type is 0x%8.8" PRIx64,
static_cast<void*>(this),
die->GetOffset(),
DW_TAG_value_to_name(tag),
type_name_cstr,
type_sp->GetID());
}
// We found a real definition for this type elsewhere
// so lets use it and cache the fact that we found
// a complete type for this die
dwarf->m_die_to_type[die] = type_sp.get();
return type_sp;
}
}
assert (tag_decl_kind != -1);
bool clang_type_was_created = false;
clang_type.SetClangType(this, dwarf->m_forward_decl_die_to_clang_type.lookup (die));
if (!clang_type)
{
const DWARFDebugInfoEntry *decl_ctx_die;
clang::DeclContext *decl_ctx = GetClangDeclContextContainingDIE (dwarf, dwarf_cu, die, &decl_ctx_die);
if (accessibility == eAccessNone && decl_ctx)
{
// Check the decl context that contains this class/struct/union.
// If it is a class we must give it an accessibility.
const clang::Decl::Kind containing_decl_kind = decl_ctx->getDeclKind();
if (DeclKindIsCXXClass (containing_decl_kind))
accessibility = default_accessibility;
}
ClangASTMetadata metadata;
metadata.SetUserID(dwarf->MakeUserID(die->GetOffset()));
metadata.SetIsDynamicCXXType(dwarf->ClassOrStructIsVirtual (dwarf_cu, die));
if (type_name_cstr && strchr (type_name_cstr, '<'))
{
ClangASTContext::TemplateParameterInfos template_param_infos;
if (ParseTemplateParameterInfos (dwarf, dwarf_cu, die, template_param_infos))
{
clang::ClassTemplateDecl *class_template_decl = ParseClassTemplateDecl (dwarf,
decl_ctx,
accessibility,
type_name_cstr,
tag_decl_kind,
template_param_infos);
clang::ClassTemplateSpecializationDecl *class_specialization_decl = CreateClassTemplateSpecializationDecl (decl_ctx,
class_template_decl,
tag_decl_kind,
template_param_infos);
clang_type = CreateClassTemplateSpecializationType (class_specialization_decl);
clang_type_was_created = true;
SetMetadata (class_template_decl, metadata);
SetMetadata (class_specialization_decl, metadata);
}
}
if (!clang_type_was_created)
{
clang_type_was_created = true;
clang_type = CreateRecordType (decl_ctx,
accessibility,
type_name_cstr,
tag_decl_kind,
class_language,
&metadata);
}
}
// Store a forward declaration to this class type in case any
// parameters in any class methods need it for the clang
// types for function prototypes.
dwarf->LinkDeclContextToDIE(GetDeclContextForType(clang_type), die);
type_sp.reset (new Type (dwarf->MakeUserID(die->GetOffset()),
dwarf,
type_name_const_str,
byte_size,
NULL,
LLDB_INVALID_UID,
Type::eEncodingIsUID,
&decl,
clang_type,
Type::eResolveStateForward));
type_sp->SetIsCompleteObjCClass(is_complete_objc_class);
// Add our type to the unique type map so we don't
// end up creating many copies of the same type over
// and over in the ASTContext for our module
unique_ast_entry_ap->m_type_sp = type_sp;
unique_ast_entry_ap->m_symfile = dwarf;
unique_ast_entry_ap->m_cu = dwarf_cu;
unique_ast_entry_ap->m_die = die;
unique_ast_entry_ap->m_declaration = decl;
unique_ast_entry_ap->m_byte_size = byte_size;
dwarf->GetUniqueDWARFASTTypeMap().Insert (type_name_const_str,
*unique_ast_entry_ap);
if (is_forward_declaration && die->HasChildren())
{
// Check to see if the DIE actually has a definition, some version of GCC will
// emit DIEs with DW_AT_declaration set to true, but yet still have subprogram,
// members, or inheritance, so we can't trust it
const DWARFDebugInfoEntry *child_die = die->GetFirstChild();
while (child_die)
{
switch (child_die->Tag())
{
case DW_TAG_inheritance:
case DW_TAG_subprogram:
case DW_TAG_member:
case DW_TAG_APPLE_property:
case DW_TAG_class_type:
case DW_TAG_structure_type:
case DW_TAG_enumeration_type:
case DW_TAG_typedef:
case DW_TAG_union_type:
child_die = NULL;
is_forward_declaration = false;
break;
default:
child_die = child_die->GetSibling();
break;
}
}
}
if (!is_forward_declaration)
{
// Always start the definition for a class type so that
// if the class has child classes or types that require
// the class to be created for use as their decl contexts
// the class will be ready to accept these child definitions.
if (die->HasChildren() == false)
{
// No children for this struct/union/class, lets finish it
ClangASTContext::StartTagDeclarationDefinition (clang_type);
ClangASTContext::CompleteTagDeclarationDefinition (clang_type);
if (tag == DW_TAG_structure_type) // this only applies in C
{
clang::RecordDecl *record_decl = ClangASTContext::GetAsRecordDecl(clang_type);
if (record_decl)
m_record_decl_to_layout_map.insert(std::make_pair(record_decl, LayoutInfo()));
}
}
else if (clang_type_was_created)
{
// Start the definition if the class is not objective C since
// the underlying decls respond to isCompleteDefinition(). Objective
// C decls don't respond to isCompleteDefinition() so we can't
// start the declaration definition right away. For C++ class/union/structs
// we want to start the definition in case the class is needed as the
// declaration context for a contained class or type without the need
// to complete that type..
if (class_language != eLanguageTypeObjC &&
class_language != eLanguageTypeObjC_plus_plus)
ClangASTContext::StartTagDeclarationDefinition (clang_type);
// Leave this as a forward declaration until we need
// to know the details of the type. lldb_private::Type
// will automatically call the SymbolFile virtual function
// "SymbolFileDWARF::ResolveClangOpaqueTypeDefinition(Type *)"
// When the definition needs to be defined.
dwarf->m_forward_decl_die_to_clang_type[die] = clang_type.GetOpaqueQualType();
dwarf->m_forward_decl_clang_type_to_die[ClangASTContext::RemoveFastQualifiers(clang_type).GetOpaqueQualType()] = die;
SetHasExternalStorage (clang_type.GetOpaqueQualType(), true);
}
}
}
break;
case DW_TAG_enumeration_type:
{
// Set a bit that lets us know that we are currently parsing this
dwarf->m_die_to_type[die] = DIE_IS_BEING_PARSED;
lldb::user_id_t encoding_uid = DW_INVALID_OFFSET;
const size_t num_attributes = die->GetAttributes(dwarf, dwarf_cu, NULL, attributes);
if (num_attributes > 0)
{
uint32_t i;
for (i=0; i<num_attributes; ++i)
{
attr = attributes.AttributeAtIndex(i);
if (attributes.ExtractFormValueAtIndex(dwarf, i, form_value))
{
switch (attr)
{
case DW_AT_decl_file: decl.SetFile(sc.comp_unit->GetSupportFiles().GetFileSpecAtIndex(form_value.Unsigned())); break;
case DW_AT_decl_line: decl.SetLine(form_value.Unsigned()); break;
case DW_AT_decl_column: decl.SetColumn(form_value.Unsigned()); break;
case DW_AT_name:
type_name_cstr = form_value.AsCString(&dwarf->get_debug_str_data());
type_name_const_str.SetCString(type_name_cstr);
break;
case DW_AT_type: encoding_uid = form_value.Reference(); break;
case DW_AT_byte_size: byte_size = form_value.Unsigned(); break;
case DW_AT_accessibility: break; //accessibility = DW_ACCESS_to_AccessType(form_value.Unsigned()); break;
case DW_AT_declaration: break; //is_forward_declaration = form_value.Boolean(); break;
case DW_AT_allocated:
case DW_AT_associated:
case DW_AT_bit_stride:
case DW_AT_byte_stride:
case DW_AT_data_location:
case DW_AT_description:
case DW_AT_start_scope:
case DW_AT_visibility:
case DW_AT_specification:
case DW_AT_abstract_origin:
case DW_AT_sibling:
break;
}
}
}
DEBUG_PRINTF ("0x%8.8" PRIx64 ": %s (\"%s\")\n", dwarf->MakeUserID(die->GetOffset()), DW_TAG_value_to_name(tag), type_name_cstr);
CompilerType enumerator_clang_type;
clang_type.SetClangType (this, dwarf->m_forward_decl_die_to_clang_type.lookup (die));
if (!clang_type)
{
if (encoding_uid != DW_INVALID_OFFSET)
{
Type *enumerator_type = dwarf->ResolveTypeUID(encoding_uid);
if (enumerator_type)
enumerator_clang_type = enumerator_type->GetClangFullType();
}
if (!enumerator_clang_type)
enumerator_clang_type = GetBuiltinTypeForDWARFEncodingAndBitSize (NULL,
DW_ATE_signed,
byte_size * 8);
clang_type = CreateEnumerationType (type_name_cstr,
GetClangDeclContextContainingDIE (dwarf, dwarf_cu, die, NULL),
decl,
enumerator_clang_type);
}
else
{
enumerator_clang_type = GetEnumerationIntegerType (clang_type.GetOpaqueQualType());
}
dwarf->LinkDeclContextToDIE(ClangASTContext::GetDeclContextForType(clang_type), die);
type_sp.reset( new Type (dwarf->MakeUserID(die->GetOffset()),
dwarf,
type_name_const_str,
byte_size,
NULL,
encoding_uid,
Type::eEncodingIsUID,
&decl,
clang_type,
Type::eResolveStateForward));
ClangASTContext::StartTagDeclarationDefinition (clang_type);
if (die->HasChildren())
{
SymbolContext cu_sc(dwarf->GetCompUnitForDWARFCompUnit(dwarf_cu));
bool is_signed = false;
enumerator_clang_type.IsIntegerType(is_signed);
ParseChildEnumerators(cu_sc, clang_type, is_signed, type_sp->GetByteSize(), dwarf, dwarf_cu, die);
}
ClangASTContext::CompleteTagDeclarationDefinition (clang_type);
}
}
break;
case DW_TAG_inlined_subroutine:
case DW_TAG_subprogram:
case DW_TAG_subroutine_type:
{
// Set a bit that lets us know that we are currently parsing this
dwarf->m_die_to_type[die] = DIE_IS_BEING_PARSED;
//const char *mangled = NULL;
dw_offset_t type_die_offset = DW_INVALID_OFFSET;
bool is_variadic = false;
bool is_inline = false;
bool is_static = false;
bool is_virtual = false;
bool is_explicit = false;
bool is_artificial = false;
dw_offset_t specification_die_offset = DW_INVALID_OFFSET;
dw_offset_t abstract_origin_die_offset = DW_INVALID_OFFSET;
dw_offset_t object_pointer_die_offset = DW_INVALID_OFFSET;
unsigned type_quals = 0;
clang::StorageClass storage = clang::SC_None;//, Extern, Static, PrivateExtern
const size_t num_attributes = die->GetAttributes(dwarf, dwarf_cu, NULL, attributes);
if (num_attributes > 0)
{
uint32_t i;
for (i=0; i<num_attributes; ++i)
{
attr = attributes.AttributeAtIndex(i);
if (attributes.ExtractFormValueAtIndex(dwarf, i, form_value))
{
switch (attr)
{
case DW_AT_decl_file: decl.SetFile(sc.comp_unit->GetSupportFiles().GetFileSpecAtIndex(form_value.Unsigned())); break;
case DW_AT_decl_line: decl.SetLine(form_value.Unsigned()); break;
case DW_AT_decl_column: decl.SetColumn(form_value.Unsigned()); break;
case DW_AT_name:
type_name_cstr = form_value.AsCString(&dwarf->get_debug_str_data());
type_name_const_str.SetCString(type_name_cstr);
break;
case DW_AT_linkage_name:
case DW_AT_MIPS_linkage_name: break; // mangled = form_value.AsCString(&dwarf->get_debug_str_data()); break;
case DW_AT_type: type_die_offset = form_value.Reference(); break;
case DW_AT_accessibility: accessibility = DW_ACCESS_to_AccessType(form_value.Unsigned()); break;
case DW_AT_declaration: break; // is_forward_declaration = form_value.Boolean(); break;
case DW_AT_inline: is_inline = form_value.Boolean(); break;
case DW_AT_virtuality: is_virtual = form_value.Boolean(); break;
case DW_AT_explicit: is_explicit = form_value.Boolean(); break;
case DW_AT_artificial: is_artificial = form_value.Boolean(); break;
case DW_AT_external:
if (form_value.Unsigned())
{
if (storage == clang::SC_None)
storage = clang::SC_Extern;
else
storage = clang::SC_PrivateExtern;
}
break;
case DW_AT_specification:
specification_die_offset = form_value.Reference();
break;
case DW_AT_abstract_origin:
abstract_origin_die_offset = form_value.Reference();
break;
case DW_AT_object_pointer:
object_pointer_die_offset = form_value.Reference();
break;
case DW_AT_allocated:
case DW_AT_associated:
case DW_AT_address_class:
case DW_AT_calling_convention:
case DW_AT_data_location:
case DW_AT_elemental:
case DW_AT_entry_pc:
case DW_AT_frame_base:
case DW_AT_high_pc:
case DW_AT_low_pc:
case DW_AT_prototyped:
case DW_AT_pure:
case DW_AT_ranges:
case DW_AT_recursive:
case DW_AT_return_addr:
case DW_AT_segment:
case DW_AT_start_scope:
case DW_AT_static_link:
case DW_AT_trampoline:
case DW_AT_visibility:
case DW_AT_vtable_elem_location:
case DW_AT_description:
case DW_AT_sibling:
break;
}
}
}
}
std::string object_pointer_name;
if (object_pointer_die_offset != DW_INVALID_OFFSET)
{
// Get the name from the object pointer die
StreamString s;
if (DWARFDebugInfoEntry::GetName (dwarf, dwarf_cu, object_pointer_die_offset, s))
{
object_pointer_name.assign(s.GetData());
}
}
DEBUG_PRINTF ("0x%8.8" PRIx64 ": %s (\"%s\")\n", dwarf->MakeUserID(die->GetOffset()), DW_TAG_value_to_name(tag), type_name_cstr);
CompilerType return_clang_type;
Type *func_type = NULL;
if (type_die_offset != DW_INVALID_OFFSET)
func_type = dwarf->ResolveTypeUID(type_die_offset);
if (func_type)
return_clang_type = func_type->GetClangForwardType();
else
return_clang_type = GetBasicType(eBasicTypeVoid);
std::vector<CompilerType> function_param_types;
std::vector<clang::ParmVarDecl*> function_param_decls;
// Parse the function children for the parameters
const DWARFDebugInfoEntry *decl_ctx_die = NULL;
clang::DeclContext *containing_decl_ctx = GetClangDeclContextContainingDIE (dwarf, dwarf_cu, die, &decl_ctx_die);
const clang::Decl::Kind containing_decl_kind = containing_decl_ctx->getDeclKind();
const bool is_cxx_method = DeclKindIsCXXClass (containing_decl_kind);
// Start off static. This will be set to false in ParseChildParameters(...)
// if we find a "this" parameters as the first parameter
if (is_cxx_method)
is_static = true;
if (die->HasChildren())
{
bool skip_artificial = true;
ParseChildParameters (sc,
containing_decl_ctx,
dwarf,
dwarf_cu,
die,
skip_artificial,
is_static,
is_variadic,
function_param_types,
function_param_decls,
type_quals);
}
// clang_type will get the function prototype clang type after this call
clang_type = CreateFunctionType (return_clang_type,
function_param_types.data(),
function_param_types.size(),
is_variadic,
type_quals);
bool ignore_containing_context = false;
if (type_name_cstr)
{
bool type_handled = false;
if (tag == DW_TAG_subprogram)
{
ObjCLanguageRuntime::MethodName objc_method (type_name_cstr, true);
if (objc_method.IsValid(true))
{
CompilerType class_opaque_type;
ConstString class_name(objc_method.GetClassName());
if (class_name)
{
TypeSP complete_objc_class_type_sp (dwarf->FindCompleteObjCDefinitionTypeForDIE (NULL, class_name, false));
if (complete_objc_class_type_sp)
{
CompilerType type_clang_forward_type = complete_objc_class_type_sp->GetClangForwardType();
if (ClangASTContext::IsObjCObjectOrInterfaceType(type_clang_forward_type))
class_opaque_type = type_clang_forward_type;
}
}
if (class_opaque_type)
{
// If accessibility isn't set to anything valid, assume public for
// now...
if (accessibility == eAccessNone)
accessibility = eAccessPublic;
clang::ObjCMethodDecl *objc_method_decl = AddMethodToObjCObjectType (class_opaque_type,
type_name_cstr,
clang_type,
accessibility,
is_artificial);
type_handled = objc_method_decl != NULL;
if (type_handled)
{
dwarf->LinkDeclContextToDIE(ClangASTContext::GetAsDeclContext(objc_method_decl), die);
SetMetadataAsUserID (objc_method_decl, dwarf->MakeUserID(die->GetOffset()));
}
else
{
dwarf->GetObjectFile()->GetModule()->ReportError ("{0x%8.8x}: invalid Objective-C method 0x%4.4x (%s), please file a bug and attach the file at the start of this error message",
die->GetOffset(),
tag,
DW_TAG_value_to_name(tag));
}
}
}
else if (is_cxx_method)
{
// Look at the parent of this DIE and see if is is
// a class or struct and see if this is actually a
// C++ method
Type *class_type = dwarf->ResolveType (dwarf_cu, decl_ctx_die);
if (class_type)
{
if (class_type->GetID() != dwarf->MakeUserID(decl_ctx_die->GetOffset()))
{
// We uniqued the parent class of this function to another class
// so we now need to associate all dies under "decl_ctx_die" to
// DIEs in the DIE for "class_type"...
SymbolFileDWARF *class_symfile = NULL;
DWARFCompileUnitSP class_type_cu_sp;
const DWARFDebugInfoEntry *class_type_die = NULL;
SymbolFileDWARFDebugMap *debug_map_symfile = dwarf->GetDebugMapSymfile();
if (debug_map_symfile)
{
class_symfile = debug_map_symfile->GetSymbolFileByOSOIndex(SymbolFileDWARFDebugMap::GetOSOIndexFromUserID(class_type->GetID()));
class_type_die = class_symfile->DebugInfo()->GetDIEPtr(class_type->GetID(), &class_type_cu_sp);
}
else
{
class_symfile = dwarf;
class_type_die = dwarf->DebugInfo()->GetDIEPtr(class_type->GetID(), &class_type_cu_sp);
}
if (class_type_die)
{
DWARFDIECollection failures;
CopyUniqueClassMethodTypes (dwarf,
class_symfile,
class_type,
class_type_cu_sp.get(),
class_type_die,
dwarf_cu,
decl_ctx_die,
failures);
// FIXME do something with these failures that's smarter than
// just dropping them on the ground. Unfortunately classes don't
// like having stuff added to them after their definitions are
// complete...
type_ptr = dwarf->m_die_to_type[die];
if (type_ptr && type_ptr != DIE_IS_BEING_PARSED)
{
type_sp = type_ptr->shared_from_this();
break;
}
}
}
if (specification_die_offset != DW_INVALID_OFFSET)
{
// We have a specification which we are going to base our function
// prototype off of, so we need this type to be completed so that the
// m_die_to_decl_ctx for the method in the specification has a valid
// clang decl context.
class_type->GetClangForwardType();
// If we have a specification, then the function type should have been
// made with the specification and not with this die.
DWARFCompileUnitSP spec_cu_sp;
const DWARFDebugInfoEntry* spec_die = dwarf->DebugInfo()->GetDIEPtr(specification_die_offset, &spec_cu_sp);
clang::DeclContext *spec_clang_decl_ctx = GetClangDeclContextForDIE (dwarf, sc, dwarf_cu, spec_die);
if (spec_clang_decl_ctx)
{
dwarf->LinkDeclContextToDIE(spec_clang_decl_ctx, die);
}
else
{
dwarf->GetObjectFile()->GetModule()->ReportWarning ("0x%8.8" PRIx64 ": DW_AT_specification(0x%8.8x) has no decl\n",
dwarf->MakeUserID(die->GetOffset()),
specification_die_offset);
}
type_handled = true;
}
else if (abstract_origin_die_offset != DW_INVALID_OFFSET)
{
// We have a specification which we are going to base our function
// prototype off of, so we need this type to be completed so that the
// m_die_to_decl_ctx for the method in the abstract origin has a valid
// clang decl context.
class_type->GetClangForwardType();
DWARFCompileUnitSP abs_cu_sp;
const DWARFDebugInfoEntry* abs_die = dwarf->DebugInfo()->GetDIEPtr(abstract_origin_die_offset, &abs_cu_sp);
clang::DeclContext *abs_clang_decl_ctx = GetClangDeclContextForDIE (dwarf, sc, dwarf_cu, abs_die);
if (abs_clang_decl_ctx)
{
dwarf->LinkDeclContextToDIE (abs_clang_decl_ctx, die);
}
else
{
dwarf->GetObjectFile()->GetModule()->ReportWarning ("0x%8.8" PRIx64 ": DW_AT_abstract_origin(0x%8.8x) has no decl\n",
dwarf->MakeUserID(die->GetOffset()),
abstract_origin_die_offset);
}
type_handled = true;
}
else
{
CompilerType class_opaque_type = class_type->GetClangForwardType();
if (ClangASTContext::IsCXXClassType(class_opaque_type))
{
if (class_opaque_type.IsBeingDefined ())
{
// Neither GCC 4.2 nor clang++ currently set a valid accessibility
// in the DWARF for C++ methods... Default to public for now...
if (accessibility == eAccessNone)
accessibility = eAccessPublic;
if (!is_static && !die->HasChildren())
{
// We have a C++ member function with no children (this pointer!)
// and clang will get mad if we try and make a function that isn't
// well formed in the DWARF, so we will just skip it...
type_handled = true;
}
else
{
clang::CXXMethodDecl *cxx_method_decl;
// REMOVE THE CRASH DESCRIPTION BELOW
Host::SetCrashDescriptionWithFormat ("SymbolFileDWARF::ParseType() is adding a method %s to class %s in DIE 0x%8.8" PRIx64 " from %s",
type_name_cstr,
class_type->GetName().GetCString(),
dwarf->MakeUserID(die->GetOffset()),
dwarf->GetObjectFile()->GetFileSpec().GetPath().c_str());
const bool is_attr_used = false;
cxx_method_decl = AddMethodToCXXRecordType (class_opaque_type.GetOpaqueQualType(),
type_name_cstr,
clang_type,
accessibility,
is_virtual,
is_static,
is_inline,
is_explicit,
is_attr_used,
is_artificial);
type_handled = cxx_method_decl != NULL;
if (type_handled)
{
dwarf->LinkDeclContextToDIE(ClangASTContext::GetAsDeclContext(cxx_method_decl), die);
Host::SetCrashDescription (NULL);
ClangASTMetadata metadata;
metadata.SetUserID(dwarf->MakeUserID(die->GetOffset()));
if (!object_pointer_name.empty())
{
metadata.SetObjectPtrName(object_pointer_name.c_str());
if (log)
log->Printf ("Setting object pointer name: %s on method object %p.\n",
object_pointer_name.c_str(),
static_cast<void*>(cxx_method_decl));
}
SetMetadata (cxx_method_decl, metadata);
}
else
{
ignore_containing_context = true;
}
}
}
else
{
// We were asked to parse the type for a method in a class, yet the
// class hasn't been asked to complete itself through the
// clang::ExternalASTSource protocol, so we need to just have the
// class complete itself and do things the right way, then our
// DIE should then have an entry in the dwarf->m_die_to_type map. First
// we need to modify the dwarf->m_die_to_type so it doesn't think we are
// trying to parse this DIE anymore...
dwarf->m_die_to_type[die] = NULL;
// Now we get the full type to force our class type to complete itself
// using the clang::ExternalASTSource protocol which will parse all
// base classes and all methods (including the method for this DIE).
class_type->GetClangFullType();
// The type for this DIE should have been filled in the function call above
type_ptr = dwarf->m_die_to_type[die];
if (type_ptr && type_ptr != DIE_IS_BEING_PARSED)
{
type_sp = type_ptr->shared_from_this();
break;
}
// FIXME This is fixing some even uglier behavior but we really need to
// uniq the methods of each class as well as the class itself.
// <rdar://problem/11240464>
type_handled = true;
}
}
}
}
}
}
if (!type_handled)
{
// We just have a function that isn't part of a class
clang::FunctionDecl *function_decl = CreateFunctionDeclaration (ignore_containing_context ? GetTranslationUnitDecl() : containing_decl_ctx,
type_name_cstr,
clang_type,
storage,
is_inline);
// if (template_param_infos.GetSize() > 0)
// {
// clang::FunctionTemplateDecl *func_template_decl = CreateFunctionTemplateDecl (containing_decl_ctx,
// function_decl,
// type_name_cstr,
// template_param_infos);
//
// CreateFunctionTemplateSpecializationInfo (function_decl,
// func_template_decl,
// template_param_infos);
// }
// Add the decl to our DIE to decl context map
assert (function_decl);
dwarf->LinkDeclContextToDIE(function_decl, die);
if (!function_param_decls.empty())
SetFunctionParameters (function_decl,
&function_param_decls.front(),
function_param_decls.size());
ClangASTMetadata metadata;
metadata.SetUserID(dwarf->MakeUserID(die->GetOffset()));
if (!object_pointer_name.empty())
{
metadata.SetObjectPtrName(object_pointer_name.c_str());
if (log)
log->Printf ("Setting object pointer name: %s on function object %p.",
object_pointer_name.c_str(),
static_cast<void*>(function_decl));
}
SetMetadata (function_decl, metadata);
}
}
type_sp.reset( new Type (dwarf->MakeUserID(die->GetOffset()),
dwarf,
type_name_const_str,
0,
NULL,
LLDB_INVALID_UID,
Type::eEncodingIsUID,
&decl,
clang_type,
Type::eResolveStateFull));
assert(type_sp.get());
}
break;
case DW_TAG_array_type:
{
// Set a bit that lets us know that we are currently parsing this
dwarf->m_die_to_type[die] = DIE_IS_BEING_PARSED;
lldb::user_id_t type_die_offset = DW_INVALID_OFFSET;
int64_t first_index = 0;
uint32_t byte_stride = 0;
uint32_t bit_stride = 0;
bool is_vector = false;
const size_t num_attributes = die->GetAttributes(dwarf, dwarf_cu, NULL, attributes);
if (num_attributes > 0)
{
uint32_t i;
for (i=0; i<num_attributes; ++i)
{
attr = attributes.AttributeAtIndex(i);
if (attributes.ExtractFormValueAtIndex(dwarf, i, form_value))
{
switch (attr)
{
case DW_AT_decl_file: decl.SetFile(sc.comp_unit->GetSupportFiles().GetFileSpecAtIndex(form_value.Unsigned())); break;
case DW_AT_decl_line: decl.SetLine(form_value.Unsigned()); break;
case DW_AT_decl_column: decl.SetColumn(form_value.Unsigned()); break;
case DW_AT_name:
type_name_cstr = form_value.AsCString(&dwarf->get_debug_str_data());
type_name_const_str.SetCString(type_name_cstr);
break;
case DW_AT_type: type_die_offset = form_value.Reference(); break;
case DW_AT_byte_size: break; // byte_size = form_value.Unsigned(); break;
case DW_AT_byte_stride: byte_stride = form_value.Unsigned(); break;
case DW_AT_bit_stride: bit_stride = form_value.Unsigned(); break;
case DW_AT_GNU_vector: is_vector = form_value.Boolean(); break;
case DW_AT_accessibility: break; // accessibility = DW_ACCESS_to_AccessType(form_value.Unsigned()); break;
case DW_AT_declaration: break; // is_forward_declaration = form_value.Boolean(); break;
case DW_AT_allocated:
case DW_AT_associated:
case DW_AT_data_location:
case DW_AT_description:
case DW_AT_ordering:
case DW_AT_start_scope:
case DW_AT_visibility:
case DW_AT_specification:
case DW_AT_abstract_origin:
case DW_AT_sibling:
break;
}
}
}
DEBUG_PRINTF ("0x%8.8" PRIx64 ": %s (\"%s\")\n", dwarf->MakeUserID(die->GetOffset()), DW_TAG_value_to_name(tag), type_name_cstr);
Type *element_type = dwarf->ResolveTypeUID(type_die_offset);
if (element_type)
{
std::vector<uint64_t> element_orders;
ParseChildArrayInfo(sc, dwarf, dwarf_cu, die, first_index, element_orders, byte_stride, bit_stride);
if (byte_stride == 0 && bit_stride == 0)
byte_stride = element_type->GetByteSize();
CompilerType array_element_type = element_type->GetClangForwardType();
uint64_t array_element_bit_stride = byte_stride * 8 + bit_stride;
if (element_orders.size() > 0)
{
uint64_t num_elements = 0;
std::vector<uint64_t>::const_reverse_iterator pos;
std::vector<uint64_t>::const_reverse_iterator end = element_orders.rend();
for (pos = element_orders.rbegin(); pos != end; ++pos)
{
num_elements = *pos;
clang_type = CreateArrayType (array_element_type,
num_elements,
is_vector);
array_element_type = clang_type;
array_element_bit_stride = num_elements ?
array_element_bit_stride * num_elements :
array_element_bit_stride;
}
}
else
{
clang_type = CreateArrayType (array_element_type, 0, is_vector);
}
ConstString empty_name;
type_sp.reset( new Type (dwarf->MakeUserID(die->GetOffset()),
dwarf,
empty_name,
array_element_bit_stride / 8,
NULL,
type_die_offset,
Type::eEncodingIsUID,
&decl,
clang_type,
Type::eResolveStateFull));
type_sp->SetEncodingType (element_type);
}
}
}
break;
case DW_TAG_ptr_to_member_type:
{
dw_offset_t type_die_offset = DW_INVALID_OFFSET;
dw_offset_t containing_type_die_offset = DW_INVALID_OFFSET;
const size_t num_attributes = die->GetAttributes(dwarf, dwarf_cu, NULL, attributes);
if (num_attributes > 0) {
uint32_t i;
for (i=0; i<num_attributes; ++i)
{
attr = attributes.AttributeAtIndex(i);
if (attributes.ExtractFormValueAtIndex(dwarf, i, form_value))
{
switch (attr)
{
case DW_AT_type:
type_die_offset = form_value.Reference(); break;
case DW_AT_containing_type:
containing_type_die_offset = form_value.Reference(); break;
}
}
}
Type *pointee_type = dwarf->ResolveTypeUID(type_die_offset);
Type *class_type = dwarf->ResolveTypeUID(containing_type_die_offset);
CompilerType pointee_clang_type = pointee_type->GetClangForwardType();
CompilerType class_clang_type = class_type->GetClangLayoutType();
clang_type = ClangASTContext::CreateMemberPointerType(pointee_clang_type, class_clang_type);
byte_size = clang_type.GetByteSize(nullptr);
type_sp.reset( new Type (dwarf->MakeUserID(die->GetOffset()),
dwarf,
type_name_const_str,
byte_size,
NULL,
LLDB_INVALID_UID,
Type::eEncodingIsUID,
NULL,
clang_type,
Type::eResolveStateForward));
}
break;
}
default:
dwarf->GetObjectFile()->GetModule()->ReportError ("{0x%8.8x}: unhandled type tag 0x%4.4x (%s), please file a bug and attach the file at the start of this error message",
die->GetOffset(),
tag,
DW_TAG_value_to_name(tag));
break;
}
if (type_sp.get())
{
const DWARFDebugInfoEntry *sc_parent_die = SymbolFileDWARF::GetParentSymbolContextDIE(die);
dw_tag_t sc_parent_tag = sc_parent_die ? sc_parent_die->Tag() : 0;
SymbolContextScope * symbol_context_scope = NULL;
if (sc_parent_tag == DW_TAG_compile_unit)
{
symbol_context_scope = sc.comp_unit;
}
else if (sc.function != NULL && sc_parent_die)
{
symbol_context_scope = sc.function->GetBlock(true).FindBlockByID(dwarf->MakeUserID(sc_parent_die->GetOffset()));
if (symbol_context_scope == NULL)
symbol_context_scope = sc.function;
}
if (symbol_context_scope != NULL)
{
type_sp->SetSymbolContextScope(symbol_context_scope);
}
// We are ready to put this type into the uniqued list up at the module level
type_list->Insert (type_sp);
dwarf->m_die_to_type[die] = type_sp.get();
}
}
else if (type_ptr != DIE_IS_BEING_PARSED)
{
type_sp = type_ptr->shared_from_this();
}
}
return type_sp;
}
bool
ClangASTContext::CopyUniqueClassMethodTypes (SymbolFileDWARF *dst_symfile,
SymbolFileDWARF *src_symfile,
Type *class_type,
DWARFCompileUnit* src_cu,
const DWARFDebugInfoEntry *src_class_die,
DWARFCompileUnit* dst_cu,
const DWARFDebugInfoEntry *dst_class_die,
DWARFDIECollection &failures)
{
if (!class_type || !src_cu || !src_class_die || !dst_cu || !dst_class_die)
return false;
if (src_class_die->Tag() != dst_class_die->Tag())
return false;
// We need to complete the class type so we can get all of the method types
// parsed so we can then unique those types to their equivalent counterparts
// in "dst_cu" and "dst_class_die"
class_type->GetClangFullType();
const DWARFDebugInfoEntry *src_die;
const DWARFDebugInfoEntry *dst_die;
UniqueCStringMap<const DWARFDebugInfoEntry *> src_name_to_die;
UniqueCStringMap<const DWARFDebugInfoEntry *> dst_name_to_die;
UniqueCStringMap<const DWARFDebugInfoEntry *> src_name_to_die_artificial;
UniqueCStringMap<const DWARFDebugInfoEntry *> dst_name_to_die_artificial;
for (src_die = src_class_die->GetFirstChild(); src_die != NULL; src_die = src_die->GetSibling())
{
if (src_die->Tag() == DW_TAG_subprogram)
{
// Make sure this is a declaration and not a concrete instance by looking
// for DW_AT_declaration set to 1. Sometimes concrete function instances
// are placed inside the class definitions and shouldn't be included in
// the list of things are are tracking here.
if (src_die->GetAttributeValueAsUnsigned(src_symfile, src_cu, DW_AT_declaration, 0) == 1)
{
const char *src_name = src_die->GetMangledName (src_symfile, src_cu);
if (src_name)
{
ConstString src_const_name(src_name);
if (src_die->GetAttributeValueAsUnsigned(src_symfile, src_cu, DW_AT_artificial, 0))
src_name_to_die_artificial.Append(src_const_name.GetCString(), src_die);
else
src_name_to_die.Append(src_const_name.GetCString(), src_die);
}
}
}
}
for (dst_die = dst_class_die->GetFirstChild(); dst_die != NULL; dst_die = dst_die->GetSibling())
{
if (dst_die->Tag() == DW_TAG_subprogram)
{
// Make sure this is a declaration and not a concrete instance by looking
// for DW_AT_declaration set to 1. Sometimes concrete function instances
// are placed inside the class definitions and shouldn't be included in
// the list of things are are tracking here.
if (dst_die->GetAttributeValueAsUnsigned(dst_symfile, dst_cu, DW_AT_declaration, 0) == 1)
{
const char *dst_name = dst_die->GetMangledName (dst_symfile, dst_cu);
if (dst_name)
{
ConstString dst_const_name(dst_name);
if (dst_die->GetAttributeValueAsUnsigned(dst_symfile, dst_cu, DW_AT_artificial, 0))
dst_name_to_die_artificial.Append(dst_const_name.GetCString(), dst_die);
else
dst_name_to_die.Append(dst_const_name.GetCString(), dst_die);
}
}
}
}
const uint32_t src_size = src_name_to_die.GetSize ();
const uint32_t dst_size = dst_name_to_die.GetSize ();
Log *log = nullptr; // (LogChannelDWARF::GetLogIfAny(DWARF_LOG_DEBUG_INFO | DWARF_LOG_TYPE_COMPLETION));
// Is everything kosher so we can go through the members at top speed?
bool fast_path = true;
if (src_size != dst_size)
{
if (src_size != 0 && dst_size != 0)
{
if (log)
log->Printf("warning: trying to unique class DIE 0x%8.8x to 0x%8.8x, but they didn't have the same size (src=%d, dst=%d)",
src_class_die->GetOffset(),
dst_class_die->GetOffset(),
src_size,
dst_size);
}
fast_path = false;
}
uint32_t idx;
if (fast_path)
{
for (idx = 0; idx < src_size; ++idx)
{
src_die = src_name_to_die.GetValueAtIndexUnchecked (idx);
dst_die = dst_name_to_die.GetValueAtIndexUnchecked (idx);
if (src_die->Tag() != dst_die->Tag())
{
if (log)
log->Printf("warning: tried to unique class DIE 0x%8.8x to 0x%8.8x, but 0x%8.8x (%s) tags didn't match 0x%8.8x (%s)",
src_class_die->GetOffset(),
dst_class_die->GetOffset(),
src_die->GetOffset(),
DW_TAG_value_to_name(src_die->Tag()),
dst_die->GetOffset(),
DW_TAG_value_to_name(src_die->Tag()));
fast_path = false;
}
const char *src_name = src_die->GetMangledName (src_symfile, src_cu);
const char *dst_name = dst_die->GetMangledName (dst_symfile, dst_cu);
// Make sure the names match
if (src_name == dst_name || (strcmp (src_name, dst_name) == 0))
continue;
if (log)
log->Printf("warning: tried to unique class DIE 0x%8.8x to 0x%8.8x, but 0x%8.8x (%s) names didn't match 0x%8.8x (%s)",
src_class_die->GetOffset(),
dst_class_die->GetOffset(),
src_die->GetOffset(),
src_name,
dst_die->GetOffset(),
dst_name);
fast_path = false;
}
}
// Now do the work of linking the DeclContexts and Types.
if (fast_path)
{
// We can do this quickly. Just run across the tables index-for-index since
// we know each node has matching names and tags.
for (idx = 0; idx < src_size; ++idx)
{
src_die = src_name_to_die.GetValueAtIndexUnchecked (idx);
dst_die = dst_name_to_die.GetValueAtIndexUnchecked (idx);
clang::DeclContext *src_decl_ctx = src_symfile->m_die_to_decl_ctx[src_die];
if (src_decl_ctx)
{
if (log)
log->Printf ("uniquing decl context %p from 0x%8.8x for 0x%8.8x",
static_cast<void*>(src_decl_ctx),
src_die->GetOffset(), dst_die->GetOffset());
dst_symfile->LinkDeclContextToDIE (src_decl_ctx, dst_die);
}
else
{
if (log)
log->Printf ("warning: tried to unique decl context from 0x%8.8x for 0x%8.8x, but none was found",
src_die->GetOffset(), dst_die->GetOffset());
}
Type *src_child_type = dst_symfile->m_die_to_type[src_die];
if (src_child_type)
{
if (log)
log->Printf ("uniquing type %p (uid=0x%" PRIx64 ") from 0x%8.8x for 0x%8.8x",
static_cast<void*>(src_child_type),
src_child_type->GetID(),
src_die->GetOffset(), dst_die->GetOffset());
dst_symfile->m_die_to_type[dst_die] = src_child_type;
}
else
{
if (log)
log->Printf ("warning: tried to unique lldb_private::Type from 0x%8.8x for 0x%8.8x, but none was found", src_die->GetOffset(), dst_die->GetOffset());
}
}
}
else
{
// We must do this slowly. For each member of the destination, look
// up a member in the source with the same name, check its tag, and
// unique them if everything matches up. Report failures.
if (!src_name_to_die.IsEmpty() && !dst_name_to_die.IsEmpty())
{
src_name_to_die.Sort();
for (idx = 0; idx < dst_size; ++idx)
{
const char *dst_name = dst_name_to_die.GetCStringAtIndex(idx);
dst_die = dst_name_to_die.GetValueAtIndexUnchecked(idx);
src_die = src_name_to_die.Find(dst_name, NULL);
if (src_die && (src_die->Tag() == dst_die->Tag()))
{
clang::DeclContext *src_decl_ctx = src_symfile->m_die_to_decl_ctx[src_die];
if (src_decl_ctx)
{
if (log)
log->Printf ("uniquing decl context %p from 0x%8.8x for 0x%8.8x",
static_cast<void*>(src_decl_ctx),
src_die->GetOffset(),
dst_die->GetOffset());
dst_symfile->LinkDeclContextToDIE (src_decl_ctx, dst_die);
}
else
{
if (log)
log->Printf ("warning: tried to unique decl context from 0x%8.8x for 0x%8.8x, but none was found", src_die->GetOffset(), dst_die->GetOffset());
}
Type *src_child_type = dst_symfile->m_die_to_type[src_die];
if (src_child_type)
{
if (log)
log->Printf ("uniquing type %p (uid=0x%" PRIx64 ") from 0x%8.8x for 0x%8.8x",
static_cast<void*>(src_child_type),
src_child_type->GetID(),
src_die->GetOffset(),
dst_die->GetOffset());
dst_symfile->m_die_to_type[dst_die] = src_child_type;
}
else
{
if (log)
log->Printf ("warning: tried to unique lldb_private::Type from 0x%8.8x for 0x%8.8x, but none was found", src_die->GetOffset(), dst_die->GetOffset());
}
}
else
{
if (log)
log->Printf ("warning: couldn't find a match for 0x%8.8x", dst_die->GetOffset());
failures.Append(dst_die);
}
}
}
}
const uint32_t src_size_artificial = src_name_to_die_artificial.GetSize ();
const uint32_t dst_size_artificial = dst_name_to_die_artificial.GetSize ();
UniqueCStringMap<const DWARFDebugInfoEntry *> name_to_die_artificial_not_in_src;
if (src_size_artificial && dst_size_artificial)
{
dst_name_to_die_artificial.Sort();
for (idx = 0; idx < src_size_artificial; ++idx)
{
const char *src_name_artificial = src_name_to_die_artificial.GetCStringAtIndex(idx);
src_die = src_name_to_die_artificial.GetValueAtIndexUnchecked (idx);
dst_die = dst_name_to_die_artificial.Find(src_name_artificial, NULL);
if (dst_die)
{
// Both classes have the artificial types, link them
clang::DeclContext *src_decl_ctx = dst_symfile->m_die_to_decl_ctx[src_die];
if (src_decl_ctx)
{
if (log)
log->Printf ("uniquing decl context %p from 0x%8.8x for 0x%8.8x",
static_cast<void*>(src_decl_ctx),
src_die->GetOffset(), dst_die->GetOffset());
dst_symfile->LinkDeclContextToDIE (src_decl_ctx, dst_die);
}
else
{
if (log)
log->Printf ("warning: tried to unique decl context from 0x%8.8x for 0x%8.8x, but none was found", src_die->GetOffset(), dst_die->GetOffset());
}
Type *src_child_type = dst_symfile->m_die_to_type[src_die];
if (src_child_type)
{
if (log)
log->Printf ("uniquing type %p (uid=0x%" PRIx64 ") from 0x%8.8x for 0x%8.8x",
static_cast<void*>(src_child_type),
src_child_type->GetID(),
src_die->GetOffset(), dst_die->GetOffset());
dst_symfile->m_die_to_type[dst_die] = src_child_type;
}
else
{
if (log)
log->Printf ("warning: tried to unique lldb_private::Type from 0x%8.8x for 0x%8.8x, but none was found", src_die->GetOffset(), dst_die->GetOffset());
}
}
}
}
if (dst_size_artificial)
{
for (idx = 0; idx < dst_size_artificial; ++idx)
{
const char *dst_name_artificial = dst_name_to_die_artificial.GetCStringAtIndex(idx);
dst_die = dst_name_to_die_artificial.GetValueAtIndexUnchecked (idx);
if (log)
log->Printf ("warning: need to create artificial method for 0x%8.8x for method '%s'", dst_die->GetOffset(), dst_name_artificial);
failures.Append(dst_die);
}
}
return (failures.Size() != 0);
}
bool
ClangASTContext::DIEIsInNamespace (const ClangNamespaceDecl *namespace_decl,
SymbolFileDWARF *dwarf,
DWARFCompileUnit *cu,
const DWARFDebugInfoEntry *die)
{
// No namespace specified, so the answer is
if (namespace_decl == NULL)
return true;
Log *log = nullptr; //(LogChannelDWARF::GetLogIfAll(DWARF_LOG_LOOKUPS));
const DWARFDebugInfoEntry *decl_ctx_die = NULL;
clang::DeclContext *die_clang_decl_ctx = GetClangDeclContextContainingDIE (dwarf, cu, die, &decl_ctx_die);
if (decl_ctx_die)
{
clang::NamespaceDecl *clang_namespace_decl = namespace_decl->GetNamespaceDecl();
if (clang_namespace_decl)
{
if (decl_ctx_die->Tag() != DW_TAG_namespace)
{
if (log)
dwarf->GetObjectFile()->GetModule()->LogMessage(log, "Found a match, but its parent is not a namespace");
return false;
}
if (clang_namespace_decl == die_clang_decl_ctx)
return true;
else
return false;
}
else
{
// We have a namespace_decl that was not NULL but it contained
// a NULL "clang::NamespaceDecl", so this means the global namespace
// So as long the contained decl context DIE isn't a namespace
// we should be ok.
if (decl_ctx_die->Tag() != DW_TAG_namespace)
return true;
}
}
if (log)
dwarf->GetObjectFile()->GetModule()->LogMessage(log, "Found a match, but its parent doesn't exist");
return false;
}