| //===- Writer.cpp ---------------------------------------------------------===// |
| // |
| // The LLVM Linker |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "Writer.h" |
| #include "Config.h" |
| #include "LinkerScript.h" |
| #include "OutputSections.h" |
| #include "SymbolTable.h" |
| #include "Target.h" |
| |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/StringMap.h" |
| #include "llvm/ADT/StringSwitch.h" |
| #include "llvm/Support/Endian.h" |
| #include "llvm/Support/FileOutputBuffer.h" |
| #include "llvm/Support/StringSaver.h" |
| #include "llvm/Support/raw_ostream.h" |
| |
| using namespace llvm; |
| using namespace llvm::ELF; |
| using namespace llvm::object; |
| using namespace llvm::support::endian; |
| |
| using namespace lld; |
| using namespace lld::elf; |
| |
| namespace { |
| // The writer writes a SymbolTable result to a file. |
| template <class ELFT> class Writer { |
| public: |
| typedef typename ELFT::uint uintX_t; |
| typedef typename ELFT::Shdr Elf_Shdr; |
| typedef typename ELFT::Ehdr Elf_Ehdr; |
| typedef typename ELFT::Phdr Elf_Phdr; |
| typedef typename ELFT::Sym Elf_Sym; |
| typedef typename ELFT::SymRange Elf_Sym_Range; |
| typedef typename ELFT::Rela Elf_Rela; |
| Writer(SymbolTable<ELFT> &S) : Symtab(S) {} |
| void run(); |
| |
| private: |
| // This describes a program header entry. |
| // Each contains type, access flags and range of output sections that will be |
| // placed in it. |
| struct Phdr { |
| Phdr(unsigned Type, unsigned Flags) { |
| H.p_type = Type; |
| H.p_flags = Flags; |
| } |
| Elf_Phdr H = {}; |
| OutputSectionBase<ELFT> *First = nullptr; |
| OutputSectionBase<ELFT> *Last = nullptr; |
| }; |
| |
| void copyLocalSymbols(); |
| void addReservedSymbols(); |
| void createSections(); |
| void addPredefinedSections(); |
| bool needsGot(); |
| |
| template <class RelTy> |
| void scanRelocs(InputSectionBase<ELFT> &C, ArrayRef<RelTy> Rels); |
| |
| void scanRelocs(InputSection<ELFT> &C); |
| void scanRelocs(InputSectionBase<ELFT> &S, const Elf_Shdr &RelSec); |
| void createPhdrs(); |
| void assignAddresses(); |
| void assignFileOffsets(); |
| void setPhdrs(); |
| void fixHeaders(); |
| void fixSectionAlignments(); |
| void fixAbsoluteSymbols(); |
| void openFile(); |
| void writeHeader(); |
| void writeSections(); |
| void writeBuildId(); |
| bool isDiscarded(InputSectionBase<ELFT> *IS) const; |
| StringRef getOutputSectionName(InputSectionBase<ELFT> *S) const; |
| bool needsInterpSection() const { |
| return !Symtab.getSharedFiles().empty() && !Config->DynamicLinker.empty(); |
| } |
| bool isOutputDynamic() const { |
| return !Symtab.getSharedFiles().empty() || Config->Pic; |
| } |
| template <class RelTy> |
| void scanRelocsForThunks(const elf::ObjectFile<ELFT> &File, |
| ArrayRef<RelTy> Rels); |
| |
| void ensureBss(); |
| void addCommonSymbols(std::vector<DefinedCommon *> &Syms); |
| void addCopyRelSymbol(SharedSymbol<ELFT> *Sym); |
| |
| std::unique_ptr<llvm::FileOutputBuffer> Buffer; |
| |
| BumpPtrAllocator Alloc; |
| std::vector<OutputSectionBase<ELFT> *> OutputSections; |
| std::vector<std::unique_ptr<OutputSectionBase<ELFT>>> OwningSections; |
| |
| void addRelIpltSymbols(); |
| void addStartEndSymbols(); |
| void addStartStopSymbols(OutputSectionBase<ELFT> *Sec); |
| |
| SymbolTable<ELFT> &Symtab; |
| std::vector<Phdr> Phdrs; |
| |
| uintX_t FileSize; |
| uintX_t SectionHeaderOff; |
| |
| // Flag to force GOT to be in output if we have relocations |
| // that relies on its address. |
| bool HasGotOffRel = false; |
| }; |
| } // anonymous namespace |
| |
| template <class ELFT> void elf::writeResult(SymbolTable<ELFT> *Symtab) { |
| typedef typename ELFT::uint uintX_t; |
| typedef typename ELFT::Ehdr Elf_Ehdr; |
| |
| // Create singleton output sections. |
| DynamicSection<ELFT> Dynamic(*Symtab); |
| EhFrameHeader<ELFT> EhFrameHdr; |
| GotSection<ELFT> Got; |
| InterpSection<ELFT> Interp; |
| PltSection<ELFT> Plt; |
| RelocationSection<ELFT> RelaDyn(Config->Rela ? ".rela.dyn" : ".rel.dyn"); |
| StringTableSection<ELFT> DynStrTab(".dynstr", true); |
| StringTableSection<ELFT> ShStrTab(".shstrtab", false); |
| SymbolTableSection<ELFT> DynSymTab(*Symtab, DynStrTab); |
| |
| OutputSectionBase<ELFT> ElfHeader("", 0, SHF_ALLOC); |
| ElfHeader.setSize(sizeof(Elf_Ehdr)); |
| OutputSectionBase<ELFT> ProgramHeaders("", 0, SHF_ALLOC); |
| ProgramHeaders.updateAlign(sizeof(uintX_t)); |
| |
| // Instantiate optional output sections if they are needed. |
| std::unique_ptr<BuildIdSection<ELFT>> BuildId; |
| std::unique_ptr<GnuHashTableSection<ELFT>> GnuHashTab; |
| std::unique_ptr<GotPltSection<ELFT>> GotPlt; |
| std::unique_ptr<HashTableSection<ELFT>> HashTab; |
| std::unique_ptr<RelocationSection<ELFT>> RelaPlt; |
| std::unique_ptr<StringTableSection<ELFT>> StrTab; |
| std::unique_ptr<SymbolTableSection<ELFT>> SymTabSec; |
| std::unique_ptr<OutputSection<ELFT>> MipsRldMap; |
| |
| if (Config->BuildId == BuildIdKind::Fnv1) |
| BuildId.reset(new BuildIdFnv1<ELFT>); |
| else if (Config->BuildId == BuildIdKind::Md5) |
| BuildId.reset(new BuildIdMd5<ELFT>); |
| else if (Config->BuildId == BuildIdKind::Sha1) |
| BuildId.reset(new BuildIdSha1<ELFT>); |
| |
| if (Config->GnuHash) |
| GnuHashTab.reset(new GnuHashTableSection<ELFT>); |
| if (Config->SysvHash) |
| HashTab.reset(new HashTableSection<ELFT>); |
| if (Target->UseLazyBinding) { |
| StringRef S = Config->Rela ? ".rela.plt" : ".rel.plt"; |
| GotPlt.reset(new GotPltSection<ELFT>); |
| RelaPlt.reset(new RelocationSection<ELFT>(S)); |
| } |
| if (!Config->StripAll) { |
| StrTab.reset(new StringTableSection<ELFT>(".strtab", false)); |
| SymTabSec.reset(new SymbolTableSection<ELFT>(*Symtab, *StrTab)); |
| } |
| if (Config->EMachine == EM_MIPS && !Config->Shared) { |
| // This is a MIPS specific section to hold a space within the data segment |
| // of executable file which is pointed to by the DT_MIPS_RLD_MAP entry. |
| // See "Dynamic section" in Chapter 5 in the following document: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| MipsRldMap.reset(new OutputSection<ELFT>(".rld_map", SHT_PROGBITS, |
| SHF_ALLOC | SHF_WRITE)); |
| MipsRldMap->setSize(sizeof(uintX_t)); |
| MipsRldMap->updateAlign(sizeof(uintX_t)); |
| } |
| |
| Out<ELFT>::BuildId = BuildId.get(); |
| Out<ELFT>::DynStrTab = &DynStrTab; |
| Out<ELFT>::DynSymTab = &DynSymTab; |
| Out<ELFT>::Dynamic = &Dynamic; |
| Out<ELFT>::EhFrameHdr = &EhFrameHdr; |
| Out<ELFT>::GnuHashTab = GnuHashTab.get(); |
| Out<ELFT>::Got = &Got; |
| Out<ELFT>::GotPlt = GotPlt.get(); |
| Out<ELFT>::HashTab = HashTab.get(); |
| Out<ELFT>::Interp = &Interp; |
| Out<ELFT>::Plt = &Plt; |
| Out<ELFT>::RelaDyn = &RelaDyn; |
| Out<ELFT>::RelaPlt = RelaPlt.get(); |
| Out<ELFT>::ShStrTab = &ShStrTab; |
| Out<ELFT>::StrTab = StrTab.get(); |
| Out<ELFT>::SymTab = SymTabSec.get(); |
| Out<ELFT>::Bss = nullptr; |
| Out<ELFT>::MipsRldMap = MipsRldMap.get(); |
| Out<ELFT>::Opd = nullptr; |
| Out<ELFT>::OpdBuf = nullptr; |
| Out<ELFT>::TlsPhdr = nullptr; |
| Out<ELFT>::ElfHeader = &ElfHeader; |
| Out<ELFT>::ProgramHeaders = &ProgramHeaders; |
| |
| Writer<ELFT>(*Symtab).run(); |
| } |
| |
| // The main function of the writer. |
| template <class ELFT> void Writer<ELFT>::run() { |
| if (!Config->DiscardAll) |
| copyLocalSymbols(); |
| addReservedSymbols(); |
| createSections(); |
| if (HasError) |
| return; |
| |
| if (Config->Relocatable) { |
| assignFileOffsets(); |
| } else { |
| createPhdrs(); |
| fixHeaders(); |
| if (ScriptConfig->DoLayout) { |
| Script<ELFT>::X->assignAddresses(OutputSections); |
| } else { |
| fixSectionAlignments(); |
| assignAddresses(); |
| } |
| assignFileOffsets(); |
| setPhdrs(); |
| fixAbsoluteSymbols(); |
| } |
| |
| openFile(); |
| if (HasError) |
| return; |
| writeHeader(); |
| writeSections(); |
| writeBuildId(); |
| if (HasError) |
| return; |
| check(Buffer->commit()); |
| } |
| |
| namespace { |
| template <bool Is64Bits> struct SectionKey { |
| typedef typename std::conditional<Is64Bits, uint64_t, uint32_t>::type uintX_t; |
| StringRef Name; |
| uint32_t Type; |
| uintX_t Flags; |
| uintX_t Alignment; |
| }; |
| } |
| namespace llvm { |
| template <bool Is64Bits> struct DenseMapInfo<SectionKey<Is64Bits>> { |
| static SectionKey<Is64Bits> getEmptyKey() { |
| return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getEmptyKey(), 0, 0, |
| 0}; |
| } |
| static SectionKey<Is64Bits> getTombstoneKey() { |
| return SectionKey<Is64Bits>{DenseMapInfo<StringRef>::getTombstoneKey(), 0, |
| 0, 0}; |
| } |
| static unsigned getHashValue(const SectionKey<Is64Bits> &Val) { |
| return hash_combine(Val.Name, Val.Type, Val.Flags, Val.Alignment); |
| } |
| static bool isEqual(const SectionKey<Is64Bits> &LHS, |
| const SectionKey<Is64Bits> &RHS) { |
| return DenseMapInfo<StringRef>::isEqual(LHS.Name, RHS.Name) && |
| LHS.Type == RHS.Type && LHS.Flags == RHS.Flags && |
| LHS.Alignment == RHS.Alignment; |
| } |
| }; |
| } |
| |
| // Returns the number of relocations processed. |
| template <class ELFT> |
| static unsigned handleTlsRelocation(uint32_t Type, SymbolBody &Body, |
| InputSectionBase<ELFT> &C, |
| typename ELFT::uint Offset, |
| typename ELFT::uint Addend, RelExpr Expr) { |
| if (!(C.getSectionHdr()->sh_flags & SHF_ALLOC)) |
| return 0; |
| |
| if (!Body.isTls()) |
| return 0; |
| |
| typedef typename ELFT::uint uintX_t; |
| if (Expr == R_TLSLD_PC || Expr == R_TLSLD) { |
| // Local-Dynamic relocs can be relaxed to Local-Exec. |
| if (!Config->Shared) { |
| C.Relocations.push_back( |
| {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Body}); |
| return 2; |
| } |
| if (Out<ELFT>::Got->addTlsIndex()) |
| Out<ELFT>::RelaDyn->addReloc({Target->TlsModuleIndexRel, Out<ELFT>::Got, |
| Out<ELFT>::Got->getTlsIndexOff(), false, |
| nullptr, 0}); |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); |
| return 1; |
| } |
| |
| // Local-Dynamic relocs can be relaxed to Local-Exec. |
| if (Target->isTlsLocalDynamicRel(Type) && !Config->Shared) { |
| C.Relocations.push_back( |
| {R_RELAX_TLS_LD_TO_LE, Type, Offset, Addend, &Body}); |
| return 1; |
| } |
| |
| if (Target->isTlsGlobalDynamicRel(Type)) { |
| if (Config->Shared) { |
| if (Out<ELFT>::Got->addDynTlsEntry(Body)) { |
| uintX_t Off = Out<ELFT>::Got->getGlobalDynOffset(Body); |
| Out<ELFT>::RelaDyn->addReloc( |
| {Target->TlsModuleIndexRel, Out<ELFT>::Got, Off, false, &Body, 0}); |
| Out<ELFT>::RelaDyn->addReloc({Target->TlsOffsetRel, Out<ELFT>::Got, |
| Off + (uintX_t)sizeof(uintX_t), false, |
| &Body, 0}); |
| } |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); |
| return 1; |
| } |
| |
| // Global-Dynamic relocs can be relaxed to Initial-Exec or Local-Exec |
| // depending on the symbol being locally defined or not. |
| if (Body.isPreemptible()) { |
| Expr = |
| Expr == R_TLSGD_PC ? R_RELAX_TLS_GD_TO_IE_PC : R_RELAX_TLS_GD_TO_IE; |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); |
| if (!Body.isInGot()) { |
| Out<ELFT>::Got->addEntry(Body); |
| Out<ELFT>::RelaDyn->addReloc({Target->TlsGotRel, Out<ELFT>::Got, |
| Body.getGotOffset<ELFT>(), false, &Body, |
| 0}); |
| } |
| return 2; |
| } |
| C.Relocations.push_back( |
| {R_RELAX_TLS_GD_TO_LE, Type, Offset, Addend, &Body}); |
| return Target->TlsGdToLeSkip; |
| } |
| |
| // Initial-Exec relocs can be relaxed to Local-Exec if the symbol is locally |
| // defined. |
| if (Target->isTlsInitialExecRel(Type) && !Config->Shared && |
| !Body.isPreemptible()) { |
| C.Relocations.push_back( |
| {R_RELAX_TLS_IE_TO_LE, Type, Offset, Addend, &Body}); |
| return 1; |
| } |
| return 0; |
| } |
| |
| // Some targets might require creation of thunks for relocations. Now we |
| // support only MIPS which requires LA25 thunk to call PIC code from non-PIC |
| // one. Scan relocations to find each one requires thunk. |
| template <class ELFT> |
| template <class RelTy> |
| void Writer<ELFT>::scanRelocsForThunks(const elf::ObjectFile<ELFT> &File, |
| ArrayRef<RelTy> Rels) { |
| for (const RelTy &RI : Rels) { |
| uint32_t Type = RI.getType(Config->Mips64EL); |
| uint32_t SymIndex = RI.getSymbol(Config->Mips64EL); |
| SymbolBody &Body = File.getSymbolBody(SymIndex).repl(); |
| if (Body.hasThunk() || !Target->needsThunk(Type, File, Body)) |
| continue; |
| auto *D = cast<DefinedRegular<ELFT>>(&Body); |
| auto *S = cast<InputSection<ELFT>>(D->Section); |
| S->addThunk(Body); |
| } |
| } |
| |
| template <endianness E> static int16_t readSignedLo16(const uint8_t *Loc) { |
| return read32<E>(Loc) & 0xffff; |
| } |
| |
| template <class RelTy> |
| static uint32_t getMipsPairType(const RelTy *Rel, const SymbolBody &Sym) { |
| switch (Rel->getType(Config->Mips64EL)) { |
| case R_MIPS_HI16: |
| return R_MIPS_LO16; |
| case R_MIPS_GOT16: |
| return Sym.isLocal() ? R_MIPS_LO16 : R_MIPS_NONE; |
| case R_MIPS_PCHI16: |
| return R_MIPS_PCLO16; |
| case R_MICROMIPS_HI16: |
| return R_MICROMIPS_LO16; |
| default: |
| return R_MIPS_NONE; |
| } |
| } |
| |
| template <class ELFT, class RelTy> |
| static int32_t findMipsPairedAddend(const uint8_t *Buf, const uint8_t *BufLoc, |
| SymbolBody &Sym, const RelTy *Rel, |
| const RelTy *End) { |
| uint32_t SymIndex = Rel->getSymbol(Config->Mips64EL); |
| uint32_t Type = getMipsPairType(Rel, Sym); |
| |
| // Some MIPS relocations use addend calculated from addend of the relocation |
| // itself and addend of paired relocation. ABI requires to compute such |
| // combined addend in case of REL relocation record format only. |
| // See p. 4-17 at ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| if (RelTy::IsRela || Type == R_MIPS_NONE) |
| return 0; |
| |
| for (const RelTy *RI = Rel; RI != End; ++RI) { |
| if (RI->getType(Config->Mips64EL) != Type) |
| continue; |
| if (RI->getSymbol(Config->Mips64EL) != SymIndex) |
| continue; |
| const endianness E = ELFT::TargetEndianness; |
| return ((read32<E>(BufLoc) & 0xffff) << 16) + |
| readSignedLo16<E>(Buf + RI->r_offset); |
| } |
| unsigned OldType = Rel->getType(Config->Mips64EL); |
| StringRef OldName = getELFRelocationTypeName(Config->EMachine, OldType); |
| StringRef NewName = getELFRelocationTypeName(Config->EMachine, Type); |
| warning("can't find matching " + NewName + " relocation for " + OldName); |
| return 0; |
| } |
| |
| // True if non-preemptable symbol always has the same value regardless of where |
| // the DSO is loaded. |
| template <class ELFT> static bool isAbsolute(const SymbolBody &Body) { |
| if (Body.isUndefined() && Body.isWeak()) |
| return true; // always 0 |
| if (const auto *DR = dyn_cast<DefinedRegular<ELFT>>(&Body)) |
| return DR->Section == nullptr; // Absolute symbol. |
| return false; |
| } |
| |
| namespace { |
| enum PltNeed { Plt_No, Plt_Explicit, Plt_Implicit }; |
| } |
| |
| static bool needsPlt(RelExpr Expr) { |
| return Expr == R_PLT_PC || Expr == R_PPC_PLT_OPD || Expr == R_PLT; |
| } |
| |
| static PltNeed needsPlt(RelExpr Expr, uint32_t Type, const SymbolBody &S) { |
| if (S.isGnuIFunc()) |
| return Plt_Explicit; |
| if (S.isPreemptible() && needsPlt(Expr)) |
| return Plt_Explicit; |
| |
| // This handles a non PIC program call to function in a shared library. |
| // In an ideal world, we could just report an error saying the relocation |
| // can overflow at runtime. |
| // In the real world with glibc, crt1.o has a R_X86_64_PC32 pointing to |
| // libc.so. |
| // |
| // The general idea on how to handle such cases is to create a PLT entry |
| // and use that as the function value. |
| // |
| // For the static linking part, we just return true and everything else |
| // will use the the PLT entry as the address. |
| // |
| // The remaining problem is making sure pointer equality still works. We |
| // need the help of the dynamic linker for that. We let it know that we have |
| // a direct reference to a so symbol by creating an undefined symbol with a |
| // non zero st_value. Seeing that, the dynamic linker resolves the symbol to |
| // the value of the symbol we created. This is true even for got entries, so |
| // pointer equality is maintained. To avoid an infinite loop, the only entry |
| // that points to the real function is a dedicated got entry used by the |
| // plt. That is identified by special relocation types (R_X86_64_JUMP_SLOT, |
| // R_386_JMP_SLOT, etc). |
| if (S.isShared() && !Config->Pic && S.isFunc()) |
| if (!refersToGotEntry(Expr)) |
| return Plt_Implicit; |
| |
| return Plt_No; |
| } |
| |
| // The reason we have to do this early scan is as follows |
| // * To mmap the output file, we need to know the size |
| // * For that, we need to know how many dynamic relocs we will have. |
| // It might be possible to avoid this by outputting the file with write: |
| // * Write the allocated output sections, computing addresses. |
| // * Apply relocations, recording which ones require a dynamic reloc. |
| // * Write the dynamic relocations. |
| // * Write the rest of the file. |
| // This would have some drawbacks. For example, we would only know if .rela.dyn |
| // is needed after applying relocations. If it is, it will go after rw and rx |
| // sections. Given that it is ro, we will need an extra PT_LOAD. This |
| // complicates things for the dynamic linker and means we would have to reserve |
| // space for the extra PT_LOAD even if we end up not using it. |
| template <class ELFT> |
| template <class RelTy> |
| void Writer<ELFT>::scanRelocs(InputSectionBase<ELFT> &C, ArrayRef<RelTy> Rels) { |
| uintX_t Flags = C.getSectionHdr()->sh_flags; |
| bool IsAlloc = Flags & SHF_ALLOC; |
| bool IsWrite = Flags & SHF_WRITE; |
| |
| auto AddDyn = [=](const DynamicReloc<ELFT> &Reloc) { |
| if (IsAlloc) |
| Out<ELFT>::RelaDyn->addReloc(Reloc); |
| }; |
| |
| const elf::ObjectFile<ELFT> &File = *C.getFile(); |
| ArrayRef<uint8_t> SectionData = C.getSectionData(); |
| const uint8_t *Buf = SectionData.begin(); |
| for (auto I = Rels.begin(), E = Rels.end(); I != E; ++I) { |
| const RelTy &RI = *I; |
| uint32_t SymIndex = RI.getSymbol(Config->Mips64EL); |
| SymbolBody &OrigBody = File.getSymbolBody(SymIndex); |
| SymbolBody &Body = OrigBody.repl(); |
| uint32_t Type = RI.getType(Config->Mips64EL); |
| |
| // Ignore "hint" relocation because it is for optional code optimization. |
| if (Target->isHintRel(Type)) |
| continue; |
| |
| uintX_t Offset = C.getOffset(RI.r_offset); |
| if (Offset == (uintX_t)-1) |
| continue; |
| |
| |
| // Set "used" bit for --as-needed. |
| if (OrigBody.isUndefined() && !OrigBody.isWeak()) |
| if (auto *S = dyn_cast<SharedSymbol<ELFT>>(&Body)) |
| S->File->IsUsed = true; |
| |
| RelExpr Expr = Target->getRelExpr(Type, Body); |
| |
| // This relocation does not require got entry, but it is relative to got and |
| // needs it to be created. Here we request for that. |
| if (Expr == R_GOTONLY_PC || Expr == R_GOTREL) |
| HasGotOffRel = true; |
| |
| uintX_t Addend = getAddend<ELFT>(RI); |
| const uint8_t *BufLoc = Buf + RI.r_offset; |
| if (!RelTy::IsRela) |
| Addend += Target->getImplicitAddend(BufLoc, Type); |
| if (Config->EMachine == EM_MIPS) { |
| Addend += findMipsPairedAddend<ELFT>(Buf, BufLoc, Body, &RI, E); |
| if (Type == R_MIPS_LO16 && Expr == R_PC) |
| // R_MIPS_LO16 expression has R_PC type iif the target is _gp_disp |
| // symbol. In that case we should use the following formula for |
| // calculation "AHL + GP – P + 4". Let's add 4 right here. |
| // For details see p. 4-19 at |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| Addend += 4; |
| } |
| |
| if (unsigned Processed = |
| handleTlsRelocation<ELFT>(Type, Body, C, Offset, Addend, Expr)) { |
| I += (Processed - 1); |
| continue; |
| } |
| |
| if (Expr == R_GOT && !Target->isRelRelative(Type) && Config->Shared) |
| AddDyn({Target->RelativeRel, C.OutSec, Offset, true, &Body, |
| getAddend<ELFT>(RI)}); |
| |
| // If a symbol in a DSO is referenced directly instead of through GOT |
| // in a read-only section, we need to create a copy relocation for the |
| // symbol. |
| if (auto *B = dyn_cast<SharedSymbol<ELFT>>(&Body)) { |
| if (IsAlloc && !IsWrite && Target->needsCopyRel(Type, *B)) { |
| if (!B->needsCopy()) |
| addCopyRelSymbol(B); |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); |
| continue; |
| } |
| } |
| |
| bool Preemptible = Body.isPreemptible(); |
| |
| // If a relocation needs PLT, we create a PLT and a GOT slot |
| // for the symbol. |
| PltNeed NeedPlt = needsPlt(Expr, Type, Body); |
| if (NeedPlt) { |
| if (NeedPlt == Plt_Implicit) |
| Body.NeedsCopyOrPltAddr = true; |
| RelExpr E = Expr; |
| if (Expr == R_PPC_OPD) |
| E = R_PPC_PLT_OPD; |
| else if (Expr == R_PC) |
| E = R_PLT_PC; |
| else if (Expr == R_ABS) |
| E = R_PLT; |
| C.Relocations.push_back({E, Type, Offset, Addend, &Body}); |
| |
| if (Body.isInPlt()) |
| continue; |
| Out<ELFT>::Plt->addEntry(Body); |
| |
| uint32_t Rel; |
| if (Body.isGnuIFunc()) |
| Rel = Preemptible ? Target->PltRel : Target->IRelativeRel; |
| else |
| Rel = Target->UseLazyBinding ? Target->PltRel : Target->GotRel; |
| |
| if (Target->UseLazyBinding) { |
| Out<ELFT>::GotPlt->addEntry(Body); |
| if (IsAlloc) |
| Out<ELFT>::RelaPlt->addReloc({Rel, Out<ELFT>::GotPlt, |
| Body.getGotPltOffset<ELFT>(), |
| !Preemptible, &Body, 0}); |
| } else { |
| if (Body.isInGot()) |
| continue; |
| Out<ELFT>::Got->addEntry(Body); |
| AddDyn({Rel, Out<ELFT>::Got, Body.getGotOffset<ELFT>(), !Preemptible, |
| &Body, 0}); |
| } |
| continue; |
| } |
| |
| // We decided not to use a plt. Optimize a reference to the plt to a |
| // reference to the symbol itself. |
| if (Expr == R_PLT_PC) |
| Expr = R_PC; |
| if (Expr == R_PPC_PLT_OPD) |
| Expr = R_PPC_OPD; |
| if (Expr == R_PLT) |
| Expr = R_ABS; |
| |
| if (Target->needsThunk(Type, File, Body)) { |
| C.Relocations.push_back({R_THUNK, Type, Offset, Addend, &Body}); |
| continue; |
| } |
| |
| // If a relocation needs GOT, we create a GOT slot for the symbol. |
| if (refersToGotEntry(Expr)) { |
| uint32_t T = Body.isTls() ? Target->getTlsGotRel(Type) : Type; |
| if (Config->EMachine == EM_MIPS && Expr == R_GOT_OFF) |
| Addend -= MipsGPOffset; |
| C.Relocations.push_back({Expr, T, Offset, Addend, &Body}); |
| if (Body.isInGot()) |
| continue; |
| Out<ELFT>::Got->addEntry(Body); |
| |
| if (Config->EMachine == EM_MIPS) |
| // MIPS ABI has special rules to process GOT entries |
| // and doesn't require relocation entries for them. |
| // See "Global Offset Table" in Chapter 5 in the following document |
| // for detailed description: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| continue; |
| |
| if (Preemptible || (Config->Pic && !isAbsolute<ELFT>(Body))) { |
| uint32_t DynType; |
| if (Body.isTls()) |
| DynType = Target->TlsGotRel; |
| else if (Preemptible) |
| DynType = Target->GotRel; |
| else |
| DynType = Target->RelativeRel; |
| AddDyn({DynType, Out<ELFT>::Got, Body.getGotOffset<ELFT>(), |
| !Preemptible, &Body, 0}); |
| } |
| continue; |
| } |
| |
| if (Preemptible) { |
| // We don't know anything about the finaly symbol. Just ask the dynamic |
| // linker to handle the relocation for us. |
| AddDyn({Target->getDynRel(Type), C.OutSec, Offset, false, &Body, Addend}); |
| // MIPS ABI turns using of GOT and dynamic relocations inside out. |
| // While regular ABI uses dynamic relocations to fill up GOT entries |
| // MIPS ABI requires dynamic linker to fills up GOT entries using |
| // specially sorted dynamic symbol table. This affects even dynamic |
| // relocations against symbols which do not require GOT entries |
| // creation explicitly, i.e. do not have any GOT-relocations. So if |
| // a preemptible symbol has a dynamic relocation we anyway have |
| // to create a GOT entry for it. |
| // If a non-preemptible symbol has a dynamic relocation against it, |
| // dynamic linker takes it st_value, adds offset and writes down |
| // result of the dynamic relocation. In case of preemptible symbol |
| // dynamic linker performs symbol resolution, writes the symbol value |
| // to the GOT entry and reads the GOT entry when it needs to perform |
| // a dynamic relocation. |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf p.4-19 |
| if (Config->EMachine == EM_MIPS && !Body.isInGot()) |
| Out<ELFT>::Got->addEntry(Body); |
| continue; |
| } |
| |
| if (Config->EMachine == EM_PPC64 && RI.getType(false) == R_PPC64_TOC) { |
| C.Relocations.push_back({R_PPC_TOC, Type, Offset, Addend, &Body}); |
| AddDyn({R_PPC64_RELATIVE, C.OutSec, Offset, false, nullptr, |
| (uintX_t)getPPC64TocBase() + Addend}); |
| continue; |
| } |
| |
| // We know that this is the final symbol. If the program being produced |
| // is position independent, the final value is still not known. |
| // If the relocation depends on the symbol value (not the size or distances |
| // in the output), we still need some help from the dynamic linker. |
| // We can however do better than just copying the incoming relocation. We |
| // can process some of it and and just ask the dynamic linker to add the |
| // load address. |
| if (!Config->Pic || Target->isRelRelative(Type) || Expr == R_PC || |
| Expr == R_SIZE || isAbsolute<ELFT>(Body)) { |
| if (Config->EMachine == EM_MIPS && Body.isLocal() && |
| (Type == R_MIPS_GPREL16 || Type == R_MIPS_GPREL32)) { |
| Expr = R_ABS; |
| Addend += File.getMipsGp0(); |
| } |
| C.Relocations.push_back({Expr, Type, Offset, Addend, &Body}); |
| continue; |
| } |
| |
| AddDyn({Target->RelativeRel, C.OutSec, Offset, true, &Body, Addend}); |
| C.Relocations.push_back({R_ABS, Type, Offset, Addend, &Body}); |
| } |
| |
| // Scan relocations for necessary thunks. |
| if (Config->EMachine == EM_MIPS) |
| scanRelocsForThunks(File, Rels); |
| } |
| |
| template <class ELFT> void Writer<ELFT>::scanRelocs(InputSection<ELFT> &C) { |
| for (const Elf_Shdr *RelSec : C.RelocSections) |
| scanRelocs(C, *RelSec); |
| } |
| |
| template <class ELFT> |
| void Writer<ELFT>::scanRelocs(InputSectionBase<ELFT> &S, |
| const Elf_Shdr &RelSec) { |
| ELFFile<ELFT> &EObj = S.getFile()->getObj(); |
| if (RelSec.sh_type == SHT_RELA) |
| scanRelocs(S, EObj.relas(&RelSec)); |
| else |
| scanRelocs(S, EObj.rels(&RelSec)); |
| } |
| |
| template <class ELFT> |
| static void reportUndefined(SymbolTable<ELFT> &Symtab, SymbolBody *Sym) { |
| if ((Config->Relocatable || Config->Shared) && !Config->NoUndefined) |
| return; |
| |
| std::string Msg = "undefined symbol: " + Sym->getName().str(); |
| if (InputFile *File = Symtab.findFile(Sym)) |
| Msg += " in " + File->getName().str(); |
| if (Config->NoinhibitExec) |
| warning(Msg); |
| else |
| error(Msg); |
| } |
| |
| template <class ELFT> |
| static bool shouldKeepInSymtab(InputSectionBase<ELFT> *Sec, StringRef SymName, |
| const SymbolBody &B) { |
| if (B.isFile()) |
| return false; |
| |
| // We keep sections in symtab for relocatable output. |
| if (B.isSection()) |
| return Config->Relocatable; |
| |
| // If sym references a section in a discarded group, don't keep it. |
| if (Sec == &InputSection<ELFT>::Discarded) |
| return false; |
| |
| if (Config->DiscardNone) |
| return true; |
| |
| // In ELF assembly .L symbols are normally discarded by the assembler. |
| // If the assembler fails to do so, the linker discards them if |
| // * --discard-locals is used. |
| // * The symbol is in a SHF_MERGE section, which is normally the reason for |
| // the assembler keeping the .L symbol. |
| if (!SymName.startswith(".L") && !SymName.empty()) |
| return true; |
| |
| if (Config->DiscardLocals) |
| return false; |
| |
| return !(Sec->getSectionHdr()->sh_flags & SHF_MERGE); |
| } |
| |
| // Local symbols are not in the linker's symbol table. This function scans |
| // each object file's symbol table to copy local symbols to the output. |
| template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { |
| if (!Out<ELFT>::SymTab) |
| return; |
| for (const std::unique_ptr<elf::ObjectFile<ELFT>> &F : |
| Symtab.getObjectFiles()) { |
| const char *StrTab = F->getStringTable().data(); |
| for (SymbolBody *B : F->getLocalSymbols()) { |
| auto *DR = dyn_cast<DefinedRegular<ELFT>>(B); |
| // No reason to keep local undefined symbol in symtab. |
| if (!DR) |
| continue; |
| StringRef SymName(StrTab + B->getNameOffset()); |
| InputSectionBase<ELFT> *Sec = DR->Section; |
| if (!shouldKeepInSymtab<ELFT>(Sec, SymName, *B)) |
| continue; |
| if (Sec && !Sec->Live) |
| continue; |
| ++Out<ELFT>::SymTab->NumLocals; |
| if (Config->Relocatable) |
| B->DynsymIndex = Out<ELFT>::SymTab->NumLocals; |
| F->KeptLocalSyms.push_back( |
| std::make_pair(DR, Out<ELFT>::SymTab->StrTabSec.addString(SymName))); |
| } |
| } |
| } |
| |
| // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections that |
| // we would like to make sure appear is a specific order to maximize their |
| // coverage by a single signed 16-bit offset from the TOC base pointer. |
| // Conversely, the special .tocbss section should be first among all SHT_NOBITS |
| // sections. This will put it next to the loaded special PPC64 sections (and, |
| // thus, within reach of the TOC base pointer). |
| static int getPPC64SectionRank(StringRef SectionName) { |
| return StringSwitch<int>(SectionName) |
| .Case(".tocbss", 0) |
| .Case(".branch_lt", 2) |
| .Case(".toc", 3) |
| .Case(".toc1", 4) |
| .Case(".opd", 5) |
| .Default(1); |
| } |
| |
| template <class ELFT> static bool isRelroSection(OutputSectionBase<ELFT> *Sec) { |
| if (!Config->ZRelro) |
| return false; |
| typename OutputSectionBase<ELFT>::uintX_t Flags = Sec->getFlags(); |
| if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) |
| return false; |
| if (Flags & SHF_TLS) |
| return true; |
| uint32_t Type = Sec->getType(); |
| if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || |
| Type == SHT_PREINIT_ARRAY) |
| return true; |
| if (Sec == Out<ELFT>::GotPlt) |
| return Config->ZNow; |
| if (Sec == Out<ELFT>::Dynamic || Sec == Out<ELFT>::Got) |
| return true; |
| StringRef S = Sec->getName(); |
| return S == ".data.rel.ro" || S == ".ctors" || S == ".dtors" || S == ".jcr" || |
| S == ".eh_frame"; |
| } |
| |
| // Output section ordering is determined by this function. |
| template <class ELFT> |
| static bool compareSections(OutputSectionBase<ELFT> *A, |
| OutputSectionBase<ELFT> *B) { |
| typedef typename ELFT::uint uintX_t; |
| |
| int Comp = Script<ELFT>::X->compareSections(A->getName(), B->getName()); |
| if (Comp != 0) |
| return Comp < 0; |
| |
| uintX_t AFlags = A->getFlags(); |
| uintX_t BFlags = B->getFlags(); |
| |
| // Allocatable sections go first to reduce the total PT_LOAD size and |
| // so debug info doesn't change addresses in actual code. |
| bool AIsAlloc = AFlags & SHF_ALLOC; |
| bool BIsAlloc = BFlags & SHF_ALLOC; |
| if (AIsAlloc != BIsAlloc) |
| return AIsAlloc; |
| |
| // We don't have any special requirements for the relative order of |
| // two non allocatable sections. |
| if (!AIsAlloc) |
| return false; |
| |
| // We want the read only sections first so that they go in the PT_LOAD |
| // covering the program headers at the start of the file. |
| bool AIsWritable = AFlags & SHF_WRITE; |
| bool BIsWritable = BFlags & SHF_WRITE; |
| if (AIsWritable != BIsWritable) |
| return BIsWritable; |
| |
| // For a corresponding reason, put non exec sections first (the program |
| // header PT_LOAD is not executable). |
| bool AIsExec = AFlags & SHF_EXECINSTR; |
| bool BIsExec = BFlags & SHF_EXECINSTR; |
| if (AIsExec != BIsExec) |
| return BIsExec; |
| |
| // If we got here we know that both A and B are in the same PT_LOAD. |
| |
| // The TLS initialization block needs to be a single contiguous block in a R/W |
| // PT_LOAD, so stick TLS sections directly before R/W sections. The TLS NOBITS |
| // sections are placed here as they don't take up virtual address space in the |
| // PT_LOAD. |
| bool AIsTls = AFlags & SHF_TLS; |
| bool BIsTls = BFlags & SHF_TLS; |
| if (AIsTls != BIsTls) |
| return AIsTls; |
| |
| // The next requirement we have is to put nobits sections last. The |
| // reason is that the only thing the dynamic linker will see about |
| // them is a p_memsz that is larger than p_filesz. Seeing that it |
| // zeros the end of the PT_LOAD, so that has to correspond to the |
| // nobits sections. |
| bool AIsNoBits = A->getType() == SHT_NOBITS; |
| bool BIsNoBits = B->getType() == SHT_NOBITS; |
| if (AIsNoBits != BIsNoBits) |
| return BIsNoBits; |
| |
| // We place RelRo section before plain r/w ones. |
| bool AIsRelRo = isRelroSection(A); |
| bool BIsRelRo = isRelroSection(B); |
| if (AIsRelRo != BIsRelRo) |
| return AIsRelRo; |
| |
| // Some architectures have additional ordering restrictions for sections |
| // within the same PT_LOAD. |
| if (Config->EMachine == EM_PPC64) |
| return getPPC64SectionRank(A->getName()) < |
| getPPC64SectionRank(B->getName()); |
| |
| return false; |
| } |
| |
| // The .bss section does not exist if no input file has a .bss section. |
| // This function creates one if that's the case. |
| template <class ELFT> void Writer<ELFT>::ensureBss() { |
| if (Out<ELFT>::Bss) |
| return; |
| Out<ELFT>::Bss = |
| new OutputSection<ELFT>(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE); |
| OwningSections.emplace_back(Out<ELFT>::Bss); |
| OutputSections.push_back(Out<ELFT>::Bss); |
| } |
| |
| // Until this function is called, common symbols do not belong to any section. |
| // This function adds them to end of BSS section. |
| template <class ELFT> |
| void Writer<ELFT>::addCommonSymbols(std::vector<DefinedCommon *> &Syms) { |
| if (Syms.empty()) |
| return; |
| |
| // Sort the common symbols by alignment as an heuristic to pack them better. |
| std::stable_sort(Syms.begin(), Syms.end(), |
| [](const DefinedCommon *A, const DefinedCommon *B) { |
| return A->Alignment > B->Alignment; |
| }); |
| |
| ensureBss(); |
| uintX_t Off = Out<ELFT>::Bss->getSize(); |
| for (DefinedCommon *C : Syms) { |
| Off = alignTo(Off, C->Alignment); |
| Out<ELFT>::Bss->updateAlign(C->Alignment); |
| C->OffsetInBss = Off; |
| Off += C->Size; |
| } |
| |
| Out<ELFT>::Bss->setSize(Off); |
| } |
| |
| template <class ELFT> static uint32_t getAlignment(SharedSymbol<ELFT> *SS) { |
| typedef typename ELFFile<ELFT>::uintX_t uintX_t; |
| |
| uintX_t SecAlign = SS->File->getSection(SS->Sym)->sh_addralign; |
| uintX_t SymValue = SS->Sym.st_value; |
| int TrailingZeros = |
| std::min(countTrailingZeros(SecAlign), countTrailingZeros(SymValue)); |
| return 1 << TrailingZeros; |
| } |
| |
| // Reserve space in .bss for copy relocation. |
| template <class ELFT> |
| void Writer<ELFT>::addCopyRelSymbol(SharedSymbol<ELFT> *SS) { |
| ensureBss(); |
| uintX_t Align = getAlignment(SS); |
| uintX_t Off = alignTo(Out<ELFT>::Bss->getSize(), Align); |
| Out<ELFT>::Bss->setSize(Off + SS->template getSize<ELFT>()); |
| Out<ELFT>::Bss->updateAlign(Align); |
| uintX_t Shndx = SS->Sym.st_shndx; |
| uintX_t Value = SS->Sym.st_value; |
| // Look through the DSO's dynamic symbol for aliases and create a dynamic |
| // symbol for each one. This causes the copy relocation to correctly interpose |
| // any aliases. |
| for (SharedSymbol<ELFT> &S : SS->File->getSharedSymbols()) { |
| if (S.Sym.st_shndx != Shndx || S.Sym.st_value != Value) |
| continue; |
| S.OffsetInBss = Off; |
| S.NeedsCopyOrPltAddr = true; |
| S.setUsedInRegularObj(); |
| S.MustBeInDynSym = true; |
| } |
| Out<ELFT>::RelaDyn->addReloc( |
| {Target->CopyRel, Out<ELFT>::Bss, SS->OffsetInBss, false, SS, 0}); |
| } |
| |
| template <class ELFT> |
| StringRef Writer<ELFT>::getOutputSectionName(InputSectionBase<ELFT> *S) const { |
| StringRef Dest = Script<ELFT>::X->getOutputSection(S); |
| if (!Dest.empty()) |
| return Dest; |
| |
| StringRef Name = S->getSectionName(); |
| for (StringRef V : {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.", |
| ".init_array.", ".fini_array.", ".ctors.", ".dtors.", |
| ".tbss.", ".gcc_except_table.", ".tdata."}) |
| if (Name.startswith(V)) |
| return V.drop_back(); |
| return Name; |
| } |
| |
| template <class ELFT> |
| void reportDiscarded(InputSectionBase<ELFT> *IS, |
| const std::unique_ptr<elf::ObjectFile<ELFT>> &File) { |
| if (!Config->PrintGcSections || !IS || IS->Live) |
| return; |
| llvm::errs() << "removing unused section from '" << IS->getSectionName() |
| << "' in file '" << File->getName() << "'\n"; |
| } |
| |
| template <class ELFT> |
| bool Writer<ELFT>::isDiscarded(InputSectionBase<ELFT> *S) const { |
| return !S || S == &InputSection<ELFT>::Discarded || !S->Live || |
| Script<ELFT>::X->isDiscarded(S); |
| } |
| |
| template <class ELFT> |
| static SymbolBody * |
| addOptionalSynthetic(SymbolTable<ELFT> &Table, StringRef Name, |
| OutputSectionBase<ELFT> &Sec, typename ELFT::uint Val) { |
| if (!Table.find(Name)) |
| return nullptr; |
| return Table.addSynthetic(Name, Sec, Val); |
| } |
| |
| // The beginning and the ending of .rel[a].plt section are marked |
| // with __rel[a]_iplt_{start,end} symbols if it is a statically linked |
| // executable. The runtime needs these symbols in order to resolve |
| // all IRELATIVE relocs on startup. For dynamic executables, we don't |
| // need these symbols, since IRELATIVE relocs are resolved through GOT |
| // and PLT. For details, see http://www.airs.com/blog/archives/403. |
| template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { |
| if (isOutputDynamic() || !Out<ELFT>::RelaPlt) |
| return; |
| StringRef S = Config->Rela ? "__rela_iplt_start" : "__rel_iplt_start"; |
| ElfSym<ELFT>::RelaIpltStart = |
| addOptionalSynthetic(Symtab, S, *Out<ELFT>::RelaPlt, 0); |
| |
| S = Config->Rela ? "__rela_iplt_end" : "__rel_iplt_end"; |
| ElfSym<ELFT>::RelaIpltEnd = addOptionalSynthetic( |
| Symtab, S, *Out<ELFT>::RelaPlt, DefinedSynthetic<ELFT>::SectionEnd); |
| } |
| |
| template <class ELFT> static bool includeInSymtab(const SymbolBody &B) { |
| if (!B.isUsedInRegularObj()) |
| return false; |
| |
| if (auto *D = dyn_cast<DefinedRegular<ELFT>>(&B)) { |
| // Exclude symbols pointing to garbage-collected sections. |
| if (D->Section && !D->Section->Live) |
| return false; |
| } |
| return true; |
| } |
| |
| static bool includeInDynsym(const SymbolBody &B) { |
| if (B.MustBeInDynSym) |
| return true; |
| uint8_t V = B.getVisibility(); |
| if (V != STV_DEFAULT && V != STV_PROTECTED) |
| return false; |
| return Config->ExportDynamic || Config->Shared; |
| } |
| |
| // This class knows how to create an output section for a given |
| // input section. Output section type is determined by various |
| // factors, including input section's sh_flags, sh_type and |
| // linker scripts. |
| namespace { |
| template <class ELFT> class OutputSectionFactory { |
| typedef typename ELFT::Shdr Elf_Shdr; |
| typedef typename ELFT::uint uintX_t; |
| |
| public: |
| std::pair<OutputSectionBase<ELFT> *, bool> create(InputSectionBase<ELFT> *C, |
| StringRef OutsecName); |
| |
| OutputSectionBase<ELFT> *lookup(StringRef Name, uint32_t Type, |
| uintX_t Flags) { |
| return Map.lookup({Name, Type, Flags, 0}); |
| } |
| |
| private: |
| SectionKey<ELFT::Is64Bits> createKey(InputSectionBase<ELFT> *C, |
| StringRef OutsecName); |
| |
| SmallDenseMap<SectionKey<ELFT::Is64Bits>, OutputSectionBase<ELFT> *> Map; |
| }; |
| } |
| |
| template <class ELFT> |
| std::pair<OutputSectionBase<ELFT> *, bool> |
| OutputSectionFactory<ELFT>::create(InputSectionBase<ELFT> *C, |
| StringRef OutsecName) { |
| SectionKey<ELFT::Is64Bits> Key = createKey(C, OutsecName); |
| OutputSectionBase<ELFT> *&Sec = Map[Key]; |
| if (Sec) |
| return {Sec, false}; |
| |
| switch (C->SectionKind) { |
| case InputSectionBase<ELFT>::Regular: |
| Sec = new OutputSection<ELFT>(Key.Name, Key.Type, Key.Flags); |
| break; |
| case InputSectionBase<ELFT>::EHFrame: |
| Sec = new EHOutputSection<ELFT>(Key.Name, Key.Type, Key.Flags); |
| break; |
| case InputSectionBase<ELFT>::Merge: |
| Sec = new MergeOutputSection<ELFT>(Key.Name, Key.Type, Key.Flags, |
| Key.Alignment); |
| break; |
| case InputSectionBase<ELFT>::MipsReginfo: |
| Sec = new MipsReginfoOutputSection<ELFT>(); |
| break; |
| } |
| return {Sec, true}; |
| } |
| |
| template <class ELFT> |
| SectionKey<ELFT::Is64Bits> |
| OutputSectionFactory<ELFT>::createKey(InputSectionBase<ELFT> *C, |
| StringRef OutsecName) { |
| const Elf_Shdr *H = C->getSectionHdr(); |
| uintX_t Flags = H->sh_flags & ~SHF_GROUP; |
| |
| // For SHF_MERGE we create different output sections for each alignment. |
| // This makes each output section simple and keeps a single level mapping from |
| // input to output. |
| uintX_t Alignment = 0; |
| if (isa<MergeInputSection<ELFT>>(C)) |
| Alignment = std::max(H->sh_addralign, H->sh_entsize); |
| |
| // GNU as can give .eh_frame secion type SHT_PROGBITS or SHT_X86_64_UNWIND |
| // depending on the construct. We want to canonicalize it so that |
| // there is only one .eh_frame in the end. |
| uint32_t Type = H->sh_type; |
| if (Type == SHT_PROGBITS && Config->EMachine == EM_X86_64 && |
| isa<EHInputSection<ELFT>>(C)) |
| Type = SHT_X86_64_UNWIND; |
| |
| return SectionKey<ELFT::Is64Bits>{OutsecName, Type, Flags, Alignment}; |
| } |
| |
| // The linker is expected to define some symbols depending on |
| // the linking result. This function defines such symbols. |
| template <class ELFT> void Writer<ELFT>::addReservedSymbols() { |
| if (Config->EMachine == EM_MIPS) { |
| // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer |
| // so that it points to an absolute address which is relative to GOT. |
| // See "Global Data Symbols" in Chapter 6 in the following document: |
| // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf |
| ElfSym<ELFT>::MipsGp = |
| Symtab.addSynthetic("_gp", *Out<ELFT>::Got, MipsGPOffset); |
| |
| // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between |
| // start of function and 'gp' pointer into GOT. |
| ElfSym<ELFT>::MipsGpDisp = |
| addOptionalSynthetic(Symtab, "_gp_disp", *Out<ELFT>::Got, MipsGPOffset); |
| // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' |
| // pointer. This symbol is used in the code generated by .cpload pseudo-op |
| // in case of using -mno-shared option. |
| // https://sourceware.org/ml/binutils/2004-12/msg00094.html |
| ElfSym<ELFT>::MipsLocalGp = addOptionalSynthetic( |
| Symtab, "__gnu_local_gp", *Out<ELFT>::Got, MipsGPOffset); |
| } |
| |
| // In the assembly for 32 bit x86 the _GLOBAL_OFFSET_TABLE_ symbol |
| // is magical and is used to produce a R_386_GOTPC relocation. |
| // The R_386_GOTPC relocation value doesn't actually depend on the |
| // symbol value, so it could use an index of STN_UNDEF which, according |
| // to the spec, means the symbol value is 0. |
| // Unfortunately both gas and MC keep the _GLOBAL_OFFSET_TABLE_ symbol in |
| // the object file. |
| // The situation is even stranger on x86_64 where the assembly doesn't |
| // need the magical symbol, but gas still puts _GLOBAL_OFFSET_TABLE_ as |
| // an undefined symbol in the .o files. |
| // Given that the symbol is effectively unused, we just create a dummy |
| // hidden one to avoid the undefined symbol error. |
| if (!Config->Relocatable) |
| Symtab.addIgnored("_GLOBAL_OFFSET_TABLE_"); |
| |
| // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For |
| // static linking the linker is required to optimize away any references to |
| // __tls_get_addr, so it's not defined anywhere. Create a hidden definition |
| // to avoid the undefined symbol error. |
| if (!isOutputDynamic()) |
| Symtab.addIgnored("__tls_get_addr"); |
| |
| auto Define = [this](StringRef S, typename ElfSym<ELFT>::SymPair &Sym) { |
| Sym.first = Symtab.addIgnored(S, STV_DEFAULT); |
| |
| // The name without the underscore is not a reserved name, |
| // so it is defined only when there is a reference against it. |
| assert(S.startswith("_")); |
| S = S.substr(1); |
| if (SymbolBody *B = Symtab.find(S)) |
| if (B->isUndefined()) |
| Sym.second = Symtab.addAbsolute(S, STV_DEFAULT); |
| }; |
| |
| Define("_end", ElfSym<ELFT>::End); |
| Define("_etext", ElfSym<ELFT>::Etext); |
| Define("_edata", ElfSym<ELFT>::Edata); |
| } |
| |
| // Sort input sections by section name suffixes for |
| // __attribute__((init_priority(N))). |
| template <class ELFT> static void sortInitFini(OutputSectionBase<ELFT> *S) { |
| if (S) |
| reinterpret_cast<OutputSection<ELFT> *>(S)->sortInitFini(); |
| } |
| |
| // Sort input sections by the special rule for .ctors and .dtors. |
| template <class ELFT> static void sortCtorsDtors(OutputSectionBase<ELFT> *S) { |
| if (S) |
| reinterpret_cast<OutputSection<ELFT> *>(S)->sortCtorsDtors(); |
| } |
| |
| // Create output section objects and add them to OutputSections. |
| template <class ELFT> void Writer<ELFT>::createSections() { |
| // Add .interp first because some loaders want to see that section |
| // on the first page of the executable file when loaded into memory. |
| if (needsInterpSection()) |
| OutputSections.push_back(Out<ELFT>::Interp); |
| |
| // A core file does not usually contain unmodified segments except |
| // the first page of the executable. Add the build ID section now |
| // so that the section is included in the first page. |
| if (Out<ELFT>::BuildId) |
| OutputSections.push_back(Out<ELFT>::BuildId); |
| |
| // Create output sections for input object file sections. |
| std::vector<OutputSectionBase<ELFT> *> RegularSections; |
| OutputSectionFactory<ELFT> Factory; |
| for (const std::unique_ptr<elf::ObjectFile<ELFT>> &F : |
| Symtab.getObjectFiles()) { |
| for (InputSectionBase<ELFT> *C : F->getSections()) { |
| if (isDiscarded(C)) { |
| reportDiscarded(C, F); |
| continue; |
| } |
| OutputSectionBase<ELFT> *Sec; |
| bool IsNew; |
| std::tie(Sec, IsNew) = Factory.create(C, getOutputSectionName(C)); |
| if (IsNew) { |
| OwningSections.emplace_back(Sec); |
| OutputSections.push_back(Sec); |
| RegularSections.push_back(Sec); |
| } |
| Sec->addSection(C); |
| } |
| } |
| |
| Out<ELFT>::Bss = static_cast<OutputSection<ELFT> *>( |
| Factory.lookup(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE)); |
| |
| // If we have a .opd section (used under PPC64 for function descriptors), |
| // store a pointer to it here so that we can use it later when processing |
| // relocations. |
| Out<ELFT>::Opd = Factory.lookup(".opd", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC); |
| |
| Out<ELFT>::Dynamic->PreInitArraySec = Factory.lookup( |
| ".preinit_array", SHT_PREINIT_ARRAY, SHF_WRITE | SHF_ALLOC); |
| Out<ELFT>::Dynamic->InitArraySec = |
| Factory.lookup(".init_array", SHT_INIT_ARRAY, SHF_WRITE | SHF_ALLOC); |
| Out<ELFT>::Dynamic->FiniArraySec = |
| Factory.lookup(".fini_array", SHT_FINI_ARRAY, SHF_WRITE | SHF_ALLOC); |
| |
| // Sort section contents for __attribute__((init_priority(N)). |
| sortInitFini(Out<ELFT>::Dynamic->InitArraySec); |
| sortInitFini(Out<ELFT>::Dynamic->FiniArraySec); |
| sortCtorsDtors(Factory.lookup(".ctors", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC)); |
| sortCtorsDtors(Factory.lookup(".dtors", SHT_PROGBITS, SHF_WRITE | SHF_ALLOC)); |
| |
| // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop |
| // symbols for sections, so that the runtime can get the start and end |
| // addresses of each section by section name. Add such symbols. |
| if (!Config->Relocatable) { |
| addStartEndSymbols(); |
| for (OutputSectionBase<ELFT> *Sec : RegularSections) |
| addStartStopSymbols(Sec); |
| } |
| |
| // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. |
| // It should be okay as no one seems to care about the type. |
| // Even the author of gold doesn't remember why gold behaves that way. |
| // https://sourceware.org/ml/binutils/2002-03/msg00360.html |
| if (isOutputDynamic()) |
| Symtab.addSynthetic("_DYNAMIC", *Out<ELFT>::Dynamic, 0); |
| |
| // Define __rel[a]_iplt_{start,end} symbols if needed. |
| addRelIpltSymbols(); |
| |
| if (Out<ELFT>::EhFrameHdr->Sec) |
| Out<ELFT>::EhFrameHdr->Sec->finalize(); |
| |
| // Scan relocations. This must be done after every symbol is declared so that |
| // we can correctly decide if a dynamic relocation is needed. |
| // Check size() each time to guard against .bss being created. |
| for (unsigned I = 0; I < OutputSections.size(); ++I) { |
| OutputSectionBase<ELFT> *Sec = OutputSections[I]; |
| Sec->forEachInputSection([&](InputSectionBase<ELFT> *S) { |
| if (auto *IS = dyn_cast<InputSection<ELFT>>(S)) { |
| // Set OutSecOff so that scanRelocs can use it. |
| uintX_t Off = alignTo(Sec->getSize(), S->Align); |
| IS->OutSecOff = Off; |
| |
| scanRelocs(*IS); |
| |
| // Now that scan relocs possibly changed the size, update the offset. |
| Sec->setSize(Off + S->getSize()); |
| } else if (auto *EH = dyn_cast<EHInputSection<ELFT>>(S)) { |
| if (EH->RelocSection) |
| scanRelocs(*EH, *EH->RelocSection); |
| } |
| }); |
| } |
| |
| // Now that we have defined all possible symbols including linker- |
| // synthesized ones. Visit all symbols to give the finishing touches. |
| std::vector<DefinedCommon *> CommonSymbols; |
| for (Symbol *S : Symtab.getSymbols()) { |
| SymbolBody *Body = S->Body; |
| if (Body->isUndefined() && !Body->isWeak()) { |
| auto *U = dyn_cast<UndefinedElf<ELFT>>(Body); |
| if (!U || !U->canKeepUndefined()) |
| reportUndefined<ELFT>(Symtab, Body); |
| } |
| |
| if (auto *C = dyn_cast<DefinedCommon>(Body)) |
| CommonSymbols.push_back(C); |
| |
| if (!includeInSymtab<ELFT>(*Body)) |
| continue; |
| if (Out<ELFT>::SymTab) |
| Out<ELFT>::SymTab->addSymbol(Body); |
| |
| if (isOutputDynamic() && includeInDynsym(*Body)) |
| Out<ELFT>::DynSymTab->addSymbol(Body); |
| } |
| |
| // Do not proceed if there was an undefined symbol. |
| if (HasError) |
| return; |
| |
| addCommonSymbols(CommonSymbols); |
| |
| // So far we have added sections from input object files. |
| // This function adds linker-created Out<ELFT>::* sections. |
| addPredefinedSections(); |
| |
| std::stable_sort(OutputSections.begin(), OutputSections.end(), |
| compareSections<ELFT>); |
| |
| unsigned I = 1; |
| for (OutputSectionBase<ELFT> *Sec : OutputSections) { |
| Sec->SectionIndex = I++; |
| Sec->setSHName(Out<ELFT>::ShStrTab->addString(Sec->getName())); |
| } |
| |
| // Finalizers fix each section's size. |
| // .dynsym is finalized early since that may fill up .gnu.hash. |
| if (isOutputDynamic()) |
| Out<ELFT>::DynSymTab->finalize(); |
| |
| // Fill other section headers. The dynamic table is finalized |
| // at the end because some tags like RELSZ depend on result |
| // of finalizing other sections. The dynamic string table is |
| // finalized once the .dynamic finalizer has added a few last |
| // strings. See DynamicSection::finalize() |
| for (OutputSectionBase<ELFT> *Sec : OutputSections) |
| if (Sec != Out<ELFT>::DynStrTab && Sec != Out<ELFT>::Dynamic) |
| Sec->finalize(); |
| |
| if (isOutputDynamic()) |
| Out<ELFT>::Dynamic->finalize(); |
| } |
| |
| template <class ELFT> bool Writer<ELFT>::needsGot() { |
| if (!Out<ELFT>::Got->empty()) |
| return true; |
| |
| // We add the .got section to the result for dynamic MIPS target because |
| // its address and properties are mentioned in the .dynamic section. |
| if (Config->EMachine == EM_MIPS) |
| return true; |
| |
| // If we have a relocation that is relative to GOT (such as GOTOFFREL), |
| // we need to emit a GOT even if it's empty. |
| return HasGotOffRel; |
| } |
| |
| // This function add Out<ELFT>::* sections to OutputSections. |
| template <class ELFT> void Writer<ELFT>::addPredefinedSections() { |
| auto Add = [&](OutputSectionBase<ELFT> *C) { |
| if (C) |
| OutputSections.push_back(C); |
| }; |
| |
| // This order is not the same as the final output order |
| // because we sort the sections using their attributes below. |
| Add(Out<ELFT>::SymTab); |
| Add(Out<ELFT>::ShStrTab); |
| Add(Out<ELFT>::StrTab); |
| if (isOutputDynamic()) { |
| Add(Out<ELFT>::DynSymTab); |
| Add(Out<ELFT>::GnuHashTab); |
| Add(Out<ELFT>::HashTab); |
| Add(Out<ELFT>::Dynamic); |
| Add(Out<ELFT>::DynStrTab); |
| if (Out<ELFT>::RelaDyn->hasRelocs()) |
| Add(Out<ELFT>::RelaDyn); |
| Add(Out<ELFT>::MipsRldMap); |
| } |
| |
| // We always need to add rel[a].plt to output if it has entries. |
| // Even during static linking it can contain R_[*]_IRELATIVE relocations. |
| if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) { |
| Add(Out<ELFT>::RelaPlt); |
| Out<ELFT>::RelaPlt->Static = !isOutputDynamic(); |
| } |
| |
| if (needsGot()) |
| Add(Out<ELFT>::Got); |
| if (Out<ELFT>::GotPlt && !Out<ELFT>::GotPlt->empty()) |
| Add(Out<ELFT>::GotPlt); |
| if (!Out<ELFT>::Plt->empty()) |
| Add(Out<ELFT>::Plt); |
| if (Out<ELFT>::EhFrameHdr->Live) |
| Add(Out<ELFT>::EhFrameHdr); |
| } |
| |
| // The linker is expected to define SECNAME_start and SECNAME_end |
| // symbols for a few sections. This function defines them. |
| template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { |
| auto Define = [&](StringRef Start, StringRef End, |
| OutputSectionBase<ELFT> *OS) { |
| if (OS) { |
| Symtab.addSynthetic(Start, *OS, 0); |
| Symtab.addSynthetic(End, *OS, DefinedSynthetic<ELFT>::SectionEnd); |
| } else { |
| Symtab.addIgnored(Start); |
| Symtab.addIgnored(End); |
| } |
| }; |
| |
| Define("__preinit_array_start", "__preinit_array_end", |
| Out<ELFT>::Dynamic->PreInitArraySec); |
| Define("__init_array_start", "__init_array_end", |
| Out<ELFT>::Dynamic->InitArraySec); |
| Define("__fini_array_start", "__fini_array_end", |
| Out<ELFT>::Dynamic->FiniArraySec); |
| } |
| |
| // If a section name is valid as a C identifier (which is rare because of |
| // the leading '.'), linkers are expected to define __start_<secname> and |
| // __stop_<secname> symbols. They are at beginning and end of the section, |
| // respectively. This is not requested by the ELF standard, but GNU ld and |
| // gold provide the feature, and used by many programs. |
| template <class ELFT> |
| void Writer<ELFT>::addStartStopSymbols(OutputSectionBase<ELFT> *Sec) { |
| StringRef S = Sec->getName(); |
| if (!isValidCIdentifier(S)) |
| return; |
| StringSaver Saver(Alloc); |
| StringRef Start = Saver.save("__start_" + S); |
| StringRef Stop = Saver.save("__stop_" + S); |
| if (SymbolBody *B = Symtab.find(Start)) |
| if (B->isUndefined()) |
| Symtab.addSynthetic(Start, *Sec, 0); |
| if (SymbolBody *B = Symtab.find(Stop)) |
| if (B->isUndefined()) |
| Symtab.addSynthetic(Stop, *Sec, DefinedSynthetic<ELFT>::SectionEnd); |
| } |
| |
| template <class ELFT> static bool needsPtLoad(OutputSectionBase<ELFT> *Sec) { |
| if (!(Sec->getFlags() & SHF_ALLOC)) |
| return false; |
| |
| // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is |
| // responsible for allocating space for them, not the PT_LOAD that |
| // contains the TLS initialization image. |
| if (Sec->getFlags() & SHF_TLS && Sec->getType() == SHT_NOBITS) |
| return false; |
| return true; |
| } |
| |
| static uint32_t toPhdrFlags(uint64_t Flags) { |
| uint32_t Ret = PF_R; |
| if (Flags & SHF_WRITE) |
| Ret |= PF_W; |
| if (Flags & SHF_EXECINSTR) |
| Ret |= PF_X; |
| return Ret; |
| } |
| |
| // Decide which program headers to create and which sections to include in each |
| // one. |
| template <class ELFT> void Writer<ELFT>::createPhdrs() { |
| auto AddHdr = [this](unsigned Type, unsigned Flags) { |
| return &*Phdrs.emplace(Phdrs.end(), Type, Flags); |
| }; |
| |
| auto AddSec = [](Phdr &Hdr, OutputSectionBase<ELFT> *Sec) { |
| Hdr.Last = Sec; |
| if (!Hdr.First) |
| Hdr.First = Sec; |
| Hdr.H.p_align = std::max<uintX_t>(Hdr.H.p_align, Sec->getAlign()); |
| }; |
| |
| // The first phdr entry is PT_PHDR which describes the program header itself. |
| Phdr &Hdr = *AddHdr(PT_PHDR, PF_R); |
| AddSec(Hdr, Out<ELFT>::ProgramHeaders); |
| |
| // PT_INTERP must be the second entry if exists. |
| if (needsInterpSection()) { |
| Phdr &Hdr = *AddHdr(PT_INTERP, toPhdrFlags(Out<ELFT>::Interp->getFlags())); |
| AddSec(Hdr, Out<ELFT>::Interp); |
| } |
| |
| // Add the first PT_LOAD segment for regular output sections. |
| uintX_t Flags = PF_R; |
| Phdr *Load = AddHdr(PT_LOAD, Flags); |
| AddSec(*Load, Out<ELFT>::ElfHeader); |
| AddSec(*Load, Out<ELFT>::ProgramHeaders); |
| |
| Phdr TlsHdr(PT_TLS, PF_R); |
| Phdr RelRo(PT_GNU_RELRO, PF_R); |
| Phdr Note(PT_NOTE, PF_R); |
| for (OutputSectionBase<ELFT> *Sec : OutputSections) { |
| if (!(Sec->getFlags() & SHF_ALLOC)) |
| break; |
| |
| // If we meet TLS section then we create TLS header |
| // and put all TLS sections inside for futher use when |
| // assign addresses. |
| if (Sec->getFlags() & SHF_TLS) |
| AddSec(TlsHdr, Sec); |
| |
| if (!needsPtLoad<ELFT>(Sec)) |
| continue; |
| |
| // If flags changed then we want new load segment. |
| uintX_t NewFlags = toPhdrFlags(Sec->getFlags()); |
| if (Flags != NewFlags) { |
| Load = AddHdr(PT_LOAD, NewFlags); |
| Flags = NewFlags; |
| } |
| |
| AddSec(*Load, Sec); |
| |
| if (isRelroSection(Sec)) |
| AddSec(RelRo, Sec); |
| if (Sec->getType() == SHT_NOTE) |
| AddSec(Note, Sec); |
| } |
| |
| // Add the TLS segment unless it's empty. |
| if (TlsHdr.First) |
| Phdrs.push_back(std::move(TlsHdr)); |
| |
| // Add an entry for .dynamic. |
| if (isOutputDynamic()) { |
| Phdr &H = *AddHdr(PT_DYNAMIC, toPhdrFlags(Out<ELFT>::Dynamic->getFlags())); |
| AddSec(H, Out<ELFT>::Dynamic); |
| } |
| |
| // PT_GNU_RELRO includes all sections that should be marked as |
| // read-only by dynamic linker after proccessing relocations. |
| if (RelRo.First) |
| Phdrs.push_back(std::move(RelRo)); |
| |
| // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. |
| if (Out<ELFT>::EhFrameHdr->Live) { |
| Phdr &Hdr = *AddHdr(PT_GNU_EH_FRAME, |
| toPhdrFlags(Out<ELFT>::EhFrameHdr->getFlags())); |
| AddSec(Hdr, Out<ELFT>::EhFrameHdr); |
| } |
| |
| // PT_GNU_STACK is a special section to tell the loader to make the |
| // pages for the stack non-executable. |
| if (!Config->ZExecStack) |
| AddHdr(PT_GNU_STACK, PF_R | PF_W); |
| |
| if (Note.First) |
| Phdrs.push_back(std::move(Note)); |
| |
| Out<ELFT>::ProgramHeaders->setSize(sizeof(Elf_Phdr) * Phdrs.size()); |
| } |
| |
| // The first section of each PT_LOAD and the first section after PT_GNU_RELRO |
| // have to be page aligned so that the dynamic linker can set the permissions. |
| template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { |
| for (const Phdr &P : Phdrs) |
| if (P.H.p_type == PT_LOAD) |
| P.First->PageAlign = true; |
| |
| for (const Phdr &P : Phdrs) { |
| if (P.H.p_type != PT_GNU_RELRO) |
| continue; |
| // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we |
| // have to align it to a page. |
| auto End = OutputSections.end(); |
| auto I = std::find(OutputSections.begin(), End, P.Last); |
| if (I == End || (I + 1) == End) |
| continue; |
| OutputSectionBase<ELFT> *Sec = *(I + 1); |
| if (needsPtLoad(Sec)) |
| Sec->PageAlign = true; |
| } |
| } |
| |
| // We should set file offsets and VAs for elf header and program headers |
| // sections. These are special, we do not include them into output sections |
| // list, but have them to simplify the code. |
| template <class ELFT> void Writer<ELFT>::fixHeaders() { |
| uintX_t BaseVA = ScriptConfig->DoLayout ? 0 : Target->getVAStart(); |
| Out<ELFT>::ElfHeader->setVA(BaseVA); |
| Out<ELFT>::ElfHeader->setFileOffset(0); |
| uintX_t Off = Out<ELFT>::ElfHeader->getSize(); |
| Out<ELFT>::ProgramHeaders->setVA(Off + BaseVA); |
| Out<ELFT>::ProgramHeaders->setFileOffset(Off); |
| } |
| |
| // Assign VAs (addresses at run-time) to output sections. |
| template <class ELFT> void Writer<ELFT>::assignAddresses() { |
| uintX_t VA = Target->getVAStart() + Out<ELFT>::ElfHeader->getSize() + |
| Out<ELFT>::ProgramHeaders->getSize(); |
| |
| uintX_t ThreadBssOffset = 0; |
| for (OutputSectionBase<ELFT> *Sec : OutputSections) { |
| uintX_t Align = Sec->getAlign(); |
| if (Sec->PageAlign) |
| Align = std::max<uintX_t>(Align, Target->PageSize); |
| |
| // We only assign VAs to allocated sections. |
| if (needsPtLoad<ELFT>(Sec)) { |
| VA = alignTo(VA, Align); |
| Sec->setVA(VA); |
| VA += Sec->getSize(); |
| } else if (Sec->getFlags() & SHF_TLS && Sec->getType() == SHT_NOBITS) { |
| uintX_t TVA = VA + ThreadBssOffset; |
| TVA = alignTo(TVA, Align); |
| Sec->setVA(TVA); |
| ThreadBssOffset = TVA - VA + Sec->getSize(); |
| } |
| } |
| } |
| |
| // Assign file offsets to output sections. |
| template <class ELFT> void Writer<ELFT>::assignFileOffsets() { |
| uintX_t Off = |
| Out<ELFT>::ElfHeader->getSize() + Out<ELFT>::ProgramHeaders->getSize(); |
| |
| for (OutputSectionBase<ELFT> *Sec : OutputSections) { |
| if (Sec->getType() == SHT_NOBITS) { |
| Sec->setFileOffset(Off); |
| continue; |
| } |
| uintX_t Align = Sec->getAlign(); |
| if (Sec->PageAlign) |
| Align = std::max<uintX_t>(Align, Target->PageSize); |
| Off = alignTo(Off, Align); |
| Sec->setFileOffset(Off); |
| Off += Sec->getSize(); |
| } |
| SectionHeaderOff = alignTo(Off, sizeof(uintX_t)); |
| FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr); |
| } |
| |
| // Finalize the program headers. We call this function after we assign |
| // file offsets and VAs to all sections. |
| template <class ELFT> void Writer<ELFT>::setPhdrs() { |
| for (Phdr &P : Phdrs) { |
| Elf_Phdr &H = P.H; |
| OutputSectionBase<ELFT> *First = P.First; |
| OutputSectionBase<ELFT> *Last = P.Last; |
| if (First) { |
| H.p_filesz = Last->getFileOff() - First->getFileOff(); |
| if (Last->getType() != SHT_NOBITS) |
| H.p_filesz += Last->getSize(); |
| H.p_memsz = Last->getVA() + Last->getSize() - First->getVA(); |
| H.p_offset = First->getFileOff(); |
| H.p_vaddr = First->getVA(); |
| } |
| if (H.p_type == PT_LOAD) |
| H.p_align = Target->PageSize; |
| else if (H.p_type == PT_GNU_RELRO) |
| H.p_align = 1; |
| H.p_paddr = H.p_vaddr; |
| |
| // The TLS pointer goes after PT_TLS. At least glibc will align it, |
| // so round up the size to make sure the offsets are correct. |
| if (H.p_type == PT_TLS) { |
| Out<ELFT>::TlsPhdr = &H; |
| H.p_memsz = alignTo(H.p_memsz, H.p_align); |
| } |
| } |
| } |
| |
| static uint32_t getMipsEFlags() { |
| // FIXME: In fact ELF flags depends on ELF flags of input object files |
| // and selected emulation. For now just use hard coded values. |
| uint32_t V = EF_MIPS_ABI_O32 | EF_MIPS_CPIC | EF_MIPS_ARCH_32R2; |
| if (Config->Shared) |
| V |= EF_MIPS_PIC; |
| return V; |
| } |
| |
| template <class ELFT> static typename ELFT::uint getEntryAddr() { |
| if (Symbol *S = Config->EntrySym) |
| return S->Body->getVA<ELFT>(); |
| if (Config->EntryAddr != uint64_t(-1)) |
| return Config->EntryAddr; |
| return 0; |
| } |
| |
| template <class ELFT> static uint8_t getELFEncoding() { |
| if (ELFT::TargetEndianness == llvm::support::little) |
| return ELFDATA2LSB; |
| return ELFDATA2MSB; |
| } |
| |
| static uint16_t getELFType() { |
| if (Config->Pic) |
| return ET_DYN; |
| if (Config->Relocatable) |
| return ET_REL; |
| return ET_EXEC; |
| } |
| |
| template <class ELFT, class SymPair, class uintX_t> |
| static void assignSymValue(SymPair &Sym, uintX_t Val) { |
| if (Sym.first) |
| Sym.first->Value = Val; |
| if (Sym.second) |
| Sym.second->Value = Val; |
| } |
| |
| // This function is called after we have assigned address and size |
| // to each section. This function fixes some predefined absolute |
| // symbol values that depend on section address and size. |
| template <class ELFT> void Writer<ELFT>::fixAbsoluteSymbols() { |
| // _etext is the first location after the last read-only loadable segment. |
| // _edata is the first location after the last read-write loadable segment. |
| // _end is the first location after the uninitialized data region. |
| for (Phdr &P : Phdrs) { |
| Elf_Phdr &H = P.H; |
| if (H.p_type != PT_LOAD) |
| continue; |
| assignSymValue<ELFT>(ElfSym<ELFT>::End, H.p_vaddr + H.p_memsz); |
| |
| uintX_t Val = H.p_vaddr + H.p_filesz; |
| if (H.p_flags & PF_W) |
| assignSymValue<ELFT>(ElfSym<ELFT>::Edata, Val); |
| else |
| assignSymValue<ELFT>(ElfSym<ELFT>::Etext, Val); |
| } |
| } |
| |
| template <class ELFT> void Writer<ELFT>::writeHeader() { |
| uint8_t *Buf = Buffer->getBufferStart(); |
| memcpy(Buf, "\177ELF", 4); |
| |
| auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf); |
| |
| // Write the ELF header. |
| auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf); |
| EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; |
| EHdr->e_ident[EI_DATA] = getELFEncoding<ELFT>(); |
| EHdr->e_ident[EI_VERSION] = EV_CURRENT; |
| EHdr->e_ident[EI_OSABI] = FirstObj.getOSABI(); |
| EHdr->e_type = getELFType(); |
| EHdr->e_machine = FirstObj.getEMachine(); |
| EHdr->e_version = EV_CURRENT; |
| EHdr->e_entry = getEntryAddr<ELFT>(); |
| EHdr->e_shoff = SectionHeaderOff; |
| EHdr->e_ehsize = sizeof(Elf_Ehdr); |
| EHdr->e_phnum = Phdrs.size(); |
| EHdr->e_shentsize = sizeof(Elf_Shdr); |
| EHdr->e_shnum = OutputSections.size() + 1; |
| EHdr->e_shstrndx = Out<ELFT>::ShStrTab->SectionIndex; |
| |
| if (Config->EMachine == EM_MIPS) |
| EHdr->e_flags = getMipsEFlags(); |
| |
| if (!Config->Relocatable) { |
| EHdr->e_phoff = sizeof(Elf_Ehdr); |
| EHdr->e_phentsize = sizeof(Elf_Phdr); |
| } |
| |
| // Write the program header table. |
| auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff); |
| for (Phdr &P : Phdrs) |
| *HBuf++ = P.H; |
| |
| // Write the section header table. Note that the first table entry is null. |
| auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff); |
| for (OutputSectionBase<ELFT> *Sec : OutputSections) |
| Sec->writeHeaderTo(++SHdrs); |
| } |
| |
| template <class ELFT> void Writer<ELFT>::openFile() { |
| ErrorOr<std::unique_ptr<FileOutputBuffer>> BufferOrErr = |
| FileOutputBuffer::create(Config->OutputFile, FileSize, |
| FileOutputBuffer::F_executable); |
| if (BufferOrErr) |
| Buffer = std::move(*BufferOrErr); |
| else |
| error(BufferOrErr, "failed to open " + Config->OutputFile); |
| } |
| |
| // Write section contents to a mmap'ed file. |
| template <class ELFT> void Writer<ELFT>::writeSections() { |
| uint8_t *Buf = Buffer->getBufferStart(); |
| |
| // PPC64 needs to process relocations in the .opd section before processing |
| // relocations in code-containing sections. |
| if (OutputSectionBase<ELFT> *Sec = Out<ELFT>::Opd) { |
| Out<ELFT>::OpdBuf = Buf + Sec->getFileOff(); |
| Sec->writeTo(Buf + Sec->getFileOff()); |
| } |
| |
| for (OutputSectionBase<ELFT> *Sec : OutputSections) |
| if (Sec != Out<ELFT>::Opd) |
| Sec->writeTo(Buf + Sec->getFileOff()); |
| } |
| |
| template <class ELFT> void Writer<ELFT>::writeBuildId() { |
| BuildIdSection<ELFT> *S = Out<ELFT>::BuildId; |
| if (!S) |
| return; |
| |
| // Compute a hash of all sections except .debug_* sections. |
| // We skip debug sections because they tend to be very large |
| // and their contents are very likely to be the same as long as |
| // other sections are the same. |
| uint8_t *Start = Buffer->getBufferStart(); |
| uint8_t *Last = Start; |
| for (OutputSectionBase<ELFT> *Sec : OutputSections) { |
| uint8_t *End = Start + Sec->getFileOff(); |
| if (!Sec->getName().startswith(".debug_")) |
| S->update({Last, End}); |
| Last = End; |
| } |
| S->update({Last, Start + FileSize}); |
| |
| // Fill the hash value field in the .note.gnu.build-id section. |
| S->writeBuildId(); |
| } |
| |
| template void elf::writeResult<ELF32LE>(SymbolTable<ELF32LE> *Symtab); |
| template void elf::writeResult<ELF32BE>(SymbolTable<ELF32BE> *Symtab); |
| template void elf::writeResult<ELF64LE>(SymbolTable<ELF64LE> *Symtab); |
| template void elf::writeResult<ELF64BE>(SymbolTable<ELF64BE> *Symtab); |