|  | //===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the library calls simplifier. It does not implement | 
|  | // any pass, but can't be used by other passes to do simplifications. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Utils/SimplifyLibCalls.h" | 
|  | #include "llvm/ADT/APSInt.h" | 
|  | #include "llvm/ADT/SmallString.h" | 
|  | #include "llvm/ADT/StringMap.h" | 
|  | #include "llvm/ADT/Triple.h" | 
|  | #include "llvm/Analysis/BlockFrequencyInfo.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | 
|  | #include "llvm/Analysis/ProfileSummaryInfo.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/Analysis/CaptureTracking.h" | 
|  | #include "llvm/Analysis/Loads.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/KnownBits.h" | 
|  | #include "llvm/Transforms/Utils/BuildLibCalls.h" | 
|  | #include "llvm/Transforms/Utils/SizeOpts.h" | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace PatternMatch; | 
|  |  | 
|  | static cl::opt<bool> | 
|  | EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden, | 
|  | cl::init(false), | 
|  | cl::desc("Enable unsafe double to float " | 
|  | "shrinking for math lib calls")); | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Helper Functions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static bool ignoreCallingConv(LibFunc Func) { | 
|  | return Func == LibFunc_abs || Func == LibFunc_labs || | 
|  | Func == LibFunc_llabs || Func == LibFunc_strlen; | 
|  | } | 
|  |  | 
|  | static bool isCallingConvCCompatible(CallInst *CI) { | 
|  | switch(CI->getCallingConv()) { | 
|  | default: | 
|  | return false; | 
|  | case llvm::CallingConv::C: | 
|  | return true; | 
|  | case llvm::CallingConv::ARM_APCS: | 
|  | case llvm::CallingConv::ARM_AAPCS: | 
|  | case llvm::CallingConv::ARM_AAPCS_VFP: { | 
|  |  | 
|  | // The iOS ABI diverges from the standard in some cases, so for now don't | 
|  | // try to simplify those calls. | 
|  | if (Triple(CI->getModule()->getTargetTriple()).isiOS()) | 
|  | return false; | 
|  |  | 
|  | auto *FuncTy = CI->getFunctionType(); | 
|  |  | 
|  | if (!FuncTy->getReturnType()->isPointerTy() && | 
|  | !FuncTy->getReturnType()->isIntegerTy() && | 
|  | !FuncTy->getReturnType()->isVoidTy()) | 
|  | return false; | 
|  |  | 
|  | for (auto Param : FuncTy->params()) { | 
|  | if (!Param->isPointerTy() && !Param->isIntegerTy()) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return true if it is only used in equality comparisons with With. | 
|  | static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) { | 
|  | for (User *U : V->users()) { | 
|  | if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) | 
|  | if (IC->isEquality() && IC->getOperand(1) == With) | 
|  | continue; | 
|  | // Unknown instruction. | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool callHasFloatingPointArgument(const CallInst *CI) { | 
|  | return any_of(CI->operands(), [](const Use &OI) { | 
|  | return OI->getType()->isFloatingPointTy(); | 
|  | }); | 
|  | } | 
|  |  | 
|  | static bool callHasFP128Argument(const CallInst *CI) { | 
|  | return any_of(CI->operands(), [](const Use &OI) { | 
|  | return OI->getType()->isFP128Ty(); | 
|  | }); | 
|  | } | 
|  |  | 
|  | static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) { | 
|  | if (Base < 2 || Base > 36) | 
|  | // handle special zero base | 
|  | if (Base != 0) | 
|  | return nullptr; | 
|  |  | 
|  | char *End; | 
|  | std::string nptr = Str.str(); | 
|  | errno = 0; | 
|  | long long int Result = strtoll(nptr.c_str(), &End, Base); | 
|  | if (errno) | 
|  | return nullptr; | 
|  |  | 
|  | // if we assume all possible target locales are ASCII supersets, | 
|  | // then if strtoll successfully parses a number on the host, | 
|  | // it will also successfully parse the same way on the target | 
|  | if (*End != '\0') | 
|  | return nullptr; | 
|  |  | 
|  | if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result)) | 
|  | return nullptr; | 
|  |  | 
|  | return ConstantInt::get(CI->getType(), Result); | 
|  | } | 
|  |  | 
|  | static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | CallInst *FOpen = dyn_cast<CallInst>(File); | 
|  | if (!FOpen) | 
|  | return false; | 
|  |  | 
|  | Function *InnerCallee = FOpen->getCalledFunction(); | 
|  | if (!InnerCallee) | 
|  | return false; | 
|  |  | 
|  | LibFunc Func; | 
|  | if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || | 
|  | Func != LibFunc_fopen) | 
|  | return false; | 
|  |  | 
|  | inferLibFuncAttributes(*CI->getCalledFunction(), *TLI); | 
|  | if (PointerMayBeCaptured(File, true, true)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool isOnlyUsedInComparisonWithZero(Value *V) { | 
|  | for (User *U : V->users()) { | 
|  | if (ICmpInst *IC = dyn_cast<ICmpInst>(U)) | 
|  | if (Constant *C = dyn_cast<Constant>(IC->getOperand(1))) | 
|  | if (C->isNullValue()) | 
|  | continue; | 
|  | // Unknown instruction. | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static bool canTransformToMemCmp(CallInst *CI, Value *Str, uint64_t Len, | 
|  | const DataLayout &DL) { | 
|  | if (!isOnlyUsedInComparisonWithZero(CI)) | 
|  | return false; | 
|  |  | 
|  | if (!isDereferenceableAndAlignedPointer(Str, 1, APInt(64, Len), DL)) | 
|  | return false; | 
|  |  | 
|  | if (CI->getFunction()->hasFnAttribute(Attribute::SanitizeMemory)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // String and Memory Library Call Optimizations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) { | 
|  | // Extract some information from the instruction | 
|  | Value *Dst = CI->getArgOperand(0); | 
|  | Value *Src = CI->getArgOperand(1); | 
|  |  | 
|  | // See if we can get the length of the input string. | 
|  | uint64_t Len = GetStringLength(Src); | 
|  | if (Len == 0) | 
|  | return nullptr; | 
|  | --Len; // Unbias length. | 
|  |  | 
|  | // Handle the simple, do-nothing case: strcat(x, "") -> x | 
|  | if (Len == 0) | 
|  | return Dst; | 
|  |  | 
|  | return emitStrLenMemCpy(Src, Dst, Len, B); | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len, | 
|  | IRBuilder<> &B) { | 
|  | // We need to find the end of the destination string.  That's where the | 
|  | // memory is to be moved to. We just generate a call to strlen. | 
|  | Value *DstLen = emitStrLen(Dst, B, DL, TLI); | 
|  | if (!DstLen) | 
|  | return nullptr; | 
|  |  | 
|  | // Now that we have the destination's length, we must index into the | 
|  | // destination's pointer to get the actual memcpy destination (end of | 
|  | // the string .. we're concatenating). | 
|  | Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr"); | 
|  |  | 
|  | // We have enough information to now generate the memcpy call to do the | 
|  | // concatenation for us.  Make a memcpy to copy the nul byte with align = 1. | 
|  | B.CreateMemCpy(CpyDst, 1, Src, 1, | 
|  | ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1)); | 
|  | return Dst; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) { | 
|  | // Extract some information from the instruction. | 
|  | Value *Dst = CI->getArgOperand(0); | 
|  | Value *Src = CI->getArgOperand(1); | 
|  | uint64_t Len; | 
|  |  | 
|  | // We don't do anything if length is not constant. | 
|  | if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) | 
|  | Len = LengthArg->getZExtValue(); | 
|  | else | 
|  | return nullptr; | 
|  |  | 
|  | // See if we can get the length of the input string. | 
|  | uint64_t SrcLen = GetStringLength(Src); | 
|  | if (SrcLen == 0) | 
|  | return nullptr; | 
|  | --SrcLen; // Unbias length. | 
|  |  | 
|  | // Handle the simple, do-nothing cases: | 
|  | // strncat(x, "", c) -> x | 
|  | // strncat(x,  c, 0) -> x | 
|  | if (SrcLen == 0 || Len == 0) | 
|  | return Dst; | 
|  |  | 
|  | // We don't optimize this case. | 
|  | if (Len < SrcLen) | 
|  | return nullptr; | 
|  |  | 
|  | // strncat(x, s, c) -> strcat(x, s) | 
|  | // s is constant so the strcat can be optimized further. | 
|  | return emitStrLenMemCpy(Src, Dst, SrcLen, B); | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) { | 
|  | Function *Callee = CI->getCalledFunction(); | 
|  | FunctionType *FT = Callee->getFunctionType(); | 
|  | Value *SrcStr = CI->getArgOperand(0); | 
|  |  | 
|  | // If the second operand is non-constant, see if we can compute the length | 
|  | // of the input string and turn this into memchr. | 
|  | ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); | 
|  | if (!CharC) { | 
|  | uint64_t Len = GetStringLength(SrcStr); | 
|  | if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32. | 
|  | return nullptr; | 
|  |  | 
|  | return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul. | 
|  | ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len), | 
|  | B, DL, TLI); | 
|  | } | 
|  |  | 
|  | // Otherwise, the character is a constant, see if the first argument is | 
|  | // a string literal.  If so, we can constant fold. | 
|  | StringRef Str; | 
|  | if (!getConstantStringInfo(SrcStr, Str)) { | 
|  | if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p) | 
|  | return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI), | 
|  | "strchr"); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Compute the offset, make sure to handle the case when we're searching for | 
|  | // zero (a weird way to spell strlen). | 
|  | size_t I = (0xFF & CharC->getSExtValue()) == 0 | 
|  | ? Str.size() | 
|  | : Str.find(CharC->getSExtValue()); | 
|  | if (I == StringRef::npos) // Didn't find the char.  strchr returns null. | 
|  | return Constant::getNullValue(CI->getType()); | 
|  |  | 
|  | // strchr(s+n,c)  -> gep(s+n+i,c) | 
|  | return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr"); | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) { | 
|  | Value *SrcStr = CI->getArgOperand(0); | 
|  | ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); | 
|  |  | 
|  | // Cannot fold anything if we're not looking for a constant. | 
|  | if (!CharC) | 
|  | return nullptr; | 
|  |  | 
|  | StringRef Str; | 
|  | if (!getConstantStringInfo(SrcStr, Str)) { | 
|  | // strrchr(s, 0) -> strchr(s, 0) | 
|  | if (CharC->isZero()) | 
|  | return emitStrChr(SrcStr, '\0', B, TLI); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Compute the offset. | 
|  | size_t I = (0xFF & CharC->getSExtValue()) == 0 | 
|  | ? Str.size() | 
|  | : Str.rfind(CharC->getSExtValue()); | 
|  | if (I == StringRef::npos) // Didn't find the char. Return null. | 
|  | return Constant::getNullValue(CI->getType()); | 
|  |  | 
|  | // strrchr(s+n,c) -> gep(s+n+i,c) | 
|  | return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr"); | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) { | 
|  | Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); | 
|  | if (Str1P == Str2P) // strcmp(x,x)  -> 0 | 
|  | return ConstantInt::get(CI->getType(), 0); | 
|  |  | 
|  | StringRef Str1, Str2; | 
|  | bool HasStr1 = getConstantStringInfo(Str1P, Str1); | 
|  | bool HasStr2 = getConstantStringInfo(Str2P, Str2); | 
|  |  | 
|  | // strcmp(x, y)  -> cnst  (if both x and y are constant strings) | 
|  | if (HasStr1 && HasStr2) | 
|  | return ConstantInt::get(CI->getType(), Str1.compare(Str2)); | 
|  |  | 
|  | if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x | 
|  | return B.CreateNeg(B.CreateZExt( | 
|  | B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); | 
|  |  | 
|  | if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x | 
|  | return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), | 
|  | CI->getType()); | 
|  |  | 
|  | // strcmp(P, "x") -> memcmp(P, "x", 2) | 
|  | uint64_t Len1 = GetStringLength(Str1P); | 
|  | uint64_t Len2 = GetStringLength(Str2P); | 
|  | if (Len1 && Len2) { | 
|  | return emitMemCmp(Str1P, Str2P, | 
|  | ConstantInt::get(DL.getIntPtrType(CI->getContext()), | 
|  | std::min(Len1, Len2)), | 
|  | B, DL, TLI); | 
|  | } | 
|  |  | 
|  | // strcmp to memcmp | 
|  | if (!HasStr1 && HasStr2) { | 
|  | if (canTransformToMemCmp(CI, Str1P, Len2, DL)) | 
|  | return emitMemCmp( | 
|  | Str1P, Str2P, | 
|  | ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, | 
|  | TLI); | 
|  | } else if (HasStr1 && !HasStr2) { | 
|  | if (canTransformToMemCmp(CI, Str2P, Len1, DL)) | 
|  | return emitMemCmp( | 
|  | Str1P, Str2P, | 
|  | ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, | 
|  | TLI); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) { | 
|  | Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1); | 
|  | if (Str1P == Str2P) // strncmp(x,x,n)  -> 0 | 
|  | return ConstantInt::get(CI->getType(), 0); | 
|  |  | 
|  | // Get the length argument if it is constant. | 
|  | uint64_t Length; | 
|  | if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2))) | 
|  | Length = LengthArg->getZExtValue(); | 
|  | else | 
|  | return nullptr; | 
|  |  | 
|  | if (Length == 0) // strncmp(x,y,0)   -> 0 | 
|  | return ConstantInt::get(CI->getType(), 0); | 
|  |  | 
|  | if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1) | 
|  | return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI); | 
|  |  | 
|  | StringRef Str1, Str2; | 
|  | bool HasStr1 = getConstantStringInfo(Str1P, Str1); | 
|  | bool HasStr2 = getConstantStringInfo(Str2P, Str2); | 
|  |  | 
|  | // strncmp(x, y)  -> cnst  (if both x and y are constant strings) | 
|  | if (HasStr1 && HasStr2) { | 
|  | StringRef SubStr1 = Str1.substr(0, Length); | 
|  | StringRef SubStr2 = Str2.substr(0, Length); | 
|  | return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2)); | 
|  | } | 
|  |  | 
|  | if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x | 
|  | return B.CreateNeg(B.CreateZExt( | 
|  | B.CreateLoad(B.getInt8Ty(), Str2P, "strcmpload"), CI->getType())); | 
|  |  | 
|  | if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x | 
|  | return B.CreateZExt(B.CreateLoad(B.getInt8Ty(), Str1P, "strcmpload"), | 
|  | CI->getType()); | 
|  |  | 
|  | uint64_t Len1 = GetStringLength(Str1P); | 
|  | uint64_t Len2 = GetStringLength(Str2P); | 
|  |  | 
|  | // strncmp to memcmp | 
|  | if (!HasStr1 && HasStr2) { | 
|  | Len2 = std::min(Len2, Length); | 
|  | if (canTransformToMemCmp(CI, Str1P, Len2, DL)) | 
|  | return emitMemCmp( | 
|  | Str1P, Str2P, | 
|  | ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len2), B, DL, | 
|  | TLI); | 
|  | } else if (HasStr1 && !HasStr2) { | 
|  | Len1 = std::min(Len1, Length); | 
|  | if (canTransformToMemCmp(CI, Str2P, Len1, DL)) | 
|  | return emitMemCmp( | 
|  | Str1P, Str2P, | 
|  | ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len1), B, DL, | 
|  | TLI); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) { | 
|  | Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); | 
|  | if (Dst == Src) // strcpy(x,x)  -> x | 
|  | return Src; | 
|  |  | 
|  | // See if we can get the length of the input string. | 
|  | uint64_t Len = GetStringLength(Src); | 
|  | if (Len == 0) | 
|  | return nullptr; | 
|  |  | 
|  | // We have enough information to now generate the memcpy call to do the | 
|  | // copy for us.  Make a memcpy to copy the nul byte with align = 1. | 
|  | B.CreateMemCpy(Dst, 1, Src, 1, | 
|  | ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len)); | 
|  | return Dst; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) { | 
|  | Function *Callee = CI->getCalledFunction(); | 
|  | Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1); | 
|  | if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x) | 
|  | Value *StrLen = emitStrLen(Src, B, DL, TLI); | 
|  | return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; | 
|  | } | 
|  |  | 
|  | // See if we can get the length of the input string. | 
|  | uint64_t Len = GetStringLength(Src); | 
|  | if (Len == 0) | 
|  | return nullptr; | 
|  |  | 
|  | Type *PT = Callee->getFunctionType()->getParamType(0); | 
|  | Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len); | 
|  | Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst, | 
|  | ConstantInt::get(DL.getIntPtrType(PT), Len - 1)); | 
|  |  | 
|  | // We have enough information to now generate the memcpy call to do the | 
|  | // copy for us.  Make a memcpy to copy the nul byte with align = 1. | 
|  | B.CreateMemCpy(Dst, 1, Src, 1, LenV); | 
|  | return DstEnd; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) { | 
|  | Function *Callee = CI->getCalledFunction(); | 
|  | Value *Dst = CI->getArgOperand(0); | 
|  | Value *Src = CI->getArgOperand(1); | 
|  | Value *LenOp = CI->getArgOperand(2); | 
|  |  | 
|  | // See if we can get the length of the input string. | 
|  | uint64_t SrcLen = GetStringLength(Src); | 
|  | if (SrcLen == 0) | 
|  | return nullptr; | 
|  | --SrcLen; | 
|  |  | 
|  | if (SrcLen == 0) { | 
|  | // strncpy(x, "", y) -> memset(align 1 x, '\0', y) | 
|  | B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1); | 
|  | return Dst; | 
|  | } | 
|  |  | 
|  | uint64_t Len; | 
|  | if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp)) | 
|  | Len = LengthArg->getZExtValue(); | 
|  | else | 
|  | return nullptr; | 
|  |  | 
|  | if (Len == 0) | 
|  | return Dst; // strncpy(x, y, 0) -> x | 
|  |  | 
|  | // Let strncpy handle the zero padding | 
|  | if (Len > SrcLen + 1) | 
|  | return nullptr; | 
|  |  | 
|  | Type *PT = Callee->getFunctionType()->getParamType(0); | 
|  | // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant] | 
|  | B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len)); | 
|  |  | 
|  | return Dst; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B, | 
|  | unsigned CharSize) { | 
|  | Value *Src = CI->getArgOperand(0); | 
|  |  | 
|  | // Constant folding: strlen("xyz") -> 3 | 
|  | if (uint64_t Len = GetStringLength(Src, CharSize)) | 
|  | return ConstantInt::get(CI->getType(), Len - 1); | 
|  |  | 
|  | // If s is a constant pointer pointing to a string literal, we can fold | 
|  | // strlen(s + x) to strlen(s) - x, when x is known to be in the range | 
|  | // [0, strlen(s)] or the string has a single null terminator '\0' at the end. | 
|  | // We only try to simplify strlen when the pointer s points to an array | 
|  | // of i8. Otherwise, we would need to scale the offset x before doing the | 
|  | // subtraction. This will make the optimization more complex, and it's not | 
|  | // very useful because calling strlen for a pointer of other types is | 
|  | // very uncommon. | 
|  | if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) { | 
|  | if (!isGEPBasedOnPointerToString(GEP, CharSize)) | 
|  | return nullptr; | 
|  |  | 
|  | ConstantDataArraySlice Slice; | 
|  | if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) { | 
|  | uint64_t NullTermIdx; | 
|  | if (Slice.Array == nullptr) { | 
|  | NullTermIdx = 0; | 
|  | } else { | 
|  | NullTermIdx = ~((uint64_t)0); | 
|  | for (uint64_t I = 0, E = Slice.Length; I < E; ++I) { | 
|  | if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) { | 
|  | NullTermIdx = I; | 
|  | break; | 
|  | } | 
|  | } | 
|  | // If the string does not have '\0', leave it to strlen to compute | 
|  | // its length. | 
|  | if (NullTermIdx == ~((uint64_t)0)) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *Offset = GEP->getOperand(2); | 
|  | KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr); | 
|  | Known.Zero.flipAllBits(); | 
|  | uint64_t ArrSize = | 
|  | cast<ArrayType>(GEP->getSourceElementType())->getNumElements(); | 
|  |  | 
|  | // KnownZero's bits are flipped, so zeros in KnownZero now represent | 
|  | // bits known to be zeros in Offset, and ones in KnowZero represent | 
|  | // bits unknown in Offset. Therefore, Offset is known to be in range | 
|  | // [0, NullTermIdx] when the flipped KnownZero is non-negative and | 
|  | // unsigned-less-than NullTermIdx. | 
|  | // | 
|  | // If Offset is not provably in the range [0, NullTermIdx], we can still | 
|  | // optimize if we can prove that the program has undefined behavior when | 
|  | // Offset is outside that range. That is the case when GEP->getOperand(0) | 
|  | // is a pointer to an object whose memory extent is NullTermIdx+1. | 
|  | if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) || | 
|  | (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) && | 
|  | NullTermIdx == ArrSize - 1)) { | 
|  | Offset = B.CreateSExtOrTrunc(Offset, CI->getType()); | 
|  | return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx), | 
|  | Offset); | 
|  | } | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // strlen(x?"foo":"bars") --> x ? 3 : 4 | 
|  | if (SelectInst *SI = dyn_cast<SelectInst>(Src)) { | 
|  | uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize); | 
|  | uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize); | 
|  | if (LenTrue && LenFalse) { | 
|  | ORE.emit([&]() { | 
|  | return OptimizationRemark("instcombine", "simplify-libcalls", CI) | 
|  | << "folded strlen(select) to select of constants"; | 
|  | }); | 
|  | return B.CreateSelect(SI->getCondition(), | 
|  | ConstantInt::get(CI->getType(), LenTrue - 1), | 
|  | ConstantInt::get(CI->getType(), LenFalse - 1)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // strlen(x) != 0 --> *x != 0 | 
|  | // strlen(x) == 0 --> *x == 0 | 
|  | if (isOnlyUsedInZeroEqualityComparison(CI)) | 
|  | return B.CreateZExt(B.CreateLoad(B.getIntNTy(CharSize), Src, "strlenfirst"), | 
|  | CI->getType()); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) { | 
|  | return optimizeStringLength(CI, B, 8); | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) { | 
|  | Module &M = *CI->getModule(); | 
|  | unsigned WCharSize = TLI->getWCharSize(M) * 8; | 
|  | // We cannot perform this optimization without wchar_size metadata. | 
|  | if (WCharSize == 0) | 
|  | return nullptr; | 
|  |  | 
|  | return optimizeStringLength(CI, B, WCharSize); | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) { | 
|  | StringRef S1, S2; | 
|  | bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); | 
|  | bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); | 
|  |  | 
|  | // strpbrk(s, "") -> nullptr | 
|  | // strpbrk("", s) -> nullptr | 
|  | if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) | 
|  | return Constant::getNullValue(CI->getType()); | 
|  |  | 
|  | // Constant folding. | 
|  | if (HasS1 && HasS2) { | 
|  | size_t I = S1.find_first_of(S2); | 
|  | if (I == StringRef::npos) // No match. | 
|  | return Constant::getNullValue(CI->getType()); | 
|  |  | 
|  | return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I), | 
|  | "strpbrk"); | 
|  | } | 
|  |  | 
|  | // strpbrk(s, "a") -> strchr(s, 'a') | 
|  | if (HasS2 && S2.size() == 1) | 
|  | return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) { | 
|  | Value *EndPtr = CI->getArgOperand(1); | 
|  | if (isa<ConstantPointerNull>(EndPtr)) { | 
|  | // With a null EndPtr, this function won't capture the main argument. | 
|  | // It would be readonly too, except that it still may write to errno. | 
|  | CI->addParamAttr(0, Attribute::NoCapture); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) { | 
|  | StringRef S1, S2; | 
|  | bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); | 
|  | bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); | 
|  |  | 
|  | // strspn(s, "") -> 0 | 
|  | // strspn("", s) -> 0 | 
|  | if ((HasS1 && S1.empty()) || (HasS2 && S2.empty())) | 
|  | return Constant::getNullValue(CI->getType()); | 
|  |  | 
|  | // Constant folding. | 
|  | if (HasS1 && HasS2) { | 
|  | size_t Pos = S1.find_first_not_of(S2); | 
|  | if (Pos == StringRef::npos) | 
|  | Pos = S1.size(); | 
|  | return ConstantInt::get(CI->getType(), Pos); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) { | 
|  | StringRef S1, S2; | 
|  | bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1); | 
|  | bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2); | 
|  |  | 
|  | // strcspn("", s) -> 0 | 
|  | if (HasS1 && S1.empty()) | 
|  | return Constant::getNullValue(CI->getType()); | 
|  |  | 
|  | // Constant folding. | 
|  | if (HasS1 && HasS2) { | 
|  | size_t Pos = S1.find_first_of(S2); | 
|  | if (Pos == StringRef::npos) | 
|  | Pos = S1.size(); | 
|  | return ConstantInt::get(CI->getType(), Pos); | 
|  | } | 
|  |  | 
|  | // strcspn(s, "") -> strlen(s) | 
|  | if (HasS2 && S2.empty()) | 
|  | return emitStrLen(CI->getArgOperand(0), B, DL, TLI); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) { | 
|  | // fold strstr(x, x) -> x. | 
|  | if (CI->getArgOperand(0) == CI->getArgOperand(1)) | 
|  | return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); | 
|  |  | 
|  | // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0 | 
|  | if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) { | 
|  | Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI); | 
|  | if (!StrLen) | 
|  | return nullptr; | 
|  | Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1), | 
|  | StrLen, B, DL, TLI); | 
|  | if (!StrNCmp) | 
|  | return nullptr; | 
|  | for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) { | 
|  | ICmpInst *Old = cast<ICmpInst>(*UI++); | 
|  | Value *Cmp = | 
|  | B.CreateICmp(Old->getPredicate(), StrNCmp, | 
|  | ConstantInt::getNullValue(StrNCmp->getType()), "cmp"); | 
|  | replaceAllUsesWith(Old, Cmp); | 
|  | } | 
|  | return CI; | 
|  | } | 
|  |  | 
|  | // See if either input string is a constant string. | 
|  | StringRef SearchStr, ToFindStr; | 
|  | bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr); | 
|  | bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr); | 
|  |  | 
|  | // fold strstr(x, "") -> x. | 
|  | if (HasStr2 && ToFindStr.empty()) | 
|  | return B.CreateBitCast(CI->getArgOperand(0), CI->getType()); | 
|  |  | 
|  | // If both strings are known, constant fold it. | 
|  | if (HasStr1 && HasStr2) { | 
|  | size_t Offset = SearchStr.find(ToFindStr); | 
|  |  | 
|  | if (Offset == StringRef::npos) // strstr("foo", "bar") -> null | 
|  | return Constant::getNullValue(CI->getType()); | 
|  |  | 
|  | // strstr("abcd", "bc") -> gep((char*)"abcd", 1) | 
|  | Value *Result = castToCStr(CI->getArgOperand(0), B); | 
|  | Result = | 
|  | B.CreateConstInBoundsGEP1_64(B.getInt8Ty(), Result, Offset, "strstr"); | 
|  | return B.CreateBitCast(Result, CI->getType()); | 
|  | } | 
|  |  | 
|  | // fold strstr(x, "y") -> strchr(x, 'y'). | 
|  | if (HasStr2 && ToFindStr.size() == 1) { | 
|  | Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI); | 
|  | return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) { | 
|  | Value *SrcStr = CI->getArgOperand(0); | 
|  | ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); | 
|  | ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); | 
|  |  | 
|  | // memchr(x, y, 0) -> null | 
|  | if (LenC && LenC->isZero()) | 
|  | return Constant::getNullValue(CI->getType()); | 
|  |  | 
|  | // From now on we need at least constant length and string. | 
|  | StringRef Str; | 
|  | if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false)) | 
|  | return nullptr; | 
|  |  | 
|  | // Truncate the string to LenC. If Str is smaller than LenC we will still only | 
|  | // scan the string, as reading past the end of it is undefined and we can just | 
|  | // return null if we don't find the char. | 
|  | Str = Str.substr(0, LenC->getZExtValue()); | 
|  |  | 
|  | // If the char is variable but the input str and length are not we can turn | 
|  | // this memchr call into a simple bit field test. Of course this only works | 
|  | // when the return value is only checked against null. | 
|  | // | 
|  | // It would be really nice to reuse switch lowering here but we can't change | 
|  | // the CFG at this point. | 
|  | // | 
|  | // memchr("\r\n", C, 2) != nullptr -> (1 << C & ((1 << '\r') | (1 << '\n'))) | 
|  | // != 0 | 
|  | //   after bounds check. | 
|  | if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) { | 
|  | unsigned char Max = | 
|  | *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()), | 
|  | reinterpret_cast<const unsigned char *>(Str.end())); | 
|  |  | 
|  | // Make sure the bit field we're about to create fits in a register on the | 
|  | // target. | 
|  | // FIXME: On a 64 bit architecture this prevents us from using the | 
|  | // interesting range of alpha ascii chars. We could do better by emitting | 
|  | // two bitfields or shifting the range by 64 if no lower chars are used. | 
|  | if (!DL.fitsInLegalInteger(Max + 1)) | 
|  | return nullptr; | 
|  |  | 
|  | // For the bit field use a power-of-2 type with at least 8 bits to avoid | 
|  | // creating unnecessary illegal types. | 
|  | unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max)); | 
|  |  | 
|  | // Now build the bit field. | 
|  | APInt Bitfield(Width, 0); | 
|  | for (char C : Str) | 
|  | Bitfield.setBit((unsigned char)C); | 
|  | Value *BitfieldC = B.getInt(Bitfield); | 
|  |  | 
|  | // Adjust width of "C" to the bitfield width, then mask off the high bits. | 
|  | Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType()); | 
|  | C = B.CreateAnd(C, B.getIntN(Width, 0xFF)); | 
|  |  | 
|  | // First check that the bit field access is within bounds. | 
|  | Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width), | 
|  | "memchr.bounds"); | 
|  |  | 
|  | // Create code that checks if the given bit is set in the field. | 
|  | Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C); | 
|  | Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits"); | 
|  |  | 
|  | // Finally merge both checks and cast to pointer type. The inttoptr | 
|  | // implicitly zexts the i1 to intptr type. | 
|  | return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType()); | 
|  | } | 
|  |  | 
|  | // Check if all arguments are constants.  If so, we can constant fold. | 
|  | if (!CharC) | 
|  | return nullptr; | 
|  |  | 
|  | // Compute the offset. | 
|  | size_t I = Str.find(CharC->getSExtValue() & 0xFF); | 
|  | if (I == StringRef::npos) // Didn't find the char.  memchr returns null. | 
|  | return Constant::getNullValue(CI->getType()); | 
|  |  | 
|  | // memchr(s+n,c,l) -> gep(s+n+i,c) | 
|  | return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr"); | 
|  | } | 
|  |  | 
|  | static Value *optimizeMemCmpConstantSize(CallInst *CI, Value *LHS, Value *RHS, | 
|  | uint64_t Len, IRBuilder<> &B, | 
|  | const DataLayout &DL) { | 
|  | if (Len == 0) // memcmp(s1,s2,0) -> 0 | 
|  | return Constant::getNullValue(CI->getType()); | 
|  |  | 
|  | // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS | 
|  | if (Len == 1) { | 
|  | Value *LHSV = | 
|  | B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(LHS, B), "lhsc"), | 
|  | CI->getType(), "lhsv"); | 
|  | Value *RHSV = | 
|  | B.CreateZExt(B.CreateLoad(B.getInt8Ty(), castToCStr(RHS, B), "rhsc"), | 
|  | CI->getType(), "rhsv"); | 
|  | return B.CreateSub(LHSV, RHSV, "chardiff"); | 
|  | } | 
|  |  | 
|  | // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0 | 
|  | // TODO: The case where both inputs are constants does not need to be limited | 
|  | // to legal integers or equality comparison. See block below this. | 
|  | if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) { | 
|  | IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8); | 
|  | unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType); | 
|  |  | 
|  | // First, see if we can fold either argument to a constant. | 
|  | Value *LHSV = nullptr; | 
|  | if (auto *LHSC = dyn_cast<Constant>(LHS)) { | 
|  | LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo()); | 
|  | LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL); | 
|  | } | 
|  | Value *RHSV = nullptr; | 
|  | if (auto *RHSC = dyn_cast<Constant>(RHS)) { | 
|  | RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo()); | 
|  | RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL); | 
|  | } | 
|  |  | 
|  | // Don't generate unaligned loads. If either source is constant data, | 
|  | // alignment doesn't matter for that source because there is no load. | 
|  | if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) && | 
|  | (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) { | 
|  | if (!LHSV) { | 
|  | Type *LHSPtrTy = | 
|  | IntType->getPointerTo(LHS->getType()->getPointerAddressSpace()); | 
|  | LHSV = B.CreateLoad(IntType, B.CreateBitCast(LHS, LHSPtrTy), "lhsv"); | 
|  | } | 
|  | if (!RHSV) { | 
|  | Type *RHSPtrTy = | 
|  | IntType->getPointerTo(RHS->getType()->getPointerAddressSpace()); | 
|  | RHSV = B.CreateLoad(IntType, B.CreateBitCast(RHS, RHSPtrTy), "rhsv"); | 
|  | } | 
|  | return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const). | 
|  | // TODO: This is limited to i8 arrays. | 
|  | StringRef LHSStr, RHSStr; | 
|  | if (getConstantStringInfo(LHS, LHSStr) && | 
|  | getConstantStringInfo(RHS, RHSStr)) { | 
|  | // Make sure we're not reading out-of-bounds memory. | 
|  | if (Len > LHSStr.size() || Len > RHSStr.size()) | 
|  | return nullptr; | 
|  | // Fold the memcmp and normalize the result.  This way we get consistent | 
|  | // results across multiple platforms. | 
|  | uint64_t Ret = 0; | 
|  | int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len); | 
|  | if (Cmp < 0) | 
|  | Ret = -1; | 
|  | else if (Cmp > 0) | 
|  | Ret = 1; | 
|  | return ConstantInt::get(CI->getType(), Ret); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Most simplifications for memcmp also apply to bcmp. | 
|  | Value *LibCallSimplifier::optimizeMemCmpBCmpCommon(CallInst *CI, | 
|  | IRBuilder<> &B) { | 
|  | Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1); | 
|  | Value *Size = CI->getArgOperand(2); | 
|  |  | 
|  | if (LHS == RHS) // memcmp(s,s,x) -> 0 | 
|  | return Constant::getNullValue(CI->getType()); | 
|  |  | 
|  | // Handle constant lengths. | 
|  | if (ConstantInt *LenC = dyn_cast<ConstantInt>(Size)) | 
|  | if (Value *Res = optimizeMemCmpConstantSize(CI, LHS, RHS, | 
|  | LenC->getZExtValue(), B, DL)) | 
|  | return Res; | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) { | 
|  | if (Value *V = optimizeMemCmpBCmpCommon(CI, B)) | 
|  | return V; | 
|  |  | 
|  | // memcmp(x, y, Len) == 0 -> bcmp(x, y, Len) == 0 | 
|  | // `bcmp` can be more efficient than memcmp because it only has to know that | 
|  | // there is a difference, not where it is. | 
|  | if (isOnlyUsedInZeroEqualityComparison(CI) && TLI->has(LibFunc_bcmp)) { | 
|  | Value *LHS = CI->getArgOperand(0); | 
|  | Value *RHS = CI->getArgOperand(1); | 
|  | Value *Size = CI->getArgOperand(2); | 
|  | return emitBCmp(LHS, RHS, Size, B, DL, TLI); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeBCmp(CallInst *CI, IRBuilder<> &B) { | 
|  | return optimizeMemCmpBCmpCommon(CI, B); | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) { | 
|  | // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n) | 
|  | B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, | 
|  | CI->getArgOperand(2)); | 
|  | return CI->getArgOperand(0); | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) { | 
|  | // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n) | 
|  | B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, | 
|  | CI->getArgOperand(2)); | 
|  | return CI->getArgOperand(0); | 
|  | } | 
|  |  | 
|  | /// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n). | 
|  | Value *LibCallSimplifier::foldMallocMemset(CallInst *Memset, IRBuilder<> &B) { | 
|  | // This has to be a memset of zeros (bzero). | 
|  | auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1)); | 
|  | if (!FillValue || FillValue->getZExtValue() != 0) | 
|  | return nullptr; | 
|  |  | 
|  | // TODO: We should handle the case where the malloc has more than one use. | 
|  | // This is necessary to optimize common patterns such as when the result of | 
|  | // the malloc is checked against null or when a memset intrinsic is used in | 
|  | // place of a memset library call. | 
|  | auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0)); | 
|  | if (!Malloc || !Malloc->hasOneUse()) | 
|  | return nullptr; | 
|  |  | 
|  | // Is the inner call really malloc()? | 
|  | Function *InnerCallee = Malloc->getCalledFunction(); | 
|  | if (!InnerCallee) | 
|  | return nullptr; | 
|  |  | 
|  | LibFunc Func; | 
|  | if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) || | 
|  | Func != LibFunc_malloc) | 
|  | return nullptr; | 
|  |  | 
|  | // The memset must cover the same number of bytes that are malloc'd. | 
|  | if (Memset->getArgOperand(2) != Malloc->getArgOperand(0)) | 
|  | return nullptr; | 
|  |  | 
|  | // Replace the malloc with a calloc. We need the data layout to know what the | 
|  | // actual size of a 'size_t' parameter is. | 
|  | B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator()); | 
|  | const DataLayout &DL = Malloc->getModule()->getDataLayout(); | 
|  | IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext()); | 
|  | Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1), | 
|  | Malloc->getArgOperand(0), Malloc->getAttributes(), | 
|  | B, *TLI); | 
|  | if (!Calloc) | 
|  | return nullptr; | 
|  |  | 
|  | Malloc->replaceAllUsesWith(Calloc); | 
|  | eraseFromParent(Malloc); | 
|  |  | 
|  | return Calloc; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) { | 
|  | if (auto *Calloc = foldMallocMemset(CI, B)) | 
|  | return Calloc; | 
|  |  | 
|  | // memset(p, v, n) -> llvm.memset(align 1 p, v, n) | 
|  | Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); | 
|  | B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); | 
|  | return CI->getArgOperand(0); | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) { | 
|  | if (isa<ConstantPointerNull>(CI->getArgOperand(0))) | 
|  | return emitMalloc(CI->getArgOperand(1), B, DL, TLI); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Math Library Optimizations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Replace a libcall \p CI with a call to intrinsic \p IID | 
|  | static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) { | 
|  | // Propagate fast-math flags from the existing call to the new call. | 
|  | IRBuilder<>::FastMathFlagGuard Guard(B); | 
|  | B.setFastMathFlags(CI->getFastMathFlags()); | 
|  |  | 
|  | Module *M = CI->getModule(); | 
|  | Value *V = CI->getArgOperand(0); | 
|  | Function *F = Intrinsic::getDeclaration(M, IID, CI->getType()); | 
|  | CallInst *NewCall = B.CreateCall(F, V); | 
|  | NewCall->takeName(CI); | 
|  | return NewCall; | 
|  | } | 
|  |  | 
|  | /// Return a variant of Val with float type. | 
|  | /// Currently this works in two cases: If Val is an FPExtension of a float | 
|  | /// value to something bigger, simply return the operand. | 
|  | /// If Val is a ConstantFP but can be converted to a float ConstantFP without | 
|  | /// loss of precision do so. | 
|  | static Value *valueHasFloatPrecision(Value *Val) { | 
|  | if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) { | 
|  | Value *Op = Cast->getOperand(0); | 
|  | if (Op->getType()->isFloatTy()) | 
|  | return Op; | 
|  | } | 
|  | if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) { | 
|  | APFloat F = Const->getValueAPF(); | 
|  | bool losesInfo; | 
|  | (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, | 
|  | &losesInfo); | 
|  | if (!losesInfo) | 
|  | return ConstantFP::get(Const->getContext(), F); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Shrink double -> float functions. | 
|  | static Value *optimizeDoubleFP(CallInst *CI, IRBuilder<> &B, | 
|  | bool isBinary, bool isPrecise = false) { | 
|  | Function *CalleeFn = CI->getCalledFunction(); | 
|  | if (!CI->getType()->isDoubleTy() || !CalleeFn) | 
|  | return nullptr; | 
|  |  | 
|  | // If not all the uses of the function are converted to float, then bail out. | 
|  | // This matters if the precision of the result is more important than the | 
|  | // precision of the arguments. | 
|  | if (isPrecise) | 
|  | for (User *U : CI->users()) { | 
|  | FPTruncInst *Cast = dyn_cast<FPTruncInst>(U); | 
|  | if (!Cast || !Cast->getType()->isFloatTy()) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // If this is something like 'g((double) float)', convert to 'gf(float)'. | 
|  | Value *V[2]; | 
|  | V[0] = valueHasFloatPrecision(CI->getArgOperand(0)); | 
|  | V[1] = isBinary ? valueHasFloatPrecision(CI->getArgOperand(1)) : nullptr; | 
|  | if (!V[0] || (isBinary && !V[1])) | 
|  | return nullptr; | 
|  |  | 
|  | StringRef CalleeNm = CalleeFn->getName(); | 
|  | AttributeList CalleeAt = CalleeFn->getAttributes(); | 
|  | bool CalleeIn = CalleeFn->isIntrinsic(); | 
|  |  | 
|  | // If call isn't an intrinsic, check that it isn't within a function with the | 
|  | // same name as the float version of this call, otherwise the result is an | 
|  | // infinite loop.  For example, from MinGW-w64: | 
|  | // | 
|  | // float expf(float val) { return (float) exp((double) val); } | 
|  | if (!CalleeIn) { | 
|  | const Function *Fn = CI->getFunction(); | 
|  | StringRef FnName = Fn->getName(); | 
|  | if (FnName.back() == 'f' && | 
|  | FnName.size() == (CalleeNm.size() + 1) && | 
|  | FnName.startswith(CalleeNm)) | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // Propagate the math semantics from the current function to the new function. | 
|  | IRBuilder<>::FastMathFlagGuard Guard(B); | 
|  | B.setFastMathFlags(CI->getFastMathFlags()); | 
|  |  | 
|  | // g((double) float) -> (double) gf(float) | 
|  | Value *R; | 
|  | if (CalleeIn) { | 
|  | Module *M = CI->getModule(); | 
|  | Intrinsic::ID IID = CalleeFn->getIntrinsicID(); | 
|  | Function *Fn = Intrinsic::getDeclaration(M, IID, B.getFloatTy()); | 
|  | R = isBinary ? B.CreateCall(Fn, V) : B.CreateCall(Fn, V[0]); | 
|  | } | 
|  | else | 
|  | R = isBinary ? emitBinaryFloatFnCall(V[0], V[1], CalleeNm, B, CalleeAt) | 
|  | : emitUnaryFloatFnCall(V[0], CalleeNm, B, CalleeAt); | 
|  |  | 
|  | return B.CreateFPExt(R, B.getDoubleTy()); | 
|  | } | 
|  |  | 
|  | /// Shrink double -> float for unary functions. | 
|  | static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B, | 
|  | bool isPrecise = false) { | 
|  | return optimizeDoubleFP(CI, B, false, isPrecise); | 
|  | } | 
|  |  | 
|  | /// Shrink double -> float for binary functions. | 
|  | static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B, | 
|  | bool isPrecise = false) { | 
|  | return optimizeDoubleFP(CI, B, true, isPrecise); | 
|  | } | 
|  |  | 
|  | // cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z))) | 
|  | Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) { | 
|  | if (!CI->isFast()) | 
|  | return nullptr; | 
|  |  | 
|  | // Propagate fast-math flags from the existing call to new instructions. | 
|  | IRBuilder<>::FastMathFlagGuard Guard(B); | 
|  | B.setFastMathFlags(CI->getFastMathFlags()); | 
|  |  | 
|  | Value *Real, *Imag; | 
|  | if (CI->getNumArgOperands() == 1) { | 
|  | Value *Op = CI->getArgOperand(0); | 
|  | assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!"); | 
|  | Real = B.CreateExtractValue(Op, 0, "real"); | 
|  | Imag = B.CreateExtractValue(Op, 1, "imag"); | 
|  | } else { | 
|  | assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!"); | 
|  | Real = CI->getArgOperand(0); | 
|  | Imag = CI->getArgOperand(1); | 
|  | } | 
|  |  | 
|  | Value *RealReal = B.CreateFMul(Real, Real); | 
|  | Value *ImagImag = B.CreateFMul(Imag, Imag); | 
|  |  | 
|  | Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt, | 
|  | CI->getType()); | 
|  | return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs"); | 
|  | } | 
|  |  | 
|  | static Value *optimizeTrigReflections(CallInst *Call, LibFunc Func, | 
|  | IRBuilder<> &B) { | 
|  | if (!isa<FPMathOperator>(Call)) | 
|  | return nullptr; | 
|  |  | 
|  | IRBuilder<>::FastMathFlagGuard Guard(B); | 
|  | B.setFastMathFlags(Call->getFastMathFlags()); | 
|  |  | 
|  | // TODO: Can this be shared to also handle LLVM intrinsics? | 
|  | Value *X; | 
|  | switch (Func) { | 
|  | case LibFunc_sin: | 
|  | case LibFunc_sinf: | 
|  | case LibFunc_sinl: | 
|  | case LibFunc_tan: | 
|  | case LibFunc_tanf: | 
|  | case LibFunc_tanl: | 
|  | // sin(-X) --> -sin(X) | 
|  | // tan(-X) --> -tan(X) | 
|  | if (match(Call->getArgOperand(0), m_OneUse(m_FNeg(m_Value(X))))) | 
|  | return B.CreateFNeg(B.CreateCall(Call->getCalledFunction(), X)); | 
|  | break; | 
|  | case LibFunc_cos: | 
|  | case LibFunc_cosf: | 
|  | case LibFunc_cosl: | 
|  | // cos(-X) --> cos(X) | 
|  | if (match(Call->getArgOperand(0), m_FNeg(m_Value(X)))) | 
|  | return B.CreateCall(Call->getCalledFunction(), X, "cos"); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) { | 
|  | // Multiplications calculated using Addition Chains. | 
|  | // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html | 
|  |  | 
|  | assert(Exp != 0 && "Incorrect exponent 0 not handled"); | 
|  |  | 
|  | if (InnerChain[Exp]) | 
|  | return InnerChain[Exp]; | 
|  |  | 
|  | static const unsigned AddChain[33][2] = { | 
|  | {0, 0}, // Unused. | 
|  | {0, 0}, // Unused (base case = pow1). | 
|  | {1, 1}, // Unused (pre-computed). | 
|  | {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4}, | 
|  | {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7}, | 
|  | {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10}, | 
|  | {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13}, | 
|  | {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16}, | 
|  | }; | 
|  |  | 
|  | InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B), | 
|  | getPow(InnerChain, AddChain[Exp][1], B)); | 
|  | return InnerChain[Exp]; | 
|  | } | 
|  |  | 
|  | /// Use exp{,2}(x * y) for pow(exp{,2}(x), y); | 
|  | /// exp2(n * x) for pow(2.0 ** n, x); exp10(x) for pow(10.0, x). | 
|  | Value *LibCallSimplifier::replacePowWithExp(CallInst *Pow, IRBuilder<> &B) { | 
|  | Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); | 
|  | AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); | 
|  | Module *Mod = Pow->getModule(); | 
|  | Type *Ty = Pow->getType(); | 
|  | bool Ignored; | 
|  |  | 
|  | // Evaluate special cases related to a nested function as the base. | 
|  |  | 
|  | // pow(exp(x), y) -> exp(x * y) | 
|  | // pow(exp2(x), y) -> exp2(x * y) | 
|  | // If exp{,2}() is used only once, it is better to fold two transcendental | 
|  | // math functions into one.  If used again, exp{,2}() would still have to be | 
|  | // called with the original argument, then keep both original transcendental | 
|  | // functions.  However, this transformation is only safe with fully relaxed | 
|  | // math semantics, since, besides rounding differences, it changes overflow | 
|  | // and underflow behavior quite dramatically.  For example: | 
|  | //   pow(exp(1000), 0.001) = pow(inf, 0.001) = inf | 
|  | // Whereas: | 
|  | //   exp(1000 * 0.001) = exp(1) | 
|  | // TODO: Loosen the requirement for fully relaxed math semantics. | 
|  | // TODO: Handle exp10() when more targets have it available. | 
|  | CallInst *BaseFn = dyn_cast<CallInst>(Base); | 
|  | if (BaseFn && BaseFn->hasOneUse() && BaseFn->isFast() && Pow->isFast()) { | 
|  | LibFunc LibFn; | 
|  |  | 
|  | Function *CalleeFn = BaseFn->getCalledFunction(); | 
|  | if (CalleeFn && | 
|  | TLI->getLibFunc(CalleeFn->getName(), LibFn) && TLI->has(LibFn)) { | 
|  | StringRef ExpName; | 
|  | Intrinsic::ID ID; | 
|  | Value *ExpFn; | 
|  | LibFunc LibFnFloat; | 
|  | LibFunc LibFnDouble; | 
|  | LibFunc LibFnLongDouble; | 
|  |  | 
|  | switch (LibFn) { | 
|  | default: | 
|  | return nullptr; | 
|  | case LibFunc_expf:  case LibFunc_exp:  case LibFunc_expl: | 
|  | ExpName = TLI->getName(LibFunc_exp); | 
|  | ID = Intrinsic::exp; | 
|  | LibFnFloat = LibFunc_expf; | 
|  | LibFnDouble = LibFunc_exp; | 
|  | LibFnLongDouble = LibFunc_expl; | 
|  | break; | 
|  | case LibFunc_exp2f: case LibFunc_exp2: case LibFunc_exp2l: | 
|  | ExpName = TLI->getName(LibFunc_exp2); | 
|  | ID = Intrinsic::exp2; | 
|  | LibFnFloat = LibFunc_exp2f; | 
|  | LibFnDouble = LibFunc_exp2; | 
|  | LibFnLongDouble = LibFunc_exp2l; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Create new exp{,2}() with the product as its argument. | 
|  | Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul"); | 
|  | ExpFn = BaseFn->doesNotAccessMemory() | 
|  | ? B.CreateCall(Intrinsic::getDeclaration(Mod, ID, Ty), | 
|  | FMul, ExpName) | 
|  | : emitUnaryFloatFnCall(FMul, TLI, LibFnDouble, LibFnFloat, | 
|  | LibFnLongDouble, B, | 
|  | BaseFn->getAttributes()); | 
|  |  | 
|  | // Since the new exp{,2}() is different from the original one, dead code | 
|  | // elimination cannot be trusted to remove it, since it may have side | 
|  | // effects (e.g., errno).  When the only consumer for the original | 
|  | // exp{,2}() is pow(), then it has to be explicitly erased. | 
|  | BaseFn->replaceAllUsesWith(ExpFn); | 
|  | eraseFromParent(BaseFn); | 
|  |  | 
|  | return ExpFn; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Evaluate special cases related to a constant base. | 
|  |  | 
|  | const APFloat *BaseF; | 
|  | if (!match(Pow->getArgOperand(0), m_APFloat(BaseF))) | 
|  | return nullptr; | 
|  |  | 
|  | // pow(2.0 ** n, x) -> exp2(n * x) | 
|  | if (hasUnaryFloatFn(TLI, Ty, LibFunc_exp2, LibFunc_exp2f, LibFunc_exp2l)) { | 
|  | APFloat BaseR = APFloat(1.0); | 
|  | BaseR.convert(BaseF->getSemantics(), APFloat::rmTowardZero, &Ignored); | 
|  | BaseR = BaseR / *BaseF; | 
|  | bool IsInteger    = BaseF->isInteger(), | 
|  | IsReciprocal = BaseR.isInteger(); | 
|  | const APFloat *NF = IsReciprocal ? &BaseR : BaseF; | 
|  | APSInt NI(64, false); | 
|  | if ((IsInteger || IsReciprocal) && | 
|  | !NF->convertToInteger(NI, APFloat::rmTowardZero, &Ignored) && | 
|  | NI > 1 && NI.isPowerOf2()) { | 
|  | double N = NI.logBase2() * (IsReciprocal ? -1.0 : 1.0); | 
|  | Value *FMul = B.CreateFMul(Expo, ConstantFP::get(Ty, N), "mul"); | 
|  | if (Pow->doesNotAccessMemory()) | 
|  | return B.CreateCall(Intrinsic::getDeclaration(Mod, Intrinsic::exp2, Ty), | 
|  | FMul, "exp2"); | 
|  | else | 
|  | return emitUnaryFloatFnCall(FMul, TLI, LibFunc_exp2, LibFunc_exp2f, | 
|  | LibFunc_exp2l, B, Attrs); | 
|  | } | 
|  | } | 
|  |  | 
|  | // pow(10.0, x) -> exp10(x) | 
|  | // TODO: There is no exp10() intrinsic yet, but some day there shall be one. | 
|  | if (match(Base, m_SpecificFP(10.0)) && | 
|  | hasUnaryFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l)) | 
|  | return emitUnaryFloatFnCall(Expo, TLI, LibFunc_exp10, LibFunc_exp10f, | 
|  | LibFunc_exp10l, B, Attrs); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static Value *getSqrtCall(Value *V, AttributeList Attrs, bool NoErrno, | 
|  | Module *M, IRBuilder<> &B, | 
|  | const TargetLibraryInfo *TLI) { | 
|  | // If errno is never set, then use the intrinsic for sqrt(). | 
|  | if (NoErrno) { | 
|  | Function *SqrtFn = | 
|  | Intrinsic::getDeclaration(M, Intrinsic::sqrt, V->getType()); | 
|  | return B.CreateCall(SqrtFn, V, "sqrt"); | 
|  | } | 
|  |  | 
|  | // Otherwise, use the libcall for sqrt(). | 
|  | if (hasUnaryFloatFn(TLI, V->getType(), LibFunc_sqrt, LibFunc_sqrtf, | 
|  | LibFunc_sqrtl)) | 
|  | // TODO: We also should check that the target can in fact lower the sqrt() | 
|  | // libcall. We currently have no way to ask this question, so we ask if | 
|  | // the target has a sqrt() libcall, which is not exactly the same. | 
|  | return emitUnaryFloatFnCall(V, TLI, LibFunc_sqrt, LibFunc_sqrtf, | 
|  | LibFunc_sqrtl, B, Attrs); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Use square root in place of pow(x, +/-0.5). | 
|  | Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) { | 
|  | Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); | 
|  | AttributeList Attrs = Pow->getCalledFunction()->getAttributes(); | 
|  | Module *Mod = Pow->getModule(); | 
|  | Type *Ty = Pow->getType(); | 
|  |  | 
|  | const APFloat *ExpoF; | 
|  | if (!match(Expo, m_APFloat(ExpoF)) || | 
|  | (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5))) | 
|  | return nullptr; | 
|  |  | 
|  | Sqrt = getSqrtCall(Base, Attrs, Pow->doesNotAccessMemory(), Mod, B, TLI); | 
|  | if (!Sqrt) | 
|  | return nullptr; | 
|  |  | 
|  | // Handle signed zero base by expanding to fabs(sqrt(x)). | 
|  | if (!Pow->hasNoSignedZeros()) { | 
|  | Function *FAbsFn = Intrinsic::getDeclaration(Mod, Intrinsic::fabs, Ty); | 
|  | Sqrt = B.CreateCall(FAbsFn, Sqrt, "abs"); | 
|  | } | 
|  |  | 
|  | // Handle non finite base by expanding to | 
|  | // (x == -infinity ? +infinity : sqrt(x)). | 
|  | if (!Pow->hasNoInfs()) { | 
|  | Value *PosInf = ConstantFP::getInfinity(Ty), | 
|  | *NegInf = ConstantFP::getInfinity(Ty, true); | 
|  | Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf"); | 
|  | Sqrt = B.CreateSelect(FCmp, PosInf, Sqrt); | 
|  | } | 
|  |  | 
|  | // If the exponent is negative, then get the reciprocal. | 
|  | if (ExpoF->isNegative()) | 
|  | Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal"); | 
|  |  | 
|  | return Sqrt; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) { | 
|  | Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1); | 
|  | Function *Callee = Pow->getCalledFunction(); | 
|  | StringRef Name = Callee->getName(); | 
|  | Type *Ty = Pow->getType(); | 
|  | Value *Shrunk = nullptr; | 
|  | bool Ignored; | 
|  |  | 
|  | // Bail out if simplifying libcalls to pow() is disabled. | 
|  | if (!hasUnaryFloatFn(TLI, Ty, LibFunc_pow, LibFunc_powf, LibFunc_powl)) | 
|  | return nullptr; | 
|  |  | 
|  | // Propagate the math semantics from the call to any created instructions. | 
|  | IRBuilder<>::FastMathFlagGuard Guard(B); | 
|  | B.setFastMathFlags(Pow->getFastMathFlags()); | 
|  |  | 
|  | // Shrink pow() to powf() if the arguments are single precision, | 
|  | // unless the result is expected to be double precision. | 
|  | if (UnsafeFPShrink && | 
|  | Name == TLI->getName(LibFunc_pow) && hasFloatVersion(Name)) | 
|  | Shrunk = optimizeBinaryDoubleFP(Pow, B, true); | 
|  |  | 
|  | // Evaluate special cases related to the base. | 
|  |  | 
|  | // pow(1.0, x) -> 1.0 | 
|  | if (match(Base, m_FPOne())) | 
|  | return Base; | 
|  |  | 
|  | if (Value *Exp = replacePowWithExp(Pow, B)) | 
|  | return Exp; | 
|  |  | 
|  | // Evaluate special cases related to the exponent. | 
|  |  | 
|  | // pow(x, -1.0) -> 1.0 / x | 
|  | if (match(Expo, m_SpecificFP(-1.0))) | 
|  | return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal"); | 
|  |  | 
|  | // pow(x, 0.0) -> 1.0 | 
|  | if (match(Expo, m_SpecificFP(0.0))) | 
|  | return ConstantFP::get(Ty, 1.0); | 
|  |  | 
|  | // pow(x, 1.0) -> x | 
|  | if (match(Expo, m_FPOne())) | 
|  | return Base; | 
|  |  | 
|  | // pow(x, 2.0) -> x * x | 
|  | if (match(Expo, m_SpecificFP(2.0))) | 
|  | return B.CreateFMul(Base, Base, "square"); | 
|  |  | 
|  | if (Value *Sqrt = replacePowWithSqrt(Pow, B)) | 
|  | return Sqrt; | 
|  |  | 
|  | // pow(x, n) -> x * x * x * ... | 
|  | const APFloat *ExpoF; | 
|  | if (Pow->isFast() && match(Expo, m_APFloat(ExpoF))) { | 
|  | // We limit to a max of 7 multiplications, thus the maximum exponent is 32. | 
|  | // If the exponent is an integer+0.5 we generate a call to sqrt and an | 
|  | // additional fmul. | 
|  | // TODO: This whole transformation should be backend specific (e.g. some | 
|  | //       backends might prefer libcalls or the limit for the exponent might | 
|  | //       be different) and it should also consider optimizing for size. | 
|  | APFloat LimF(ExpoF->getSemantics(), 33.0), | 
|  | ExpoA(abs(*ExpoF)); | 
|  | if (ExpoA.compare(LimF) == APFloat::cmpLessThan) { | 
|  | // This transformation applies to integer or integer+0.5 exponents only. | 
|  | // For integer+0.5, we create a sqrt(Base) call. | 
|  | Value *Sqrt = nullptr; | 
|  | if (!ExpoA.isInteger()) { | 
|  | APFloat Expo2 = ExpoA; | 
|  | // To check if ExpoA is an integer + 0.5, we add it to itself. If there | 
|  | // is no floating point exception and the result is an integer, then | 
|  | // ExpoA == integer + 0.5 | 
|  | if (Expo2.add(ExpoA, APFloat::rmNearestTiesToEven) != APFloat::opOK) | 
|  | return nullptr; | 
|  |  | 
|  | if (!Expo2.isInteger()) | 
|  | return nullptr; | 
|  |  | 
|  | Sqrt = | 
|  | getSqrtCall(Base, Pow->getCalledFunction()->getAttributes(), | 
|  | Pow->doesNotAccessMemory(), Pow->getModule(), B, TLI); | 
|  | } | 
|  |  | 
|  | // We will memoize intermediate products of the Addition Chain. | 
|  | Value *InnerChain[33] = {nullptr}; | 
|  | InnerChain[1] = Base; | 
|  | InnerChain[2] = B.CreateFMul(Base, Base, "square"); | 
|  |  | 
|  | // We cannot readily convert a non-double type (like float) to a double. | 
|  | // So we first convert it to something which could be converted to double. | 
|  | ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored); | 
|  | Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B); | 
|  |  | 
|  | // Expand pow(x, y+0.5) to pow(x, y) * sqrt(x). | 
|  | if (Sqrt) | 
|  | FMul = B.CreateFMul(FMul, Sqrt); | 
|  |  | 
|  | // If the exponent is negative, then get the reciprocal. | 
|  | if (ExpoF->isNegative()) | 
|  | FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal"); | 
|  |  | 
|  | return FMul; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Shrunk; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) { | 
|  | Function *Callee = CI->getCalledFunction(); | 
|  | Value *Ret = nullptr; | 
|  | StringRef Name = Callee->getName(); | 
|  | if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name)) | 
|  | Ret = optimizeUnaryDoubleFP(CI, B, true); | 
|  |  | 
|  | Value *Op = CI->getArgOperand(0); | 
|  | // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32 | 
|  | // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32 | 
|  | LibFunc LdExp = LibFunc_ldexpl; | 
|  | if (Op->getType()->isFloatTy()) | 
|  | LdExp = LibFunc_ldexpf; | 
|  | else if (Op->getType()->isDoubleTy()) | 
|  | LdExp = LibFunc_ldexp; | 
|  |  | 
|  | if (TLI->has(LdExp)) { | 
|  | Value *LdExpArg = nullptr; | 
|  | if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) { | 
|  | if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32) | 
|  | LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty()); | 
|  | } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) { | 
|  | if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32) | 
|  | LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty()); | 
|  | } | 
|  |  | 
|  | if (LdExpArg) { | 
|  | Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f)); | 
|  | if (!Op->getType()->isFloatTy()) | 
|  | One = ConstantExpr::getFPExtend(One, Op->getType()); | 
|  |  | 
|  | Module *M = CI->getModule(); | 
|  | FunctionCallee NewCallee = M->getOrInsertFunction( | 
|  | TLI->getName(LdExp), Op->getType(), Op->getType(), B.getInt32Ty()); | 
|  | CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg}); | 
|  | if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) | 
|  | CI->setCallingConv(F->getCallingConv()); | 
|  |  | 
|  | return CI; | 
|  | } | 
|  | } | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) { | 
|  | Function *Callee = CI->getCalledFunction(); | 
|  | // If we can shrink the call to a float function rather than a double | 
|  | // function, do that first. | 
|  | StringRef Name = Callee->getName(); | 
|  | if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name)) | 
|  | if (Value *Ret = optimizeBinaryDoubleFP(CI, B)) | 
|  | return Ret; | 
|  |  | 
|  | IRBuilder<>::FastMathFlagGuard Guard(B); | 
|  | FastMathFlags FMF; | 
|  | if (CI->isFast()) { | 
|  | // If the call is 'fast', then anything we create here will also be 'fast'. | 
|  | FMF.setFast(); | 
|  | } else { | 
|  | // At a minimum, no-nans-fp-math must be true. | 
|  | if (!CI->hasNoNaNs()) | 
|  | return nullptr; | 
|  | // No-signed-zeros is implied by the definitions of fmax/fmin themselves: | 
|  | // "Ideally, fmax would be sensitive to the sign of zero, for example | 
|  | // fmax(-0. 0, +0. 0) would return +0; however, implementation in software | 
|  | // might be impractical." | 
|  | FMF.setNoSignedZeros(); | 
|  | FMF.setNoNaNs(); | 
|  | } | 
|  | B.setFastMathFlags(FMF); | 
|  |  | 
|  | // We have a relaxed floating-point environment. We can ignore NaN-handling | 
|  | // and transform to a compare and select. We do not have to consider errno or | 
|  | // exceptions, because fmin/fmax do not have those. | 
|  | Value *Op0 = CI->getArgOperand(0); | 
|  | Value *Op1 = CI->getArgOperand(1); | 
|  | Value *Cmp = Callee->getName().startswith("fmin") ? | 
|  | B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1); | 
|  | return B.CreateSelect(Cmp, Op0, Op1); | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) { | 
|  | Function *Callee = CI->getCalledFunction(); | 
|  | Value *Ret = nullptr; | 
|  | StringRef Name = Callee->getName(); | 
|  | if (UnsafeFPShrink && hasFloatVersion(Name)) | 
|  | Ret = optimizeUnaryDoubleFP(CI, B, true); | 
|  |  | 
|  | if (!CI->isFast()) | 
|  | return Ret; | 
|  | Value *Op1 = CI->getArgOperand(0); | 
|  | auto *OpC = dyn_cast<CallInst>(Op1); | 
|  |  | 
|  | // The earlier call must also be 'fast' in order to do these transforms. | 
|  | if (!OpC || !OpC->isFast()) | 
|  | return Ret; | 
|  |  | 
|  | // log(pow(x,y)) -> y*log(x) | 
|  | // This is only applicable to log, log2, log10. | 
|  | if (Name != "log" && Name != "log2" && Name != "log10") | 
|  | return Ret; | 
|  |  | 
|  | IRBuilder<>::FastMathFlagGuard Guard(B); | 
|  | FastMathFlags FMF; | 
|  | FMF.setFast(); | 
|  | B.setFastMathFlags(FMF); | 
|  |  | 
|  | LibFunc Func; | 
|  | Function *F = OpC->getCalledFunction(); | 
|  | if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && | 
|  | Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow)) | 
|  | return B.CreateFMul(OpC->getArgOperand(1), | 
|  | emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B, | 
|  | Callee->getAttributes()), "mul"); | 
|  |  | 
|  | // log(exp2(y)) -> y*log(2) | 
|  | if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) && | 
|  | TLI->has(Func) && Func == LibFunc_exp2) | 
|  | return B.CreateFMul( | 
|  | OpC->getArgOperand(0), | 
|  | emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0), | 
|  | Callee->getName(), B, Callee->getAttributes()), | 
|  | "logmul"); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) { | 
|  | Function *Callee = CI->getCalledFunction(); | 
|  | Value *Ret = nullptr; | 
|  | // TODO: Once we have a way (other than checking for the existince of the | 
|  | // libcall) to tell whether our target can lower @llvm.sqrt, relax the | 
|  | // condition below. | 
|  | if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" || | 
|  | Callee->getIntrinsicID() == Intrinsic::sqrt)) | 
|  | Ret = optimizeUnaryDoubleFP(CI, B, true); | 
|  |  | 
|  | if (!CI->isFast()) | 
|  | return Ret; | 
|  |  | 
|  | Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0)); | 
|  | if (!I || I->getOpcode() != Instruction::FMul || !I->isFast()) | 
|  | return Ret; | 
|  |  | 
|  | // We're looking for a repeated factor in a multiplication tree, | 
|  | // so we can do this fold: sqrt(x * x) -> fabs(x); | 
|  | // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y). | 
|  | Value *Op0 = I->getOperand(0); | 
|  | Value *Op1 = I->getOperand(1); | 
|  | Value *RepeatOp = nullptr; | 
|  | Value *OtherOp = nullptr; | 
|  | if (Op0 == Op1) { | 
|  | // Simple match: the operands of the multiply are identical. | 
|  | RepeatOp = Op0; | 
|  | } else { | 
|  | // Look for a more complicated pattern: one of the operands is itself | 
|  | // a multiply, so search for a common factor in that multiply. | 
|  | // Note: We don't bother looking any deeper than this first level or for | 
|  | // variations of this pattern because instcombine's visitFMUL and/or the | 
|  | // reassociation pass should give us this form. | 
|  | Value *OtherMul0, *OtherMul1; | 
|  | if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) { | 
|  | // Pattern: sqrt((x * y) * z) | 
|  | if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) { | 
|  | // Matched: sqrt((x * x) * z) | 
|  | RepeatOp = OtherMul0; | 
|  | OtherOp = Op1; | 
|  | } | 
|  | } | 
|  | } | 
|  | if (!RepeatOp) | 
|  | return Ret; | 
|  |  | 
|  | // Fast math flags for any created instructions should match the sqrt | 
|  | // and multiply. | 
|  | IRBuilder<>::FastMathFlagGuard Guard(B); | 
|  | B.setFastMathFlags(I->getFastMathFlags()); | 
|  |  | 
|  | // If we found a repeated factor, hoist it out of the square root and | 
|  | // replace it with the fabs of that factor. | 
|  | Module *M = Callee->getParent(); | 
|  | Type *ArgType = I->getType(); | 
|  | Function *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType); | 
|  | Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs"); | 
|  | if (OtherOp) { | 
|  | // If we found a non-repeated factor, we still need to get its square | 
|  | // root. We then multiply that by the value that was simplified out | 
|  | // of the square root calculation. | 
|  | Function *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType); | 
|  | Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt"); | 
|  | return B.CreateFMul(FabsCall, SqrtCall); | 
|  | } | 
|  | return FabsCall; | 
|  | } | 
|  |  | 
|  | // TODO: Generalize to handle any trig function and its inverse. | 
|  | Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) { | 
|  | Function *Callee = CI->getCalledFunction(); | 
|  | Value *Ret = nullptr; | 
|  | StringRef Name = Callee->getName(); | 
|  | if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name)) | 
|  | Ret = optimizeUnaryDoubleFP(CI, B, true); | 
|  |  | 
|  | Value *Op1 = CI->getArgOperand(0); | 
|  | auto *OpC = dyn_cast<CallInst>(Op1); | 
|  | if (!OpC) | 
|  | return Ret; | 
|  |  | 
|  | // Both calls must be 'fast' in order to remove them. | 
|  | if (!CI->isFast() || !OpC->isFast()) | 
|  | return Ret; | 
|  |  | 
|  | // tan(atan(x)) -> x | 
|  | // tanf(atanf(x)) -> x | 
|  | // tanl(atanl(x)) -> x | 
|  | LibFunc Func; | 
|  | Function *F = OpC->getCalledFunction(); | 
|  | if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) && | 
|  | ((Func == LibFunc_atan && Callee->getName() == "tan") || | 
|  | (Func == LibFunc_atanf && Callee->getName() == "tanf") || | 
|  | (Func == LibFunc_atanl && Callee->getName() == "tanl"))) | 
|  | Ret = OpC->getArgOperand(0); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | static bool isTrigLibCall(CallInst *CI) { | 
|  | // We can only hope to do anything useful if we can ignore things like errno | 
|  | // and floating-point exceptions. | 
|  | // We already checked the prototype. | 
|  | return CI->hasFnAttr(Attribute::NoUnwind) && | 
|  | CI->hasFnAttr(Attribute::ReadNone); | 
|  | } | 
|  |  | 
|  | static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg, | 
|  | bool UseFloat, Value *&Sin, Value *&Cos, | 
|  | Value *&SinCos) { | 
|  | Type *ArgTy = Arg->getType(); | 
|  | Type *ResTy; | 
|  | StringRef Name; | 
|  |  | 
|  | Triple T(OrigCallee->getParent()->getTargetTriple()); | 
|  | if (UseFloat) { | 
|  | Name = "__sincospif_stret"; | 
|  |  | 
|  | assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now"); | 
|  | // x86_64 can't use {float, float} since that would be returned in both | 
|  | // xmm0 and xmm1, which isn't what a real struct would do. | 
|  | ResTy = T.getArch() == Triple::x86_64 | 
|  | ? static_cast<Type *>(VectorType::get(ArgTy, 2)) | 
|  | : static_cast<Type *>(StructType::get(ArgTy, ArgTy)); | 
|  | } else { | 
|  | Name = "__sincospi_stret"; | 
|  | ResTy = StructType::get(ArgTy, ArgTy); | 
|  | } | 
|  |  | 
|  | Module *M = OrigCallee->getParent(); | 
|  | FunctionCallee Callee = | 
|  | M->getOrInsertFunction(Name, OrigCallee->getAttributes(), ResTy, ArgTy); | 
|  |  | 
|  | if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) { | 
|  | // If the argument is an instruction, it must dominate all uses so put our | 
|  | // sincos call there. | 
|  | B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator()); | 
|  | } else { | 
|  | // Otherwise (e.g. for a constant) the beginning of the function is as | 
|  | // good a place as any. | 
|  | BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock(); | 
|  | B.SetInsertPoint(&EntryBB, EntryBB.begin()); | 
|  | } | 
|  |  | 
|  | SinCos = B.CreateCall(Callee, Arg, "sincospi"); | 
|  |  | 
|  | if (SinCos->getType()->isStructTy()) { | 
|  | Sin = B.CreateExtractValue(SinCos, 0, "sinpi"); | 
|  | Cos = B.CreateExtractValue(SinCos, 1, "cospi"); | 
|  | } else { | 
|  | Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0), | 
|  | "sinpi"); | 
|  | Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1), | 
|  | "cospi"); | 
|  | } | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) { | 
|  | // Make sure the prototype is as expected, otherwise the rest of the | 
|  | // function is probably invalid and likely to abort. | 
|  | if (!isTrigLibCall(CI)) | 
|  | return nullptr; | 
|  |  | 
|  | Value *Arg = CI->getArgOperand(0); | 
|  | SmallVector<CallInst *, 1> SinCalls; | 
|  | SmallVector<CallInst *, 1> CosCalls; | 
|  | SmallVector<CallInst *, 1> SinCosCalls; | 
|  |  | 
|  | bool IsFloat = Arg->getType()->isFloatTy(); | 
|  |  | 
|  | // Look for all compatible sinpi, cospi and sincospi calls with the same | 
|  | // argument. If there are enough (in some sense) we can make the | 
|  | // substitution. | 
|  | Function *F = CI->getFunction(); | 
|  | for (User *U : Arg->users()) | 
|  | classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls); | 
|  |  | 
|  | // It's only worthwhile if both sinpi and cospi are actually used. | 
|  | if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty())) | 
|  | return nullptr; | 
|  |  | 
|  | Value *Sin, *Cos, *SinCos; | 
|  | insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos); | 
|  |  | 
|  | auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls, | 
|  | Value *Res) { | 
|  | for (CallInst *C : Calls) | 
|  | replaceAllUsesWith(C, Res); | 
|  | }; | 
|  |  | 
|  | replaceTrigInsts(SinCalls, Sin); | 
|  | replaceTrigInsts(CosCalls, Cos); | 
|  | replaceTrigInsts(SinCosCalls, SinCos); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | void LibCallSimplifier::classifyArgUse( | 
|  | Value *Val, Function *F, bool IsFloat, | 
|  | SmallVectorImpl<CallInst *> &SinCalls, | 
|  | SmallVectorImpl<CallInst *> &CosCalls, | 
|  | SmallVectorImpl<CallInst *> &SinCosCalls) { | 
|  | CallInst *CI = dyn_cast<CallInst>(Val); | 
|  |  | 
|  | if (!CI) | 
|  | return; | 
|  |  | 
|  | // Don't consider calls in other functions. | 
|  | if (CI->getFunction() != F) | 
|  | return; | 
|  |  | 
|  | Function *Callee = CI->getCalledFunction(); | 
|  | LibFunc Func; | 
|  | if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) || | 
|  | !isTrigLibCall(CI)) | 
|  | return; | 
|  |  | 
|  | if (IsFloat) { | 
|  | if (Func == LibFunc_sinpif) | 
|  | SinCalls.push_back(CI); | 
|  | else if (Func == LibFunc_cospif) | 
|  | CosCalls.push_back(CI); | 
|  | else if (Func == LibFunc_sincospif_stret) | 
|  | SinCosCalls.push_back(CI); | 
|  | } else { | 
|  | if (Func == LibFunc_sinpi) | 
|  | SinCalls.push_back(CI); | 
|  | else if (Func == LibFunc_cospi) | 
|  | CosCalls.push_back(CI); | 
|  | else if (Func == LibFunc_sincospi_stret) | 
|  | SinCosCalls.push_back(CI); | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Integer Library Call Optimizations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) { | 
|  | // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0 | 
|  | Value *Op = CI->getArgOperand(0); | 
|  | Type *ArgType = Op->getType(); | 
|  | Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), | 
|  | Intrinsic::cttz, ArgType); | 
|  | Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz"); | 
|  | V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1)); | 
|  | V = B.CreateIntCast(V, B.getInt32Ty(), false); | 
|  |  | 
|  | Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType)); | 
|  | return B.CreateSelect(Cond, V, B.getInt32(0)); | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) { | 
|  | // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false)) | 
|  | Value *Op = CI->getArgOperand(0); | 
|  | Type *ArgType = Op->getType(); | 
|  | Function *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(), | 
|  | Intrinsic::ctlz, ArgType); | 
|  | Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz"); | 
|  | V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()), | 
|  | V); | 
|  | return B.CreateIntCast(V, CI->getType(), false); | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) { | 
|  | // abs(x) -> x <s 0 ? -x : x | 
|  | // The negation has 'nsw' because abs of INT_MIN is undefined. | 
|  | Value *X = CI->getArgOperand(0); | 
|  | Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType())); | 
|  | Value *NegX = B.CreateNSWNeg(X, "neg"); | 
|  | return B.CreateSelect(IsNeg, NegX, X); | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) { | 
|  | // isdigit(c) -> (c-'0') <u 10 | 
|  | Value *Op = CI->getArgOperand(0); | 
|  | Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp"); | 
|  | Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit"); | 
|  | return B.CreateZExt(Op, CI->getType()); | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) { | 
|  | // isascii(c) -> c <u 128 | 
|  | Value *Op = CI->getArgOperand(0); | 
|  | Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii"); | 
|  | return B.CreateZExt(Op, CI->getType()); | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) { | 
|  | // toascii(c) -> c & 0x7f | 
|  | return B.CreateAnd(CI->getArgOperand(0), | 
|  | ConstantInt::get(CI->getType(), 0x7F)); | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) { | 
|  | StringRef Str; | 
|  | if (!getConstantStringInfo(CI->getArgOperand(0), Str)) | 
|  | return nullptr; | 
|  |  | 
|  | return convertStrToNumber(CI, Str, 10); | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) { | 
|  | StringRef Str; | 
|  | if (!getConstantStringInfo(CI->getArgOperand(0), Str)) | 
|  | return nullptr; | 
|  |  | 
|  | if (!isa<ConstantPointerNull>(CI->getArgOperand(1))) | 
|  | return nullptr; | 
|  |  | 
|  | if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) { | 
|  | return convertStrToNumber(CI, Str, CInt->getSExtValue()); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Formatting and IO Library Call Optimizations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg); | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B, | 
|  | int StreamArg) { | 
|  | Function *Callee = CI->getCalledFunction(); | 
|  | // Error reporting calls should be cold, mark them as such. | 
|  | // This applies even to non-builtin calls: it is only a hint and applies to | 
|  | // functions that the frontend might not understand as builtins. | 
|  |  | 
|  | // This heuristic was suggested in: | 
|  | // Improving Static Branch Prediction in a Compiler | 
|  | // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu | 
|  | // Proceedings of PACT'98, Oct. 1998, IEEE | 
|  | if (!CI->hasFnAttr(Attribute::Cold) && | 
|  | isReportingError(Callee, CI, StreamArg)) { | 
|  | CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold); | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) { | 
|  | if (!Callee || !Callee->isDeclaration()) | 
|  | return false; | 
|  |  | 
|  | if (StreamArg < 0) | 
|  | return true; | 
|  |  | 
|  | // These functions might be considered cold, but only if their stream | 
|  | // argument is stderr. | 
|  |  | 
|  | if (StreamArg >= (int)CI->getNumArgOperands()) | 
|  | return false; | 
|  | LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg)); | 
|  | if (!LI) | 
|  | return false; | 
|  | GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand()); | 
|  | if (!GV || !GV->isDeclaration()) | 
|  | return false; | 
|  | return GV->getName() == "stderr"; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) { | 
|  | // Check for a fixed format string. | 
|  | StringRef FormatStr; | 
|  | if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr)) | 
|  | return nullptr; | 
|  |  | 
|  | // Empty format string -> noop. | 
|  | if (FormatStr.empty()) // Tolerate printf's declared void. | 
|  | return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0); | 
|  |  | 
|  | // Do not do any of the following transformations if the printf return value | 
|  | // is used, in general the printf return value is not compatible with either | 
|  | // putchar() or puts(). | 
|  | if (!CI->use_empty()) | 
|  | return nullptr; | 
|  |  | 
|  | // printf("x") -> putchar('x'), even for "%" and "%%". | 
|  | if (FormatStr.size() == 1 || FormatStr == "%%") | 
|  | return emitPutChar(B.getInt32(FormatStr[0]), B, TLI); | 
|  |  | 
|  | // printf("%s", "a") --> putchar('a') | 
|  | if (FormatStr == "%s" && CI->getNumArgOperands() > 1) { | 
|  | StringRef ChrStr; | 
|  | if (!getConstantStringInfo(CI->getOperand(1), ChrStr)) | 
|  | return nullptr; | 
|  | if (ChrStr.size() != 1) | 
|  | return nullptr; | 
|  | return emitPutChar(B.getInt32(ChrStr[0]), B, TLI); | 
|  | } | 
|  |  | 
|  | // printf("foo\n") --> puts("foo") | 
|  | if (FormatStr[FormatStr.size() - 1] == '\n' && | 
|  | FormatStr.find('%') == StringRef::npos) { // No format characters. | 
|  | // Create a string literal with no \n on it.  We expect the constant merge | 
|  | // pass to be run after this pass, to merge duplicate strings. | 
|  | FormatStr = FormatStr.drop_back(); | 
|  | Value *GV = B.CreateGlobalString(FormatStr, "str"); | 
|  | return emitPutS(GV, B, TLI); | 
|  | } | 
|  |  | 
|  | // Optimize specific format strings. | 
|  | // printf("%c", chr) --> putchar(chr) | 
|  | if (FormatStr == "%c" && CI->getNumArgOperands() > 1 && | 
|  | CI->getArgOperand(1)->getType()->isIntegerTy()) | 
|  | return emitPutChar(CI->getArgOperand(1), B, TLI); | 
|  |  | 
|  | // printf("%s\n", str) --> puts(str) | 
|  | if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 && | 
|  | CI->getArgOperand(1)->getType()->isPointerTy()) | 
|  | return emitPutS(CI->getArgOperand(1), B, TLI); | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) { | 
|  |  | 
|  | Function *Callee = CI->getCalledFunction(); | 
|  | FunctionType *FT = Callee->getFunctionType(); | 
|  | if (Value *V = optimizePrintFString(CI, B)) { | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // printf(format, ...) -> iprintf(format, ...) if no floating point | 
|  | // arguments. | 
|  | if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) { | 
|  | Module *M = B.GetInsertBlock()->getParent()->getParent(); | 
|  | FunctionCallee IPrintFFn = | 
|  | M->getOrInsertFunction("iprintf", FT, Callee->getAttributes()); | 
|  | CallInst *New = cast<CallInst>(CI->clone()); | 
|  | New->setCalledFunction(IPrintFFn); | 
|  | B.Insert(New); | 
|  | return New; | 
|  | } | 
|  |  | 
|  | // printf(format, ...) -> __small_printf(format, ...) if no 128-bit floating point | 
|  | // arguments. | 
|  | if (TLI->has(LibFunc_small_printf) && !callHasFP128Argument(CI)) { | 
|  | Module *M = B.GetInsertBlock()->getParent()->getParent(); | 
|  | auto SmallPrintFFn = | 
|  | M->getOrInsertFunction(TLI->getName(LibFunc_small_printf), | 
|  | FT, Callee->getAttributes()); | 
|  | CallInst *New = cast<CallInst>(CI->clone()); | 
|  | New->setCalledFunction(SmallPrintFFn); | 
|  | B.Insert(New); | 
|  | return New; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) { | 
|  | // Check for a fixed format string. | 
|  | StringRef FormatStr; | 
|  | if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) | 
|  | return nullptr; | 
|  |  | 
|  | // If we just have a format string (nothing else crazy) transform it. | 
|  | if (CI->getNumArgOperands() == 2) { | 
|  | // Make sure there's no % in the constant array.  We could try to handle | 
|  | // %% -> % in the future if we cared. | 
|  | if (FormatStr.find('%') != StringRef::npos) | 
|  | return nullptr; // we found a format specifier, bail out. | 
|  |  | 
|  | // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1) | 
|  | B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, | 
|  | ConstantInt::get(DL.getIntPtrType(CI->getContext()), | 
|  | FormatStr.size() + 1)); // Copy the null byte. | 
|  | return ConstantInt::get(CI->getType(), FormatStr.size()); | 
|  | } | 
|  |  | 
|  | // The remaining optimizations require the format string to be "%s" or "%c" | 
|  | // and have an extra operand. | 
|  | if (FormatStr.size() != 2 || FormatStr[0] != '%' || | 
|  | CI->getNumArgOperands() < 3) | 
|  | return nullptr; | 
|  |  | 
|  | // Decode the second character of the format string. | 
|  | if (FormatStr[1] == 'c') { | 
|  | // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 | 
|  | if (!CI->getArgOperand(2)->getType()->isIntegerTy()) | 
|  | return nullptr; | 
|  | Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char"); | 
|  | Value *Ptr = castToCStr(CI->getArgOperand(0), B); | 
|  | B.CreateStore(V, Ptr); | 
|  | Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); | 
|  | B.CreateStore(B.getInt8(0), Ptr); | 
|  |  | 
|  | return ConstantInt::get(CI->getType(), 1); | 
|  | } | 
|  |  | 
|  | if (FormatStr[1] == 's') { | 
|  | // sprintf(dest, "%s", str) -> llvm.memcpy(align 1 dest, align 1 str, | 
|  | // strlen(str)+1) | 
|  | if (!CI->getArgOperand(2)->getType()->isPointerTy()) | 
|  | return nullptr; | 
|  |  | 
|  | Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI); | 
|  | if (!Len) | 
|  | return nullptr; | 
|  | Value *IncLen = | 
|  | B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc"); | 
|  | B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen); | 
|  |  | 
|  | // The sprintf result is the unincremented number of bytes in the string. | 
|  | return B.CreateIntCast(Len, CI->getType(), false); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) { | 
|  | Function *Callee = CI->getCalledFunction(); | 
|  | FunctionType *FT = Callee->getFunctionType(); | 
|  | if (Value *V = optimizeSPrintFString(CI, B)) { | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating | 
|  | // point arguments. | 
|  | if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) { | 
|  | Module *M = B.GetInsertBlock()->getParent()->getParent(); | 
|  | FunctionCallee SIPrintFFn = | 
|  | M->getOrInsertFunction("siprintf", FT, Callee->getAttributes()); | 
|  | CallInst *New = cast<CallInst>(CI->clone()); | 
|  | New->setCalledFunction(SIPrintFFn); | 
|  | B.Insert(New); | 
|  | return New; | 
|  | } | 
|  |  | 
|  | // sprintf(str, format, ...) -> __small_sprintf(str, format, ...) if no 128-bit | 
|  | // floating point arguments. | 
|  | if (TLI->has(LibFunc_small_sprintf) && !callHasFP128Argument(CI)) { | 
|  | Module *M = B.GetInsertBlock()->getParent()->getParent(); | 
|  | auto SmallSPrintFFn = | 
|  | M->getOrInsertFunction(TLI->getName(LibFunc_small_sprintf), | 
|  | FT, Callee->getAttributes()); | 
|  | CallInst *New = cast<CallInst>(CI->clone()); | 
|  | New->setCalledFunction(SmallSPrintFFn); | 
|  | B.Insert(New); | 
|  | return New; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) { | 
|  | // Check for a fixed format string. | 
|  | StringRef FormatStr; | 
|  | if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr)) | 
|  | return nullptr; | 
|  |  | 
|  | // Check for size | 
|  | ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1)); | 
|  | if (!Size) | 
|  | return nullptr; | 
|  |  | 
|  | uint64_t N = Size->getZExtValue(); | 
|  |  | 
|  | // If we just have a format string (nothing else crazy) transform it. | 
|  | if (CI->getNumArgOperands() == 3) { | 
|  | // Make sure there's no % in the constant array.  We could try to handle | 
|  | // %% -> % in the future if we cared. | 
|  | if (FormatStr.find('%') != StringRef::npos) | 
|  | return nullptr; // we found a format specifier, bail out. | 
|  |  | 
|  | if (N == 0) | 
|  | return ConstantInt::get(CI->getType(), FormatStr.size()); | 
|  | else if (N < FormatStr.size() + 1) | 
|  | return nullptr; | 
|  |  | 
|  | // snprintf(dst, size, fmt) -> llvm.memcpy(align 1 dst, align 1 fmt, | 
|  | // strlen(fmt)+1) | 
|  | B.CreateMemCpy( | 
|  | CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, | 
|  | ConstantInt::get(DL.getIntPtrType(CI->getContext()), | 
|  | FormatStr.size() + 1)); // Copy the null byte. | 
|  | return ConstantInt::get(CI->getType(), FormatStr.size()); | 
|  | } | 
|  |  | 
|  | // The remaining optimizations require the format string to be "%s" or "%c" | 
|  | // and have an extra operand. | 
|  | if (FormatStr.size() == 2 && FormatStr[0] == '%' && | 
|  | CI->getNumArgOperands() == 4) { | 
|  |  | 
|  | // Decode the second character of the format string. | 
|  | if (FormatStr[1] == 'c') { | 
|  | if (N == 0) | 
|  | return ConstantInt::get(CI->getType(), 1); | 
|  | else if (N == 1) | 
|  | return nullptr; | 
|  |  | 
|  | // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0 | 
|  | if (!CI->getArgOperand(3)->getType()->isIntegerTy()) | 
|  | return nullptr; | 
|  | Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char"); | 
|  | Value *Ptr = castToCStr(CI->getArgOperand(0), B); | 
|  | B.CreateStore(V, Ptr); | 
|  | Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul"); | 
|  | B.CreateStore(B.getInt8(0), Ptr); | 
|  |  | 
|  | return ConstantInt::get(CI->getType(), 1); | 
|  | } | 
|  |  | 
|  | if (FormatStr[1] == 's') { | 
|  | // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1) | 
|  | StringRef Str; | 
|  | if (!getConstantStringInfo(CI->getArgOperand(3), Str)) | 
|  | return nullptr; | 
|  |  | 
|  | if (N == 0) | 
|  | return ConstantInt::get(CI->getType(), Str.size()); | 
|  | else if (N < Str.size() + 1) | 
|  | return nullptr; | 
|  |  | 
|  | B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1, | 
|  | ConstantInt::get(CI->getType(), Str.size() + 1)); | 
|  |  | 
|  | // The snprintf result is the unincremented number of bytes in the string. | 
|  | return ConstantInt::get(CI->getType(), Str.size()); | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) { | 
|  | if (Value *V = optimizeSnPrintFString(CI, B)) { | 
|  | return V; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) { | 
|  | optimizeErrorReporting(CI, B, 0); | 
|  |  | 
|  | // All the optimizations depend on the format string. | 
|  | StringRef FormatStr; | 
|  | if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr)) | 
|  | return nullptr; | 
|  |  | 
|  | // Do not do any of the following transformations if the fprintf return | 
|  | // value is used, in general the fprintf return value is not compatible | 
|  | // with fwrite(), fputc() or fputs(). | 
|  | if (!CI->use_empty()) | 
|  | return nullptr; | 
|  |  | 
|  | // fprintf(F, "foo") --> fwrite("foo", 3, 1, F) | 
|  | if (CI->getNumArgOperands() == 2) { | 
|  | // Could handle %% -> % if we cared. | 
|  | if (FormatStr.find('%') != StringRef::npos) | 
|  | return nullptr; // We found a format specifier. | 
|  |  | 
|  | return emitFWrite( | 
|  | CI->getArgOperand(1), | 
|  | ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()), | 
|  | CI->getArgOperand(0), B, DL, TLI); | 
|  | } | 
|  |  | 
|  | // The remaining optimizations require the format string to be "%s" or "%c" | 
|  | // and have an extra operand. | 
|  | if (FormatStr.size() != 2 || FormatStr[0] != '%' || | 
|  | CI->getNumArgOperands() < 3) | 
|  | return nullptr; | 
|  |  | 
|  | // Decode the second character of the format string. | 
|  | if (FormatStr[1] == 'c') { | 
|  | // fprintf(F, "%c", chr) --> fputc(chr, F) | 
|  | if (!CI->getArgOperand(2)->getType()->isIntegerTy()) | 
|  | return nullptr; | 
|  | return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); | 
|  | } | 
|  |  | 
|  | if (FormatStr[1] == 's') { | 
|  | // fprintf(F, "%s", str) --> fputs(str, F) | 
|  | if (!CI->getArgOperand(2)->getType()->isPointerTy()) | 
|  | return nullptr; | 
|  | return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) { | 
|  | Function *Callee = CI->getCalledFunction(); | 
|  | FunctionType *FT = Callee->getFunctionType(); | 
|  | if (Value *V = optimizeFPrintFString(CI, B)) { | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no | 
|  | // floating point arguments. | 
|  | if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) { | 
|  | Module *M = B.GetInsertBlock()->getParent()->getParent(); | 
|  | FunctionCallee FIPrintFFn = | 
|  | M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes()); | 
|  | CallInst *New = cast<CallInst>(CI->clone()); | 
|  | New->setCalledFunction(FIPrintFFn); | 
|  | B.Insert(New); | 
|  | return New; | 
|  | } | 
|  |  | 
|  | // fprintf(stream, format, ...) -> __small_fprintf(stream, format, ...) if no | 
|  | // 128-bit floating point arguments. | 
|  | if (TLI->has(LibFunc_small_fprintf) && !callHasFP128Argument(CI)) { | 
|  | Module *M = B.GetInsertBlock()->getParent()->getParent(); | 
|  | auto SmallFPrintFFn = | 
|  | M->getOrInsertFunction(TLI->getName(LibFunc_small_fprintf), | 
|  | FT, Callee->getAttributes()); | 
|  | CallInst *New = cast<CallInst>(CI->clone()); | 
|  | New->setCalledFunction(SmallFPrintFFn); | 
|  | B.Insert(New); | 
|  | return New; | 
|  | } | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) { | 
|  | optimizeErrorReporting(CI, B, 3); | 
|  |  | 
|  | // Get the element size and count. | 
|  | ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1)); | 
|  | ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2)); | 
|  | if (SizeC && CountC) { | 
|  | uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue(); | 
|  |  | 
|  | // If this is writing zero records, remove the call (it's a noop). | 
|  | if (Bytes == 0) | 
|  | return ConstantInt::get(CI->getType(), 0); | 
|  |  | 
|  | // If this is writing one byte, turn it into fputc. | 
|  | // This optimisation is only valid, if the return value is unused. | 
|  | if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F) | 
|  | Value *Char = B.CreateLoad(B.getInt8Ty(), | 
|  | castToCStr(CI->getArgOperand(0), B), "char"); | 
|  | Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI); | 
|  | return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) | 
|  | return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), | 
|  | CI->getArgOperand(2), CI->getArgOperand(3), B, DL, | 
|  | TLI); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) { | 
|  | optimizeErrorReporting(CI, B, 1); | 
|  |  | 
|  | // Don't rewrite fputs to fwrite when optimising for size because fwrite | 
|  | // requires more arguments and thus extra MOVs are required. | 
|  | bool OptForSize = CI->getFunction()->hasOptSize() || | 
|  | llvm::shouldOptimizeForSize(CI->getParent(), PSI, BFI); | 
|  | if (OptForSize) | 
|  | return nullptr; | 
|  |  | 
|  | // Check if has any use | 
|  | if (!CI->use_empty()) { | 
|  | if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) | 
|  | return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, | 
|  | TLI); | 
|  | else | 
|  | // We can't optimize if return value is used. | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | // fputs(s,F) --> fwrite(s,strlen(s),1,F) | 
|  | uint64_t Len = GetStringLength(CI->getArgOperand(0)); | 
|  | if (!Len) | 
|  | return nullptr; | 
|  |  | 
|  | // Known to have no uses (see above). | 
|  | return emitFWrite( | 
|  | CI->getArgOperand(0), | 
|  | ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1), | 
|  | CI->getArgOperand(1), B, DL, TLI); | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) { | 
|  | optimizeErrorReporting(CI, B, 1); | 
|  |  | 
|  | if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI)) | 
|  | return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B, | 
|  | TLI); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) { | 
|  | if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI)) | 
|  | return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) { | 
|  | if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI)) | 
|  | return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), | 
|  | CI->getArgOperand(2), B, TLI); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) { | 
|  | if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI)) | 
|  | return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), | 
|  | CI->getArgOperand(2), CI->getArgOperand(3), B, DL, | 
|  | TLI); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) { | 
|  | if (!CI->use_empty()) | 
|  | return nullptr; | 
|  |  | 
|  | // Check for a constant string. | 
|  | // puts("") -> putchar('\n') | 
|  | StringRef Str; | 
|  | if (getConstantStringInfo(CI->getArgOperand(0), Str) && Str.empty()) | 
|  | return emitPutChar(B.getInt32('\n'), B, TLI); | 
|  |  | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) { | 
|  | LibFunc Func; | 
|  | SmallString<20> FloatFuncName = FuncName; | 
|  | FloatFuncName += 'f'; | 
|  | if (TLI->getLibFunc(FloatFuncName, Func)) | 
|  | return TLI->has(Func); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI, | 
|  | IRBuilder<> &Builder) { | 
|  | LibFunc Func; | 
|  | Function *Callee = CI->getCalledFunction(); | 
|  | // Check for string/memory library functions. | 
|  | if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { | 
|  | // Make sure we never change the calling convention. | 
|  | assert((ignoreCallingConv(Func) || | 
|  | isCallingConvCCompatible(CI)) && | 
|  | "Optimizing string/memory libcall would change the calling convention"); | 
|  | switch (Func) { | 
|  | case LibFunc_strcat: | 
|  | return optimizeStrCat(CI, Builder); | 
|  | case LibFunc_strncat: | 
|  | return optimizeStrNCat(CI, Builder); | 
|  | case LibFunc_strchr: | 
|  | return optimizeStrChr(CI, Builder); | 
|  | case LibFunc_strrchr: | 
|  | return optimizeStrRChr(CI, Builder); | 
|  | case LibFunc_strcmp: | 
|  | return optimizeStrCmp(CI, Builder); | 
|  | case LibFunc_strncmp: | 
|  | return optimizeStrNCmp(CI, Builder); | 
|  | case LibFunc_strcpy: | 
|  | return optimizeStrCpy(CI, Builder); | 
|  | case LibFunc_stpcpy: | 
|  | return optimizeStpCpy(CI, Builder); | 
|  | case LibFunc_strncpy: | 
|  | return optimizeStrNCpy(CI, Builder); | 
|  | case LibFunc_strlen: | 
|  | return optimizeStrLen(CI, Builder); | 
|  | case LibFunc_strpbrk: | 
|  | return optimizeStrPBrk(CI, Builder); | 
|  | case LibFunc_strtol: | 
|  | case LibFunc_strtod: | 
|  | case LibFunc_strtof: | 
|  | case LibFunc_strtoul: | 
|  | case LibFunc_strtoll: | 
|  | case LibFunc_strtold: | 
|  | case LibFunc_strtoull: | 
|  | return optimizeStrTo(CI, Builder); | 
|  | case LibFunc_strspn: | 
|  | return optimizeStrSpn(CI, Builder); | 
|  | case LibFunc_strcspn: | 
|  | return optimizeStrCSpn(CI, Builder); | 
|  | case LibFunc_strstr: | 
|  | return optimizeStrStr(CI, Builder); | 
|  | case LibFunc_memchr: | 
|  | return optimizeMemChr(CI, Builder); | 
|  | case LibFunc_bcmp: | 
|  | return optimizeBCmp(CI, Builder); | 
|  | case LibFunc_memcmp: | 
|  | return optimizeMemCmp(CI, Builder); | 
|  | case LibFunc_memcpy: | 
|  | return optimizeMemCpy(CI, Builder); | 
|  | case LibFunc_memmove: | 
|  | return optimizeMemMove(CI, Builder); | 
|  | case LibFunc_memset: | 
|  | return optimizeMemSet(CI, Builder); | 
|  | case LibFunc_realloc: | 
|  | return optimizeRealloc(CI, Builder); | 
|  | case LibFunc_wcslen: | 
|  | return optimizeWcslen(CI, Builder); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI, | 
|  | LibFunc Func, | 
|  | IRBuilder<> &Builder) { | 
|  | // Don't optimize calls that require strict floating point semantics. | 
|  | if (CI->isStrictFP()) | 
|  | return nullptr; | 
|  |  | 
|  | if (Value *V = optimizeTrigReflections(CI, Func, Builder)) | 
|  | return V; | 
|  |  | 
|  | switch (Func) { | 
|  | case LibFunc_sinpif: | 
|  | case LibFunc_sinpi: | 
|  | case LibFunc_cospif: | 
|  | case LibFunc_cospi: | 
|  | return optimizeSinCosPi(CI, Builder); | 
|  | case LibFunc_powf: | 
|  | case LibFunc_pow: | 
|  | case LibFunc_powl: | 
|  | return optimizePow(CI, Builder); | 
|  | case LibFunc_exp2l: | 
|  | case LibFunc_exp2: | 
|  | case LibFunc_exp2f: | 
|  | return optimizeExp2(CI, Builder); | 
|  | case LibFunc_fabsf: | 
|  | case LibFunc_fabs: | 
|  | case LibFunc_fabsl: | 
|  | return replaceUnaryCall(CI, Builder, Intrinsic::fabs); | 
|  | case LibFunc_sqrtf: | 
|  | case LibFunc_sqrt: | 
|  | case LibFunc_sqrtl: | 
|  | return optimizeSqrt(CI, Builder); | 
|  | case LibFunc_log: | 
|  | case LibFunc_log10: | 
|  | case LibFunc_log1p: | 
|  | case LibFunc_log2: | 
|  | case LibFunc_logb: | 
|  | return optimizeLog(CI, Builder); | 
|  | case LibFunc_tan: | 
|  | case LibFunc_tanf: | 
|  | case LibFunc_tanl: | 
|  | return optimizeTan(CI, Builder); | 
|  | case LibFunc_ceil: | 
|  | return replaceUnaryCall(CI, Builder, Intrinsic::ceil); | 
|  | case LibFunc_floor: | 
|  | return replaceUnaryCall(CI, Builder, Intrinsic::floor); | 
|  | case LibFunc_round: | 
|  | return replaceUnaryCall(CI, Builder, Intrinsic::round); | 
|  | case LibFunc_nearbyint: | 
|  | return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint); | 
|  | case LibFunc_rint: | 
|  | return replaceUnaryCall(CI, Builder, Intrinsic::rint); | 
|  | case LibFunc_trunc: | 
|  | return replaceUnaryCall(CI, Builder, Intrinsic::trunc); | 
|  | case LibFunc_acos: | 
|  | case LibFunc_acosh: | 
|  | case LibFunc_asin: | 
|  | case LibFunc_asinh: | 
|  | case LibFunc_atan: | 
|  | case LibFunc_atanh: | 
|  | case LibFunc_cbrt: | 
|  | case LibFunc_cosh: | 
|  | case LibFunc_exp: | 
|  | case LibFunc_exp10: | 
|  | case LibFunc_expm1: | 
|  | case LibFunc_cos: | 
|  | case LibFunc_sin: | 
|  | case LibFunc_sinh: | 
|  | case LibFunc_tanh: | 
|  | if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName())) | 
|  | return optimizeUnaryDoubleFP(CI, Builder, true); | 
|  | return nullptr; | 
|  | case LibFunc_copysign: | 
|  | if (hasFloatVersion(CI->getCalledFunction()->getName())) | 
|  | return optimizeBinaryDoubleFP(CI, Builder); | 
|  | return nullptr; | 
|  | case LibFunc_fminf: | 
|  | case LibFunc_fmin: | 
|  | case LibFunc_fminl: | 
|  | case LibFunc_fmaxf: | 
|  | case LibFunc_fmax: | 
|  | case LibFunc_fmaxl: | 
|  | return optimizeFMinFMax(CI, Builder); | 
|  | case LibFunc_cabs: | 
|  | case LibFunc_cabsf: | 
|  | case LibFunc_cabsl: | 
|  | return optimizeCAbs(CI, Builder); | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | Value *LibCallSimplifier::optimizeCall(CallInst *CI) { | 
|  | // TODO: Split out the code below that operates on FP calls so that | 
|  | //       we can all non-FP calls with the StrictFP attribute to be | 
|  | //       optimized. | 
|  | if (CI->isNoBuiltin()) | 
|  | return nullptr; | 
|  |  | 
|  | LibFunc Func; | 
|  | Function *Callee = CI->getCalledFunction(); | 
|  |  | 
|  | SmallVector<OperandBundleDef, 2> OpBundles; | 
|  | CI->getOperandBundlesAsDefs(OpBundles); | 
|  | IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); | 
|  | bool isCallingConvC = isCallingConvCCompatible(CI); | 
|  |  | 
|  | // Command-line parameter overrides instruction attribute. | 
|  | // This can't be moved to optimizeFloatingPointLibCall() because it may be | 
|  | // used by the intrinsic optimizations. | 
|  | if (EnableUnsafeFPShrink.getNumOccurrences() > 0) | 
|  | UnsafeFPShrink = EnableUnsafeFPShrink; | 
|  | else if (isa<FPMathOperator>(CI) && CI->isFast()) | 
|  | UnsafeFPShrink = true; | 
|  |  | 
|  | // First, check for intrinsics. | 
|  | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { | 
|  | if (!isCallingConvC) | 
|  | return nullptr; | 
|  | // The FP intrinsics have corresponding constrained versions so we don't | 
|  | // need to check for the StrictFP attribute here. | 
|  | switch (II->getIntrinsicID()) { | 
|  | case Intrinsic::pow: | 
|  | return optimizePow(CI, Builder); | 
|  | case Intrinsic::exp2: | 
|  | return optimizeExp2(CI, Builder); | 
|  | case Intrinsic::log: | 
|  | return optimizeLog(CI, Builder); | 
|  | case Intrinsic::sqrt: | 
|  | return optimizeSqrt(CI, Builder); | 
|  | // TODO: Use foldMallocMemset() with memset intrinsic. | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Also try to simplify calls to fortified library functions. | 
|  | if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) { | 
|  | // Try to further simplify the result. | 
|  | CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI); | 
|  | if (SimplifiedCI && SimplifiedCI->getCalledFunction()) { | 
|  | // Use an IR Builder from SimplifiedCI if available instead of CI | 
|  | // to guarantee we reach all uses we might replace later on. | 
|  | IRBuilder<> TmpBuilder(SimplifiedCI); | 
|  | if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) { | 
|  | // If we were able to further simplify, remove the now redundant call. | 
|  | SimplifiedCI->replaceAllUsesWith(V); | 
|  | eraseFromParent(SimplifiedCI); | 
|  | return V; | 
|  | } | 
|  | } | 
|  | return SimplifiedFortifiedCI; | 
|  | } | 
|  |  | 
|  | // Then check for known library functions. | 
|  | if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) { | 
|  | // We never change the calling convention. | 
|  | if (!ignoreCallingConv(Func) && !isCallingConvC) | 
|  | return nullptr; | 
|  | if (Value *V = optimizeStringMemoryLibCall(CI, Builder)) | 
|  | return V; | 
|  | if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder)) | 
|  | return V; | 
|  | switch (Func) { | 
|  | case LibFunc_ffs: | 
|  | case LibFunc_ffsl: | 
|  | case LibFunc_ffsll: | 
|  | return optimizeFFS(CI, Builder); | 
|  | case LibFunc_fls: | 
|  | case LibFunc_flsl: | 
|  | case LibFunc_flsll: | 
|  | return optimizeFls(CI, Builder); | 
|  | case LibFunc_abs: | 
|  | case LibFunc_labs: | 
|  | case LibFunc_llabs: | 
|  | return optimizeAbs(CI, Builder); | 
|  | case LibFunc_isdigit: | 
|  | return optimizeIsDigit(CI, Builder); | 
|  | case LibFunc_isascii: | 
|  | return optimizeIsAscii(CI, Builder); | 
|  | case LibFunc_toascii: | 
|  | return optimizeToAscii(CI, Builder); | 
|  | case LibFunc_atoi: | 
|  | case LibFunc_atol: | 
|  | case LibFunc_atoll: | 
|  | return optimizeAtoi(CI, Builder); | 
|  | case LibFunc_strtol: | 
|  | case LibFunc_strtoll: | 
|  | return optimizeStrtol(CI, Builder); | 
|  | case LibFunc_printf: | 
|  | return optimizePrintF(CI, Builder); | 
|  | case LibFunc_sprintf: | 
|  | return optimizeSPrintF(CI, Builder); | 
|  | case LibFunc_snprintf: | 
|  | return optimizeSnPrintF(CI, Builder); | 
|  | case LibFunc_fprintf: | 
|  | return optimizeFPrintF(CI, Builder); | 
|  | case LibFunc_fwrite: | 
|  | return optimizeFWrite(CI, Builder); | 
|  | case LibFunc_fread: | 
|  | return optimizeFRead(CI, Builder); | 
|  | case LibFunc_fputs: | 
|  | return optimizeFPuts(CI, Builder); | 
|  | case LibFunc_fgets: | 
|  | return optimizeFGets(CI, Builder); | 
|  | case LibFunc_fputc: | 
|  | return optimizeFPutc(CI, Builder); | 
|  | case LibFunc_fgetc: | 
|  | return optimizeFGetc(CI, Builder); | 
|  | case LibFunc_puts: | 
|  | return optimizePuts(CI, Builder); | 
|  | case LibFunc_perror: | 
|  | return optimizeErrorReporting(CI, Builder); | 
|  | case LibFunc_vfprintf: | 
|  | case LibFunc_fiprintf: | 
|  | return optimizeErrorReporting(CI, Builder, 0); | 
|  | default: | 
|  | return nullptr; | 
|  | } | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | LibCallSimplifier::LibCallSimplifier( | 
|  | const DataLayout &DL, const TargetLibraryInfo *TLI, | 
|  | OptimizationRemarkEmitter &ORE, | 
|  | BlockFrequencyInfo *BFI, ProfileSummaryInfo *PSI, | 
|  | function_ref<void(Instruction *, Value *)> Replacer, | 
|  | function_ref<void(Instruction *)> Eraser) | 
|  | : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE), BFI(BFI), PSI(PSI), | 
|  | UnsafeFPShrink(false), Replacer(Replacer), Eraser(Eraser) {} | 
|  |  | 
|  | void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) { | 
|  | // Indirect through the replacer used in this instance. | 
|  | Replacer(I, With); | 
|  | } | 
|  |  | 
|  | void LibCallSimplifier::eraseFromParent(Instruction *I) { | 
|  | Eraser(I); | 
|  | } | 
|  |  | 
|  | // TODO: | 
|  | //   Additional cases that we need to add to this file: | 
|  | // | 
|  | // cbrt: | 
|  | //   * cbrt(expN(X))  -> expN(x/3) | 
|  | //   * cbrt(sqrt(x))  -> pow(x,1/6) | 
|  | //   * cbrt(cbrt(x))  -> pow(x,1/9) | 
|  | // | 
|  | // exp, expf, expl: | 
|  | //   * exp(log(x))  -> x | 
|  | // | 
|  | // log, logf, logl: | 
|  | //   * log(exp(x))   -> x | 
|  | //   * log(exp(y))   -> y*log(e) | 
|  | //   * log(exp10(y)) -> y*log(10) | 
|  | //   * log(sqrt(x))  -> 0.5*log(x) | 
|  | // | 
|  | // pow, powf, powl: | 
|  | //   * pow(sqrt(x),y) -> pow(x,y*0.5) | 
|  | //   * pow(pow(x,y),z)-> pow(x,y*z) | 
|  | // | 
|  | // signbit: | 
|  | //   * signbit(cnst) -> cnst' | 
|  | //   * signbit(nncst) -> 0 (if pstv is a non-negative constant) | 
|  | // | 
|  | // sqrt, sqrtf, sqrtl: | 
|  | //   * sqrt(expN(x))  -> expN(x*0.5) | 
|  | //   * sqrt(Nroot(x)) -> pow(x,1/(2*N)) | 
|  | //   * sqrt(pow(x,y)) -> pow(|x|,y*0.5) | 
|  | // | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Fortified Library Call Optimizations | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI, | 
|  | unsigned ObjSizeOp, | 
|  | unsigned SizeOp, | 
|  | bool isString) { | 
|  | if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp)) | 
|  | return true; | 
|  | if (ConstantInt *ObjSizeCI = | 
|  | dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) { | 
|  | if (ObjSizeCI->isMinusOne()) | 
|  | return true; | 
|  | // If the object size wasn't -1 (unknown), bail out if we were asked to. | 
|  | if (OnlyLowerUnknownSize) | 
|  | return false; | 
|  | if (isString) { | 
|  | uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp)); | 
|  | // If the length is 0 we don't know how long it is and so we can't | 
|  | // remove the check. | 
|  | if (Len == 0) | 
|  | return false; | 
|  | return ObjSizeCI->getZExtValue() >= Len; | 
|  | } | 
|  | if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp))) | 
|  | return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue(); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI, | 
|  | IRBuilder<> &B) { | 
|  | if (isFortifiedCallFoldable(CI, 3, 2, false)) { | 
|  | B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, | 
|  | CI->getArgOperand(2)); | 
|  | return CI->getArgOperand(0); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI, | 
|  | IRBuilder<> &B) { | 
|  | if (isFortifiedCallFoldable(CI, 3, 2, false)) { | 
|  | B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1, | 
|  | CI->getArgOperand(2)); | 
|  | return CI->getArgOperand(0); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI, | 
|  | IRBuilder<> &B) { | 
|  | // TODO: Try foldMallocMemset() here. | 
|  |  | 
|  | if (isFortifiedCallFoldable(CI, 3, 2, false)) { | 
|  | Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false); | 
|  | B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1); | 
|  | return CI->getArgOperand(0); | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI, | 
|  | IRBuilder<> &B, | 
|  | LibFunc Func) { | 
|  | Function *Callee = CI->getCalledFunction(); | 
|  | StringRef Name = Callee->getName(); | 
|  | const DataLayout &DL = CI->getModule()->getDataLayout(); | 
|  | Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1), | 
|  | *ObjSize = CI->getArgOperand(2); | 
|  |  | 
|  | // __stpcpy_chk(x,x,...)  -> x+strlen(x) | 
|  | if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) { | 
|  | Value *StrLen = emitStrLen(Src, B, DL, TLI); | 
|  | return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr; | 
|  | } | 
|  |  | 
|  | // If a) we don't have any length information, or b) we know this will | 
|  | // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our | 
|  | // st[rp]cpy_chk call which may fail at runtime if the size is too long. | 
|  | // TODO: It might be nice to get a maximum length out of the possible | 
|  | // string lengths for varying. | 
|  | if (isFortifiedCallFoldable(CI, 2, 1, true)) | 
|  | return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6)); | 
|  |  | 
|  | if (OnlyLowerUnknownSize) | 
|  | return nullptr; | 
|  |  | 
|  | // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk. | 
|  | uint64_t Len = GetStringLength(Src); | 
|  | if (Len == 0) | 
|  | return nullptr; | 
|  |  | 
|  | Type *SizeTTy = DL.getIntPtrType(CI->getContext()); | 
|  | Value *LenV = ConstantInt::get(SizeTTy, Len); | 
|  | Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI); | 
|  | // If the function was an __stpcpy_chk, and we were able to fold it into | 
|  | // a __memcpy_chk, we still need to return the correct end pointer. | 
|  | if (Ret && Func == LibFunc_stpcpy_chk) | 
|  | return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1)); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI, | 
|  | IRBuilder<> &B, | 
|  | LibFunc Func) { | 
|  | Function *Callee = CI->getCalledFunction(); | 
|  | StringRef Name = Callee->getName(); | 
|  | if (isFortifiedCallFoldable(CI, 3, 2, false)) { | 
|  | Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1), | 
|  | CI->getArgOperand(2), B, TLI, Name.substr(2, 7)); | 
|  | return Ret; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) { | 
|  | // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here. | 
|  | // Some clang users checked for _chk libcall availability using: | 
|  | //   __has_builtin(__builtin___memcpy_chk) | 
|  | // When compiling with -fno-builtin, this is always true. | 
|  | // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we | 
|  | // end up with fortified libcalls, which isn't acceptable in a freestanding | 
|  | // environment which only provides their non-fortified counterparts. | 
|  | // | 
|  | // Until we change clang and/or teach external users to check for availability | 
|  | // differently, disregard the "nobuiltin" attribute and TLI::has. | 
|  | // | 
|  | // PR23093. | 
|  |  | 
|  | LibFunc Func; | 
|  | Function *Callee = CI->getCalledFunction(); | 
|  |  | 
|  | SmallVector<OperandBundleDef, 2> OpBundles; | 
|  | CI->getOperandBundlesAsDefs(OpBundles); | 
|  | IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles); | 
|  | bool isCallingConvC = isCallingConvCCompatible(CI); | 
|  |  | 
|  | // First, check that this is a known library functions and that the prototype | 
|  | // is correct. | 
|  | if (!TLI->getLibFunc(*Callee, Func)) | 
|  | return nullptr; | 
|  |  | 
|  | // We never change the calling convention. | 
|  | if (!ignoreCallingConv(Func) && !isCallingConvC) | 
|  | return nullptr; | 
|  |  | 
|  | switch (Func) { | 
|  | case LibFunc_memcpy_chk: | 
|  | return optimizeMemCpyChk(CI, Builder); | 
|  | case LibFunc_memmove_chk: | 
|  | return optimizeMemMoveChk(CI, Builder); | 
|  | case LibFunc_memset_chk: | 
|  | return optimizeMemSetChk(CI, Builder); | 
|  | case LibFunc_stpcpy_chk: | 
|  | case LibFunc_strcpy_chk: | 
|  | return optimizeStrpCpyChk(CI, Builder, Func); | 
|  | case LibFunc_stpncpy_chk: | 
|  | case LibFunc_strncpy_chk: | 
|  | return optimizeStrpNCpyChk(CI, Builder, Func); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | FortifiedLibCallSimplifier::FortifiedLibCallSimplifier( | 
|  | const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize) | 
|  | : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {} |