|  | //===-- BasicBlockUtils.cpp - BasicBlock Utilities -------------------------==// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This family of functions perform manipulations on basic blocks, and | 
|  | // instructions contained within basic blocks. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/Constant.h" | 
|  | #include "llvm/Type.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/Dominators.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/MemoryDependenceAnalysis.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/ValueHandle.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | /// DeleteDeadBlock - Delete the specified block, which must have no | 
|  | /// predecessors. | 
|  | void llvm::DeleteDeadBlock(BasicBlock *BB) { | 
|  | assert((pred_begin(BB) == pred_end(BB) || | 
|  | // Can delete self loop. | 
|  | BB->getSinglePredecessor() == BB) && "Block is not dead!"); | 
|  | TerminatorInst *BBTerm = BB->getTerminator(); | 
|  |  | 
|  | // Loop through all of our successors and make sure they know that one | 
|  | // of their predecessors is going away. | 
|  | for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) | 
|  | BBTerm->getSuccessor(i)->removePredecessor(BB); | 
|  |  | 
|  | // Zap all the instructions in the block. | 
|  | while (!BB->empty()) { | 
|  | Instruction &I = BB->back(); | 
|  | // If this instruction is used, replace uses with an arbitrary value. | 
|  | // Because control flow can't get here, we don't care what we replace the | 
|  | // value with.  Note that since this block is unreachable, and all values | 
|  | // contained within it must dominate their uses, that all uses will | 
|  | // eventually be removed (they are themselves dead). | 
|  | if (!I.use_empty()) | 
|  | I.replaceAllUsesWith(UndefValue::get(I.getType())); | 
|  | BB->getInstList().pop_back(); | 
|  | } | 
|  |  | 
|  | // Zap the block! | 
|  | BB->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | /// FoldSingleEntryPHINodes - We know that BB has one predecessor.  If there are | 
|  | /// any single-entry PHI nodes in it, fold them away.  This handles the case | 
|  | /// when all entries to the PHI nodes in a block are guaranteed equal, such as | 
|  | /// when the block has exactly one predecessor. | 
|  | void llvm::FoldSingleEntryPHINodes(BasicBlock *BB, Pass *P) { | 
|  | if (!isa<PHINode>(BB->begin())) return; | 
|  |  | 
|  | AliasAnalysis *AA = 0; | 
|  | MemoryDependenceAnalysis *MemDep = 0; | 
|  | if (P) { | 
|  | AA = P->getAnalysisIfAvailable<AliasAnalysis>(); | 
|  | MemDep = P->getAnalysisIfAvailable<MemoryDependenceAnalysis>(); | 
|  | } | 
|  |  | 
|  | while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) { | 
|  | if (PN->getIncomingValue(0) != PN) | 
|  | PN->replaceAllUsesWith(PN->getIncomingValue(0)); | 
|  | else | 
|  | PN->replaceAllUsesWith(UndefValue::get(PN->getType())); | 
|  |  | 
|  | if (MemDep) | 
|  | MemDep->removeInstruction(PN);  // Memdep updates AA itself. | 
|  | else if (AA && isa<PointerType>(PN->getType())) | 
|  | AA->deleteValue(PN); | 
|  |  | 
|  | PN->eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /// DeleteDeadPHIs - Examine each PHI in the given block and delete it if it | 
|  | /// is dead. Also recursively delete any operands that become dead as | 
|  | /// a result. This includes tracing the def-use list from the PHI to see if | 
|  | /// it is ultimately unused or if it reaches an unused cycle. | 
|  | bool llvm::DeleteDeadPHIs(BasicBlock *BB) { | 
|  | // Recursively deleting a PHI may cause multiple PHIs to be deleted | 
|  | // or RAUW'd undef, so use an array of WeakVH for the PHIs to delete. | 
|  | SmallVector<WeakVH, 8> PHIs; | 
|  | for (BasicBlock::iterator I = BB->begin(); | 
|  | PHINode *PN = dyn_cast<PHINode>(I); ++I) | 
|  | PHIs.push_back(PN); | 
|  |  | 
|  | bool Changed = false; | 
|  | for (unsigned i = 0, e = PHIs.size(); i != e; ++i) | 
|  | if (PHINode *PN = dyn_cast_or_null<PHINode>(PHIs[i].operator Value*())) | 
|  | Changed |= RecursivelyDeleteDeadPHINode(PN); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | /// MergeBlockIntoPredecessor - Attempts to merge a block into its predecessor, | 
|  | /// if possible.  The return value indicates success or failure. | 
|  | bool llvm::MergeBlockIntoPredecessor(BasicBlock *BB, Pass *P) { | 
|  | // Don't merge away blocks who have their address taken. | 
|  | if (BB->hasAddressTaken()) return false; | 
|  |  | 
|  | // Can't merge if there are multiple predecessors, or no predecessors. | 
|  | BasicBlock *PredBB = BB->getUniquePredecessor(); | 
|  | if (!PredBB) return false; | 
|  |  | 
|  | // Don't break self-loops. | 
|  | if (PredBB == BB) return false; | 
|  | // Don't break invokes. | 
|  | if (isa<InvokeInst>(PredBB->getTerminator())) return false; | 
|  |  | 
|  | succ_iterator SI(succ_begin(PredBB)), SE(succ_end(PredBB)); | 
|  | BasicBlock *OnlySucc = BB; | 
|  | for (; SI != SE; ++SI) | 
|  | if (*SI != OnlySucc) { | 
|  | OnlySucc = 0;     // There are multiple distinct successors! | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Can't merge if there are multiple successors. | 
|  | if (!OnlySucc) return false; | 
|  |  | 
|  | // Can't merge if there is PHI loop. | 
|  | for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE; ++BI) { | 
|  | if (PHINode *PN = dyn_cast<PHINode>(BI)) { | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | if (PN->getIncomingValue(i) == PN) | 
|  | return false; | 
|  | } else | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Begin by getting rid of unneeded PHIs. | 
|  | if (isa<PHINode>(BB->front())) | 
|  | FoldSingleEntryPHINodes(BB, P); | 
|  |  | 
|  | // Delete the unconditional branch from the predecessor... | 
|  | PredBB->getInstList().pop_back(); | 
|  |  | 
|  | // Move all definitions in the successor to the predecessor... | 
|  | PredBB->getInstList().splice(PredBB->end(), BB->getInstList()); | 
|  |  | 
|  | // Make all PHI nodes that referred to BB now refer to Pred as their | 
|  | // source... | 
|  | BB->replaceAllUsesWith(PredBB); | 
|  |  | 
|  | // Inherit predecessors name if it exists. | 
|  | if (!PredBB->hasName()) | 
|  | PredBB->takeName(BB); | 
|  |  | 
|  | // Finally, erase the old block and update dominator info. | 
|  | if (P) { | 
|  | if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) { | 
|  | if (DomTreeNode *DTN = DT->getNode(BB)) { | 
|  | DomTreeNode *PredDTN = DT->getNode(PredBB); | 
|  | SmallVector<DomTreeNode*, 8> Children(DTN->begin(), DTN->end()); | 
|  | for (SmallVector<DomTreeNode*, 8>::iterator DI = Children.begin(), | 
|  | DE = Children.end(); DI != DE; ++DI) | 
|  | DT->changeImmediateDominator(*DI, PredDTN); | 
|  |  | 
|  | DT->eraseNode(BB); | 
|  | } | 
|  |  | 
|  | if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>()) | 
|  | LI->removeBlock(BB); | 
|  |  | 
|  | if (MemoryDependenceAnalysis *MD = | 
|  | P->getAnalysisIfAvailable<MemoryDependenceAnalysis>()) | 
|  | MD->invalidateCachedPredecessors(); | 
|  | } | 
|  | } | 
|  |  | 
|  | BB->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// ReplaceInstWithValue - Replace all uses of an instruction (specified by BI) | 
|  | /// with a value, then remove and delete the original instruction. | 
|  | /// | 
|  | void llvm::ReplaceInstWithValue(BasicBlock::InstListType &BIL, | 
|  | BasicBlock::iterator &BI, Value *V) { | 
|  | Instruction &I = *BI; | 
|  | // Replaces all of the uses of the instruction with uses of the value | 
|  | I.replaceAllUsesWith(V); | 
|  |  | 
|  | // Make sure to propagate a name if there is one already. | 
|  | if (I.hasName() && !V->hasName()) | 
|  | V->takeName(&I); | 
|  |  | 
|  | // Delete the unnecessary instruction now... | 
|  | BI = BIL.erase(BI); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// ReplaceInstWithInst - Replace the instruction specified by BI with the | 
|  | /// instruction specified by I.  The original instruction is deleted and BI is | 
|  | /// updated to point to the new instruction. | 
|  | /// | 
|  | void llvm::ReplaceInstWithInst(BasicBlock::InstListType &BIL, | 
|  | BasicBlock::iterator &BI, Instruction *I) { | 
|  | assert(I->getParent() == 0 && | 
|  | "ReplaceInstWithInst: Instruction already inserted into basic block!"); | 
|  |  | 
|  | // Insert the new instruction into the basic block... | 
|  | BasicBlock::iterator New = BIL.insert(BI, I); | 
|  |  | 
|  | // Replace all uses of the old instruction, and delete it. | 
|  | ReplaceInstWithValue(BIL, BI, I); | 
|  |  | 
|  | // Move BI back to point to the newly inserted instruction | 
|  | BI = New; | 
|  | } | 
|  |  | 
|  | /// ReplaceInstWithInst - Replace the instruction specified by From with the | 
|  | /// instruction specified by To. | 
|  | /// | 
|  | void llvm::ReplaceInstWithInst(Instruction *From, Instruction *To) { | 
|  | BasicBlock::iterator BI(From); | 
|  | ReplaceInstWithInst(From->getParent()->getInstList(), BI, To); | 
|  | } | 
|  |  | 
|  | /// GetSuccessorNumber - Search for the specified successor of basic block BB | 
|  | /// and return its position in the terminator instruction's list of | 
|  | /// successors.  It is an error to call this with a block that is not a | 
|  | /// successor. | 
|  | unsigned llvm::GetSuccessorNumber(BasicBlock *BB, BasicBlock *Succ) { | 
|  | TerminatorInst *Term = BB->getTerminator(); | 
|  | #ifndef NDEBUG | 
|  | unsigned e = Term->getNumSuccessors(); | 
|  | #endif | 
|  | for (unsigned i = 0; ; ++i) { | 
|  | assert(i != e && "Didn't find edge?"); | 
|  | if (Term->getSuccessor(i) == Succ) | 
|  | return i; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// SplitEdge -  Split the edge connecting specified block. Pass P must | 
|  | /// not be NULL. | 
|  | BasicBlock *llvm::SplitEdge(BasicBlock *BB, BasicBlock *Succ, Pass *P) { | 
|  | unsigned SuccNum = GetSuccessorNumber(BB, Succ); | 
|  |  | 
|  | // If this is a critical edge, let SplitCriticalEdge do it. | 
|  | TerminatorInst *LatchTerm = BB->getTerminator(); | 
|  | if (SplitCriticalEdge(LatchTerm, SuccNum, P)) | 
|  | return LatchTerm->getSuccessor(SuccNum); | 
|  |  | 
|  | // If the edge isn't critical, then BB has a single successor or Succ has a | 
|  | // single pred.  Split the block. | 
|  | BasicBlock::iterator SplitPoint; | 
|  | if (BasicBlock *SP = Succ->getSinglePredecessor()) { | 
|  | // If the successor only has a single pred, split the top of the successor | 
|  | // block. | 
|  | assert(SP == BB && "CFG broken"); | 
|  | SP = NULL; | 
|  | return SplitBlock(Succ, Succ->begin(), P); | 
|  | } | 
|  |  | 
|  | // Otherwise, if BB has a single successor, split it at the bottom of the | 
|  | // block. | 
|  | assert(BB->getTerminator()->getNumSuccessors() == 1 && | 
|  | "Should have a single succ!"); | 
|  | return SplitBlock(BB, BB->getTerminator(), P); | 
|  | } | 
|  |  | 
|  | /// SplitBlock - Split the specified block at the specified instruction - every | 
|  | /// thing before SplitPt stays in Old and everything starting with SplitPt moves | 
|  | /// to a new block.  The two blocks are joined by an unconditional branch and | 
|  | /// the loop info is updated. | 
|  | /// | 
|  | BasicBlock *llvm::SplitBlock(BasicBlock *Old, Instruction *SplitPt, Pass *P) { | 
|  | BasicBlock::iterator SplitIt = SplitPt; | 
|  | while (isa<PHINode>(SplitIt)) | 
|  | ++SplitIt; | 
|  | BasicBlock *New = Old->splitBasicBlock(SplitIt, Old->getName()+".split"); | 
|  |  | 
|  | // The new block lives in whichever loop the old one did. This preserves | 
|  | // LCSSA as well, because we force the split point to be after any PHI nodes. | 
|  | if (LoopInfo *LI = P->getAnalysisIfAvailable<LoopInfo>()) | 
|  | if (Loop *L = LI->getLoopFor(Old)) | 
|  | L->addBasicBlockToLoop(New, LI->getBase()); | 
|  |  | 
|  | if (DominatorTree *DT = P->getAnalysisIfAvailable<DominatorTree>()) { | 
|  | // Old dominates New. New node dominates all other nodes dominated by Old. | 
|  | DomTreeNode *OldNode = DT->getNode(Old); | 
|  | std::vector<DomTreeNode *> Children; | 
|  | for (DomTreeNode::iterator I = OldNode->begin(), E = OldNode->end(); | 
|  | I != E; ++I) | 
|  | Children.push_back(*I); | 
|  |  | 
|  | DomTreeNode *NewNode = DT->addNewBlock(New,Old); | 
|  | for (std::vector<DomTreeNode *>::iterator I = Children.begin(), | 
|  | E = Children.end(); I != E; ++I) | 
|  | DT->changeImmediateDominator(*I, NewNode); | 
|  | } | 
|  |  | 
|  | return New; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// SplitBlockPredecessors - This method transforms BB by introducing a new | 
|  | /// basic block into the function, and moving some of the predecessors of BB to | 
|  | /// be predecessors of the new block.  The new predecessors are indicated by the | 
|  | /// Preds array, which has NumPreds elements in it.  The new block is given a | 
|  | /// suffix of 'Suffix'. | 
|  | /// | 
|  | /// This currently updates the LLVM IR, AliasAnalysis, DominatorTree, | 
|  | /// LoopInfo, and LCCSA but no other analyses. In particular, it does not | 
|  | /// preserve LoopSimplify (because it's complicated to handle the case where one | 
|  | /// of the edges being split is an exit of a loop with other exits). | 
|  | /// | 
|  | BasicBlock *llvm::SplitBlockPredecessors(BasicBlock *BB, | 
|  | BasicBlock *const *Preds, | 
|  | unsigned NumPreds, const char *Suffix, | 
|  | Pass *P) { | 
|  | // Create new basic block, insert right before the original block. | 
|  | BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), BB->getName()+Suffix, | 
|  | BB->getParent(), BB); | 
|  |  | 
|  | // The new block unconditionally branches to the old block. | 
|  | BranchInst *BI = BranchInst::Create(BB, NewBB); | 
|  |  | 
|  | LoopInfo *LI = P ? P->getAnalysisIfAvailable<LoopInfo>() : 0; | 
|  | Loop *L = LI ? LI->getLoopFor(BB) : 0; | 
|  | bool PreserveLCSSA = P->mustPreserveAnalysisID(LCSSAID); | 
|  |  | 
|  | // Move the edges from Preds to point to NewBB instead of BB. | 
|  | // While here, if we need to preserve loop analyses, collect | 
|  | // some information about how this split will affect loops. | 
|  | bool HasLoopExit = false; | 
|  | bool IsLoopEntry = !!L; | 
|  | bool SplitMakesNewLoopHeader = false; | 
|  | for (unsigned i = 0; i != NumPreds; ++i) { | 
|  | // This is slightly more strict than necessary; the minimum requirement | 
|  | // is that there be no more than one indirectbr branching to BB. And | 
|  | // all BlockAddress uses would need to be updated. | 
|  | assert(!isa<IndirectBrInst>(Preds[i]->getTerminator()) && | 
|  | "Cannot split an edge from an IndirectBrInst"); | 
|  |  | 
|  | Preds[i]->getTerminator()->replaceUsesOfWith(BB, NewBB); | 
|  |  | 
|  | if (LI) { | 
|  | // If we need to preserve LCSSA, determine if any of | 
|  | // the preds is a loop exit. | 
|  | if (PreserveLCSSA) | 
|  | if (Loop *PL = LI->getLoopFor(Preds[i])) | 
|  | if (!PL->contains(BB)) | 
|  | HasLoopExit = true; | 
|  | // If we need to preserve LoopInfo, note whether any of the | 
|  | // preds crosses an interesting loop boundary. | 
|  | if (L) { | 
|  | if (L->contains(Preds[i])) | 
|  | IsLoopEntry = false; | 
|  | else | 
|  | SplitMakesNewLoopHeader = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update dominator tree if available. | 
|  | DominatorTree *DT = P ? P->getAnalysisIfAvailable<DominatorTree>() : 0; | 
|  | if (DT) | 
|  | DT->splitBlock(NewBB); | 
|  |  | 
|  | // Insert a new PHI node into NewBB for every PHI node in BB and that new PHI | 
|  | // node becomes an incoming value for BB's phi node.  However, if the Preds | 
|  | // list is empty, we need to insert dummy entries into the PHI nodes in BB to | 
|  | // account for the newly created predecessor. | 
|  | if (NumPreds == 0) { | 
|  | // Insert dummy values as the incoming value. | 
|  | for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++I) | 
|  | cast<PHINode>(I)->addIncoming(UndefValue::get(I->getType()), NewBB); | 
|  | return NewBB; | 
|  | } | 
|  |  | 
|  | AliasAnalysis *AA = P ? P->getAnalysisIfAvailable<AliasAnalysis>() : 0; | 
|  |  | 
|  | if (L) { | 
|  | if (IsLoopEntry) { | 
|  | // Add the new block to the nearest enclosing loop (and not an | 
|  | // adjacent loop). To find this, examine each of the predecessors and | 
|  | // determine which loops enclose them, and select the most-nested loop | 
|  | // which contains the loop containing the block being split. | 
|  | Loop *InnermostPredLoop = 0; | 
|  | for (unsigned i = 0; i != NumPreds; ++i) | 
|  | if (Loop *PredLoop = LI->getLoopFor(Preds[i])) { | 
|  | // Seek a loop which actually contains the block being split (to | 
|  | // avoid adjacent loops). | 
|  | while (PredLoop && !PredLoop->contains(BB)) | 
|  | PredLoop = PredLoop->getParentLoop(); | 
|  | // Select the most-nested of these loops which contains the block. | 
|  | if (PredLoop && | 
|  | PredLoop->contains(BB) && | 
|  | (!InnermostPredLoop || | 
|  | InnermostPredLoop->getLoopDepth() < PredLoop->getLoopDepth())) | 
|  | InnermostPredLoop = PredLoop; | 
|  | } | 
|  | if (InnermostPredLoop) | 
|  | InnermostPredLoop->addBasicBlockToLoop(NewBB, LI->getBase()); | 
|  | } else { | 
|  | L->addBasicBlockToLoop(NewBB, LI->getBase()); | 
|  | if (SplitMakesNewLoopHeader) | 
|  | L->moveToHeader(NewBB); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, create a new PHI node in NewBB for each PHI node in BB. | 
|  | for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ) { | 
|  | PHINode *PN = cast<PHINode>(I++); | 
|  |  | 
|  | // Check to see if all of the values coming in are the same.  If so, we | 
|  | // don't need to create a new PHI node, unless it's needed for LCSSA. | 
|  | Value *InVal = 0; | 
|  | if (!HasLoopExit) { | 
|  | InVal = PN->getIncomingValueForBlock(Preds[0]); | 
|  | for (unsigned i = 1; i != NumPreds; ++i) | 
|  | if (InVal != PN->getIncomingValueForBlock(Preds[i])) { | 
|  | InVal = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (InVal) { | 
|  | // If all incoming values for the new PHI would be the same, just don't | 
|  | // make a new PHI.  Instead, just remove the incoming values from the old | 
|  | // PHI. | 
|  | for (unsigned i = 0; i != NumPreds; ++i) | 
|  | PN->removeIncomingValue(Preds[i], false); | 
|  | } else { | 
|  | // If the values coming into the block are not the same, we need a PHI. | 
|  | // Create the new PHI node, insert it into NewBB at the end of the block | 
|  | PHINode *NewPHI = | 
|  | PHINode::Create(PN->getType(), NumPreds, PN->getName()+".ph", BI); | 
|  | if (AA) AA->copyValue(PN, NewPHI); | 
|  |  | 
|  | // Move all of the PHI values for 'Preds' to the new PHI. | 
|  | for (unsigned i = 0; i != NumPreds; ++i) { | 
|  | Value *V = PN->removeIncomingValue(Preds[i], false); | 
|  | NewPHI->addIncoming(V, Preds[i]); | 
|  | } | 
|  | InVal = NewPHI; | 
|  | } | 
|  |  | 
|  | // Add an incoming value to the PHI node in the loop for the preheader | 
|  | // edge. | 
|  | PN->addIncoming(InVal, NewBB); | 
|  | } | 
|  |  | 
|  | return NewBB; | 
|  | } | 
|  |  | 
|  | /// FindFunctionBackedges - Analyze the specified function to find all of the | 
|  | /// loop backedges in the function and return them.  This is a relatively cheap | 
|  | /// (compared to computing dominators and loop info) analysis. | 
|  | /// | 
|  | /// The output is added to Result, as pairs of <from,to> edge info. | 
|  | void llvm::FindFunctionBackedges(const Function &F, | 
|  | SmallVectorImpl<std::pair<const BasicBlock*,const BasicBlock*> > &Result) { | 
|  | const BasicBlock *BB = &F.getEntryBlock(); | 
|  | if (succ_begin(BB) == succ_end(BB)) | 
|  | return; | 
|  |  | 
|  | SmallPtrSet<const BasicBlock*, 8> Visited; | 
|  | SmallVector<std::pair<const BasicBlock*, succ_const_iterator>, 8> VisitStack; | 
|  | SmallPtrSet<const BasicBlock*, 8> InStack; | 
|  |  | 
|  | Visited.insert(BB); | 
|  | VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); | 
|  | InStack.insert(BB); | 
|  | do { | 
|  | std::pair<const BasicBlock*, succ_const_iterator> &Top = VisitStack.back(); | 
|  | const BasicBlock *ParentBB = Top.first; | 
|  | succ_const_iterator &I = Top.second; | 
|  |  | 
|  | bool FoundNew = false; | 
|  | while (I != succ_end(ParentBB)) { | 
|  | BB = *I++; | 
|  | if (Visited.insert(BB)) { | 
|  | FoundNew = true; | 
|  | break; | 
|  | } | 
|  | // Successor is in VisitStack, it's a back edge. | 
|  | if (InStack.count(BB)) | 
|  | Result.push_back(std::make_pair(ParentBB, BB)); | 
|  | } | 
|  |  | 
|  | if (FoundNew) { | 
|  | // Go down one level if there is a unvisited successor. | 
|  | InStack.insert(BB); | 
|  | VisitStack.push_back(std::make_pair(BB, succ_begin(BB))); | 
|  | } else { | 
|  | // Go up one level. | 
|  | InStack.erase(VisitStack.pop_back_val().first); | 
|  | } | 
|  | } while (!VisitStack.empty()); | 
|  | } | 
|  |  | 
|  | /// FoldReturnIntoUncondBranch - This method duplicates the specified return | 
|  | /// instruction into a predecessor which ends in an unconditional branch. If | 
|  | /// the return instruction returns a value defined by a PHI, propagate the | 
|  | /// right value into the return. It returns the new return instruction in the | 
|  | /// predecessor. | 
|  | ReturnInst *llvm::FoldReturnIntoUncondBranch(ReturnInst *RI, BasicBlock *BB, | 
|  | BasicBlock *Pred) { | 
|  | Instruction *UncondBranch = Pred->getTerminator(); | 
|  | // Clone the return and add it to the end of the predecessor. | 
|  | Instruction *NewRet = RI->clone(); | 
|  | Pred->getInstList().push_back(NewRet); | 
|  |  | 
|  | // If the return instruction returns a value, and if the value was a | 
|  | // PHI node in "BB", propagate the right value into the return. | 
|  | for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end(); | 
|  | i != e; ++i) | 
|  | if (PHINode *PN = dyn_cast<PHINode>(*i)) | 
|  | if (PN->getParent() == BB) | 
|  | *i = PN->getIncomingValueForBlock(Pred); | 
|  |  | 
|  | // Update any PHI nodes in the returning block to realize that we no | 
|  | // longer branch to them. | 
|  | BB->removePredecessor(Pred); | 
|  | UncondBranch->eraseFromParent(); | 
|  | return cast<ReturnInst>(NewRet); | 
|  | } |