|  | //===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements sparse conditional constant propagation and merging: | 
|  | // | 
|  | // Specifically, this: | 
|  | //   * Assumes values are constant unless proven otherwise | 
|  | //   * Assumes BasicBlocks are dead unless proven otherwise | 
|  | //   * Proves values to be constant, and replaces them with constants | 
|  | //   * Proves conditional branches to be unconditional | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "sccp" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/IPO.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Support/CallSite.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/InstVisitor.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/PointerIntPair.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include <algorithm> | 
|  | #include <map> | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumInstRemoved, "Number of instructions removed"); | 
|  | STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable"); | 
|  |  | 
|  | STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP"); | 
|  | STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP"); | 
|  | STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP"); | 
|  |  | 
|  | namespace { | 
|  | /// LatticeVal class - This class represents the different lattice values that | 
|  | /// an LLVM value may occupy.  It is a simple class with value semantics. | 
|  | /// | 
|  | class LatticeVal { | 
|  | enum LatticeValueTy { | 
|  | /// undefined - This LLVM Value has no known value yet. | 
|  | undefined, | 
|  |  | 
|  | /// constant - This LLVM Value has a specific constant value. | 
|  | constant, | 
|  |  | 
|  | /// forcedconstant - This LLVM Value was thought to be undef until | 
|  | /// ResolvedUndefsIn.  This is treated just like 'constant', but if merged | 
|  | /// with another (different) constant, it goes to overdefined, instead of | 
|  | /// asserting. | 
|  | forcedconstant, | 
|  |  | 
|  | /// overdefined - This instruction is not known to be constant, and we know | 
|  | /// it has a value. | 
|  | overdefined | 
|  | }; | 
|  |  | 
|  | /// Val: This stores the current lattice value along with the Constant* for | 
|  | /// the constant if this is a 'constant' or 'forcedconstant' value. | 
|  | PointerIntPair<Constant *, 2, LatticeValueTy> Val; | 
|  |  | 
|  | LatticeValueTy getLatticeValue() const { | 
|  | return Val.getInt(); | 
|  | } | 
|  |  | 
|  | public: | 
|  | LatticeVal() : Val(0, undefined) {} | 
|  |  | 
|  | bool isUndefined() const { return getLatticeValue() == undefined; } | 
|  | bool isConstant() const { | 
|  | return getLatticeValue() == constant || getLatticeValue() == forcedconstant; | 
|  | } | 
|  | bool isOverdefined() const { return getLatticeValue() == overdefined; } | 
|  |  | 
|  | Constant *getConstant() const { | 
|  | assert(isConstant() && "Cannot get the constant of a non-constant!"); | 
|  | return Val.getPointer(); | 
|  | } | 
|  |  | 
|  | /// markOverdefined - Return true if this is a change in status. | 
|  | bool markOverdefined() { | 
|  | if (isOverdefined()) | 
|  | return false; | 
|  |  | 
|  | Val.setInt(overdefined); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// markConstant - Return true if this is a change in status. | 
|  | bool markConstant(Constant *V) { | 
|  | if (getLatticeValue() == constant) { // Constant but not forcedconstant. | 
|  | assert(getConstant() == V && "Marking constant with different value"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (isUndefined()) { | 
|  | Val.setInt(constant); | 
|  | assert(V && "Marking constant with NULL"); | 
|  | Val.setPointer(V); | 
|  | } else { | 
|  | assert(getLatticeValue() == forcedconstant && | 
|  | "Cannot move from overdefined to constant!"); | 
|  | // Stay at forcedconstant if the constant is the same. | 
|  | if (V == getConstant()) return false; | 
|  |  | 
|  | // Otherwise, we go to overdefined.  Assumptions made based on the | 
|  | // forced value are possibly wrong.  Assuming this is another constant | 
|  | // could expose a contradiction. | 
|  | Val.setInt(overdefined); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// getConstantInt - If this is a constant with a ConstantInt value, return it | 
|  | /// otherwise return null. | 
|  | ConstantInt *getConstantInt() const { | 
|  | if (isConstant()) | 
|  | return dyn_cast<ConstantInt>(getConstant()); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void markForcedConstant(Constant *V) { | 
|  | assert(isUndefined() && "Can't force a defined value!"); | 
|  | Val.setInt(forcedconstant); | 
|  | Val.setPointer(V); | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace. | 
|  |  | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | /// SCCPSolver - This class is a general purpose solver for Sparse Conditional | 
|  | /// Constant Propagation. | 
|  | /// | 
|  | class SCCPSolver : public InstVisitor<SCCPSolver> { | 
|  | const TargetData *TD; | 
|  | SmallPtrSet<BasicBlock*, 8> BBExecutable;// The BBs that are executable. | 
|  | DenseMap<Value*, LatticeVal> ValueState;  // The state each value is in. | 
|  |  | 
|  | /// StructValueState - This maintains ValueState for values that have | 
|  | /// StructType, for example for formal arguments, calls, insertelement, etc. | 
|  | /// | 
|  | DenseMap<std::pair<Value*, unsigned>, LatticeVal> StructValueState; | 
|  |  | 
|  | /// GlobalValue - If we are tracking any values for the contents of a global | 
|  | /// variable, we keep a mapping from the constant accessor to the element of | 
|  | /// the global, to the currently known value.  If the value becomes | 
|  | /// overdefined, it's entry is simply removed from this map. | 
|  | DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals; | 
|  |  | 
|  | /// TrackedRetVals - If we are tracking arguments into and the return | 
|  | /// value out of a function, it will have an entry in this map, indicating | 
|  | /// what the known return value for the function is. | 
|  | DenseMap<Function*, LatticeVal> TrackedRetVals; | 
|  |  | 
|  | /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions | 
|  | /// that return multiple values. | 
|  | DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals; | 
|  |  | 
|  | /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is | 
|  | /// represented here for efficient lookup. | 
|  | SmallPtrSet<Function*, 16> MRVFunctionsTracked; | 
|  |  | 
|  | /// TrackingIncomingArguments - This is the set of functions for whose | 
|  | /// arguments we make optimistic assumptions about and try to prove as | 
|  | /// constants. | 
|  | SmallPtrSet<Function*, 16> TrackingIncomingArguments; | 
|  |  | 
|  | /// The reason for two worklists is that overdefined is the lowest state | 
|  | /// on the lattice, and moving things to overdefined as fast as possible | 
|  | /// makes SCCP converge much faster. | 
|  | /// | 
|  | /// By having a separate worklist, we accomplish this because everything | 
|  | /// possibly overdefined will become overdefined at the soonest possible | 
|  | /// point. | 
|  | SmallVector<Value*, 64> OverdefinedInstWorkList; | 
|  | SmallVector<Value*, 64> InstWorkList; | 
|  |  | 
|  |  | 
|  | SmallVector<BasicBlock*, 64>  BBWorkList;  // The BasicBlock work list | 
|  |  | 
|  | /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not | 
|  | /// overdefined, despite the fact that the PHI node is overdefined. | 
|  | std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs; | 
|  |  | 
|  | /// KnownFeasibleEdges - Entries in this set are edges which have already had | 
|  | /// PHI nodes retriggered. | 
|  | typedef std::pair<BasicBlock*, BasicBlock*> Edge; | 
|  | DenseSet<Edge> KnownFeasibleEdges; | 
|  | public: | 
|  | SCCPSolver(const TargetData *td) : TD(td) {} | 
|  |  | 
|  | /// MarkBlockExecutable - This method can be used by clients to mark all of | 
|  | /// the blocks that are known to be intrinsically live in the processed unit. | 
|  | /// | 
|  | /// This returns true if the block was not considered live before. | 
|  | bool MarkBlockExecutable(BasicBlock *BB) { | 
|  | if (!BBExecutable.insert(BB)) return false; | 
|  | DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << "\n"); | 
|  | BBWorkList.push_back(BB);  // Add the block to the work list! | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// TrackValueOfGlobalVariable - Clients can use this method to | 
|  | /// inform the SCCPSolver that it should track loads and stores to the | 
|  | /// specified global variable if it can.  This is only legal to call if | 
|  | /// performing Interprocedural SCCP. | 
|  | void TrackValueOfGlobalVariable(GlobalVariable *GV) { | 
|  | // We only track the contents of scalar globals. | 
|  | if (GV->getType()->getElementType()->isSingleValueType()) { | 
|  | LatticeVal &IV = TrackedGlobals[GV]; | 
|  | if (!isa<UndefValue>(GV->getInitializer())) | 
|  | IV.markConstant(GV->getInitializer()); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// AddTrackedFunction - If the SCCP solver is supposed to track calls into | 
|  | /// and out of the specified function (which cannot have its address taken), | 
|  | /// this method must be called. | 
|  | void AddTrackedFunction(Function *F) { | 
|  | // Add an entry, F -> undef. | 
|  | if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) { | 
|  | MRVFunctionsTracked.insert(F); | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) | 
|  | TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i), | 
|  | LatticeVal())); | 
|  | } else | 
|  | TrackedRetVals.insert(std::make_pair(F, LatticeVal())); | 
|  | } | 
|  |  | 
|  | void AddArgumentTrackedFunction(Function *F) { | 
|  | TrackingIncomingArguments.insert(F); | 
|  | } | 
|  |  | 
|  | /// Solve - Solve for constants and executable blocks. | 
|  | /// | 
|  | void Solve(); | 
|  |  | 
|  | /// ResolvedUndefsIn - While solving the dataflow for a function, we assume | 
|  | /// that branches on undef values cannot reach any of their successors. | 
|  | /// However, this is not a safe assumption.  After we solve dataflow, this | 
|  | /// method should be use to handle this.  If this returns true, the solver | 
|  | /// should be rerun. | 
|  | bool ResolvedUndefsIn(Function &F); | 
|  |  | 
|  | bool isBlockExecutable(BasicBlock *BB) const { | 
|  | return BBExecutable.count(BB); | 
|  | } | 
|  |  | 
|  | LatticeVal getLatticeValueFor(Value *V) const { | 
|  | DenseMap<Value*, LatticeVal>::const_iterator I = ValueState.find(V); | 
|  | assert(I != ValueState.end() && "V is not in valuemap!"); | 
|  | return I->second; | 
|  | } | 
|  |  | 
|  | LatticeVal getStructLatticeValueFor(Value *V, unsigned i) const { | 
|  | DenseMap<std::pair<Value*, unsigned>, LatticeVal>::const_iterator I = | 
|  | StructValueState.find(std::make_pair(V, i)); | 
|  | assert(I != StructValueState.end() && "V is not in valuemap!"); | 
|  | return I->second; | 
|  | } | 
|  |  | 
|  | /// getTrackedRetVals - Get the inferred return value map. | 
|  | /// | 
|  | const DenseMap<Function*, LatticeVal> &getTrackedRetVals() { | 
|  | return TrackedRetVals; | 
|  | } | 
|  |  | 
|  | /// getTrackedGlobals - Get and return the set of inferred initializers for | 
|  | /// global variables. | 
|  | const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() { | 
|  | return TrackedGlobals; | 
|  | } | 
|  |  | 
|  | void markOverdefined(Value *V) { | 
|  | assert(!V->getType()->isStructTy() && "Should use other method"); | 
|  | markOverdefined(ValueState[V], V); | 
|  | } | 
|  |  | 
|  | /// markAnythingOverdefined - Mark the specified value overdefined.  This | 
|  | /// works with both scalars and structs. | 
|  | void markAnythingOverdefined(Value *V) { | 
|  | if (const StructType *STy = dyn_cast<StructType>(V->getType())) | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) | 
|  | markOverdefined(getStructValueState(V, i), V); | 
|  | else | 
|  | markOverdefined(V); | 
|  | } | 
|  |  | 
|  | private: | 
|  | // markConstant - Make a value be marked as "constant".  If the value | 
|  | // is not already a constant, add it to the instruction work list so that | 
|  | // the users of the instruction are updated later. | 
|  | // | 
|  | void markConstant(LatticeVal &IV, Value *V, Constant *C) { | 
|  | if (!IV.markConstant(C)) return; | 
|  | DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n'); | 
|  | if (IV.isOverdefined()) | 
|  | OverdefinedInstWorkList.push_back(V); | 
|  | else | 
|  | InstWorkList.push_back(V); | 
|  | } | 
|  |  | 
|  | void markConstant(Value *V, Constant *C) { | 
|  | assert(!V->getType()->isStructTy() && "Should use other method"); | 
|  | markConstant(ValueState[V], V, C); | 
|  | } | 
|  |  | 
|  | void markForcedConstant(Value *V, Constant *C) { | 
|  | assert(!V->getType()->isStructTy() && "Should use other method"); | 
|  | LatticeVal &IV = ValueState[V]; | 
|  | IV.markForcedConstant(C); | 
|  | DEBUG(dbgs() << "markForcedConstant: " << *C << ": " << *V << '\n'); | 
|  | if (IV.isOverdefined()) | 
|  | OverdefinedInstWorkList.push_back(V); | 
|  | else | 
|  | InstWorkList.push_back(V); | 
|  | } | 
|  |  | 
|  |  | 
|  | // markOverdefined - Make a value be marked as "overdefined". If the | 
|  | // value is not already overdefined, add it to the overdefined instruction | 
|  | // work list so that the users of the instruction are updated later. | 
|  | void markOverdefined(LatticeVal &IV, Value *V) { | 
|  | if (!IV.markOverdefined()) return; | 
|  |  | 
|  | DEBUG(dbgs() << "markOverdefined: "; | 
|  | if (Function *F = dyn_cast<Function>(V)) | 
|  | dbgs() << "Function '" << F->getName() << "'\n"; | 
|  | else | 
|  | dbgs() << *V << '\n'); | 
|  | // Only instructions go on the work list | 
|  | OverdefinedInstWorkList.push_back(V); | 
|  | } | 
|  |  | 
|  | void mergeInValue(LatticeVal &IV, Value *V, LatticeVal MergeWithV) { | 
|  | if (IV.isOverdefined() || MergeWithV.isUndefined()) | 
|  | return;  // Noop. | 
|  | if (MergeWithV.isOverdefined()) | 
|  | markOverdefined(IV, V); | 
|  | else if (IV.isUndefined()) | 
|  | markConstant(IV, V, MergeWithV.getConstant()); | 
|  | else if (IV.getConstant() != MergeWithV.getConstant()) | 
|  | markOverdefined(IV, V); | 
|  | } | 
|  |  | 
|  | void mergeInValue(Value *V, LatticeVal MergeWithV) { | 
|  | assert(!V->getType()->isStructTy() && "Should use other method"); | 
|  | mergeInValue(ValueState[V], V, MergeWithV); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// getValueState - Return the LatticeVal object that corresponds to the | 
|  | /// value.  This function handles the case when the value hasn't been seen yet | 
|  | /// by properly seeding constants etc. | 
|  | LatticeVal &getValueState(Value *V) { | 
|  | assert(!V->getType()->isStructTy() && "Should use getStructValueState"); | 
|  |  | 
|  | std::pair<DenseMap<Value*, LatticeVal>::iterator, bool> I = | 
|  | ValueState.insert(std::make_pair(V, LatticeVal())); | 
|  | LatticeVal &LV = I.first->second; | 
|  |  | 
|  | if (!I.second) | 
|  | return LV;  // Common case, already in the map. | 
|  |  | 
|  | if (Constant *C = dyn_cast<Constant>(V)) { | 
|  | // Undef values remain undefined. | 
|  | if (!isa<UndefValue>(V)) | 
|  | LV.markConstant(C);          // Constants are constant | 
|  | } | 
|  |  | 
|  | // All others are underdefined by default. | 
|  | return LV; | 
|  | } | 
|  |  | 
|  | /// getStructValueState - Return the LatticeVal object that corresponds to the | 
|  | /// value/field pair.  This function handles the case when the value hasn't | 
|  | /// been seen yet by properly seeding constants etc. | 
|  | LatticeVal &getStructValueState(Value *V, unsigned i) { | 
|  | assert(V->getType()->isStructTy() && "Should use getValueState"); | 
|  | assert(i < cast<StructType>(V->getType())->getNumElements() && | 
|  | "Invalid element #"); | 
|  |  | 
|  | std::pair<DenseMap<std::pair<Value*, unsigned>, LatticeVal>::iterator, | 
|  | bool> I = StructValueState.insert( | 
|  | std::make_pair(std::make_pair(V, i), LatticeVal())); | 
|  | LatticeVal &LV = I.first->second; | 
|  |  | 
|  | if (!I.second) | 
|  | return LV;  // Common case, already in the map. | 
|  |  | 
|  | if (Constant *C = dyn_cast<Constant>(V)) { | 
|  | if (isa<UndefValue>(C)) | 
|  | ; // Undef values remain undefined. | 
|  | else if (ConstantStruct *CS = dyn_cast<ConstantStruct>(C)) | 
|  | LV.markConstant(CS->getOperand(i));      // Constants are constant. | 
|  | else if (isa<ConstantAggregateZero>(C)) { | 
|  | const Type *FieldTy = cast<StructType>(V->getType())->getElementType(i); | 
|  | LV.markConstant(Constant::getNullValue(FieldTy)); | 
|  | } else | 
|  | LV.markOverdefined();      // Unknown sort of constant. | 
|  | } | 
|  |  | 
|  | // All others are underdefined by default. | 
|  | return LV; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB | 
|  | /// work list if it is not already executable. | 
|  | void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) { | 
|  | if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second) | 
|  | return;  // This edge is already known to be executable! | 
|  |  | 
|  | if (!MarkBlockExecutable(Dest)) { | 
|  | // If the destination is already executable, we just made an *edge* | 
|  | // feasible that wasn't before.  Revisit the PHI nodes in the block | 
|  | // because they have potentially new operands. | 
|  | DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName() | 
|  | << " -> " << Dest->getName() << "\n"); | 
|  |  | 
|  | PHINode *PN; | 
|  | for (BasicBlock::iterator I = Dest->begin(); | 
|  | (PN = dyn_cast<PHINode>(I)); ++I) | 
|  | visitPHINode(*PN); | 
|  | } | 
|  | } | 
|  |  | 
|  | // getFeasibleSuccessors - Return a vector of booleans to indicate which | 
|  | // successors are reachable from a given terminator instruction. | 
|  | // | 
|  | void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs); | 
|  |  | 
|  | // isEdgeFeasible - Return true if the control flow edge from the 'From' basic | 
|  | // block to the 'To' basic block is currently feasible. | 
|  | // | 
|  | bool isEdgeFeasible(BasicBlock *From, BasicBlock *To); | 
|  |  | 
|  | // OperandChangedState - This method is invoked on all of the users of an | 
|  | // instruction that was just changed state somehow.  Based on this | 
|  | // information, we need to update the specified user of this instruction. | 
|  | // | 
|  | void OperandChangedState(Instruction *I) { | 
|  | if (BBExecutable.count(I->getParent()))   // Inst is executable? | 
|  | visit(*I); | 
|  | } | 
|  |  | 
|  | /// RemoveFromOverdefinedPHIs - If I has any entries in the | 
|  | /// UsersOfOverdefinedPHIs map for PN, remove them now. | 
|  | void RemoveFromOverdefinedPHIs(Instruction *I, PHINode *PN) { | 
|  | if (UsersOfOverdefinedPHIs.empty()) return; | 
|  | std::multimap<PHINode*, Instruction*>::iterator It, E; | 
|  | tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN); | 
|  | while (It != E) { | 
|  | if (It->second == I) | 
|  | UsersOfOverdefinedPHIs.erase(It++); | 
|  | else | 
|  | ++It; | 
|  | } | 
|  | } | 
|  |  | 
|  | private: | 
|  | friend class InstVisitor<SCCPSolver>; | 
|  |  | 
|  | // visit implementations - Something changed in this instruction.  Either an | 
|  | // operand made a transition, or the instruction is newly executable.  Change | 
|  | // the value type of I to reflect these changes if appropriate. | 
|  | void visitPHINode(PHINode &I); | 
|  |  | 
|  | // Terminators | 
|  | void visitReturnInst(ReturnInst &I); | 
|  | void visitTerminatorInst(TerminatorInst &TI); | 
|  |  | 
|  | void visitCastInst(CastInst &I); | 
|  | void visitSelectInst(SelectInst &I); | 
|  | void visitBinaryOperator(Instruction &I); | 
|  | void visitCmpInst(CmpInst &I); | 
|  | void visitExtractElementInst(ExtractElementInst &I); | 
|  | void visitInsertElementInst(InsertElementInst &I); | 
|  | void visitShuffleVectorInst(ShuffleVectorInst &I); | 
|  | void visitExtractValueInst(ExtractValueInst &EVI); | 
|  | void visitInsertValueInst(InsertValueInst &IVI); | 
|  |  | 
|  | // Instructions that cannot be folded away. | 
|  | void visitStoreInst     (StoreInst &I); | 
|  | void visitLoadInst      (LoadInst &I); | 
|  | void visitGetElementPtrInst(GetElementPtrInst &I); | 
|  | void visitCallInst      (CallInst &I) { | 
|  | visitCallSite(CallSite::get(&I)); | 
|  | } | 
|  | void visitInvokeInst    (InvokeInst &II) { | 
|  | visitCallSite(CallSite::get(&II)); | 
|  | visitTerminatorInst(II); | 
|  | } | 
|  | void visitCallSite      (CallSite CS); | 
|  | void visitUnwindInst    (TerminatorInst &I) { /*returns void*/ } | 
|  | void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ } | 
|  | void visitAllocaInst    (Instruction &I) { markOverdefined(&I); } | 
|  | void visitVANextInst    (Instruction &I) { markOverdefined(&I); } | 
|  | void visitVAArgInst     (Instruction &I) { markAnythingOverdefined(&I); } | 
|  |  | 
|  | void visitInstruction(Instruction &I) { | 
|  | // If a new instruction is added to LLVM that we don't handle. | 
|  | dbgs() << "SCCP: Don't know how to handle: " << I; | 
|  | markAnythingOverdefined(&I);   // Just in case | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  |  | 
|  | // getFeasibleSuccessors - Return a vector of booleans to indicate which | 
|  | // successors are reachable from a given terminator instruction. | 
|  | // | 
|  | void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI, | 
|  | SmallVector<bool, 16> &Succs) { | 
|  | Succs.resize(TI.getNumSuccessors()); | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) { | 
|  | if (BI->isUnconditional()) { | 
|  | Succs[0] = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | LatticeVal BCValue = getValueState(BI->getCondition()); | 
|  | ConstantInt *CI = BCValue.getConstantInt(); | 
|  | if (CI == 0) { | 
|  | // Overdefined condition variables, and branches on unfoldable constant | 
|  | // conditions, mean the branch could go either way. | 
|  | if (!BCValue.isUndefined()) | 
|  | Succs[0] = Succs[1] = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Constant condition variables mean the branch can only go a single way. | 
|  | Succs[CI->isZero()] = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (isa<InvokeInst>(TI)) { | 
|  | // Invoke instructions successors are always executable. | 
|  | Succs[0] = Succs[1] = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) { | 
|  | LatticeVal SCValue = getValueState(SI->getCondition()); | 
|  | ConstantInt *CI = SCValue.getConstantInt(); | 
|  |  | 
|  | if (CI == 0) {   // Overdefined or undefined condition? | 
|  | // All destinations are executable! | 
|  | if (!SCValue.isUndefined()) | 
|  | Succs.assign(TI.getNumSuccessors(), true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Succs[SI->findCaseValue(CI)] = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // TODO: This could be improved if the operand is a [cast of a] BlockAddress. | 
|  | if (isa<IndirectBrInst>(&TI)) { | 
|  | // Just mark all destinations executable! | 
|  | Succs.assign(TI.getNumSuccessors(), true); | 
|  | return; | 
|  | } | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | dbgs() << "Unknown terminator instruction: " << TI << '\n'; | 
|  | #endif | 
|  | llvm_unreachable("SCCP: Don't know how to handle this terminator!"); | 
|  | } | 
|  |  | 
|  |  | 
|  | // isEdgeFeasible - Return true if the control flow edge from the 'From' basic | 
|  | // block to the 'To' basic block is currently feasible. | 
|  | // | 
|  | bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) { | 
|  | assert(BBExecutable.count(To) && "Dest should always be alive!"); | 
|  |  | 
|  | // Make sure the source basic block is executable!! | 
|  | if (!BBExecutable.count(From)) return false; | 
|  |  | 
|  | // Check to make sure this edge itself is actually feasible now. | 
|  | TerminatorInst *TI = From->getTerminator(); | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { | 
|  | if (BI->isUnconditional()) | 
|  | return true; | 
|  |  | 
|  | LatticeVal BCValue = getValueState(BI->getCondition()); | 
|  |  | 
|  | // Overdefined condition variables mean the branch could go either way, | 
|  | // undef conditions mean that neither edge is feasible yet. | 
|  | ConstantInt *CI = BCValue.getConstantInt(); | 
|  | if (CI == 0) | 
|  | return !BCValue.isUndefined(); | 
|  |  | 
|  | // Constant condition variables mean the branch can only go a single way. | 
|  | return BI->getSuccessor(CI->isZero()) == To; | 
|  | } | 
|  |  | 
|  | // Invoke instructions successors are always executable. | 
|  | if (isa<InvokeInst>(TI)) | 
|  | return true; | 
|  |  | 
|  | if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { | 
|  | LatticeVal SCValue = getValueState(SI->getCondition()); | 
|  | ConstantInt *CI = SCValue.getConstantInt(); | 
|  |  | 
|  | if (CI == 0) | 
|  | return !SCValue.isUndefined(); | 
|  |  | 
|  | // Make sure to skip the "default value" which isn't a value | 
|  | for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i) | 
|  | if (SI->getSuccessorValue(i) == CI) // Found the taken branch. | 
|  | return SI->getSuccessor(i) == To; | 
|  |  | 
|  | // If the constant value is not equal to any of the branches, we must | 
|  | // execute default branch. | 
|  | return SI->getDefaultDest() == To; | 
|  | } | 
|  |  | 
|  | // Just mark all destinations executable! | 
|  | // TODO: This could be improved if the operand is a [cast of a] BlockAddress. | 
|  | if (isa<IndirectBrInst>(&TI)) | 
|  | return true; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | dbgs() << "Unknown terminator instruction: " << *TI << '\n'; | 
|  | #endif | 
|  | llvm_unreachable(0); | 
|  | } | 
|  |  | 
|  | // visit Implementations - Something changed in this instruction, either an | 
|  | // operand made a transition, or the instruction is newly executable.  Change | 
|  | // the value type of I to reflect these changes if appropriate.  This method | 
|  | // makes sure to do the following actions: | 
|  | // | 
|  | // 1. If a phi node merges two constants in, and has conflicting value coming | 
|  | //    from different branches, or if the PHI node merges in an overdefined | 
|  | //    value, then the PHI node becomes overdefined. | 
|  | // 2. If a phi node merges only constants in, and they all agree on value, the | 
|  | //    PHI node becomes a constant value equal to that. | 
|  | // 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant | 
|  | // 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined | 
|  | // 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined | 
|  | // 6. If a conditional branch has a value that is constant, make the selected | 
|  | //    destination executable | 
|  | // 7. If a conditional branch has a value that is overdefined, make all | 
|  | //    successors executable. | 
|  | // | 
|  | void SCCPSolver::visitPHINode(PHINode &PN) { | 
|  | // If this PN returns a struct, just mark the result overdefined. | 
|  | // TODO: We could do a lot better than this if code actually uses this. | 
|  | if (PN.getType()->isStructTy()) | 
|  | return markAnythingOverdefined(&PN); | 
|  |  | 
|  | if (getValueState(&PN).isOverdefined()) { | 
|  | // There may be instructions using this PHI node that are not overdefined | 
|  | // themselves.  If so, make sure that they know that the PHI node operand | 
|  | // changed. | 
|  | std::multimap<PHINode*, Instruction*>::iterator I, E; | 
|  | tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN); | 
|  | if (I == E) | 
|  | return; | 
|  |  | 
|  | SmallVector<Instruction*, 16> Users; | 
|  | for (; I != E; ++I) | 
|  | Users.push_back(I->second); | 
|  | while (!Users.empty()) | 
|  | visit(Users.pop_back_val()); | 
|  | return;  // Quick exit | 
|  | } | 
|  |  | 
|  | // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant, | 
|  | // and slow us down a lot.  Just mark them overdefined. | 
|  | if (PN.getNumIncomingValues() > 64) | 
|  | return markOverdefined(&PN); | 
|  |  | 
|  | // Look at all of the executable operands of the PHI node.  If any of them | 
|  | // are overdefined, the PHI becomes overdefined as well.  If they are all | 
|  | // constant, and they agree with each other, the PHI becomes the identical | 
|  | // constant.  If they are constant and don't agree, the PHI is overdefined. | 
|  | // If there are no executable operands, the PHI remains undefined. | 
|  | // | 
|  | Constant *OperandVal = 0; | 
|  | for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) { | 
|  | LatticeVal IV = getValueState(PN.getIncomingValue(i)); | 
|  | if (IV.isUndefined()) continue;  // Doesn't influence PHI node. | 
|  |  | 
|  | if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) | 
|  | continue; | 
|  |  | 
|  | if (IV.isOverdefined())    // PHI node becomes overdefined! | 
|  | return markOverdefined(&PN); | 
|  |  | 
|  | if (OperandVal == 0) {   // Grab the first value. | 
|  | OperandVal = IV.getConstant(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // There is already a reachable operand.  If we conflict with it, | 
|  | // then the PHI node becomes overdefined.  If we agree with it, we | 
|  | // can continue on. | 
|  |  | 
|  | // Check to see if there are two different constants merging, if so, the PHI | 
|  | // node is overdefined. | 
|  | if (IV.getConstant() != OperandVal) | 
|  | return markOverdefined(&PN); | 
|  | } | 
|  |  | 
|  | // If we exited the loop, this means that the PHI node only has constant | 
|  | // arguments that agree with each other(and OperandVal is the constant) or | 
|  | // OperandVal is null because there are no defined incoming arguments.  If | 
|  | // this is the case, the PHI remains undefined. | 
|  | // | 
|  | if (OperandVal) | 
|  | markConstant(&PN, OperandVal);      // Acquire operand value | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | void SCCPSolver::visitReturnInst(ReturnInst &I) { | 
|  | if (I.getNumOperands() == 0) return;  // ret void | 
|  |  | 
|  | Function *F = I.getParent()->getParent(); | 
|  | Value *ResultOp = I.getOperand(0); | 
|  |  | 
|  | // If we are tracking the return value of this function, merge it in. | 
|  | if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) { | 
|  | DenseMap<Function*, LatticeVal>::iterator TFRVI = | 
|  | TrackedRetVals.find(F); | 
|  | if (TFRVI != TrackedRetVals.end()) { | 
|  | mergeInValue(TFRVI->second, F, getValueState(ResultOp)); | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Handle functions that return multiple values. | 
|  | if (!TrackedMultipleRetVals.empty()) { | 
|  | if (const StructType *STy = dyn_cast<StructType>(ResultOp->getType())) | 
|  | if (MRVFunctionsTracked.count(F)) | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) | 
|  | mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F, | 
|  | getStructValueState(ResultOp, i)); | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) { | 
|  | SmallVector<bool, 16> SuccFeasible; | 
|  | getFeasibleSuccessors(TI, SuccFeasible); | 
|  |  | 
|  | BasicBlock *BB = TI.getParent(); | 
|  |  | 
|  | // Mark all feasible successors executable. | 
|  | for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i) | 
|  | if (SuccFeasible[i]) | 
|  | markEdgeExecutable(BB, TI.getSuccessor(i)); | 
|  | } | 
|  |  | 
|  | void SCCPSolver::visitCastInst(CastInst &I) { | 
|  | LatticeVal OpSt = getValueState(I.getOperand(0)); | 
|  | if (OpSt.isOverdefined())          // Inherit overdefinedness of operand | 
|  | markOverdefined(&I); | 
|  | else if (OpSt.isConstant())        // Propagate constant value | 
|  | markConstant(&I, ConstantExpr::getCast(I.getOpcode(), | 
|  | OpSt.getConstant(), I.getType())); | 
|  | } | 
|  |  | 
|  |  | 
|  | void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) { | 
|  | // If this returns a struct, mark all elements over defined, we don't track | 
|  | // structs in structs. | 
|  | if (EVI.getType()->isStructTy()) | 
|  | return markAnythingOverdefined(&EVI); | 
|  |  | 
|  | // If this is extracting from more than one level of struct, we don't know. | 
|  | if (EVI.getNumIndices() != 1) | 
|  | return markOverdefined(&EVI); | 
|  |  | 
|  | Value *AggVal = EVI.getAggregateOperand(); | 
|  | if (AggVal->getType()->isStructTy()) { | 
|  | unsigned i = *EVI.idx_begin(); | 
|  | LatticeVal EltVal = getStructValueState(AggVal, i); | 
|  | mergeInValue(getValueState(&EVI), &EVI, EltVal); | 
|  | } else { | 
|  | // Otherwise, must be extracting from an array. | 
|  | return markOverdefined(&EVI); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) { | 
|  | const StructType *STy = dyn_cast<StructType>(IVI.getType()); | 
|  | if (STy == 0) | 
|  | return markOverdefined(&IVI); | 
|  |  | 
|  | // If this has more than one index, we can't handle it, drive all results to | 
|  | // undef. | 
|  | if (IVI.getNumIndices() != 1) | 
|  | return markAnythingOverdefined(&IVI); | 
|  |  | 
|  | Value *Aggr = IVI.getAggregateOperand(); | 
|  | unsigned Idx = *IVI.idx_begin(); | 
|  |  | 
|  | // Compute the result based on what we're inserting. | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | 
|  | // This passes through all values that aren't the inserted element. | 
|  | if (i != Idx) { | 
|  | LatticeVal EltVal = getStructValueState(Aggr, i); | 
|  | mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | Value *Val = IVI.getInsertedValueOperand(); | 
|  | if (Val->getType()->isStructTy()) | 
|  | // We don't track structs in structs. | 
|  | markOverdefined(getStructValueState(&IVI, i), &IVI); | 
|  | else { | 
|  | LatticeVal InVal = getValueState(Val); | 
|  | mergeInValue(getStructValueState(&IVI, i), &IVI, InVal); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void SCCPSolver::visitSelectInst(SelectInst &I) { | 
|  | // If this select returns a struct, just mark the result overdefined. | 
|  | // TODO: We could do a lot better than this if code actually uses this. | 
|  | if (I.getType()->isStructTy()) | 
|  | return markAnythingOverdefined(&I); | 
|  |  | 
|  | LatticeVal CondValue = getValueState(I.getCondition()); | 
|  | if (CondValue.isUndefined()) | 
|  | return; | 
|  |  | 
|  | if (ConstantInt *CondCB = CondValue.getConstantInt()) { | 
|  | Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue(); | 
|  | mergeInValue(&I, getValueState(OpVal)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Otherwise, the condition is overdefined or a constant we can't evaluate. | 
|  | // See if we can produce something better than overdefined based on the T/F | 
|  | // value. | 
|  | LatticeVal TVal = getValueState(I.getTrueValue()); | 
|  | LatticeVal FVal = getValueState(I.getFalseValue()); | 
|  |  | 
|  | // select ?, C, C -> C. | 
|  | if (TVal.isConstant() && FVal.isConstant() && | 
|  | TVal.getConstant() == FVal.getConstant()) | 
|  | return markConstant(&I, FVal.getConstant()); | 
|  |  | 
|  | if (TVal.isUndefined())   // select ?, undef, X -> X. | 
|  | return mergeInValue(&I, FVal); | 
|  | if (FVal.isUndefined())   // select ?, X, undef -> X. | 
|  | return mergeInValue(&I, TVal); | 
|  | markOverdefined(&I); | 
|  | } | 
|  |  | 
|  | // Handle Binary Operators. | 
|  | void SCCPSolver::visitBinaryOperator(Instruction &I) { | 
|  | LatticeVal V1State = getValueState(I.getOperand(0)); | 
|  | LatticeVal V2State = getValueState(I.getOperand(1)); | 
|  |  | 
|  | LatticeVal &IV = ValueState[&I]; | 
|  | if (IV.isOverdefined()) return; | 
|  |  | 
|  | if (V1State.isConstant() && V2State.isConstant()) | 
|  | return markConstant(IV, &I, | 
|  | ConstantExpr::get(I.getOpcode(), V1State.getConstant(), | 
|  | V2State.getConstant())); | 
|  |  | 
|  | // If something is undef, wait for it to resolve. | 
|  | if (!V1State.isOverdefined() && !V2State.isOverdefined()) | 
|  | return; | 
|  |  | 
|  | // Otherwise, one of our operands is overdefined.  Try to produce something | 
|  | // better than overdefined with some tricks. | 
|  |  | 
|  | // If this is an AND or OR with 0 or -1, it doesn't matter that the other | 
|  | // operand is overdefined. | 
|  | if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) { | 
|  | LatticeVal *NonOverdefVal = 0; | 
|  | if (!V1State.isOverdefined()) | 
|  | NonOverdefVal = &V1State; | 
|  | else if (!V2State.isOverdefined()) | 
|  | NonOverdefVal = &V2State; | 
|  |  | 
|  | if (NonOverdefVal) { | 
|  | if (NonOverdefVal->isUndefined()) { | 
|  | // Could annihilate value. | 
|  | if (I.getOpcode() == Instruction::And) | 
|  | markConstant(IV, &I, Constant::getNullValue(I.getType())); | 
|  | else if (const VectorType *PT = dyn_cast<VectorType>(I.getType())) | 
|  | markConstant(IV, &I, Constant::getAllOnesValue(PT)); | 
|  | else | 
|  | markConstant(IV, &I, | 
|  | Constant::getAllOnesValue(I.getType())); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (I.getOpcode() == Instruction::And) { | 
|  | // X and 0 = 0 | 
|  | if (NonOverdefVal->getConstant()->isNullValue()) | 
|  | return markConstant(IV, &I, NonOverdefVal->getConstant()); | 
|  | } else { | 
|  | if (ConstantInt *CI = NonOverdefVal->getConstantInt()) | 
|  | if (CI->isAllOnesValue())     // X or -1 = -1 | 
|  | return markConstant(IV, &I, NonOverdefVal->getConstant()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | // If both operands are PHI nodes, it is possible that this instruction has | 
|  | // a constant value, despite the fact that the PHI node doesn't.  Check for | 
|  | // this condition now. | 
|  | if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) | 
|  | if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) | 
|  | if (PN1->getParent() == PN2->getParent()) { | 
|  | // Since the two PHI nodes are in the same basic block, they must have | 
|  | // entries for the same predecessors.  Walk the predecessor list, and | 
|  | // if all of the incoming values are constants, and the result of | 
|  | // evaluating this expression with all incoming value pairs is the | 
|  | // same, then this expression is a constant even though the PHI node | 
|  | // is not a constant! | 
|  | LatticeVal Result; | 
|  | for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { | 
|  | LatticeVal In1 = getValueState(PN1->getIncomingValue(i)); | 
|  | BasicBlock *InBlock = PN1->getIncomingBlock(i); | 
|  | LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock)); | 
|  |  | 
|  | if (In1.isOverdefined() || In2.isOverdefined()) { | 
|  | Result.markOverdefined(); | 
|  | break;  // Cannot fold this operation over the PHI nodes! | 
|  | } | 
|  |  | 
|  | if (In1.isConstant() && In2.isConstant()) { | 
|  | Constant *V = ConstantExpr::get(I.getOpcode(), In1.getConstant(), | 
|  | In2.getConstant()); | 
|  | if (Result.isUndefined()) | 
|  | Result.markConstant(V); | 
|  | else if (Result.isConstant() && Result.getConstant() != V) { | 
|  | Result.markOverdefined(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we found a constant value here, then we know the instruction is | 
|  | // constant despite the fact that the PHI nodes are overdefined. | 
|  | if (Result.isConstant()) { | 
|  | markConstant(IV, &I, Result.getConstant()); | 
|  | // Remember that this instruction is virtually using the PHI node | 
|  | // operands. | 
|  | UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); | 
|  | UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Result.isUndefined()) | 
|  | return; | 
|  |  | 
|  | // Okay, this really is overdefined now.  Since we might have | 
|  | // speculatively thought that this was not overdefined before, and | 
|  | // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, | 
|  | // make sure to clean out any entries that we put there, for | 
|  | // efficiency. | 
|  | RemoveFromOverdefinedPHIs(&I, PN1); | 
|  | RemoveFromOverdefinedPHIs(&I, PN2); | 
|  | } | 
|  |  | 
|  | markOverdefined(&I); | 
|  | } | 
|  |  | 
|  | // Handle ICmpInst instruction. | 
|  | void SCCPSolver::visitCmpInst(CmpInst &I) { | 
|  | LatticeVal V1State = getValueState(I.getOperand(0)); | 
|  | LatticeVal V2State = getValueState(I.getOperand(1)); | 
|  |  | 
|  | LatticeVal &IV = ValueState[&I]; | 
|  | if (IV.isOverdefined()) return; | 
|  |  | 
|  | if (V1State.isConstant() && V2State.isConstant()) | 
|  | return markConstant(IV, &I, ConstantExpr::getCompare(I.getPredicate(), | 
|  | V1State.getConstant(), | 
|  | V2State.getConstant())); | 
|  |  | 
|  | // If operands are still undefined, wait for it to resolve. | 
|  | if (!V1State.isOverdefined() && !V2State.isOverdefined()) | 
|  | return; | 
|  |  | 
|  | // If something is overdefined, use some tricks to avoid ending up and over | 
|  | // defined if we can. | 
|  |  | 
|  | // If both operands are PHI nodes, it is possible that this instruction has | 
|  | // a constant value, despite the fact that the PHI node doesn't.  Check for | 
|  | // this condition now. | 
|  | if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0))) | 
|  | if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1))) | 
|  | if (PN1->getParent() == PN2->getParent()) { | 
|  | // Since the two PHI nodes are in the same basic block, they must have | 
|  | // entries for the same predecessors.  Walk the predecessor list, and | 
|  | // if all of the incoming values are constants, and the result of | 
|  | // evaluating this expression with all incoming value pairs is the | 
|  | // same, then this expression is a constant even though the PHI node | 
|  | // is not a constant! | 
|  | LatticeVal Result; | 
|  | for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) { | 
|  | LatticeVal In1 = getValueState(PN1->getIncomingValue(i)); | 
|  | BasicBlock *InBlock = PN1->getIncomingBlock(i); | 
|  | LatticeVal In2 =getValueState(PN2->getIncomingValueForBlock(InBlock)); | 
|  |  | 
|  | if (In1.isOverdefined() || In2.isOverdefined()) { | 
|  | Result.markOverdefined(); | 
|  | break;  // Cannot fold this operation over the PHI nodes! | 
|  | } | 
|  |  | 
|  | if (In1.isConstant() && In2.isConstant()) { | 
|  | Constant *V = ConstantExpr::getCompare(I.getPredicate(), | 
|  | In1.getConstant(), | 
|  | In2.getConstant()); | 
|  | if (Result.isUndefined()) | 
|  | Result.markConstant(V); | 
|  | else if (Result.isConstant() && Result.getConstant() != V) { | 
|  | Result.markOverdefined(); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we found a constant value here, then we know the instruction is | 
|  | // constant despite the fact that the PHI nodes are overdefined. | 
|  | if (Result.isConstant()) { | 
|  | markConstant(&I, Result.getConstant()); | 
|  | // Remember that this instruction is virtually using the PHI node | 
|  | // operands. | 
|  | UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I)); | 
|  | UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (Result.isUndefined()) | 
|  | return; | 
|  |  | 
|  | // Okay, this really is overdefined now.  Since we might have | 
|  | // speculatively thought that this was not overdefined before, and | 
|  | // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs, | 
|  | // make sure to clean out any entries that we put there, for | 
|  | // efficiency. | 
|  | RemoveFromOverdefinedPHIs(&I, PN1); | 
|  | RemoveFromOverdefinedPHIs(&I, PN2); | 
|  | } | 
|  |  | 
|  | markOverdefined(&I); | 
|  | } | 
|  |  | 
|  | void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) { | 
|  | // TODO : SCCP does not handle vectors properly. | 
|  | return markOverdefined(&I); | 
|  |  | 
|  | #if 0 | 
|  | LatticeVal &ValState = getValueState(I.getOperand(0)); | 
|  | LatticeVal &IdxState = getValueState(I.getOperand(1)); | 
|  |  | 
|  | if (ValState.isOverdefined() || IdxState.isOverdefined()) | 
|  | markOverdefined(&I); | 
|  | else if(ValState.isConstant() && IdxState.isConstant()) | 
|  | markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(), | 
|  | IdxState.getConstant())); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void SCCPSolver::visitInsertElementInst(InsertElementInst &I) { | 
|  | // TODO : SCCP does not handle vectors properly. | 
|  | return markOverdefined(&I); | 
|  | #if 0 | 
|  | LatticeVal &ValState = getValueState(I.getOperand(0)); | 
|  | LatticeVal &EltState = getValueState(I.getOperand(1)); | 
|  | LatticeVal &IdxState = getValueState(I.getOperand(2)); | 
|  |  | 
|  | if (ValState.isOverdefined() || EltState.isOverdefined() || | 
|  | IdxState.isOverdefined()) | 
|  | markOverdefined(&I); | 
|  | else if(ValState.isConstant() && EltState.isConstant() && | 
|  | IdxState.isConstant()) | 
|  | markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(), | 
|  | EltState.getConstant(), | 
|  | IdxState.getConstant())); | 
|  | else if (ValState.isUndefined() && EltState.isConstant() && | 
|  | IdxState.isConstant()) | 
|  | markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()), | 
|  | EltState.getConstant(), | 
|  | IdxState.getConstant())); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) { | 
|  | // TODO : SCCP does not handle vectors properly. | 
|  | return markOverdefined(&I); | 
|  | #if 0 | 
|  | LatticeVal &V1State   = getValueState(I.getOperand(0)); | 
|  | LatticeVal &V2State   = getValueState(I.getOperand(1)); | 
|  | LatticeVal &MaskState = getValueState(I.getOperand(2)); | 
|  |  | 
|  | if (MaskState.isUndefined() || | 
|  | (V1State.isUndefined() && V2State.isUndefined())) | 
|  | return;  // Undefined output if mask or both inputs undefined. | 
|  |  | 
|  | if (V1State.isOverdefined() || V2State.isOverdefined() || | 
|  | MaskState.isOverdefined()) { | 
|  | markOverdefined(&I); | 
|  | } else { | 
|  | // A mix of constant/undef inputs. | 
|  | Constant *V1 = V1State.isConstant() ? | 
|  | V1State.getConstant() : UndefValue::get(I.getType()); | 
|  | Constant *V2 = V2State.isConstant() ? | 
|  | V2State.getConstant() : UndefValue::get(I.getType()); | 
|  | Constant *Mask = MaskState.isConstant() ? | 
|  | MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType()); | 
|  | markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask)); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | // Handle getelementptr instructions.  If all operands are constants then we | 
|  | // can turn this into a getelementptr ConstantExpr. | 
|  | // | 
|  | void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) { | 
|  | if (ValueState[&I].isOverdefined()) return; | 
|  |  | 
|  | SmallVector<Constant*, 8> Operands; | 
|  | Operands.reserve(I.getNumOperands()); | 
|  |  | 
|  | for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) { | 
|  | LatticeVal State = getValueState(I.getOperand(i)); | 
|  | if (State.isUndefined()) | 
|  | return;  // Operands are not resolved yet. | 
|  |  | 
|  | if (State.isOverdefined()) | 
|  | return markOverdefined(&I); | 
|  |  | 
|  | assert(State.isConstant() && "Unknown state!"); | 
|  | Operands.push_back(State.getConstant()); | 
|  | } | 
|  |  | 
|  | Constant *Ptr = Operands[0]; | 
|  | markConstant(&I, ConstantExpr::getGetElementPtr(Ptr, &Operands[0]+1, | 
|  | Operands.size()-1)); | 
|  | } | 
|  |  | 
|  | void SCCPSolver::visitStoreInst(StoreInst &SI) { | 
|  | // If this store is of a struct, ignore it. | 
|  | if (SI.getOperand(0)->getType()->isStructTy()) | 
|  | return; | 
|  |  | 
|  | if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1))) | 
|  | return; | 
|  |  | 
|  | GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1)); | 
|  | DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV); | 
|  | if (I == TrackedGlobals.end() || I->second.isOverdefined()) return; | 
|  |  | 
|  | // Get the value we are storing into the global, then merge it. | 
|  | mergeInValue(I->second, GV, getValueState(SI.getOperand(0))); | 
|  | if (I->second.isOverdefined()) | 
|  | TrackedGlobals.erase(I);      // No need to keep tracking this! | 
|  | } | 
|  |  | 
|  |  | 
|  | // Handle load instructions.  If the operand is a constant pointer to a constant | 
|  | // global, we can replace the load with the loaded constant value! | 
|  | void SCCPSolver::visitLoadInst(LoadInst &I) { | 
|  | // If this load is of a struct, just mark the result overdefined. | 
|  | if (I.getType()->isStructTy()) | 
|  | return markAnythingOverdefined(&I); | 
|  |  | 
|  | LatticeVal PtrVal = getValueState(I.getOperand(0)); | 
|  | if (PtrVal.isUndefined()) return;   // The pointer is not resolved yet! | 
|  |  | 
|  | LatticeVal &IV = ValueState[&I]; | 
|  | if (IV.isOverdefined()) return; | 
|  |  | 
|  | if (!PtrVal.isConstant() || I.isVolatile()) | 
|  | return markOverdefined(IV, &I); | 
|  |  | 
|  | Constant *Ptr = PtrVal.getConstant(); | 
|  |  | 
|  | // load null -> null | 
|  | if (isa<ConstantPointerNull>(Ptr) && I.getPointerAddressSpace() == 0) | 
|  | return markConstant(IV, &I, Constant::getNullValue(I.getType())); | 
|  |  | 
|  | // Transform load (constant global) into the value loaded. | 
|  | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) { | 
|  | if (!TrackedGlobals.empty()) { | 
|  | // If we are tracking this global, merge in the known value for it. | 
|  | DenseMap<GlobalVariable*, LatticeVal>::iterator It = | 
|  | TrackedGlobals.find(GV); | 
|  | if (It != TrackedGlobals.end()) { | 
|  | mergeInValue(IV, &I, It->second); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Transform load from a constant into a constant if possible. | 
|  | if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, TD)) | 
|  | return markConstant(IV, &I, C); | 
|  |  | 
|  | // Otherwise we cannot say for certain what value this load will produce. | 
|  | // Bail out. | 
|  | markOverdefined(IV, &I); | 
|  | } | 
|  |  | 
|  | void SCCPSolver::visitCallSite(CallSite CS) { | 
|  | Function *F = CS.getCalledFunction(); | 
|  | Instruction *I = CS.getInstruction(); | 
|  |  | 
|  | // The common case is that we aren't tracking the callee, either because we | 
|  | // are not doing interprocedural analysis or the callee is indirect, or is | 
|  | // external.  Handle these cases first. | 
|  | if (F == 0 || F->isDeclaration()) { | 
|  | CallOverdefined: | 
|  | // Void return and not tracking callee, just bail. | 
|  | if (I->getType()->isVoidTy()) return; | 
|  |  | 
|  | // Otherwise, if we have a single return value case, and if the function is | 
|  | // a declaration, maybe we can constant fold it. | 
|  | if (F && F->isDeclaration() && !I->getType()->isStructTy() && | 
|  | canConstantFoldCallTo(F)) { | 
|  |  | 
|  | SmallVector<Constant*, 8> Operands; | 
|  | for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end(); | 
|  | AI != E; ++AI) { | 
|  | LatticeVal State = getValueState(*AI); | 
|  |  | 
|  | if (State.isUndefined()) | 
|  | return;  // Operands are not resolved yet. | 
|  | if (State.isOverdefined()) | 
|  | return markOverdefined(I); | 
|  | assert(State.isConstant() && "Unknown state!"); | 
|  | Operands.push_back(State.getConstant()); | 
|  | } | 
|  |  | 
|  | // If we can constant fold this, mark the result of the call as a | 
|  | // constant. | 
|  | if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size())) | 
|  | return markConstant(I, C); | 
|  | } | 
|  |  | 
|  | // Otherwise, we don't know anything about this call, mark it overdefined. | 
|  | return markAnythingOverdefined(I); | 
|  | } | 
|  |  | 
|  | // If this is a local function that doesn't have its address taken, mark its | 
|  | // entry block executable and merge in the actual arguments to the call into | 
|  | // the formal arguments of the function. | 
|  | if (!TrackingIncomingArguments.empty() && TrackingIncomingArguments.count(F)){ | 
|  | MarkBlockExecutable(F->begin()); | 
|  |  | 
|  | // Propagate information from this call site into the callee. | 
|  | CallSite::arg_iterator CAI = CS.arg_begin(); | 
|  | for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); | 
|  | AI != E; ++AI, ++CAI) { | 
|  | // If this argument is byval, and if the function is not readonly, there | 
|  | // will be an implicit copy formed of the input aggregate. | 
|  | if (AI->hasByValAttr() && !F->onlyReadsMemory()) { | 
|  | markOverdefined(AI); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (const StructType *STy = dyn_cast<StructType>(AI->getType())) { | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | 
|  | LatticeVal CallArg = getStructValueState(*CAI, i); | 
|  | mergeInValue(getStructValueState(AI, i), AI, CallArg); | 
|  | } | 
|  | } else { | 
|  | mergeInValue(AI, getValueState(*CAI)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is a single/zero retval case, see if we're tracking the function. | 
|  | if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) { | 
|  | if (!MRVFunctionsTracked.count(F)) | 
|  | goto CallOverdefined;  // Not tracking this callee. | 
|  |  | 
|  | // If we are tracking this callee, propagate the result of the function | 
|  | // into this call site. | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) | 
|  | mergeInValue(getStructValueState(I, i), I, | 
|  | TrackedMultipleRetVals[std::make_pair(F, i)]); | 
|  | } else { | 
|  | DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F); | 
|  | if (TFRVI == TrackedRetVals.end()) | 
|  | goto CallOverdefined;  // Not tracking this callee. | 
|  |  | 
|  | // If so, propagate the return value of the callee into this call result. | 
|  | mergeInValue(I, TFRVI->second); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SCCPSolver::Solve() { | 
|  | // Process the work lists until they are empty! | 
|  | while (!BBWorkList.empty() || !InstWorkList.empty() || | 
|  | !OverdefinedInstWorkList.empty()) { | 
|  | // Process the overdefined instruction's work list first, which drives other | 
|  | // things to overdefined more quickly. | 
|  | while (!OverdefinedInstWorkList.empty()) { | 
|  | Value *I = OverdefinedInstWorkList.pop_back_val(); | 
|  |  | 
|  | DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n'); | 
|  |  | 
|  | // "I" got into the work list because it either made the transition from | 
|  | // bottom to constant | 
|  | // | 
|  | // Anything on this worklist that is overdefined need not be visited | 
|  | // since all of its users will have already been marked as overdefined | 
|  | // Update all of the users of this instruction's value. | 
|  | // | 
|  | for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); | 
|  | UI != E; ++UI) | 
|  | if (Instruction *I = dyn_cast<Instruction>(*UI)) | 
|  | OperandChangedState(I); | 
|  | } | 
|  |  | 
|  | // Process the instruction work list. | 
|  | while (!InstWorkList.empty()) { | 
|  | Value *I = InstWorkList.pop_back_val(); | 
|  |  | 
|  | DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n'); | 
|  |  | 
|  | // "I" got into the work list because it made the transition from undef to | 
|  | // constant. | 
|  | // | 
|  | // Anything on this worklist that is overdefined need not be visited | 
|  | // since all of its users will have already been marked as overdefined. | 
|  | // Update all of the users of this instruction's value. | 
|  | // | 
|  | if (I->getType()->isStructTy() || !getValueState(I).isOverdefined()) | 
|  | for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); | 
|  | UI != E; ++UI) | 
|  | if (Instruction *I = dyn_cast<Instruction>(*UI)) | 
|  | OperandChangedState(I); | 
|  | } | 
|  |  | 
|  | // Process the basic block work list. | 
|  | while (!BBWorkList.empty()) { | 
|  | BasicBlock *BB = BBWorkList.back(); | 
|  | BBWorkList.pop_back(); | 
|  |  | 
|  | DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n'); | 
|  |  | 
|  | // Notify all instructions in this basic block that they are newly | 
|  | // executable. | 
|  | visit(BB); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ResolvedUndefsIn - While solving the dataflow for a function, we assume | 
|  | /// that branches on undef values cannot reach any of their successors. | 
|  | /// However, this is not a safe assumption.  After we solve dataflow, this | 
|  | /// method should be use to handle this.  If this returns true, the solver | 
|  | /// should be rerun. | 
|  | /// | 
|  | /// This method handles this by finding an unresolved branch and marking it one | 
|  | /// of the edges from the block as being feasible, even though the condition | 
|  | /// doesn't say it would otherwise be.  This allows SCCP to find the rest of the | 
|  | /// CFG and only slightly pessimizes the analysis results (by marking one, | 
|  | /// potentially infeasible, edge feasible).  This cannot usefully modify the | 
|  | /// constraints on the condition of the branch, as that would impact other users | 
|  | /// of the value. | 
|  | /// | 
|  | /// This scan also checks for values that use undefs, whose results are actually | 
|  | /// defined.  For example, 'zext i8 undef to i32' should produce all zeros | 
|  | /// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero, | 
|  | /// even if X isn't defined. | 
|  | bool SCCPSolver::ResolvedUndefsIn(Function &F) { | 
|  | for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { | 
|  | if (!BBExecutable.count(BB)) | 
|  | continue; | 
|  |  | 
|  | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { | 
|  | // Look for instructions which produce undef values. | 
|  | if (I->getType()->isVoidTy()) continue; | 
|  |  | 
|  | if (const StructType *STy = dyn_cast<StructType>(I->getType())) { | 
|  | // Only a few things that can be structs matter for undef.  Just send | 
|  | // all their results to overdefined.  We could be more precise than this | 
|  | // but it isn't worth bothering. | 
|  | if (isa<CallInst>(I) || isa<SelectInst>(I)) { | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | 
|  | LatticeVal &LV = getStructValueState(I, i); | 
|  | if (LV.isUndefined()) | 
|  | markOverdefined(LV, I); | 
|  | } | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | LatticeVal &LV = getValueState(I); | 
|  | if (!LV.isUndefined()) continue; | 
|  |  | 
|  | // No instructions using structs need disambiguation. | 
|  | if (I->getOperand(0)->getType()->isStructTy()) | 
|  | continue; | 
|  |  | 
|  | // Get the lattice values of the first two operands for use below. | 
|  | LatticeVal Op0LV = getValueState(I->getOperand(0)); | 
|  | LatticeVal Op1LV; | 
|  | if (I->getNumOperands() == 2) { | 
|  | // No instructions using structs need disambiguation. | 
|  | if (I->getOperand(1)->getType()->isStructTy()) | 
|  | continue; | 
|  |  | 
|  | // If this is a two-operand instruction, and if both operands are | 
|  | // undefs, the result stays undef. | 
|  | Op1LV = getValueState(I->getOperand(1)); | 
|  | if (Op0LV.isUndefined() && Op1LV.isUndefined()) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If this is an instructions whose result is defined even if the input is | 
|  | // not fully defined, propagate the information. | 
|  | const Type *ITy = I->getType(); | 
|  | switch (I->getOpcode()) { | 
|  | default: break;          // Leave the instruction as an undef. | 
|  | case Instruction::ZExt: | 
|  | // After a zero extend, we know the top part is zero.  SExt doesn't have | 
|  | // to be handled here, because we don't know whether the top part is 1's | 
|  | // or 0's. | 
|  | markForcedConstant(I, Constant::getNullValue(ITy)); | 
|  | return true; | 
|  | case Instruction::Mul: | 
|  | case Instruction::And: | 
|  | // undef * X -> 0.   X could be zero. | 
|  | // undef & X -> 0.   X could be zero. | 
|  | markForcedConstant(I, Constant::getNullValue(ITy)); | 
|  | return true; | 
|  |  | 
|  | case Instruction::Or: | 
|  | // undef | X -> -1.   X could be -1. | 
|  | markForcedConstant(I, Constant::getAllOnesValue(ITy)); | 
|  | return true; | 
|  |  | 
|  | case Instruction::SDiv: | 
|  | case Instruction::UDiv: | 
|  | case Instruction::SRem: | 
|  | case Instruction::URem: | 
|  | // X / undef -> undef.  No change. | 
|  | // X % undef -> undef.  No change. | 
|  | if (Op1LV.isUndefined()) break; | 
|  |  | 
|  | // undef / X -> 0.   X could be maxint. | 
|  | // undef % X -> 0.   X could be 1. | 
|  | markForcedConstant(I, Constant::getNullValue(ITy)); | 
|  | return true; | 
|  |  | 
|  | case Instruction::AShr: | 
|  | // undef >>s X -> undef.  No change. | 
|  | if (Op0LV.isUndefined()) break; | 
|  |  | 
|  | // X >>s undef -> X.  X could be 0, X could have the high-bit known set. | 
|  | if (Op0LV.isConstant()) | 
|  | markForcedConstant(I, Op0LV.getConstant()); | 
|  | else | 
|  | markOverdefined(I); | 
|  | return true; | 
|  | case Instruction::LShr: | 
|  | case Instruction::Shl: | 
|  | // undef >> X -> undef.  No change. | 
|  | // undef << X -> undef.  No change. | 
|  | if (Op0LV.isUndefined()) break; | 
|  |  | 
|  | // X >> undef -> 0.  X could be 0. | 
|  | // X << undef -> 0.  X could be 0. | 
|  | markForcedConstant(I, Constant::getNullValue(ITy)); | 
|  | return true; | 
|  | case Instruction::Select: | 
|  | // undef ? X : Y  -> X or Y.  There could be commonality between X/Y. | 
|  | if (Op0LV.isUndefined()) { | 
|  | if (!Op1LV.isConstant())  // Pick the constant one if there is any. | 
|  | Op1LV = getValueState(I->getOperand(2)); | 
|  | } else if (Op1LV.isUndefined()) { | 
|  | // c ? undef : undef -> undef.  No change. | 
|  | Op1LV = getValueState(I->getOperand(2)); | 
|  | if (Op1LV.isUndefined()) | 
|  | break; | 
|  | // Otherwise, c ? undef : x -> x. | 
|  | } else { | 
|  | // Leave Op1LV as Operand(1)'s LatticeValue. | 
|  | } | 
|  |  | 
|  | if (Op1LV.isConstant()) | 
|  | markForcedConstant(I, Op1LV.getConstant()); | 
|  | else | 
|  | markOverdefined(I); | 
|  | return true; | 
|  | case Instruction::Call: | 
|  | // If a call has an undef result, it is because it is constant foldable | 
|  | // but one of the inputs was undef.  Just force the result to | 
|  | // overdefined. | 
|  | markOverdefined(I); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check to see if we have a branch or switch on an undefined value.  If so | 
|  | // we force the branch to go one way or the other to make the successor | 
|  | // values live.  It doesn't really matter which way we force it. | 
|  | TerminatorInst *TI = BB->getTerminator(); | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(TI)) { | 
|  | if (!BI->isConditional()) continue; | 
|  | if (!getValueState(BI->getCondition()).isUndefined()) | 
|  | continue; | 
|  |  | 
|  | // If the input to SCCP is actually branch on undef, fix the undef to | 
|  | // false. | 
|  | if (isa<UndefValue>(BI->getCondition())) { | 
|  | BI->setCondition(ConstantInt::getFalse(BI->getContext())); | 
|  | markEdgeExecutable(BB, TI->getSuccessor(1)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Otherwise, it is a branch on a symbolic value which is currently | 
|  | // considered to be undef.  Handle this by forcing the input value to the | 
|  | // branch to false. | 
|  | markForcedConstant(BI->getCondition(), | 
|  | ConstantInt::getFalse(TI->getContext())); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) { | 
|  | if (SI->getNumSuccessors() < 2)   // no cases | 
|  | continue; | 
|  | if (!getValueState(SI->getCondition()).isUndefined()) | 
|  | continue; | 
|  |  | 
|  | // If the input to SCCP is actually switch on undef, fix the undef to | 
|  | // the first constant. | 
|  | if (isa<UndefValue>(SI->getCondition())) { | 
|  | SI->setCondition(SI->getCaseValue(1)); | 
|  | markEdgeExecutable(BB, TI->getSuccessor(1)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | markForcedConstant(SI->getCondition(), SI->getCaseValue(1)); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | namespace { | 
|  | //===--------------------------------------------------------------------===// | 
|  | // | 
|  | /// SCCP Class - This class uses the SCCPSolver to implement a per-function | 
|  | /// Sparse Conditional Constant Propagator. | 
|  | /// | 
|  | struct SCCP : public FunctionPass { | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | SCCP() : FunctionPass(&ID) {} | 
|  |  | 
|  | // runOnFunction - Run the Sparse Conditional Constant Propagation | 
|  | // algorithm, and return true if the function was modified. | 
|  | // | 
|  | bool runOnFunction(Function &F); | 
|  |  | 
|  | virtual void getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.setPreservesCFG(); | 
|  | } | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char SCCP::ID = 0; | 
|  | static RegisterPass<SCCP> | 
|  | X("sccp", "Sparse Conditional Constant Propagation"); | 
|  |  | 
|  | // createSCCPPass - This is the public interface to this file. | 
|  | FunctionPass *llvm::createSCCPPass() { | 
|  | return new SCCP(); | 
|  | } | 
|  |  | 
|  | static void DeleteInstructionInBlock(BasicBlock *BB) { | 
|  | DEBUG(dbgs() << "  BasicBlock Dead:" << *BB); | 
|  | ++NumDeadBlocks; | 
|  |  | 
|  | // Delete the instructions backwards, as it has a reduced likelihood of | 
|  | // having to update as many def-use and use-def chains. | 
|  | while (!isa<TerminatorInst>(BB->begin())) { | 
|  | Instruction *I = --BasicBlock::iterator(BB->getTerminator()); | 
|  |  | 
|  | if (!I->use_empty()) | 
|  | I->replaceAllUsesWith(UndefValue::get(I->getType())); | 
|  | BB->getInstList().erase(I); | 
|  | ++NumInstRemoved; | 
|  | } | 
|  | } | 
|  |  | 
|  | // runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm, | 
|  | // and return true if the function was modified. | 
|  | // | 
|  | bool SCCP::runOnFunction(Function &F) { | 
|  | DEBUG(dbgs() << "SCCP on function '" << F.getName() << "'\n"); | 
|  | SCCPSolver Solver(getAnalysisIfAvailable<TargetData>()); | 
|  |  | 
|  | // Mark the first block of the function as being executable. | 
|  | Solver.MarkBlockExecutable(F.begin()); | 
|  |  | 
|  | // Mark all arguments to the function as being overdefined. | 
|  | for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI) | 
|  | Solver.markAnythingOverdefined(AI); | 
|  |  | 
|  | // Solve for constants. | 
|  | bool ResolvedUndefs = true; | 
|  | while (ResolvedUndefs) { | 
|  | Solver.Solve(); | 
|  | DEBUG(dbgs() << "RESOLVING UNDEFs\n"); | 
|  | ResolvedUndefs = Solver.ResolvedUndefsIn(F); | 
|  | } | 
|  |  | 
|  | bool MadeChanges = false; | 
|  |  | 
|  | // If we decided that there are basic blocks that are dead in this function, | 
|  | // delete their contents now.  Note that we cannot actually delete the blocks, | 
|  | // as we cannot modify the CFG of the function. | 
|  |  | 
|  | for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { | 
|  | if (!Solver.isBlockExecutable(BB)) { | 
|  | DeleteInstructionInBlock(BB); | 
|  | MadeChanges = true; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Iterate over all of the instructions in a function, replacing them with | 
|  | // constants if we have found them to be of constant values. | 
|  | // | 
|  | for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { | 
|  | Instruction *Inst = BI++; | 
|  | if (Inst->getType()->isVoidTy() || isa<TerminatorInst>(Inst)) | 
|  | continue; | 
|  |  | 
|  | // TODO: Reconstruct structs from their elements. | 
|  | if (Inst->getType()->isStructTy()) | 
|  | continue; | 
|  |  | 
|  | LatticeVal IV = Solver.getLatticeValueFor(Inst); | 
|  | if (IV.isOverdefined()) | 
|  | continue; | 
|  |  | 
|  | Constant *Const = IV.isConstant() | 
|  | ? IV.getConstant() : UndefValue::get(Inst->getType()); | 
|  | DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst); | 
|  |  | 
|  | // Replaces all of the uses of a variable with uses of the constant. | 
|  | Inst->replaceAllUsesWith(Const); | 
|  |  | 
|  | // Delete the instruction. | 
|  | Inst->eraseFromParent(); | 
|  |  | 
|  | // Hey, we just changed something! | 
|  | MadeChanges = true; | 
|  | ++NumInstRemoved; | 
|  | } | 
|  | } | 
|  |  | 
|  | return MadeChanges; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | //===--------------------------------------------------------------------===// | 
|  | // | 
|  | /// IPSCCP Class - This class implements interprocedural Sparse Conditional | 
|  | /// Constant Propagation. | 
|  | /// | 
|  | struct IPSCCP : public ModulePass { | 
|  | static char ID; | 
|  | IPSCCP() : ModulePass(&ID) {} | 
|  | bool runOnModule(Module &M); | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char IPSCCP::ID = 0; | 
|  | static RegisterPass<IPSCCP> | 
|  | Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation"); | 
|  |  | 
|  | // createIPSCCPPass - This is the public interface to this file. | 
|  | ModulePass *llvm::createIPSCCPPass() { | 
|  | return new IPSCCP(); | 
|  | } | 
|  |  | 
|  |  | 
|  | static bool AddressIsTaken(const GlobalValue *GV) { | 
|  | // Delete any dead constantexpr klingons. | 
|  | GV->removeDeadConstantUsers(); | 
|  |  | 
|  | for (Value::const_use_iterator UI = GV->use_begin(), E = GV->use_end(); | 
|  | UI != E; ++UI) { | 
|  | const User *U = *UI; | 
|  | if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { | 
|  | if (SI->getOperand(0) == GV || SI->isVolatile()) | 
|  | return true;  // Storing addr of GV. | 
|  | } else if (isa<InvokeInst>(U) || isa<CallInst>(U)) { | 
|  | // Make sure we are calling the function, not passing the address. | 
|  | ImmutableCallSite CS(cast<Instruction>(U)); | 
|  | if (!CS.isCallee(UI)) | 
|  | return true; | 
|  | } else if (const LoadInst *LI = dyn_cast<LoadInst>(U)) { | 
|  | if (LI->isVolatile()) | 
|  | return true; | 
|  | } else if (isa<BlockAddress>(U)) { | 
|  | // blockaddress doesn't take the address of the function, it takes addr | 
|  | // of label. | 
|  | } else { | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool IPSCCP::runOnModule(Module &M) { | 
|  | SCCPSolver Solver(getAnalysisIfAvailable<TargetData>()); | 
|  |  | 
|  | // Loop over all functions, marking arguments to those with their addresses | 
|  | // taken or that are external as overdefined. | 
|  | // | 
|  | for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { | 
|  | if (F->isDeclaration()) | 
|  | continue; | 
|  |  | 
|  | // If this is a strong or ODR definition of this function, then we can | 
|  | // propagate information about its result into callsites of it. | 
|  | if (!F->mayBeOverridden()) | 
|  | Solver.AddTrackedFunction(F); | 
|  |  | 
|  | // If this function only has direct calls that we can see, we can track its | 
|  | // arguments and return value aggressively, and can assume it is not called | 
|  | // unless we see evidence to the contrary. | 
|  | if (F->hasLocalLinkage() && !AddressIsTaken(F)) { | 
|  | Solver.AddArgumentTrackedFunction(F); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Assume the function is called. | 
|  | Solver.MarkBlockExecutable(F->begin()); | 
|  |  | 
|  | // Assume nothing about the incoming arguments. | 
|  | for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); | 
|  | AI != E; ++AI) | 
|  | Solver.markAnythingOverdefined(AI); | 
|  | } | 
|  |  | 
|  | // Loop over global variables.  We inform the solver about any internal global | 
|  | // variables that do not have their 'addresses taken'.  If they don't have | 
|  | // their addresses taken, we can propagate constants through them. | 
|  | for (Module::global_iterator G = M.global_begin(), E = M.global_end(); | 
|  | G != E; ++G) | 
|  | if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G)) | 
|  | Solver.TrackValueOfGlobalVariable(G); | 
|  |  | 
|  | // Solve for constants. | 
|  | bool ResolvedUndefs = true; | 
|  | while (ResolvedUndefs) { | 
|  | Solver.Solve(); | 
|  |  | 
|  | DEBUG(dbgs() << "RESOLVING UNDEFS\n"); | 
|  | ResolvedUndefs = false; | 
|  | for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) | 
|  | ResolvedUndefs |= Solver.ResolvedUndefsIn(*F); | 
|  | } | 
|  |  | 
|  | bool MadeChanges = false; | 
|  |  | 
|  | // Iterate over all of the instructions in the module, replacing them with | 
|  | // constants if we have found them to be of constant values. | 
|  | // | 
|  | SmallVector<BasicBlock*, 512> BlocksToErase; | 
|  |  | 
|  | for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) { | 
|  | if (Solver.isBlockExecutable(F->begin())) { | 
|  | for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); | 
|  | AI != E; ++AI) { | 
|  | if (AI->use_empty() || AI->getType()->isStructTy()) continue; | 
|  |  | 
|  | // TODO: Could use getStructLatticeValueFor to find out if the entire | 
|  | // result is a constant and replace it entirely if so. | 
|  |  | 
|  | LatticeVal IV = Solver.getLatticeValueFor(AI); | 
|  | if (IV.isOverdefined()) continue; | 
|  |  | 
|  | Constant *CST = IV.isConstant() ? | 
|  | IV.getConstant() : UndefValue::get(AI->getType()); | 
|  | DEBUG(dbgs() << "***  Arg " << *AI << " = " << *CST <<"\n"); | 
|  |  | 
|  | // Replaces all of the uses of a variable with uses of the | 
|  | // constant. | 
|  | AI->replaceAllUsesWith(CST); | 
|  | ++IPNumArgsElimed; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) { | 
|  | if (!Solver.isBlockExecutable(BB)) { | 
|  | DeleteInstructionInBlock(BB); | 
|  | MadeChanges = true; | 
|  |  | 
|  | TerminatorInst *TI = BB->getTerminator(); | 
|  | for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { | 
|  | BasicBlock *Succ = TI->getSuccessor(i); | 
|  | if (!Succ->empty() && isa<PHINode>(Succ->begin())) | 
|  | TI->getSuccessor(i)->removePredecessor(BB); | 
|  | } | 
|  | if (!TI->use_empty()) | 
|  | TI->replaceAllUsesWith(UndefValue::get(TI->getType())); | 
|  | TI->eraseFromParent(); | 
|  |  | 
|  | if (&*BB != &F->front()) | 
|  | BlocksToErase.push_back(BB); | 
|  | else | 
|  | new UnreachableInst(M.getContext(), BB); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) { | 
|  | Instruction *Inst = BI++; | 
|  | if (Inst->getType()->isVoidTy() || Inst->getType()->isStructTy()) | 
|  | continue; | 
|  |  | 
|  | // TODO: Could use getStructLatticeValueFor to find out if the entire | 
|  | // result is a constant and replace it entirely if so. | 
|  |  | 
|  | LatticeVal IV = Solver.getLatticeValueFor(Inst); | 
|  | if (IV.isOverdefined()) | 
|  | continue; | 
|  |  | 
|  | Constant *Const = IV.isConstant() | 
|  | ? IV.getConstant() : UndefValue::get(Inst->getType()); | 
|  | DEBUG(dbgs() << "  Constant: " << *Const << " = " << *Inst); | 
|  |  | 
|  | // Replaces all of the uses of a variable with uses of the | 
|  | // constant. | 
|  | Inst->replaceAllUsesWith(Const); | 
|  |  | 
|  | // Delete the instruction. | 
|  | if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst)) | 
|  | Inst->eraseFromParent(); | 
|  |  | 
|  | // Hey, we just changed something! | 
|  | MadeChanges = true; | 
|  | ++IPNumInstRemoved; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that all instructions in the function are constant folded, erase dead | 
|  | // blocks, because we can now use ConstantFoldTerminator to get rid of | 
|  | // in-edges. | 
|  | for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) { | 
|  | // If there are any PHI nodes in this successor, drop entries for BB now. | 
|  | BasicBlock *DeadBB = BlocksToErase[i]; | 
|  | for (Value::use_iterator UI = DeadBB->use_begin(), UE = DeadBB->use_end(); | 
|  | UI != UE; ) { | 
|  | // Grab the user and then increment the iterator early, as the user | 
|  | // will be deleted. Step past all adjacent uses from the same user. | 
|  | Instruction *I = dyn_cast<Instruction>(*UI); | 
|  | do { ++UI; } while (UI != UE && *UI == I); | 
|  |  | 
|  | // Ignore blockaddress users; BasicBlock's dtor will handle them. | 
|  | if (!I) continue; | 
|  |  | 
|  | bool Folded = ConstantFoldTerminator(I->getParent()); | 
|  | if (!Folded) { | 
|  | // The constant folder may not have been able to fold the terminator | 
|  | // if this is a branch or switch on undef.  Fold it manually as a | 
|  | // branch to the first successor. | 
|  | #ifndef NDEBUG | 
|  | if (BranchInst *BI = dyn_cast<BranchInst>(I)) { | 
|  | assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) && | 
|  | "Branch should be foldable!"); | 
|  | } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { | 
|  | assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold"); | 
|  | } else { | 
|  | llvm_unreachable("Didn't fold away reference to block!"); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // Make this an uncond branch to the first successor. | 
|  | TerminatorInst *TI = I->getParent()->getTerminator(); | 
|  | BranchInst::Create(TI->getSuccessor(0), TI); | 
|  |  | 
|  | // Remove entries in successor phi nodes to remove edges. | 
|  | for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i) | 
|  | TI->getSuccessor(i)->removePredecessor(TI->getParent()); | 
|  |  | 
|  | // Remove the old terminator. | 
|  | TI->eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, delete the basic block. | 
|  | F->getBasicBlockList().erase(DeadBB); | 
|  | } | 
|  | BlocksToErase.clear(); | 
|  | } | 
|  |  | 
|  | // If we inferred constant or undef return values for a function, we replaced | 
|  | // all call uses with the inferred value.  This means we don't need to bother | 
|  | // actually returning anything from the function.  Replace all return | 
|  | // instructions with return undef. | 
|  | // | 
|  | // Do this in two stages: first identify the functions we should process, then | 
|  | // actually zap their returns.  This is important because we can only do this | 
|  | // if the address of the function isn't taken.  In cases where a return is the | 
|  | // last use of a function, the order of processing functions would affect | 
|  | // whether other functions are optimizable. | 
|  | SmallVector<ReturnInst*, 8> ReturnsToZap; | 
|  |  | 
|  | // TODO: Process multiple value ret instructions also. | 
|  | const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals(); | 
|  | for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(), | 
|  | E = RV.end(); I != E; ++I) { | 
|  | Function *F = I->first; | 
|  | if (I->second.isOverdefined() || F->getReturnType()->isVoidTy()) | 
|  | continue; | 
|  |  | 
|  | // We can only do this if we know that nothing else can call the function. | 
|  | if (!F->hasLocalLinkage() || AddressIsTaken(F)) | 
|  | continue; | 
|  |  | 
|  | for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) | 
|  | if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) | 
|  | if (!isa<UndefValue>(RI->getOperand(0))) | 
|  | ReturnsToZap.push_back(RI); | 
|  | } | 
|  |  | 
|  | // Zap all returns which we've identified as zap to change. | 
|  | for (unsigned i = 0, e = ReturnsToZap.size(); i != e; ++i) { | 
|  | Function *F = ReturnsToZap[i]->getParent()->getParent(); | 
|  | ReturnsToZap[i]->setOperand(0, UndefValue::get(F->getReturnType())); | 
|  | } | 
|  |  | 
|  | // If we infered constant or undef values for globals variables, we can delete | 
|  | // the global and any stores that remain to it. | 
|  | const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals(); | 
|  | for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(), | 
|  | E = TG.end(); I != E; ++I) { | 
|  | GlobalVariable *GV = I->first; | 
|  | assert(!I->second.isOverdefined() && | 
|  | "Overdefined values should have been taken out of the map!"); | 
|  | DEBUG(dbgs() << "Found that GV '" << GV->getName() << "' is constant!\n"); | 
|  | while (!GV->use_empty()) { | 
|  | StoreInst *SI = cast<StoreInst>(GV->use_back()); | 
|  | SI->eraseFromParent(); | 
|  | } | 
|  | M.getGlobalList().erase(GV); | 
|  | ++IPNumGlobalConst; | 
|  | } | 
|  |  | 
|  | return MadeChanges; | 
|  | } |