|  | //===-- VPlanHCFGBuilder.cpp ----------------------------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | /// | 
|  | /// \file | 
|  | /// This file implements the construction of a VPlan-based Hierarchical CFG | 
|  | /// (H-CFG) for an incoming IR. This construction comprises the following | 
|  | /// components and steps: | 
|  | // | 
|  | /// 1. PlainCFGBuilder class: builds a plain VPBasicBlock-based CFG that | 
|  | /// faithfully represents the CFG in the incoming IR. A VPRegionBlock (Top | 
|  | /// Region) is created to enclose and serve as parent of all the VPBasicBlocks | 
|  | /// in the plain CFG. | 
|  | /// NOTE: At this point, there is a direct correspondence between all the | 
|  | /// VPBasicBlocks created for the initial plain CFG and the incoming | 
|  | /// BasicBlocks. However, this might change in the future. | 
|  | /// | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "VPlanHCFGBuilder.h" | 
|  | #include "LoopVectorizationPlanner.h" | 
|  | #include "llvm/Analysis/LoopIterator.h" | 
|  |  | 
|  | #define DEBUG_TYPE "loop-vectorize" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | namespace { | 
|  | // Class that is used to build the plain CFG for the incoming IR. | 
|  | class PlainCFGBuilder { | 
|  | private: | 
|  | // The outermost loop of the input loop nest considered for vectorization. | 
|  | Loop *TheLoop; | 
|  |  | 
|  | // Loop Info analysis. | 
|  | LoopInfo *LI; | 
|  |  | 
|  | // Vectorization plan that we are working on. | 
|  | VPlan &Plan; | 
|  |  | 
|  | // Output Top Region. | 
|  | VPRegionBlock *TopRegion = nullptr; | 
|  |  | 
|  | // Builder of the VPlan instruction-level representation. | 
|  | VPBuilder VPIRBuilder; | 
|  |  | 
|  | // NOTE: The following maps are intentionally destroyed after the plain CFG | 
|  | // construction because subsequent VPlan-to-VPlan transformation may | 
|  | // invalidate them. | 
|  | // Map incoming BasicBlocks to their newly-created VPBasicBlocks. | 
|  | DenseMap<BasicBlock *, VPBasicBlock *> BB2VPBB; | 
|  | // Map incoming Value definitions to their newly-created VPValues. | 
|  | DenseMap<Value *, VPValue *> IRDef2VPValue; | 
|  |  | 
|  | // Hold phi node's that need to be fixed once the plain CFG has been built. | 
|  | SmallVector<PHINode *, 8> PhisToFix; | 
|  |  | 
|  | // Utility functions. | 
|  | void setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB); | 
|  | void fixPhiNodes(); | 
|  | VPBasicBlock *getOrCreateVPBB(BasicBlock *BB); | 
|  | bool isExternalDef(Value *Val); | 
|  | VPValue *getOrCreateVPOperand(Value *IRVal); | 
|  | void createVPInstructionsForVPBB(VPBasicBlock *VPBB, BasicBlock *BB); | 
|  |  | 
|  | public: | 
|  | PlainCFGBuilder(Loop *Lp, LoopInfo *LI, VPlan &P) | 
|  | : TheLoop(Lp), LI(LI), Plan(P) {} | 
|  |  | 
|  | // Build the plain CFG and return its Top Region. | 
|  | VPRegionBlock *buildPlainCFG(); | 
|  | }; | 
|  | } // anonymous namespace | 
|  |  | 
|  | // Set predecessors of \p VPBB in the same order as they are in \p BB. \p VPBB | 
|  | // must have no predecessors. | 
|  | void PlainCFGBuilder::setVPBBPredsFromBB(VPBasicBlock *VPBB, BasicBlock *BB) { | 
|  | SmallVector<VPBlockBase *, 8> VPBBPreds; | 
|  | // Collect VPBB predecessors. | 
|  | for (BasicBlock *Pred : predecessors(BB)) | 
|  | VPBBPreds.push_back(getOrCreateVPBB(Pred)); | 
|  |  | 
|  | VPBB->setPredecessors(VPBBPreds); | 
|  | } | 
|  |  | 
|  | // Add operands to VPInstructions representing phi nodes from the input IR. | 
|  | void PlainCFGBuilder::fixPhiNodes() { | 
|  | for (auto *Phi : PhisToFix) { | 
|  | assert(IRDef2VPValue.count(Phi) && "Missing VPInstruction for PHINode."); | 
|  | VPValue *VPVal = IRDef2VPValue[Phi]; | 
|  | assert(isa<VPInstruction>(VPVal) && "Expected VPInstruction for phi node."); | 
|  | auto *VPPhi = cast<VPInstruction>(VPVal); | 
|  | assert(VPPhi->getNumOperands() == 0 && | 
|  | "Expected VPInstruction with no operands."); | 
|  |  | 
|  | for (Value *Op : Phi->operands()) | 
|  | VPPhi->addOperand(getOrCreateVPOperand(Op)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Create a new empty VPBasicBlock for an incoming BasicBlock or retrieve an | 
|  | // existing one if it was already created. | 
|  | VPBasicBlock *PlainCFGBuilder::getOrCreateVPBB(BasicBlock *BB) { | 
|  | auto BlockIt = BB2VPBB.find(BB); | 
|  | if (BlockIt != BB2VPBB.end()) | 
|  | // Retrieve existing VPBB. | 
|  | return BlockIt->second; | 
|  |  | 
|  | // Create new VPBB. | 
|  | LLVM_DEBUG(dbgs() << "Creating VPBasicBlock for " << BB->getName() << "\n"); | 
|  | VPBasicBlock *VPBB = new VPBasicBlock(BB->getName()); | 
|  | BB2VPBB[BB] = VPBB; | 
|  | VPBB->setParent(TopRegion); | 
|  | return VPBB; | 
|  | } | 
|  |  | 
|  | // Return true if \p Val is considered an external definition. An external | 
|  | // definition is either: | 
|  | // 1. A Value that is not an Instruction. This will be refined in the future. | 
|  | // 2. An Instruction that is outside of the CFG snippet represented in VPlan, | 
|  | // i.e., is not part of: a) the loop nest, b) outermost loop PH and, c) | 
|  | // outermost loop exits. | 
|  | bool PlainCFGBuilder::isExternalDef(Value *Val) { | 
|  | // All the Values that are not Instructions are considered external | 
|  | // definitions for now. | 
|  | Instruction *Inst = dyn_cast<Instruction>(Val); | 
|  | if (!Inst) | 
|  | return true; | 
|  |  | 
|  | BasicBlock *InstParent = Inst->getParent(); | 
|  | assert(InstParent && "Expected instruction parent."); | 
|  |  | 
|  | // Check whether Instruction definition is in loop PH. | 
|  | BasicBlock *PH = TheLoop->getLoopPreheader(); | 
|  | assert(PH && "Expected loop pre-header."); | 
|  |  | 
|  | if (InstParent == PH) | 
|  | // Instruction definition is in outermost loop PH. | 
|  | return false; | 
|  |  | 
|  | // Check whether Instruction definition is in the loop exit. | 
|  | BasicBlock *Exit = TheLoop->getUniqueExitBlock(); | 
|  | assert(Exit && "Expected loop with single exit."); | 
|  | if (InstParent == Exit) { | 
|  | // Instruction definition is in outermost loop exit. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check whether Instruction definition is in loop body. | 
|  | return !TheLoop->contains(Inst); | 
|  | } | 
|  |  | 
|  | // Create a new VPValue or retrieve an existing one for the Instruction's | 
|  | // operand \p IRVal. This function must only be used to create/retrieve VPValues | 
|  | // for *Instruction's operands* and not to create regular VPInstruction's. For | 
|  | // the latter, please, look at 'createVPInstructionsForVPBB'. | 
|  | VPValue *PlainCFGBuilder::getOrCreateVPOperand(Value *IRVal) { | 
|  | auto VPValIt = IRDef2VPValue.find(IRVal); | 
|  | if (VPValIt != IRDef2VPValue.end()) | 
|  | // Operand has an associated VPInstruction or VPValue that was previously | 
|  | // created. | 
|  | return VPValIt->second; | 
|  |  | 
|  | // Operand doesn't have a previously created VPInstruction/VPValue. This | 
|  | // means that operand is: | 
|  | //   A) a definition external to VPlan, | 
|  | //   B) any other Value without specific representation in VPlan. | 
|  | // For now, we use VPValue to represent A and B and classify both as external | 
|  | // definitions. We may introduce specific VPValue subclasses for them in the | 
|  | // future. | 
|  | assert(isExternalDef(IRVal) && "Expected external definition as operand."); | 
|  |  | 
|  | // A and B: Create VPValue and add it to the pool of external definitions and | 
|  | // to the Value->VPValue map. | 
|  | VPValue *NewVPVal = new VPValue(IRVal); | 
|  | Plan.addExternalDef(NewVPVal); | 
|  | IRDef2VPValue[IRVal] = NewVPVal; | 
|  | return NewVPVal; | 
|  | } | 
|  |  | 
|  | // Create new VPInstructions in a VPBasicBlock, given its BasicBlock | 
|  | // counterpart. This function must be invoked in RPO so that the operands of a | 
|  | // VPInstruction in \p BB have been visited before (except for Phi nodes). | 
|  | void PlainCFGBuilder::createVPInstructionsForVPBB(VPBasicBlock *VPBB, | 
|  | BasicBlock *BB) { | 
|  | VPIRBuilder.setInsertPoint(VPBB); | 
|  | for (Instruction &InstRef : *BB) { | 
|  | Instruction *Inst = &InstRef; | 
|  |  | 
|  | // There shouldn't be any VPValue for Inst at this point. Otherwise, we | 
|  | // visited Inst when we shouldn't, breaking the RPO traversal order. | 
|  | assert(!IRDef2VPValue.count(Inst) && | 
|  | "Instruction shouldn't have been visited."); | 
|  |  | 
|  | if (auto *Br = dyn_cast<BranchInst>(Inst)) { | 
|  | // Branch instruction is not explicitly represented in VPlan but we need | 
|  | // to represent its condition bit when it's conditional. | 
|  | if (Br->isConditional()) | 
|  | getOrCreateVPOperand(Br->getCondition()); | 
|  |  | 
|  | // Skip the rest of the Instruction processing for Branch instructions. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | VPInstruction *NewVPInst; | 
|  | if (auto *Phi = dyn_cast<PHINode>(Inst)) { | 
|  | // Phi node's operands may have not been visited at this point. We create | 
|  | // an empty VPInstruction that we will fix once the whole plain CFG has | 
|  | // been built. | 
|  | NewVPInst = cast<VPInstruction>(VPIRBuilder.createNaryOp( | 
|  | Inst->getOpcode(), {} /*No operands*/, Inst)); | 
|  | PhisToFix.push_back(Phi); | 
|  | } else { | 
|  | // Translate LLVM-IR operands into VPValue operands and set them in the | 
|  | // new VPInstruction. | 
|  | SmallVector<VPValue *, 4> VPOperands; | 
|  | for (Value *Op : Inst->operands()) | 
|  | VPOperands.push_back(getOrCreateVPOperand(Op)); | 
|  |  | 
|  | // Build VPInstruction for any arbitraty Instruction without specific | 
|  | // representation in VPlan. | 
|  | NewVPInst = cast<VPInstruction>( | 
|  | VPIRBuilder.createNaryOp(Inst->getOpcode(), VPOperands, Inst)); | 
|  | } | 
|  |  | 
|  | IRDef2VPValue[Inst] = NewVPInst; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Main interface to build the plain CFG. | 
|  | VPRegionBlock *PlainCFGBuilder::buildPlainCFG() { | 
|  | // 1. Create the Top Region. It will be the parent of all VPBBs. | 
|  | TopRegion = new VPRegionBlock("TopRegion", false /*isReplicator*/); | 
|  |  | 
|  | // 2. Scan the body of the loop in a topological order to visit each basic | 
|  | // block after having visited its predecessor basic blocks. Create a VPBB for | 
|  | // each BB and link it to its successor and predecessor VPBBs. Note that | 
|  | // predecessors must be set in the same order as they are in the incomming IR. | 
|  | // Otherwise, there might be problems with existing phi nodes and algorithm | 
|  | // based on predecessors traversal. | 
|  |  | 
|  | // Loop PH needs to be explicitly visited since it's not taken into account by | 
|  | // LoopBlocksDFS. | 
|  | BasicBlock *PreheaderBB = TheLoop->getLoopPreheader(); | 
|  | assert((PreheaderBB->getTerminator()->getNumSuccessors() == 1) && | 
|  | "Unexpected loop preheader"); | 
|  | VPBasicBlock *PreheaderVPBB = getOrCreateVPBB(PreheaderBB); | 
|  | createVPInstructionsForVPBB(PreheaderVPBB, PreheaderBB); | 
|  | // Create empty VPBB for Loop H so that we can link PH->H. | 
|  | VPBlockBase *HeaderVPBB = getOrCreateVPBB(TheLoop->getHeader()); | 
|  | // Preheader's predecessors will be set during the loop RPO traversal below. | 
|  | PreheaderVPBB->setOneSuccessor(HeaderVPBB); | 
|  |  | 
|  | LoopBlocksRPO RPO(TheLoop); | 
|  | RPO.perform(LI); | 
|  |  | 
|  | for (BasicBlock *BB : RPO) { | 
|  | // Create or retrieve the VPBasicBlock for this BB and create its | 
|  | // VPInstructions. | 
|  | VPBasicBlock *VPBB = getOrCreateVPBB(BB); | 
|  | createVPInstructionsForVPBB(VPBB, BB); | 
|  |  | 
|  | // Set VPBB successors. We create empty VPBBs for successors if they don't | 
|  | // exist already. Recipes will be created when the successor is visited | 
|  | // during the RPO traversal. | 
|  | Instruction *TI = BB->getTerminator(); | 
|  | assert(TI && "Terminator expected."); | 
|  | unsigned NumSuccs = TI->getNumSuccessors(); | 
|  |  | 
|  | if (NumSuccs == 1) { | 
|  | VPBasicBlock *SuccVPBB = getOrCreateVPBB(TI->getSuccessor(0)); | 
|  | assert(SuccVPBB && "VPBB Successor not found."); | 
|  | VPBB->setOneSuccessor(SuccVPBB); | 
|  | } else if (NumSuccs == 2) { | 
|  | VPBasicBlock *SuccVPBB0 = getOrCreateVPBB(TI->getSuccessor(0)); | 
|  | assert(SuccVPBB0 && "Successor 0 not found."); | 
|  | VPBasicBlock *SuccVPBB1 = getOrCreateVPBB(TI->getSuccessor(1)); | 
|  | assert(SuccVPBB1 && "Successor 1 not found."); | 
|  |  | 
|  | // Get VPBB's condition bit. | 
|  | assert(isa<BranchInst>(TI) && "Unsupported terminator!"); | 
|  | auto *Br = cast<BranchInst>(TI); | 
|  | Value *BrCond = Br->getCondition(); | 
|  | // Look up the branch condition to get the corresponding VPValue | 
|  | // representing the condition bit in VPlan (which may be in another VPBB). | 
|  | assert(IRDef2VPValue.count(BrCond) && | 
|  | "Missing condition bit in IRDef2VPValue!"); | 
|  | VPValue *VPCondBit = IRDef2VPValue[BrCond]; | 
|  |  | 
|  | // Link successors using condition bit. | 
|  | VPBB->setTwoSuccessors(SuccVPBB0, SuccVPBB1, VPCondBit); | 
|  | } else | 
|  | llvm_unreachable("Number of successors not supported."); | 
|  |  | 
|  | // Set VPBB predecessors in the same order as they are in the incoming BB. | 
|  | setVPBBPredsFromBB(VPBB, BB); | 
|  | } | 
|  |  | 
|  | // 3. Process outermost loop exit. We created an empty VPBB for the loop | 
|  | // single exit BB during the RPO traversal of the loop body but Instructions | 
|  | // weren't visited because it's not part of the the loop. | 
|  | BasicBlock *LoopExitBB = TheLoop->getUniqueExitBlock(); | 
|  | assert(LoopExitBB && "Loops with multiple exits are not supported."); | 
|  | VPBasicBlock *LoopExitVPBB = BB2VPBB[LoopExitBB]; | 
|  | createVPInstructionsForVPBB(LoopExitVPBB, LoopExitBB); | 
|  | // Loop exit was already set as successor of the loop exiting BB. | 
|  | // We only set its predecessor VPBB now. | 
|  | setVPBBPredsFromBB(LoopExitVPBB, LoopExitBB); | 
|  |  | 
|  | // 4. The whole CFG has been built at this point so all the input Values must | 
|  | // have a VPlan couterpart. Fix VPlan phi nodes by adding their corresponding | 
|  | // VPlan operands. | 
|  | fixPhiNodes(); | 
|  |  | 
|  | // 5. Final Top Region setup. Set outermost loop pre-header and single exit as | 
|  | // Top Region entry and exit. | 
|  | TopRegion->setEntry(PreheaderVPBB); | 
|  | TopRegion->setExit(LoopExitVPBB); | 
|  | return TopRegion; | 
|  | } | 
|  |  | 
|  | VPRegionBlock *VPlanHCFGBuilder::buildPlainCFG() { | 
|  | PlainCFGBuilder PCFGBuilder(TheLoop, LI, Plan); | 
|  | return PCFGBuilder.buildPlainCFG(); | 
|  | } | 
|  |  | 
|  | // Public interface to build a H-CFG. | 
|  | void VPlanHCFGBuilder::buildHierarchicalCFG() { | 
|  | // Build Top Region enclosing the plain CFG and set it as VPlan entry. | 
|  | VPRegionBlock *TopRegion = buildPlainCFG(); | 
|  | Plan.setEntry(TopRegion); | 
|  | LLVM_DEBUG(Plan.setName("HCFGBuilder: Plain CFG\n"); dbgs() << Plan); | 
|  |  | 
|  | Verifier.verifyHierarchicalCFG(TopRegion); | 
|  |  | 
|  | // Compute plain CFG dom tree for VPLInfo. | 
|  | VPDomTree.recalculate(*TopRegion); | 
|  | LLVM_DEBUG(dbgs() << "Dominator Tree after building the plain CFG.\n"; | 
|  | VPDomTree.print(dbgs())); | 
|  |  | 
|  | // Compute VPLInfo and keep it in Plan. | 
|  | VPLoopInfo &VPLInfo = Plan.getVPLoopInfo(); | 
|  | VPLInfo.analyze(VPDomTree); | 
|  | LLVM_DEBUG(dbgs() << "VPLoop Info After buildPlainCFG:\n"; | 
|  | VPLInfo.print(dbgs())); | 
|  | } |