|  | //===-- SelectionDAGISel.cpp - Implement the SelectionDAGISel class -------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This implements the SelectionDAGISel class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #define DEBUG_TYPE "isel" | 
|  | #include "ScheduleDAGSDNodes.h" | 
|  | #include "SelectionDAGBuilder.h" | 
|  | #include "FunctionLoweringInfo.h" | 
|  | #include "llvm/CodeGen/SelectionDAGISel.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/DebugInfo.h" | 
|  | #include "llvm/Constants.h" | 
|  | #include "llvm/CallingConv.h" | 
|  | #include "llvm/DerivedTypes.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/GlobalVariable.h" | 
|  | #include "llvm/InlineAsm.h" | 
|  | #include "llvm/Instructions.h" | 
|  | #include "llvm/Intrinsics.h" | 
|  | #include "llvm/IntrinsicInst.h" | 
|  | #include "llvm/LLVMContext.h" | 
|  | #include "llvm/CodeGen/FastISel.h" | 
|  | #include "llvm/CodeGen/GCStrategy.h" | 
|  | #include "llvm/CodeGen/GCMetadata.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineFunctionAnalysis.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineJumpTableInfo.h" | 
|  | #include "llvm/CodeGen/MachineModuleInfo.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/ScheduleHazardRecognizer.h" | 
|  | #include "llvm/CodeGen/SchedulerRegistry.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/DwarfWriter.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/Target/TargetData.h" | 
|  | #include "llvm/Target/TargetFrameInfo.h" | 
|  | #include "llvm/Target/TargetIntrinsicInfo.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetLowering.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | #include "llvm/Support/Compiler.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/Timer.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include <algorithm> | 
|  | using namespace llvm; | 
|  |  | 
|  | STATISTIC(NumFastIselFailures, "Number of instructions fast isel failed on"); | 
|  |  | 
|  | static cl::opt<bool> | 
|  | EnableFastISelVerbose("fast-isel-verbose", cl::Hidden, | 
|  | cl::desc("Enable verbose messages in the \"fast\" " | 
|  | "instruction selector")); | 
|  | static cl::opt<bool> | 
|  | EnableFastISelAbort("fast-isel-abort", cl::Hidden, | 
|  | cl::desc("Enable abort calls when \"fast\" instruction fails")); | 
|  | static cl::opt<bool> | 
|  | SchedLiveInCopies("schedule-livein-copies", cl::Hidden, | 
|  | cl::desc("Schedule copies of livein registers"), | 
|  | cl::init(false)); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | static cl::opt<bool> | 
|  | ViewDAGCombine1("view-dag-combine1-dags", cl::Hidden, | 
|  | cl::desc("Pop up a window to show dags before the first " | 
|  | "dag combine pass")); | 
|  | static cl::opt<bool> | 
|  | ViewLegalizeTypesDAGs("view-legalize-types-dags", cl::Hidden, | 
|  | cl::desc("Pop up a window to show dags before legalize types")); | 
|  | static cl::opt<bool> | 
|  | ViewLegalizeDAGs("view-legalize-dags", cl::Hidden, | 
|  | cl::desc("Pop up a window to show dags before legalize")); | 
|  | static cl::opt<bool> | 
|  | ViewDAGCombine2("view-dag-combine2-dags", cl::Hidden, | 
|  | cl::desc("Pop up a window to show dags before the second " | 
|  | "dag combine pass")); | 
|  | static cl::opt<bool> | 
|  | ViewDAGCombineLT("view-dag-combine-lt-dags", cl::Hidden, | 
|  | cl::desc("Pop up a window to show dags before the post legalize types" | 
|  | " dag combine pass")); | 
|  | static cl::opt<bool> | 
|  | ViewISelDAGs("view-isel-dags", cl::Hidden, | 
|  | cl::desc("Pop up a window to show isel dags as they are selected")); | 
|  | static cl::opt<bool> | 
|  | ViewSchedDAGs("view-sched-dags", cl::Hidden, | 
|  | cl::desc("Pop up a window to show sched dags as they are processed")); | 
|  | static cl::opt<bool> | 
|  | ViewSUnitDAGs("view-sunit-dags", cl::Hidden, | 
|  | cl::desc("Pop up a window to show SUnit dags after they are processed")); | 
|  | #else | 
|  | static const bool ViewDAGCombine1 = false, | 
|  | ViewLegalizeTypesDAGs = false, ViewLegalizeDAGs = false, | 
|  | ViewDAGCombine2 = false, | 
|  | ViewDAGCombineLT = false, | 
|  | ViewISelDAGs = false, ViewSchedDAGs = false, | 
|  | ViewSUnitDAGs = false; | 
|  | #endif | 
|  |  | 
|  | //===---------------------------------------------------------------------===// | 
|  | /// | 
|  | /// RegisterScheduler class - Track the registration of instruction schedulers. | 
|  | /// | 
|  | //===---------------------------------------------------------------------===// | 
|  | MachinePassRegistry RegisterScheduler::Registry; | 
|  |  | 
|  | //===---------------------------------------------------------------------===// | 
|  | /// | 
|  | /// ISHeuristic command line option for instruction schedulers. | 
|  | /// | 
|  | //===---------------------------------------------------------------------===// | 
|  | static cl::opt<RegisterScheduler::FunctionPassCtor, false, | 
|  | RegisterPassParser<RegisterScheduler> > | 
|  | ISHeuristic("pre-RA-sched", | 
|  | cl::init(&createDefaultScheduler), | 
|  | cl::desc("Instruction schedulers available (before register" | 
|  | " allocation):")); | 
|  |  | 
|  | static RegisterScheduler | 
|  | defaultListDAGScheduler("default", "Best scheduler for the target", | 
|  | createDefaultScheduler); | 
|  |  | 
|  | namespace llvm { | 
|  | //===--------------------------------------------------------------------===// | 
|  | /// createDefaultScheduler - This creates an instruction scheduler appropriate | 
|  | /// for the target. | 
|  | ScheduleDAGSDNodes* createDefaultScheduler(SelectionDAGISel *IS, | 
|  | CodeGenOpt::Level OptLevel) { | 
|  | const TargetLowering &TLI = IS->getTargetLowering(); | 
|  |  | 
|  | if (OptLevel == CodeGenOpt::None) | 
|  | return createFastDAGScheduler(IS, OptLevel); | 
|  | if (TLI.getSchedulingPreference() == TargetLowering::SchedulingForLatency) | 
|  | return createTDListDAGScheduler(IS, OptLevel); | 
|  | assert(TLI.getSchedulingPreference() == | 
|  | TargetLowering::SchedulingForRegPressure && "Unknown sched type!"); | 
|  | return createBURRListDAGScheduler(IS, OptLevel); | 
|  | } | 
|  | } | 
|  |  | 
|  | // EmitInstrWithCustomInserter - This method should be implemented by targets | 
|  | // that mark instructions with the 'usesCustomInserter' flag.  These | 
|  | // instructions are special in various ways, which require special support to | 
|  | // insert.  The specified MachineInstr is created but not inserted into any | 
|  | // basic blocks, and this method is called to expand it into a sequence of | 
|  | // instructions, potentially also creating new basic blocks and control flow. | 
|  | // When new basic blocks are inserted and the edges from MBB to its successors | 
|  | // are modified, the method should insert pairs of <OldSucc, NewSucc> into the | 
|  | // DenseMap. | 
|  | MachineBasicBlock *TargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, | 
|  | MachineBasicBlock *MBB, | 
|  | DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) const { | 
|  | #ifndef NDEBUG | 
|  | dbgs() << "If a target marks an instruction with " | 
|  | "'usesCustomInserter', it must implement " | 
|  | "TargetLowering::EmitInstrWithCustomInserter!"; | 
|  | #endif | 
|  | llvm_unreachable(0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// EmitLiveInCopy - Emit a copy for a live in physical register. If the | 
|  | /// physical register has only a single copy use, then coalesced the copy | 
|  | /// if possible. | 
|  | static void EmitLiveInCopy(MachineBasicBlock *MBB, | 
|  | MachineBasicBlock::iterator &InsertPos, | 
|  | unsigned VirtReg, unsigned PhysReg, | 
|  | const TargetRegisterClass *RC, | 
|  | DenseMap<MachineInstr*, unsigned> &CopyRegMap, | 
|  | const MachineRegisterInfo &MRI, | 
|  | const TargetRegisterInfo &TRI, | 
|  | const TargetInstrInfo &TII) { | 
|  | unsigned NumUses = 0; | 
|  | MachineInstr *UseMI = NULL; | 
|  | for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(VirtReg), | 
|  | UE = MRI.use_end(); UI != UE; ++UI) { | 
|  | UseMI = &*UI; | 
|  | if (++NumUses > 1) | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If the number of uses is not one, or the use is not a move instruction, | 
|  | // don't coalesce. Also, only coalesce away a virtual register to virtual | 
|  | // register copy. | 
|  | bool Coalesced = false; | 
|  | unsigned SrcReg, DstReg, SrcSubReg, DstSubReg; | 
|  | if (NumUses == 1 && | 
|  | TII.isMoveInstr(*UseMI, SrcReg, DstReg, SrcSubReg, DstSubReg) && | 
|  | TargetRegisterInfo::isVirtualRegister(DstReg)) { | 
|  | VirtReg = DstReg; | 
|  | Coalesced = true; | 
|  | } | 
|  |  | 
|  | // Now find an ideal location to insert the copy. | 
|  | MachineBasicBlock::iterator Pos = InsertPos; | 
|  | while (Pos != MBB->begin()) { | 
|  | MachineInstr *PrevMI = prior(Pos); | 
|  | DenseMap<MachineInstr*, unsigned>::iterator RI = CopyRegMap.find(PrevMI); | 
|  | // copyRegToReg might emit multiple instructions to do a copy. | 
|  | unsigned CopyDstReg = (RI == CopyRegMap.end()) ? 0 : RI->second; | 
|  | if (CopyDstReg && !TRI.regsOverlap(CopyDstReg, PhysReg)) | 
|  | // This is what the BB looks like right now: | 
|  | // r1024 = mov r0 | 
|  | // ... | 
|  | // r1    = mov r1024 | 
|  | // | 
|  | // We want to insert "r1025 = mov r1". Inserting this copy below the | 
|  | // move to r1024 makes it impossible for that move to be coalesced. | 
|  | // | 
|  | // r1025 = mov r1 | 
|  | // r1024 = mov r0 | 
|  | // ... | 
|  | // r1    = mov 1024 | 
|  | // r2    = mov 1025 | 
|  | break; // Woot! Found a good location. | 
|  | --Pos; | 
|  | } | 
|  |  | 
|  | bool Emitted = TII.copyRegToReg(*MBB, Pos, VirtReg, PhysReg, RC, RC); | 
|  | assert(Emitted && "Unable to issue a live-in copy instruction!\n"); | 
|  | (void) Emitted; | 
|  |  | 
|  | CopyRegMap.insert(std::make_pair(prior(Pos), VirtReg)); | 
|  | if (Coalesced) { | 
|  | if (&*InsertPos == UseMI) ++InsertPos; | 
|  | MBB->erase(UseMI); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// EmitLiveInCopies - If this is the first basic block in the function, | 
|  | /// and if it has live ins that need to be copied into vregs, emit the | 
|  | /// copies into the block. | 
|  | static void EmitLiveInCopies(MachineBasicBlock *EntryMBB, | 
|  | const MachineRegisterInfo &MRI, | 
|  | const TargetRegisterInfo &TRI, | 
|  | const TargetInstrInfo &TII) { | 
|  | if (SchedLiveInCopies) { | 
|  | // Emit the copies at a heuristically-determined location in the block. | 
|  | DenseMap<MachineInstr*, unsigned> CopyRegMap; | 
|  | MachineBasicBlock::iterator InsertPos = EntryMBB->begin(); | 
|  | for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(), | 
|  | E = MRI.livein_end(); LI != E; ++LI) | 
|  | if (LI->second) { | 
|  | const TargetRegisterClass *RC = MRI.getRegClass(LI->second); | 
|  | EmitLiveInCopy(EntryMBB, InsertPos, LI->second, LI->first, | 
|  | RC, CopyRegMap, MRI, TRI, TII); | 
|  | } | 
|  | } else { | 
|  | // Emit the copies into the top of the block. | 
|  | for (MachineRegisterInfo::livein_iterator LI = MRI.livein_begin(), | 
|  | E = MRI.livein_end(); LI != E; ++LI) | 
|  | if (LI->second) { | 
|  | const TargetRegisterClass *RC = MRI.getRegClass(LI->second); | 
|  | bool Emitted = TII.copyRegToReg(*EntryMBB, EntryMBB->begin(), | 
|  | LI->second, LI->first, RC, RC); | 
|  | assert(Emitted && "Unable to issue a live-in copy instruction!\n"); | 
|  | (void) Emitted; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // SelectionDAGISel code | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | SelectionDAGISel::SelectionDAGISel(TargetMachine &tm, CodeGenOpt::Level OL) : | 
|  | MachineFunctionPass(&ID), TM(tm), TLI(*tm.getTargetLowering()), | 
|  | FuncInfo(new FunctionLoweringInfo(TLI)), | 
|  | CurDAG(new SelectionDAG(TLI, *FuncInfo)), | 
|  | SDB(new SelectionDAGBuilder(*CurDAG, TLI, *FuncInfo, OL)), | 
|  | GFI(), | 
|  | OptLevel(OL), | 
|  | DAGSize(0) | 
|  | {} | 
|  |  | 
|  | SelectionDAGISel::~SelectionDAGISel() { | 
|  | delete SDB; | 
|  | delete CurDAG; | 
|  | delete FuncInfo; | 
|  | } | 
|  |  | 
|  | unsigned SelectionDAGISel::MakeReg(EVT VT) { | 
|  | return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT)); | 
|  | } | 
|  |  | 
|  | void SelectionDAGISel::getAnalysisUsage(AnalysisUsage &AU) const { | 
|  | AU.addRequired<AliasAnalysis>(); | 
|  | AU.addPreserved<AliasAnalysis>(); | 
|  | AU.addRequired<GCModuleInfo>(); | 
|  | AU.addPreserved<GCModuleInfo>(); | 
|  | AU.addRequired<DwarfWriter>(); | 
|  | AU.addPreserved<DwarfWriter>(); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | bool SelectionDAGISel::runOnMachineFunction(MachineFunction &mf) { | 
|  | Function &Fn = *mf.getFunction(); | 
|  |  | 
|  | // Do some sanity-checking on the command-line options. | 
|  | assert((!EnableFastISelVerbose || EnableFastISel) && | 
|  | "-fast-isel-verbose requires -fast-isel"); | 
|  | assert((!EnableFastISelAbort || EnableFastISel) && | 
|  | "-fast-isel-abort requires -fast-isel"); | 
|  |  | 
|  | // Get alias analysis for load/store combining. | 
|  | AA = &getAnalysis<AliasAnalysis>(); | 
|  |  | 
|  | MF = &mf; | 
|  | const TargetInstrInfo &TII = *TM.getInstrInfo(); | 
|  | const TargetRegisterInfo &TRI = *TM.getRegisterInfo(); | 
|  |  | 
|  | if (Fn.hasGC()) | 
|  | GFI = &getAnalysis<GCModuleInfo>().getFunctionInfo(Fn); | 
|  | else | 
|  | GFI = 0; | 
|  | RegInfo = &MF->getRegInfo(); | 
|  | DEBUG(dbgs() << "\n\n\n=== " << Fn.getName() << "\n"); | 
|  |  | 
|  | MachineModuleInfo *MMI = getAnalysisIfAvailable<MachineModuleInfo>(); | 
|  | DwarfWriter *DW = getAnalysisIfAvailable<DwarfWriter>(); | 
|  | CurDAG->init(*MF, MMI, DW); | 
|  | FuncInfo->set(Fn, *MF, EnableFastISel); | 
|  | SDB->init(GFI, *AA); | 
|  |  | 
|  | for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) | 
|  | if (InvokeInst *Invoke = dyn_cast<InvokeInst>(I->getTerminator())) | 
|  | // Mark landing pad. | 
|  | FuncInfo->MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad(); | 
|  |  | 
|  | SelectAllBasicBlocks(Fn, *MF, MMI, DW, TII); | 
|  |  | 
|  | // If the first basic block in the function has live ins that need to be | 
|  | // copied into vregs, emit the copies into the top of the block before | 
|  | // emitting the code for the block. | 
|  | EmitLiveInCopies(MF->begin(), *RegInfo, TRI, TII); | 
|  |  | 
|  | // Add function live-ins to entry block live-in set. | 
|  | for (MachineRegisterInfo::livein_iterator I = RegInfo->livein_begin(), | 
|  | E = RegInfo->livein_end(); I != E; ++I) | 
|  | MF->begin()->addLiveIn(I->first); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | assert(FuncInfo->CatchInfoFound.size() == FuncInfo->CatchInfoLost.size() && | 
|  | "Not all catch info was assigned to a landing pad!"); | 
|  | #endif | 
|  |  | 
|  | FuncInfo->clear(); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// SetDebugLoc - Update MF's and SDB's DebugLocs if debug information is | 
|  | /// attached with this instruction. | 
|  | static void SetDebugLoc(unsigned MDDbgKind, Instruction *I, | 
|  | SelectionDAGBuilder *SDB, | 
|  | FastISel *FastIS, MachineFunction *MF) { | 
|  | if (MDNode *Dbg = I->getMetadata(MDDbgKind)) { | 
|  | DILocation DILoc(Dbg); | 
|  | DebugLoc Loc = ExtractDebugLocation(DILoc, MF->getDebugLocInfo()); | 
|  |  | 
|  | SDB->setCurDebugLoc(Loc); | 
|  |  | 
|  | if (FastIS) | 
|  | FastIS->setCurDebugLoc(Loc); | 
|  |  | 
|  | // If the function doesn't have a default debug location yet, set | 
|  | // it. This is kind of a hack. | 
|  | if (MF->getDefaultDebugLoc().isUnknown()) | 
|  | MF->setDefaultDebugLoc(Loc); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// ResetDebugLoc - Set MF's and SDB's DebugLocs to Unknown. | 
|  | static void ResetDebugLoc(SelectionDAGBuilder *SDB, FastISel *FastIS) { | 
|  | SDB->setCurDebugLoc(DebugLoc::getUnknownLoc()); | 
|  | if (FastIS) | 
|  | FastIS->setCurDebugLoc(DebugLoc::getUnknownLoc()); | 
|  | } | 
|  |  | 
|  | void SelectionDAGISel::SelectBasicBlock(BasicBlock *LLVMBB, | 
|  | BasicBlock::iterator Begin, | 
|  | BasicBlock::iterator End, | 
|  | bool &HadTailCall) { | 
|  | SDB->setCurrentBasicBlock(BB); | 
|  | unsigned MDDbgKind = LLVMBB->getContext().getMDKindID("dbg"); | 
|  |  | 
|  | // Lower all of the non-terminator instructions. If a call is emitted | 
|  | // as a tail call, cease emitting nodes for this block. | 
|  | for (BasicBlock::iterator I = Begin; I != End && !SDB->HasTailCall; ++I) { | 
|  | SetDebugLoc(MDDbgKind, I, SDB, 0, MF); | 
|  |  | 
|  | if (!isa<TerminatorInst>(I)) { | 
|  | SDB->visit(*I); | 
|  |  | 
|  | // Set the current debug location back to "unknown" so that it doesn't | 
|  | // spuriously apply to subsequent instructions. | 
|  | ResetDebugLoc(SDB, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!SDB->HasTailCall) { | 
|  | // Ensure that all instructions which are used outside of their defining | 
|  | // blocks are available as virtual registers.  Invoke is handled elsewhere. | 
|  | for (BasicBlock::iterator I = Begin; I != End; ++I) | 
|  | if (!isa<PHINode>(I) && !isa<InvokeInst>(I)) | 
|  | SDB->CopyToExportRegsIfNeeded(I); | 
|  |  | 
|  | // Handle PHI nodes in successor blocks. | 
|  | if (End == LLVMBB->end()) { | 
|  | HandlePHINodesInSuccessorBlocks(LLVMBB); | 
|  |  | 
|  | // Lower the terminator after the copies are emitted. | 
|  | SetDebugLoc(MDDbgKind, LLVMBB->getTerminator(), SDB, 0, MF); | 
|  | SDB->visit(*LLVMBB->getTerminator()); | 
|  | ResetDebugLoc(SDB, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make sure the root of the DAG is up-to-date. | 
|  | CurDAG->setRoot(SDB->getControlRoot()); | 
|  |  | 
|  | // Final step, emit the lowered DAG as machine code. | 
|  | CodeGenAndEmitDAG(); | 
|  | HadTailCall = SDB->HasTailCall; | 
|  | SDB->clear(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  | /// WorkListRemover - This class is a DAGUpdateListener that removes any deleted | 
|  | /// nodes from the worklist. | 
|  | class SDOPsWorkListRemover : public SelectionDAG::DAGUpdateListener { | 
|  | SmallVector<SDNode*, 128> &Worklist; | 
|  | SmallPtrSet<SDNode*, 128> &InWorklist; | 
|  | public: | 
|  | SDOPsWorkListRemover(SmallVector<SDNode*, 128> &wl, | 
|  | SmallPtrSet<SDNode*, 128> &inwl) | 
|  | : Worklist(wl), InWorklist(inwl) {} | 
|  |  | 
|  | void RemoveFromWorklist(SDNode *N) { | 
|  | if (!InWorklist.erase(N)) return; | 
|  |  | 
|  | SmallVector<SDNode*, 128>::iterator I = | 
|  | std::find(Worklist.begin(), Worklist.end(), N); | 
|  | assert(I != Worklist.end() && "Not in worklist"); | 
|  |  | 
|  | *I = Worklist.back(); | 
|  | Worklist.pop_back(); | 
|  | } | 
|  |  | 
|  | virtual void NodeDeleted(SDNode *N, SDNode *E) { | 
|  | RemoveFromWorklist(N); | 
|  | } | 
|  |  | 
|  | virtual void NodeUpdated(SDNode *N) { | 
|  | // Ignore updates. | 
|  | } | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// TrivialTruncElim - Eliminate some trivial nops that can result from | 
|  | /// ShrinkDemandedOps: (trunc (ext n)) -> n. | 
|  | static bool TrivialTruncElim(SDValue Op, | 
|  | TargetLowering::TargetLoweringOpt &TLO) { | 
|  | SDValue N0 = Op.getOperand(0); | 
|  | EVT VT = Op.getValueType(); | 
|  | if ((N0.getOpcode() == ISD::ZERO_EXTEND || | 
|  | N0.getOpcode() == ISD::SIGN_EXTEND || | 
|  | N0.getOpcode() == ISD::ANY_EXTEND) && | 
|  | N0.getOperand(0).getValueType() == VT) { | 
|  | return TLO.CombineTo(Op, N0.getOperand(0)); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// ShrinkDemandedOps - A late transformation pass that shrink expressions | 
|  | /// using TargetLowering::TargetLoweringOpt::ShrinkDemandedOp. It converts | 
|  | /// x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free. | 
|  | void SelectionDAGISel::ShrinkDemandedOps() { | 
|  | SmallVector<SDNode*, 128> Worklist; | 
|  | SmallPtrSet<SDNode*, 128> InWorklist; | 
|  |  | 
|  | // Add all the dag nodes to the worklist. | 
|  | Worklist.reserve(CurDAG->allnodes_size()); | 
|  | for (SelectionDAG::allnodes_iterator I = CurDAG->allnodes_begin(), | 
|  | E = CurDAG->allnodes_end(); I != E; ++I) { | 
|  | Worklist.push_back(I); | 
|  | InWorklist.insert(I); | 
|  | } | 
|  |  | 
|  | TargetLowering::TargetLoweringOpt TLO(*CurDAG, true); | 
|  | while (!Worklist.empty()) { | 
|  | SDNode *N = Worklist.pop_back_val(); | 
|  | InWorklist.erase(N); | 
|  |  | 
|  | if (N->use_empty() && N != CurDAG->getRoot().getNode()) { | 
|  | // Deleting this node may make its operands dead, add them to the worklist | 
|  | // if they aren't already there. | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) | 
|  | if (InWorklist.insert(N->getOperand(i).getNode())) | 
|  | Worklist.push_back(N->getOperand(i).getNode()); | 
|  |  | 
|  | CurDAG->DeleteNode(N); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Run ShrinkDemandedOp on scalar binary operations. | 
|  | if (N->getNumValues() != 1 || | 
|  | !N->getValueType(0).isSimple() || !N->getValueType(0).isInteger()) | 
|  | continue; | 
|  |  | 
|  | unsigned BitWidth = N->getValueType(0).getScalarType().getSizeInBits(); | 
|  | APInt Demanded = APInt::getAllOnesValue(BitWidth); | 
|  | APInt KnownZero, KnownOne; | 
|  | if (!TLI.SimplifyDemandedBits(SDValue(N, 0), Demanded, | 
|  | KnownZero, KnownOne, TLO) && | 
|  | (N->getOpcode() != ISD::TRUNCATE || | 
|  | !TrivialTruncElim(SDValue(N, 0), TLO))) | 
|  | continue; | 
|  |  | 
|  | // Revisit the node. | 
|  | assert(!InWorklist.count(N) && "Already in worklist"); | 
|  | Worklist.push_back(N); | 
|  | InWorklist.insert(N); | 
|  |  | 
|  | // Replace the old value with the new one. | 
|  | DEBUG(errs() << "\nShrinkDemandedOps replacing "; | 
|  | TLO.Old.getNode()->dump(CurDAG); | 
|  | errs() << "\nWith: "; | 
|  | TLO.New.getNode()->dump(CurDAG); | 
|  | errs() << '\n'); | 
|  |  | 
|  | if (InWorklist.insert(TLO.New.getNode())) | 
|  | Worklist.push_back(TLO.New.getNode()); | 
|  |  | 
|  | SDOPsWorkListRemover DeadNodes(Worklist, InWorklist); | 
|  | CurDAG->ReplaceAllUsesOfValueWith(TLO.Old, TLO.New, &DeadNodes); | 
|  |  | 
|  | if (!TLO.Old.getNode()->use_empty()) continue; | 
|  |  | 
|  | for (unsigned i = 0, e = TLO.Old.getNode()->getNumOperands(); | 
|  | i != e; ++i) { | 
|  | SDNode *OpNode = TLO.Old.getNode()->getOperand(i).getNode(); | 
|  | if (OpNode->hasOneUse()) { | 
|  | // Add OpNode to the end of the list to revisit. | 
|  | DeadNodes.RemoveFromWorklist(OpNode); | 
|  | Worklist.push_back(OpNode); | 
|  | InWorklist.insert(OpNode); | 
|  | } | 
|  | } | 
|  |  | 
|  | DeadNodes.RemoveFromWorklist(TLO.Old.getNode()); | 
|  | CurDAG->DeleteNode(TLO.Old.getNode()); | 
|  | } | 
|  | } | 
|  |  | 
|  | void SelectionDAGISel::ComputeLiveOutVRegInfo() { | 
|  | SmallPtrSet<SDNode*, 128> VisitedNodes; | 
|  | SmallVector<SDNode*, 128> Worklist; | 
|  |  | 
|  | Worklist.push_back(CurDAG->getRoot().getNode()); | 
|  |  | 
|  | APInt Mask; | 
|  | APInt KnownZero; | 
|  | APInt KnownOne; | 
|  |  | 
|  | do { | 
|  | SDNode *N = Worklist.pop_back_val(); | 
|  |  | 
|  | // If we've already seen this node, ignore it. | 
|  | if (!VisitedNodes.insert(N)) | 
|  | continue; | 
|  |  | 
|  | // Otherwise, add all chain operands to the worklist. | 
|  | for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) | 
|  | if (N->getOperand(i).getValueType() == MVT::Other) | 
|  | Worklist.push_back(N->getOperand(i).getNode()); | 
|  |  | 
|  | // If this is a CopyToReg with a vreg dest, process it. | 
|  | if (N->getOpcode() != ISD::CopyToReg) | 
|  | continue; | 
|  |  | 
|  | unsigned DestReg = cast<RegisterSDNode>(N->getOperand(1))->getReg(); | 
|  | if (!TargetRegisterInfo::isVirtualRegister(DestReg)) | 
|  | continue; | 
|  |  | 
|  | // Ignore non-scalar or non-integer values. | 
|  | SDValue Src = N->getOperand(2); | 
|  | EVT SrcVT = Src.getValueType(); | 
|  | if (!SrcVT.isInteger() || SrcVT.isVector()) | 
|  | continue; | 
|  |  | 
|  | unsigned NumSignBits = CurDAG->ComputeNumSignBits(Src); | 
|  | Mask = APInt::getAllOnesValue(SrcVT.getSizeInBits()); | 
|  | CurDAG->ComputeMaskedBits(Src, Mask, KnownZero, KnownOne); | 
|  |  | 
|  | // Only install this information if it tells us something. | 
|  | if (NumSignBits != 1 || KnownZero != 0 || KnownOne != 0) { | 
|  | DestReg -= TargetRegisterInfo::FirstVirtualRegister; | 
|  | if (DestReg >= FuncInfo->LiveOutRegInfo.size()) | 
|  | FuncInfo->LiveOutRegInfo.resize(DestReg+1); | 
|  | FunctionLoweringInfo::LiveOutInfo &LOI = | 
|  | FuncInfo->LiveOutRegInfo[DestReg]; | 
|  | LOI.NumSignBits = NumSignBits; | 
|  | LOI.KnownOne = KnownOne; | 
|  | LOI.KnownZero = KnownZero; | 
|  | } | 
|  | } while (!Worklist.empty()); | 
|  | } | 
|  |  | 
|  | void SelectionDAGISel::CodeGenAndEmitDAG() { | 
|  | std::string GroupName; | 
|  | if (TimePassesIsEnabled) | 
|  | GroupName = "Instruction Selection and Scheduling"; | 
|  | std::string BlockName; | 
|  | if (ViewDAGCombine1 || ViewLegalizeTypesDAGs || ViewLegalizeDAGs || | 
|  | ViewDAGCombine2 || ViewDAGCombineLT || ViewISelDAGs || ViewSchedDAGs || | 
|  | ViewSUnitDAGs) | 
|  | BlockName = MF->getFunction()->getNameStr() + ":" + | 
|  | BB->getBasicBlock()->getNameStr(); | 
|  |  | 
|  | DEBUG(dbgs() << "Initial selection DAG:\n"); | 
|  | DEBUG(CurDAG->dump()); | 
|  |  | 
|  | if (ViewDAGCombine1) CurDAG->viewGraph("dag-combine1 input for " + BlockName); | 
|  |  | 
|  | // Run the DAG combiner in pre-legalize mode. | 
|  | if (TimePassesIsEnabled) { | 
|  | NamedRegionTimer T("DAG Combining 1", GroupName); | 
|  | CurDAG->Combine(Unrestricted, *AA, OptLevel); | 
|  | } else { | 
|  | CurDAG->Combine(Unrestricted, *AA, OptLevel); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Optimized lowered selection DAG:\n"); | 
|  | DEBUG(CurDAG->dump()); | 
|  |  | 
|  | // Second step, hack on the DAG until it only uses operations and types that | 
|  | // the target supports. | 
|  | if (ViewLegalizeTypesDAGs) CurDAG->viewGraph("legalize-types input for " + | 
|  | BlockName); | 
|  |  | 
|  | bool Changed; | 
|  | if (TimePassesIsEnabled) { | 
|  | NamedRegionTimer T("Type Legalization", GroupName); | 
|  | Changed = CurDAG->LegalizeTypes(); | 
|  | } else { | 
|  | Changed = CurDAG->LegalizeTypes(); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Type-legalized selection DAG:\n"); | 
|  | DEBUG(CurDAG->dump()); | 
|  |  | 
|  | if (Changed) { | 
|  | if (ViewDAGCombineLT) | 
|  | CurDAG->viewGraph("dag-combine-lt input for " + BlockName); | 
|  |  | 
|  | // Run the DAG combiner in post-type-legalize mode. | 
|  | if (TimePassesIsEnabled) { | 
|  | NamedRegionTimer T("DAG Combining after legalize types", GroupName); | 
|  | CurDAG->Combine(NoIllegalTypes, *AA, OptLevel); | 
|  | } else { | 
|  | CurDAG->Combine(NoIllegalTypes, *AA, OptLevel); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Optimized type-legalized selection DAG:\n"); | 
|  | DEBUG(CurDAG->dump()); | 
|  | } | 
|  |  | 
|  | if (TimePassesIsEnabled) { | 
|  | NamedRegionTimer T("Vector Legalization", GroupName); | 
|  | Changed = CurDAG->LegalizeVectors(); | 
|  | } else { | 
|  | Changed = CurDAG->LegalizeVectors(); | 
|  | } | 
|  |  | 
|  | if (Changed) { | 
|  | if (TimePassesIsEnabled) { | 
|  | NamedRegionTimer T("Type Legalization 2", GroupName); | 
|  | CurDAG->LegalizeTypes(); | 
|  | } else { | 
|  | CurDAG->LegalizeTypes(); | 
|  | } | 
|  |  | 
|  | if (ViewDAGCombineLT) | 
|  | CurDAG->viewGraph("dag-combine-lv input for " + BlockName); | 
|  |  | 
|  | // Run the DAG combiner in post-type-legalize mode. | 
|  | if (TimePassesIsEnabled) { | 
|  | NamedRegionTimer T("DAG Combining after legalize vectors", GroupName); | 
|  | CurDAG->Combine(NoIllegalOperations, *AA, OptLevel); | 
|  | } else { | 
|  | CurDAG->Combine(NoIllegalOperations, *AA, OptLevel); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Optimized vector-legalized selection DAG:\n"); | 
|  | DEBUG(CurDAG->dump()); | 
|  | } | 
|  |  | 
|  | if (ViewLegalizeDAGs) CurDAG->viewGraph("legalize input for " + BlockName); | 
|  |  | 
|  | if (TimePassesIsEnabled) { | 
|  | NamedRegionTimer T("DAG Legalization", GroupName); | 
|  | CurDAG->Legalize(OptLevel); | 
|  | } else { | 
|  | CurDAG->Legalize(OptLevel); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Legalized selection DAG:\n"); | 
|  | DEBUG(CurDAG->dump()); | 
|  |  | 
|  | if (ViewDAGCombine2) CurDAG->viewGraph("dag-combine2 input for " + BlockName); | 
|  |  | 
|  | // Run the DAG combiner in post-legalize mode. | 
|  | if (TimePassesIsEnabled) { | 
|  | NamedRegionTimer T("DAG Combining 2", GroupName); | 
|  | CurDAG->Combine(NoIllegalOperations, *AA, OptLevel); | 
|  | } else { | 
|  | CurDAG->Combine(NoIllegalOperations, *AA, OptLevel); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Optimized legalized selection DAG:\n"); | 
|  | DEBUG(CurDAG->dump()); | 
|  |  | 
|  | if (OptLevel != CodeGenOpt::None) { | 
|  | ShrinkDemandedOps(); | 
|  | ComputeLiveOutVRegInfo(); | 
|  | } | 
|  |  | 
|  | if (ViewISelDAGs) CurDAG->viewGraph("isel input for " + BlockName); | 
|  |  | 
|  | // Third, instruction select all of the operations to machine code, adding the | 
|  | // code to the MachineBasicBlock. | 
|  | if (TimePassesIsEnabled) { | 
|  | NamedRegionTimer T("Instruction Selection", GroupName); | 
|  | DoInstructionSelection(); | 
|  | } else { | 
|  | DoInstructionSelection(); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Selected selection DAG:\n"); | 
|  | DEBUG(CurDAG->dump()); | 
|  |  | 
|  | if (ViewSchedDAGs) CurDAG->viewGraph("scheduler input for " + BlockName); | 
|  |  | 
|  | // Schedule machine code. | 
|  | ScheduleDAGSDNodes *Scheduler = CreateScheduler(); | 
|  | if (TimePassesIsEnabled) { | 
|  | NamedRegionTimer T("Instruction Scheduling", GroupName); | 
|  | Scheduler->Run(CurDAG, BB, BB->end()); | 
|  | } else { | 
|  | Scheduler->Run(CurDAG, BB, BB->end()); | 
|  | } | 
|  |  | 
|  | if (ViewSUnitDAGs) Scheduler->viewGraph(); | 
|  |  | 
|  | // Emit machine code to BB.  This can change 'BB' to the last block being | 
|  | // inserted into. | 
|  | if (TimePassesIsEnabled) { | 
|  | NamedRegionTimer T("Instruction Creation", GroupName); | 
|  | BB = Scheduler->EmitSchedule(&SDB->EdgeMapping); | 
|  | } else { | 
|  | BB = Scheduler->EmitSchedule(&SDB->EdgeMapping); | 
|  | } | 
|  |  | 
|  | // Free the scheduler state. | 
|  | if (TimePassesIsEnabled) { | 
|  | NamedRegionTimer T("Instruction Scheduling Cleanup", GroupName); | 
|  | delete Scheduler; | 
|  | } else { | 
|  | delete Scheduler; | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "Selected machine code:\n"); | 
|  | DEBUG(BB->dump()); | 
|  | } | 
|  |  | 
|  | void SelectionDAGISel::DoInstructionSelection() { | 
|  | DEBUG(errs() << "===== Instruction selection begins:\n"); | 
|  |  | 
|  | PreprocessISelDAG(); | 
|  |  | 
|  | // Select target instructions for the DAG. | 
|  | { | 
|  | // Number all nodes with a topological order and set DAGSize. | 
|  | DAGSize = CurDAG->AssignTopologicalOrder(); | 
|  |  | 
|  | // Create a dummy node (which is not added to allnodes), that adds | 
|  | // a reference to the root node, preventing it from being deleted, | 
|  | // and tracking any changes of the root. | 
|  | HandleSDNode Dummy(CurDAG->getRoot()); | 
|  | ISelPosition = SelectionDAG::allnodes_iterator(CurDAG->getRoot().getNode()); | 
|  | ++ISelPosition; | 
|  |  | 
|  | // The AllNodes list is now topological-sorted. Visit the | 
|  | // nodes by starting at the end of the list (the root of the | 
|  | // graph) and preceding back toward the beginning (the entry | 
|  | // node). | 
|  | while (ISelPosition != CurDAG->allnodes_begin()) { | 
|  | SDNode *Node = --ISelPosition; | 
|  | // Skip dead nodes. DAGCombiner is expected to eliminate all dead nodes, | 
|  | // but there are currently some corner cases that it misses. Also, this | 
|  | // makes it theoretically possible to disable the DAGCombiner. | 
|  | if (Node->use_empty()) | 
|  | continue; | 
|  |  | 
|  | SDNode *ResNode = Select(Node); | 
|  |  | 
|  | // FIXME: This is pretty gross.  'Select' should be changed to not return | 
|  | // anything at all and this code should be nuked with a tactical strike. | 
|  |  | 
|  | // If node should not be replaced, continue with the next one. | 
|  | if (ResNode == Node || Node->getOpcode() == ISD::DELETED_NODE) | 
|  | continue; | 
|  | // Replace node. | 
|  | if (ResNode) | 
|  | ReplaceUses(Node, ResNode); | 
|  |  | 
|  | // If after the replacement this node is not used any more, | 
|  | // remove this dead node. | 
|  | if (Node->use_empty()) { // Don't delete EntryToken, etc. | 
|  | ISelUpdater ISU(ISelPosition); | 
|  | CurDAG->RemoveDeadNode(Node, &ISU); | 
|  | } | 
|  | } | 
|  |  | 
|  | CurDAG->setRoot(Dummy.getValue()); | 
|  | } | 
|  | DEBUG(errs() << "===== Instruction selection ends:\n"); | 
|  |  | 
|  | PostprocessISelDAG(); | 
|  |  | 
|  | // FIXME: This shouldn't be needed, remove it. | 
|  | CurDAG->RemoveDeadNodes(); | 
|  | } | 
|  |  | 
|  |  | 
|  | void SelectionDAGISel::SelectAllBasicBlocks(Function &Fn, | 
|  | MachineFunction &MF, | 
|  | MachineModuleInfo *MMI, | 
|  | DwarfWriter *DW, | 
|  | const TargetInstrInfo &TII) { | 
|  | // Initialize the Fast-ISel state, if needed. | 
|  | FastISel *FastIS = 0; | 
|  | if (EnableFastISel) | 
|  | FastIS = TLI.createFastISel(MF, MMI, DW, | 
|  | FuncInfo->ValueMap, | 
|  | FuncInfo->MBBMap, | 
|  | FuncInfo->StaticAllocaMap | 
|  | #ifndef NDEBUG | 
|  | , FuncInfo->CatchInfoLost | 
|  | #endif | 
|  | ); | 
|  |  | 
|  | unsigned MDDbgKind = Fn.getContext().getMDKindID("dbg"); | 
|  |  | 
|  | // Iterate over all basic blocks in the function. | 
|  | for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I) { | 
|  | BasicBlock *LLVMBB = &*I; | 
|  | BB = FuncInfo->MBBMap[LLVMBB]; | 
|  |  | 
|  | BasicBlock::iterator const Begin = LLVMBB->begin(); | 
|  | BasicBlock::iterator const End = LLVMBB->end(); | 
|  | BasicBlock::iterator BI = Begin; | 
|  |  | 
|  | // Lower any arguments needed in this block if this is the entry block. | 
|  | bool SuppressFastISel = false; | 
|  | if (LLVMBB == &Fn.getEntryBlock()) { | 
|  | LowerArguments(LLVMBB); | 
|  |  | 
|  | // If any of the arguments has the byval attribute, forgo | 
|  | // fast-isel in the entry block. | 
|  | if (FastIS) { | 
|  | unsigned j = 1; | 
|  | for (Function::arg_iterator I = Fn.arg_begin(), E = Fn.arg_end(); | 
|  | I != E; ++I, ++j) | 
|  | if (Fn.paramHasAttr(j, Attribute::ByVal)) { | 
|  | if (EnableFastISelVerbose || EnableFastISelAbort) | 
|  | dbgs() << "FastISel skips entry block due to byval argument\n"; | 
|  | SuppressFastISel = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (MMI && BB->isLandingPad()) { | 
|  | // Add a label to mark the beginning of the landing pad.  Deletion of the | 
|  | // landing pad can thus be detected via the MachineModuleInfo. | 
|  | MCSymbol *Label = MMI->addLandingPad(BB); | 
|  |  | 
|  | const TargetInstrDesc &II = TII.get(TargetOpcode::EH_LABEL); | 
|  | BuildMI(BB, SDB->getCurDebugLoc(), II).addSym(Label); | 
|  |  | 
|  | // Mark exception register as live in. | 
|  | unsigned Reg = TLI.getExceptionAddressRegister(); | 
|  | if (Reg) BB->addLiveIn(Reg); | 
|  |  | 
|  | // Mark exception selector register as live in. | 
|  | Reg = TLI.getExceptionSelectorRegister(); | 
|  | if (Reg) BB->addLiveIn(Reg); | 
|  |  | 
|  | // FIXME: Hack around an exception handling flaw (PR1508): the personality | 
|  | // function and list of typeids logically belong to the invoke (or, if you | 
|  | // like, the basic block containing the invoke), and need to be associated | 
|  | // with it in the dwarf exception handling tables.  Currently however the | 
|  | // information is provided by an intrinsic (eh.selector) that can be moved | 
|  | // to unexpected places by the optimizers: if the unwind edge is critical, | 
|  | // then breaking it can result in the intrinsics being in the successor of | 
|  | // the landing pad, not the landing pad itself.  This results | 
|  | // in exceptions not being caught because no typeids are associated with | 
|  | // the invoke.  This may not be the only way things can go wrong, but it | 
|  | // is the only way we try to work around for the moment. | 
|  | BranchInst *Br = dyn_cast<BranchInst>(LLVMBB->getTerminator()); | 
|  |  | 
|  | if (Br && Br->isUnconditional()) { // Critical edge? | 
|  | BasicBlock::iterator I, E; | 
|  | for (I = LLVMBB->begin(), E = --LLVMBB->end(); I != E; ++I) | 
|  | if (isa<EHSelectorInst>(I)) | 
|  | break; | 
|  |  | 
|  | if (I == E) | 
|  | // No catch info found - try to extract some from the successor. | 
|  | CopyCatchInfo(Br->getSuccessor(0), LLVMBB, MMI, *FuncInfo); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Before doing SelectionDAG ISel, see if FastISel has been requested. | 
|  | if (FastIS && !SuppressFastISel) { | 
|  | // Emit code for any incoming arguments. This must happen before | 
|  | // beginning FastISel on the entry block. | 
|  | if (LLVMBB == &Fn.getEntryBlock()) { | 
|  | CurDAG->setRoot(SDB->getControlRoot()); | 
|  | CodeGenAndEmitDAG(); | 
|  | SDB->clear(); | 
|  | } | 
|  | FastIS->startNewBlock(BB); | 
|  | // Do FastISel on as many instructions as possible. | 
|  | for (; BI != End; ++BI) { | 
|  | // Just before the terminator instruction, insert instructions to | 
|  | // feed PHI nodes in successor blocks. | 
|  | if (isa<TerminatorInst>(BI)) | 
|  | if (!HandlePHINodesInSuccessorBlocksFast(LLVMBB, FastIS)) { | 
|  | ++NumFastIselFailures; | 
|  | ResetDebugLoc(SDB, FastIS); | 
|  | if (EnableFastISelVerbose || EnableFastISelAbort) { | 
|  | dbgs() << "FastISel miss: "; | 
|  | BI->dump(); | 
|  | } | 
|  | assert(!EnableFastISelAbort && | 
|  | "FastISel didn't handle a PHI in a successor"); | 
|  | break; | 
|  | } | 
|  |  | 
|  | SetDebugLoc(MDDbgKind, BI, SDB, FastIS, &MF); | 
|  |  | 
|  | // Try to select the instruction with FastISel. | 
|  | if (FastIS->SelectInstruction(BI)) { | 
|  | ResetDebugLoc(SDB, FastIS); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Clear out the debug location so that it doesn't carry over to | 
|  | // unrelated instructions. | 
|  | ResetDebugLoc(SDB, FastIS); | 
|  |  | 
|  | // Then handle certain instructions as single-LLVM-Instruction blocks. | 
|  | if (isa<CallInst>(BI)) { | 
|  | ++NumFastIselFailures; | 
|  | if (EnableFastISelVerbose || EnableFastISelAbort) { | 
|  | dbgs() << "FastISel missed call: "; | 
|  | BI->dump(); | 
|  | } | 
|  |  | 
|  | if (!BI->getType()->isVoidTy()) { | 
|  | unsigned &R = FuncInfo->ValueMap[BI]; | 
|  | if (!R) | 
|  | R = FuncInfo->CreateRegForValue(BI); | 
|  | } | 
|  |  | 
|  | bool HadTailCall = false; | 
|  | SelectBasicBlock(LLVMBB, BI, llvm::next(BI), HadTailCall); | 
|  |  | 
|  | // If the call was emitted as a tail call, we're done with the block. | 
|  | if (HadTailCall) { | 
|  | BI = End; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // If the instruction was codegen'd with multiple blocks, | 
|  | // inform the FastISel object where to resume inserting. | 
|  | FastIS->setCurrentBlock(BB); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, give up on FastISel for the rest of the block. | 
|  | // For now, be a little lenient about non-branch terminators. | 
|  | if (!isa<TerminatorInst>(BI) || isa<BranchInst>(BI)) { | 
|  | ++NumFastIselFailures; | 
|  | if (EnableFastISelVerbose || EnableFastISelAbort) { | 
|  | dbgs() << "FastISel miss: "; | 
|  | BI->dump(); | 
|  | } | 
|  | if (EnableFastISelAbort) | 
|  | // The "fast" selector couldn't handle something and bailed. | 
|  | // For the purpose of debugging, just abort. | 
|  | llvm_unreachable("FastISel didn't select the entire block"); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Run SelectionDAG instruction selection on the remainder of the block | 
|  | // not handled by FastISel. If FastISel is not run, this is the entire | 
|  | // block. | 
|  | if (BI != End) { | 
|  | bool HadTailCall; | 
|  | SelectBasicBlock(LLVMBB, BI, End, HadTailCall); | 
|  | } | 
|  |  | 
|  | FinishBasicBlock(); | 
|  | } | 
|  |  | 
|  | delete FastIS; | 
|  | } | 
|  |  | 
|  | void | 
|  | SelectionDAGISel::FinishBasicBlock() { | 
|  |  | 
|  | DEBUG(dbgs() << "Target-post-processed machine code:\n"); | 
|  | DEBUG(BB->dump()); | 
|  |  | 
|  | DEBUG(dbgs() << "Total amount of phi nodes to update: " | 
|  | << SDB->PHINodesToUpdate.size() << "\n"); | 
|  | DEBUG(for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) | 
|  | dbgs() << "Node " << i << " : (" | 
|  | << SDB->PHINodesToUpdate[i].first | 
|  | << ", " << SDB->PHINodesToUpdate[i].second << ")\n"); | 
|  |  | 
|  | // Next, now that we know what the last MBB the LLVM BB expanded is, update | 
|  | // PHI nodes in successors. | 
|  | if (SDB->SwitchCases.empty() && | 
|  | SDB->JTCases.empty() && | 
|  | SDB->BitTestCases.empty()) { | 
|  | for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) { | 
|  | MachineInstr *PHI = SDB->PHINodesToUpdate[i].first; | 
|  | assert(PHI->isPHI() && | 
|  | "This is not a machine PHI node that we are updating!"); | 
|  | if (!BB->isSuccessor(PHI->getParent())) | 
|  | continue; | 
|  | PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second, | 
|  | false)); | 
|  | PHI->addOperand(MachineOperand::CreateMBB(BB)); | 
|  | } | 
|  | SDB->PHINodesToUpdate.clear(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = SDB->BitTestCases.size(); i != e; ++i) { | 
|  | // Lower header first, if it wasn't already lowered | 
|  | if (!SDB->BitTestCases[i].Emitted) { | 
|  | // Set the current basic block to the mbb we wish to insert the code into | 
|  | BB = SDB->BitTestCases[i].Parent; | 
|  | SDB->setCurrentBasicBlock(BB); | 
|  | // Emit the code | 
|  | SDB->visitBitTestHeader(SDB->BitTestCases[i]); | 
|  | CurDAG->setRoot(SDB->getRoot()); | 
|  | CodeGenAndEmitDAG(); | 
|  | SDB->clear(); | 
|  | } | 
|  |  | 
|  | for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); j != ej; ++j) { | 
|  | // Set the current basic block to the mbb we wish to insert the code into | 
|  | BB = SDB->BitTestCases[i].Cases[j].ThisBB; | 
|  | SDB->setCurrentBasicBlock(BB); | 
|  | // Emit the code | 
|  | if (j+1 != ej) | 
|  | SDB->visitBitTestCase(SDB->BitTestCases[i].Cases[j+1].ThisBB, | 
|  | SDB->BitTestCases[i].Reg, | 
|  | SDB->BitTestCases[i].Cases[j]); | 
|  | else | 
|  | SDB->visitBitTestCase(SDB->BitTestCases[i].Default, | 
|  | SDB->BitTestCases[i].Reg, | 
|  | SDB->BitTestCases[i].Cases[j]); | 
|  |  | 
|  |  | 
|  | CurDAG->setRoot(SDB->getRoot()); | 
|  | CodeGenAndEmitDAG(); | 
|  | SDB->clear(); | 
|  | } | 
|  |  | 
|  | // Update PHI Nodes | 
|  | for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) { | 
|  | MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first; | 
|  | MachineBasicBlock *PHIBB = PHI->getParent(); | 
|  | assert(PHI->isPHI() && | 
|  | "This is not a machine PHI node that we are updating!"); | 
|  | // This is "default" BB. We have two jumps to it. From "header" BB and | 
|  | // from last "case" BB. | 
|  | if (PHIBB == SDB->BitTestCases[i].Default) { | 
|  | PHI->addOperand(MachineOperand:: | 
|  | CreateReg(SDB->PHINodesToUpdate[pi].second, false)); | 
|  | PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Parent)); | 
|  | PHI->addOperand(MachineOperand:: | 
|  | CreateReg(SDB->PHINodesToUpdate[pi].second, false)); | 
|  | PHI->addOperand(MachineOperand::CreateMBB(SDB->BitTestCases[i].Cases. | 
|  | back().ThisBB)); | 
|  | } | 
|  | // One of "cases" BB. | 
|  | for (unsigned j = 0, ej = SDB->BitTestCases[i].Cases.size(); | 
|  | j != ej; ++j) { | 
|  | MachineBasicBlock* cBB = SDB->BitTestCases[i].Cases[j].ThisBB; | 
|  | if (cBB->isSuccessor(PHIBB)) { | 
|  | PHI->addOperand(MachineOperand:: | 
|  | CreateReg(SDB->PHINodesToUpdate[pi].second, false)); | 
|  | PHI->addOperand(MachineOperand::CreateMBB(cBB)); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | SDB->BitTestCases.clear(); | 
|  |  | 
|  | // If the JumpTable record is filled in, then we need to emit a jump table. | 
|  | // Updating the PHI nodes is tricky in this case, since we need to determine | 
|  | // whether the PHI is a successor of the range check MBB or the jump table MBB | 
|  | for (unsigned i = 0, e = SDB->JTCases.size(); i != e; ++i) { | 
|  | // Lower header first, if it wasn't already lowered | 
|  | if (!SDB->JTCases[i].first.Emitted) { | 
|  | // Set the current basic block to the mbb we wish to insert the code into | 
|  | BB = SDB->JTCases[i].first.HeaderBB; | 
|  | SDB->setCurrentBasicBlock(BB); | 
|  | // Emit the code | 
|  | SDB->visitJumpTableHeader(SDB->JTCases[i].second, SDB->JTCases[i].first); | 
|  | CurDAG->setRoot(SDB->getRoot()); | 
|  | CodeGenAndEmitDAG(); | 
|  | SDB->clear(); | 
|  | } | 
|  |  | 
|  | // Set the current basic block to the mbb we wish to insert the code into | 
|  | BB = SDB->JTCases[i].second.MBB; | 
|  | SDB->setCurrentBasicBlock(BB); | 
|  | // Emit the code | 
|  | SDB->visitJumpTable(SDB->JTCases[i].second); | 
|  | CurDAG->setRoot(SDB->getRoot()); | 
|  | CodeGenAndEmitDAG(); | 
|  | SDB->clear(); | 
|  |  | 
|  | // Update PHI Nodes | 
|  | for (unsigned pi = 0, pe = SDB->PHINodesToUpdate.size(); pi != pe; ++pi) { | 
|  | MachineInstr *PHI = SDB->PHINodesToUpdate[pi].first; | 
|  | MachineBasicBlock *PHIBB = PHI->getParent(); | 
|  | assert(PHI->isPHI() && | 
|  | "This is not a machine PHI node that we are updating!"); | 
|  | // "default" BB. We can go there only from header BB. | 
|  | if (PHIBB == SDB->JTCases[i].second.Default) { | 
|  | PHI->addOperand | 
|  | (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false)); | 
|  | PHI->addOperand | 
|  | (MachineOperand::CreateMBB(SDB->JTCases[i].first.HeaderBB)); | 
|  | } | 
|  | // JT BB. Just iterate over successors here | 
|  | if (BB->isSuccessor(PHIBB)) { | 
|  | PHI->addOperand | 
|  | (MachineOperand::CreateReg(SDB->PHINodesToUpdate[pi].second, false)); | 
|  | PHI->addOperand(MachineOperand::CreateMBB(BB)); | 
|  | } | 
|  | } | 
|  | } | 
|  | SDB->JTCases.clear(); | 
|  |  | 
|  | // If the switch block involved a branch to one of the actual successors, we | 
|  | // need to update PHI nodes in that block. | 
|  | for (unsigned i = 0, e = SDB->PHINodesToUpdate.size(); i != e; ++i) { | 
|  | MachineInstr *PHI = SDB->PHINodesToUpdate[i].first; | 
|  | assert(PHI->isPHI() && | 
|  | "This is not a machine PHI node that we are updating!"); | 
|  | if (BB->isSuccessor(PHI->getParent())) { | 
|  | PHI->addOperand(MachineOperand::CreateReg(SDB->PHINodesToUpdate[i].second, | 
|  | false)); | 
|  | PHI->addOperand(MachineOperand::CreateMBB(BB)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we generated any switch lowering information, build and codegen any | 
|  | // additional DAGs necessary. | 
|  | for (unsigned i = 0, e = SDB->SwitchCases.size(); i != e; ++i) { | 
|  | // Set the current basic block to the mbb we wish to insert the code into | 
|  | MachineBasicBlock *ThisBB = BB = SDB->SwitchCases[i].ThisBB; | 
|  | SDB->setCurrentBasicBlock(BB); | 
|  |  | 
|  | // Emit the code | 
|  | SDB->visitSwitchCase(SDB->SwitchCases[i]); | 
|  | CurDAG->setRoot(SDB->getRoot()); | 
|  | CodeGenAndEmitDAG(); | 
|  |  | 
|  | // Handle any PHI nodes in successors of this chunk, as if we were coming | 
|  | // from the original BB before switch expansion.  Note that PHI nodes can | 
|  | // occur multiple times in PHINodesToUpdate.  We have to be very careful to | 
|  | // handle them the right number of times. | 
|  | while ((BB = SDB->SwitchCases[i].TrueBB)) {  // Handle LHS and RHS. | 
|  | // If new BB's are created during scheduling, the edges may have been | 
|  | // updated. That is, the edge from ThisBB to BB may have been split and | 
|  | // BB's predecessor is now another block. | 
|  | DenseMap<MachineBasicBlock*, MachineBasicBlock*>::iterator EI = | 
|  | SDB->EdgeMapping.find(BB); | 
|  | if (EI != SDB->EdgeMapping.end()) | 
|  | ThisBB = EI->second; | 
|  |  | 
|  | // BB may have been removed from the CFG if a branch was constant folded. | 
|  | if (ThisBB->isSuccessor(BB)) { | 
|  | for (MachineBasicBlock::iterator Phi = BB->begin(); | 
|  | Phi != BB->end() && Phi->isPHI(); | 
|  | ++Phi) { | 
|  | // This value for this PHI node is recorded in PHINodesToUpdate. | 
|  | for (unsigned pn = 0; ; ++pn) { | 
|  | assert(pn != SDB->PHINodesToUpdate.size() && | 
|  | "Didn't find PHI entry!"); | 
|  | if (SDB->PHINodesToUpdate[pn].first == Phi) { | 
|  | Phi->addOperand(MachineOperand:: | 
|  | CreateReg(SDB->PHINodesToUpdate[pn].second, | 
|  | false)); | 
|  | Phi->addOperand(MachineOperand::CreateMBB(ThisBB)); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Don't process RHS if same block as LHS. | 
|  | if (BB == SDB->SwitchCases[i].FalseBB) | 
|  | SDB->SwitchCases[i].FalseBB = 0; | 
|  |  | 
|  | // If we haven't handled the RHS, do so now.  Otherwise, we're done. | 
|  | SDB->SwitchCases[i].TrueBB = SDB->SwitchCases[i].FalseBB; | 
|  | SDB->SwitchCases[i].FalseBB = 0; | 
|  | } | 
|  | assert(SDB->SwitchCases[i].TrueBB == 0 && SDB->SwitchCases[i].FalseBB == 0); | 
|  | SDB->clear(); | 
|  | } | 
|  | SDB->SwitchCases.clear(); | 
|  |  | 
|  | SDB->PHINodesToUpdate.clear(); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// Create the scheduler. If a specific scheduler was specified | 
|  | /// via the SchedulerRegistry, use it, otherwise select the | 
|  | /// one preferred by the target. | 
|  | /// | 
|  | ScheduleDAGSDNodes *SelectionDAGISel::CreateScheduler() { | 
|  | RegisterScheduler::FunctionPassCtor Ctor = RegisterScheduler::getDefault(); | 
|  |  | 
|  | if (!Ctor) { | 
|  | Ctor = ISHeuristic; | 
|  | RegisterScheduler::setDefault(Ctor); | 
|  | } | 
|  |  | 
|  | return Ctor(this, OptLevel); | 
|  | } | 
|  |  | 
|  | ScheduleHazardRecognizer *SelectionDAGISel::CreateTargetHazardRecognizer() { | 
|  | return new ScheduleHazardRecognizer(); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Helper functions used by the generated instruction selector. | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Calls to these methods are generated by tblgen. | 
|  |  | 
|  | /// CheckAndMask - The isel is trying to match something like (and X, 255).  If | 
|  | /// the dag combiner simplified the 255, we still want to match.  RHS is the | 
|  | /// actual value in the DAG on the RHS of an AND, and DesiredMaskS is the value | 
|  | /// specified in the .td file (e.g. 255). | 
|  | bool SelectionDAGISel::CheckAndMask(SDValue LHS, ConstantSDNode *RHS, | 
|  | int64_t DesiredMaskS) const { | 
|  | const APInt &ActualMask = RHS->getAPIntValue(); | 
|  | const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); | 
|  |  | 
|  | // If the actual mask exactly matches, success! | 
|  | if (ActualMask == DesiredMask) | 
|  | return true; | 
|  |  | 
|  | // If the actual AND mask is allowing unallowed bits, this doesn't match. | 
|  | if (ActualMask.intersects(~DesiredMask)) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, the DAG Combiner may have proven that the value coming in is | 
|  | // either already zero or is not demanded.  Check for known zero input bits. | 
|  | APInt NeededMask = DesiredMask & ~ActualMask; | 
|  | if (CurDAG->MaskedValueIsZero(LHS, NeededMask)) | 
|  | return true; | 
|  |  | 
|  | // TODO: check to see if missing bits are just not demanded. | 
|  |  | 
|  | // Otherwise, this pattern doesn't match. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// CheckOrMask - The isel is trying to match something like (or X, 255).  If | 
|  | /// the dag combiner simplified the 255, we still want to match.  RHS is the | 
|  | /// actual value in the DAG on the RHS of an OR, and DesiredMaskS is the value | 
|  | /// specified in the .td file (e.g. 255). | 
|  | bool SelectionDAGISel::CheckOrMask(SDValue LHS, ConstantSDNode *RHS, | 
|  | int64_t DesiredMaskS) const { | 
|  | const APInt &ActualMask = RHS->getAPIntValue(); | 
|  | const APInt &DesiredMask = APInt(LHS.getValueSizeInBits(), DesiredMaskS); | 
|  |  | 
|  | // If the actual mask exactly matches, success! | 
|  | if (ActualMask == DesiredMask) | 
|  | return true; | 
|  |  | 
|  | // If the actual AND mask is allowing unallowed bits, this doesn't match. | 
|  | if (ActualMask.intersects(~DesiredMask)) | 
|  | return false; | 
|  |  | 
|  | // Otherwise, the DAG Combiner may have proven that the value coming in is | 
|  | // either already zero or is not demanded.  Check for known zero input bits. | 
|  | APInt NeededMask = DesiredMask & ~ActualMask; | 
|  |  | 
|  | APInt KnownZero, KnownOne; | 
|  | CurDAG->ComputeMaskedBits(LHS, NeededMask, KnownZero, KnownOne); | 
|  |  | 
|  | // If all the missing bits in the or are already known to be set, match! | 
|  | if ((NeededMask & KnownOne) == NeededMask) | 
|  | return true; | 
|  |  | 
|  | // TODO: check to see if missing bits are just not demanded. | 
|  |  | 
|  | // Otherwise, this pattern doesn't match. | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// SelectInlineAsmMemoryOperands - Calls to this are automatically generated | 
|  | /// by tblgen.  Others should not call it. | 
|  | void SelectionDAGISel:: | 
|  | SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops) { | 
|  | std::vector<SDValue> InOps; | 
|  | std::swap(InOps, Ops); | 
|  |  | 
|  | Ops.push_back(InOps[0]);  // input chain. | 
|  | Ops.push_back(InOps[1]);  // input asm string. | 
|  |  | 
|  | unsigned i = 2, e = InOps.size(); | 
|  | if (InOps[e-1].getValueType() == MVT::Flag) | 
|  | --e;  // Don't process a flag operand if it is here. | 
|  |  | 
|  | while (i != e) { | 
|  | unsigned Flags = cast<ConstantSDNode>(InOps[i])->getZExtValue(); | 
|  | if ((Flags & 7) != 4 /*MEM*/) { | 
|  | // Just skip over this operand, copying the operands verbatim. | 
|  | Ops.insert(Ops.end(), InOps.begin()+i, | 
|  | InOps.begin()+i+InlineAsm::getNumOperandRegisters(Flags) + 1); | 
|  | i += InlineAsm::getNumOperandRegisters(Flags) + 1; | 
|  | } else { | 
|  | assert(InlineAsm::getNumOperandRegisters(Flags) == 1 && | 
|  | "Memory operand with multiple values?"); | 
|  | // Otherwise, this is a memory operand.  Ask the target to select it. | 
|  | std::vector<SDValue> SelOps; | 
|  | if (SelectInlineAsmMemoryOperand(InOps[i+1], 'm', SelOps)) { | 
|  | llvm_report_error("Could not match memory address.  Inline asm" | 
|  | " failure!"); | 
|  | } | 
|  |  | 
|  | // Add this to the output node. | 
|  | Ops.push_back(CurDAG->getTargetConstant(4/*MEM*/ | (SelOps.size()<< 3), | 
|  | MVT::i32)); | 
|  | Ops.insert(Ops.end(), SelOps.begin(), SelOps.end()); | 
|  | i += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Add the flag input back if present. | 
|  | if (e != InOps.size()) | 
|  | Ops.push_back(InOps.back()); | 
|  | } | 
|  |  | 
|  | /// findFlagUse - Return use of EVT::Flag value produced by the specified | 
|  | /// SDNode. | 
|  | /// | 
|  | static SDNode *findFlagUse(SDNode *N) { | 
|  | unsigned FlagResNo = N->getNumValues()-1; | 
|  | for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) { | 
|  | SDUse &Use = I.getUse(); | 
|  | if (Use.getResNo() == FlagResNo) | 
|  | return Use.getUser(); | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /// findNonImmUse - Return true if "Use" is a non-immediate use of "Def". | 
|  | /// This function recursively traverses up the operand chain, ignoring | 
|  | /// certain nodes. | 
|  | static bool findNonImmUse(SDNode *Use, SDNode* Def, SDNode *ImmedUse, | 
|  | SDNode *Root, SmallPtrSet<SDNode*, 16> &Visited, | 
|  | bool IgnoreChains) { | 
|  | // The NodeID's are given uniques ID's where a node ID is guaranteed to be | 
|  | // greater than all of its (recursive) operands.  If we scan to a point where | 
|  | // 'use' is smaller than the node we're scanning for, then we know we will | 
|  | // never find it. | 
|  | // | 
|  | // The Use may be -1 (unassigned) if it is a newly allocated node.  This can | 
|  | // happen because we scan down to newly selected nodes in the case of flag | 
|  | // uses. | 
|  | if ((Use->getNodeId() < Def->getNodeId() && Use->getNodeId() != -1)) | 
|  | return false; | 
|  |  | 
|  | // Don't revisit nodes if we already scanned it and didn't fail, we know we | 
|  | // won't fail if we scan it again. | 
|  | if (!Visited.insert(Use)) | 
|  | return false; | 
|  |  | 
|  | for (unsigned i = 0, e = Use->getNumOperands(); i != e; ++i) { | 
|  | // Ignore chain uses, they are validated by HandleMergeInputChains. | 
|  | if (Use->getOperand(i).getValueType() == MVT::Other && IgnoreChains) | 
|  | continue; | 
|  |  | 
|  | SDNode *N = Use->getOperand(i).getNode(); | 
|  | if (N == Def) { | 
|  | if (Use == ImmedUse || Use == Root) | 
|  | continue;  // We are not looking for immediate use. | 
|  | assert(N != Root); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Traverse up the operand chain. | 
|  | if (findNonImmUse(N, Def, ImmedUse, Root, Visited, IgnoreChains)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// IsProfitableToFold - Returns true if it's profitable to fold the specific | 
|  | /// operand node N of U during instruction selection that starts at Root. | 
|  | bool SelectionDAGISel::IsProfitableToFold(SDValue N, SDNode *U, | 
|  | SDNode *Root) const { | 
|  | if (OptLevel == CodeGenOpt::None) return false; | 
|  | return N.hasOneUse(); | 
|  | } | 
|  |  | 
|  | /// IsLegalToFold - Returns true if the specific operand node N of | 
|  | /// U can be folded during instruction selection that starts at Root. | 
|  | bool SelectionDAGISel::IsLegalToFold(SDValue N, SDNode *U, SDNode *Root, | 
|  | bool IgnoreChains) const { | 
|  | if (OptLevel == CodeGenOpt::None) return false; | 
|  |  | 
|  | // If Root use can somehow reach N through a path that that doesn't contain | 
|  | // U then folding N would create a cycle. e.g. In the following | 
|  | // diagram, Root can reach N through X. If N is folded into into Root, then | 
|  | // X is both a predecessor and a successor of U. | 
|  | // | 
|  | //          [N*]           // | 
|  | //         ^   ^           // | 
|  | //        /     \          // | 
|  | //      [U*]    [X]?       // | 
|  | //        ^     ^          // | 
|  | //         \   /           // | 
|  | //          \ /            // | 
|  | //         [Root*]         // | 
|  | // | 
|  | // * indicates nodes to be folded together. | 
|  | // | 
|  | // If Root produces a flag, then it gets (even more) interesting. Since it | 
|  | // will be "glued" together with its flag use in the scheduler, we need to | 
|  | // check if it might reach N. | 
|  | // | 
|  | //          [N*]           // | 
|  | //         ^   ^           // | 
|  | //        /     \          // | 
|  | //      [U*]    [X]?       // | 
|  | //        ^       ^        // | 
|  | //         \       \       // | 
|  | //          \      |       // | 
|  | //         [Root*] |       // | 
|  | //          ^      |       // | 
|  | //          f      |       // | 
|  | //          |      /       // | 
|  | //         [Y]    /        // | 
|  | //           ^   /         // | 
|  | //           f  /          // | 
|  | //           | /           // | 
|  | //          [FU]           // | 
|  | // | 
|  | // If FU (flag use) indirectly reaches N (the load), and Root folds N | 
|  | // (call it Fold), then X is a predecessor of FU and a successor of | 
|  | // Fold. But since Fold and FU are flagged together, this will create | 
|  | // a cycle in the scheduling graph. | 
|  |  | 
|  | // If the node has flags, walk down the graph to the "lowest" node in the | 
|  | // flagged set. | 
|  | EVT VT = Root->getValueType(Root->getNumValues()-1); | 
|  | while (VT == MVT::Flag) { | 
|  | SDNode *FU = findFlagUse(Root); | 
|  | if (FU == NULL) | 
|  | break; | 
|  | Root = FU; | 
|  | VT = Root->getValueType(Root->getNumValues()-1); | 
|  |  | 
|  | // If our query node has a flag result with a use, we've walked up it.  If | 
|  | // the user (which has already been selected) has a chain or indirectly uses | 
|  | // the chain, our WalkChainUsers predicate will not consider it.  Because of | 
|  | // this, we cannot ignore chains in this predicate. | 
|  | IgnoreChains = false; | 
|  | } | 
|  |  | 
|  |  | 
|  | SmallPtrSet<SDNode*, 16> Visited; | 
|  | return !findNonImmUse(Root, N.getNode(), U, Root, Visited, IgnoreChains); | 
|  | } | 
|  |  | 
|  | SDNode *SelectionDAGISel::Select_INLINEASM(SDNode *N) { | 
|  | std::vector<SDValue> Ops(N->op_begin(), N->op_end()); | 
|  | SelectInlineAsmMemoryOperands(Ops); | 
|  |  | 
|  | std::vector<EVT> VTs; | 
|  | VTs.push_back(MVT::Other); | 
|  | VTs.push_back(MVT::Flag); | 
|  | SDValue New = CurDAG->getNode(ISD::INLINEASM, N->getDebugLoc(), | 
|  | VTs, &Ops[0], Ops.size()); | 
|  | New->setNodeId(-1); | 
|  | return New.getNode(); | 
|  | } | 
|  |  | 
|  | SDNode *SelectionDAGISel::Select_UNDEF(SDNode *N) { | 
|  | return CurDAG->SelectNodeTo(N, TargetOpcode::IMPLICIT_DEF,N->getValueType(0)); | 
|  | } | 
|  |  | 
|  | /// GetVBR - decode a vbr encoding whose top bit is set. | 
|  | ALWAYS_INLINE static uint64_t | 
|  | GetVBR(uint64_t Val, const unsigned char *MatcherTable, unsigned &Idx) { | 
|  | assert(Val >= 128 && "Not a VBR"); | 
|  | Val &= 127;  // Remove first vbr bit. | 
|  |  | 
|  | unsigned Shift = 7; | 
|  | uint64_t NextBits; | 
|  | do { | 
|  | NextBits = MatcherTable[Idx++]; | 
|  | Val |= (NextBits&127) << Shift; | 
|  | Shift += 7; | 
|  | } while (NextBits & 128); | 
|  |  | 
|  | return Val; | 
|  | } | 
|  |  | 
|  |  | 
|  | /// UpdateChainsAndFlags - When a match is complete, this method updates uses of | 
|  | /// interior flag and chain results to use the new flag and chain results. | 
|  | void SelectionDAGISel:: | 
|  | UpdateChainsAndFlags(SDNode *NodeToMatch, SDValue InputChain, | 
|  | const SmallVectorImpl<SDNode*> &ChainNodesMatched, | 
|  | SDValue InputFlag, | 
|  | const SmallVectorImpl<SDNode*> &FlagResultNodesMatched, | 
|  | bool isMorphNodeTo) { | 
|  | SmallVector<SDNode*, 4> NowDeadNodes; | 
|  |  | 
|  | ISelUpdater ISU(ISelPosition); | 
|  |  | 
|  | // Now that all the normal results are replaced, we replace the chain and | 
|  | // flag results if present. | 
|  | if (!ChainNodesMatched.empty()) { | 
|  | assert(InputChain.getNode() != 0 && | 
|  | "Matched input chains but didn't produce a chain"); | 
|  | // Loop over all of the nodes we matched that produced a chain result. | 
|  | // Replace all the chain results with the final chain we ended up with. | 
|  | for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { | 
|  | SDNode *ChainNode = ChainNodesMatched[i]; | 
|  |  | 
|  | // If this node was already deleted, don't look at it. | 
|  | if (ChainNode->getOpcode() == ISD::DELETED_NODE) | 
|  | continue; | 
|  |  | 
|  | // Don't replace the results of the root node if we're doing a | 
|  | // MorphNodeTo. | 
|  | if (ChainNode == NodeToMatch && isMorphNodeTo) | 
|  | continue; | 
|  |  | 
|  | SDValue ChainVal = SDValue(ChainNode, ChainNode->getNumValues()-1); | 
|  | if (ChainVal.getValueType() == MVT::Flag) | 
|  | ChainVal = ChainVal.getValue(ChainVal->getNumValues()-2); | 
|  | assert(ChainVal.getValueType() == MVT::Other && "Not a chain?"); | 
|  | CurDAG->ReplaceAllUsesOfValueWith(ChainVal, InputChain, &ISU); | 
|  |  | 
|  | // If the node became dead, delete it. | 
|  | if (ChainNode->use_empty()) | 
|  | NowDeadNodes.push_back(ChainNode); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the result produces a flag, update any flag results in the matched | 
|  | // pattern with the flag result. | 
|  | if (InputFlag.getNode() != 0) { | 
|  | // Handle any interior nodes explicitly marked. | 
|  | for (unsigned i = 0, e = FlagResultNodesMatched.size(); i != e; ++i) { | 
|  | SDNode *FRN = FlagResultNodesMatched[i]; | 
|  |  | 
|  | // If this node was already deleted, don't look at it. | 
|  | if (FRN->getOpcode() == ISD::DELETED_NODE) | 
|  | continue; | 
|  |  | 
|  | assert(FRN->getValueType(FRN->getNumValues()-1) == MVT::Flag && | 
|  | "Doesn't have a flag result"); | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(FRN, FRN->getNumValues()-1), | 
|  | InputFlag, &ISU); | 
|  |  | 
|  | // If the node became dead, delete it. | 
|  | if (FRN->use_empty()) | 
|  | NowDeadNodes.push_back(FRN); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!NowDeadNodes.empty()) | 
|  | CurDAG->RemoveDeadNodes(NowDeadNodes, &ISU); | 
|  |  | 
|  | DEBUG(errs() << "ISEL: Match complete!\n"); | 
|  | } | 
|  |  | 
|  | enum ChainResult { | 
|  | CR_Simple, | 
|  | CR_InducesCycle, | 
|  | CR_LeadsToInteriorNode | 
|  | }; | 
|  |  | 
|  | /// WalkChainUsers - Walk down the users of the specified chained node that is | 
|  | /// part of the pattern we're matching, looking at all of the users we find. | 
|  | /// This determines whether something is an interior node, whether we have a | 
|  | /// non-pattern node in between two pattern nodes (which prevent folding because | 
|  | /// it would induce a cycle) and whether we have a TokenFactor node sandwiched | 
|  | /// between pattern nodes (in which case the TF becomes part of the pattern). | 
|  | /// | 
|  | /// The walk we do here is guaranteed to be small because we quickly get down to | 
|  | /// already selected nodes "below" us. | 
|  | static ChainResult | 
|  | WalkChainUsers(SDNode *ChainedNode, | 
|  | SmallVectorImpl<SDNode*> &ChainedNodesInPattern, | 
|  | SmallVectorImpl<SDNode*> &InteriorChainedNodes) { | 
|  | ChainResult Result = CR_Simple; | 
|  |  | 
|  | for (SDNode::use_iterator UI = ChainedNode->use_begin(), | 
|  | E = ChainedNode->use_end(); UI != E; ++UI) { | 
|  | // Make sure the use is of the chain, not some other value we produce. | 
|  | if (UI.getUse().getValueType() != MVT::Other) continue; | 
|  |  | 
|  | SDNode *User = *UI; | 
|  |  | 
|  | // If we see an already-selected machine node, then we've gone beyond the | 
|  | // pattern that we're selecting down into the already selected chunk of the | 
|  | // DAG. | 
|  | if (User->isMachineOpcode() || | 
|  | User->getOpcode() == ISD::HANDLENODE)  // Root of the graph. | 
|  | continue; | 
|  |  | 
|  | if (User->getOpcode() == ISD::CopyToReg || | 
|  | User->getOpcode() == ISD::CopyFromReg || | 
|  | User->getOpcode() == ISD::INLINEASM || | 
|  | User->getOpcode() == ISD::EH_LABEL) { | 
|  | // If their node ID got reset to -1 then they've already been selected. | 
|  | // Treat them like a MachineOpcode. | 
|  | if (User->getNodeId() == -1) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we have a TokenFactor, we handle it specially. | 
|  | if (User->getOpcode() != ISD::TokenFactor) { | 
|  | // If the node isn't a token factor and isn't part of our pattern, then it | 
|  | // must be a random chained node in between two nodes we're selecting. | 
|  | // This happens when we have something like: | 
|  | //   x = load ptr | 
|  | //   call | 
|  | //   y = x+4 | 
|  | //   store y -> ptr | 
|  | // Because we structurally match the load/store as a read/modify/write, | 
|  | // but the call is chained between them.  We cannot fold in this case | 
|  | // because it would induce a cycle in the graph. | 
|  | if (!std::count(ChainedNodesInPattern.begin(), | 
|  | ChainedNodesInPattern.end(), User)) | 
|  | return CR_InducesCycle; | 
|  |  | 
|  | // Otherwise we found a node that is part of our pattern.  For example in: | 
|  | //   x = load ptr | 
|  | //   y = x+4 | 
|  | //   store y -> ptr | 
|  | // This would happen when we're scanning down from the load and see the | 
|  | // store as a user.  Record that there is a use of ChainedNode that is | 
|  | // part of the pattern and keep scanning uses. | 
|  | Result = CR_LeadsToInteriorNode; | 
|  | InteriorChainedNodes.push_back(User); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we found a TokenFactor, there are two cases to consider: first if the | 
|  | // TokenFactor is just hanging "below" the pattern we're matching (i.e. no | 
|  | // uses of the TF are in our pattern) we just want to ignore it.  Second, | 
|  | // the TokenFactor can be sandwiched in between two chained nodes, like so: | 
|  | //     [Load chain] | 
|  | //         ^ | 
|  | //         | | 
|  | //       [Load] | 
|  | //       ^    ^ | 
|  | //       |    \                    DAG's like cheese | 
|  | //      /       \                       do you? | 
|  | //     /         | | 
|  | // [TokenFactor] [Op] | 
|  | //     ^          ^ | 
|  | //     |          | | 
|  | //      \        / | 
|  | //       \      / | 
|  | //       [Store] | 
|  | // | 
|  | // In this case, the TokenFactor becomes part of our match and we rewrite it | 
|  | // as a new TokenFactor. | 
|  | // | 
|  | // To distinguish these two cases, do a recursive walk down the uses. | 
|  | switch (WalkChainUsers(User, ChainedNodesInPattern, InteriorChainedNodes)) { | 
|  | case CR_Simple: | 
|  | // If the uses of the TokenFactor are just already-selected nodes, ignore | 
|  | // it, it is "below" our pattern. | 
|  | continue; | 
|  | case CR_InducesCycle: | 
|  | // If the uses of the TokenFactor lead to nodes that are not part of our | 
|  | // pattern that are not selected, folding would turn this into a cycle, | 
|  | // bail out now. | 
|  | return CR_InducesCycle; | 
|  | case CR_LeadsToInteriorNode: | 
|  | break;  // Otherwise, keep processing. | 
|  | } | 
|  |  | 
|  | // Okay, we know we're in the interesting interior case.  The TokenFactor | 
|  | // is now going to be considered part of the pattern so that we rewrite its | 
|  | // uses (it may have uses that are not part of the pattern) with the | 
|  | // ultimate chain result of the generated code.  We will also add its chain | 
|  | // inputs as inputs to the ultimate TokenFactor we create. | 
|  | Result = CR_LeadsToInteriorNode; | 
|  | ChainedNodesInPattern.push_back(User); | 
|  | InteriorChainedNodes.push_back(User); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | return Result; | 
|  | } | 
|  |  | 
|  | /// HandleMergeInputChains - This implements the OPC_EmitMergeInputChains | 
|  | /// operation for when the pattern matched at least one node with a chains.  The | 
|  | /// input vector contains a list of all of the chained nodes that we match.  We | 
|  | /// must determine if this is a valid thing to cover (i.e. matching it won't | 
|  | /// induce cycles in the DAG) and if so, creating a TokenFactor node. that will | 
|  | /// be used as the input node chain for the generated nodes. | 
|  | static SDValue | 
|  | HandleMergeInputChains(SmallVectorImpl<SDNode*> &ChainNodesMatched, | 
|  | SelectionDAG *CurDAG) { | 
|  | // Walk all of the chained nodes we've matched, recursively scanning down the | 
|  | // users of the chain result. This adds any TokenFactor nodes that are caught | 
|  | // in between chained nodes to the chained and interior nodes list. | 
|  | SmallVector<SDNode*, 3> InteriorChainedNodes; | 
|  | for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { | 
|  | if (WalkChainUsers(ChainNodesMatched[i], ChainNodesMatched, | 
|  | InteriorChainedNodes) == CR_InducesCycle) | 
|  | return SDValue(); // Would induce a cycle. | 
|  | } | 
|  |  | 
|  | // Okay, we have walked all the matched nodes and collected TokenFactor nodes | 
|  | // that we are interested in.  Form our input TokenFactor node. | 
|  | SmallVector<SDValue, 3> InputChains; | 
|  | for (unsigned i = 0, e = ChainNodesMatched.size(); i != e; ++i) { | 
|  | // Add the input chain of this node to the InputChains list (which will be | 
|  | // the operands of the generated TokenFactor) if it's not an interior node. | 
|  | SDNode *N = ChainNodesMatched[i]; | 
|  | if (N->getOpcode() != ISD::TokenFactor) { | 
|  | if (std::count(InteriorChainedNodes.begin(),InteriorChainedNodes.end(),N)) | 
|  | continue; | 
|  |  | 
|  | // Otherwise, add the input chain. | 
|  | SDValue InChain = ChainNodesMatched[i]->getOperand(0); | 
|  | assert(InChain.getValueType() == MVT::Other && "Not a chain"); | 
|  | InputChains.push_back(InChain); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If we have a token factor, we want to add all inputs of the token factor | 
|  | // that are not part of the pattern we're matching. | 
|  | for (unsigned op = 0, e = N->getNumOperands(); op != e; ++op) { | 
|  | if (!std::count(ChainNodesMatched.begin(), ChainNodesMatched.end(), | 
|  | N->getOperand(op).getNode())) | 
|  | InputChains.push_back(N->getOperand(op)); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDValue Res; | 
|  | if (InputChains.size() == 1) | 
|  | return InputChains[0]; | 
|  | return CurDAG->getNode(ISD::TokenFactor, ChainNodesMatched[0]->getDebugLoc(), | 
|  | MVT::Other, &InputChains[0], InputChains.size()); | 
|  | } | 
|  |  | 
|  | /// MorphNode - Handle morphing a node in place for the selector. | 
|  | SDNode *SelectionDAGISel:: | 
|  | MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTList, | 
|  | const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo) { | 
|  | // It is possible we're using MorphNodeTo to replace a node with no | 
|  | // normal results with one that has a normal result (or we could be | 
|  | // adding a chain) and the input could have flags and chains as well. | 
|  | // In this case we need to shifting the operands down. | 
|  | // FIXME: This is a horrible hack and broken in obscure cases, no worse | 
|  | // than the old isel though.  We should sink this into MorphNodeTo. | 
|  | int OldFlagResultNo = -1, OldChainResultNo = -1; | 
|  |  | 
|  | unsigned NTMNumResults = Node->getNumValues(); | 
|  | if (Node->getValueType(NTMNumResults-1) == MVT::Flag) { | 
|  | OldFlagResultNo = NTMNumResults-1; | 
|  | if (NTMNumResults != 1 && | 
|  | Node->getValueType(NTMNumResults-2) == MVT::Other) | 
|  | OldChainResultNo = NTMNumResults-2; | 
|  | } else if (Node->getValueType(NTMNumResults-1) == MVT::Other) | 
|  | OldChainResultNo = NTMNumResults-1; | 
|  |  | 
|  | // Call the underlying SelectionDAG routine to do the transmogrification. Note | 
|  | // that this deletes operands of the old node that become dead. | 
|  | SDNode *Res = CurDAG->MorphNodeTo(Node, ~TargetOpc, VTList, Ops, NumOps); | 
|  |  | 
|  | // MorphNodeTo can operate in two ways: if an existing node with the | 
|  | // specified operands exists, it can just return it.  Otherwise, it | 
|  | // updates the node in place to have the requested operands. | 
|  | if (Res == Node) { | 
|  | // If we updated the node in place, reset the node ID.  To the isel, | 
|  | // this should be just like a newly allocated machine node. | 
|  | Res->setNodeId(-1); | 
|  | } | 
|  |  | 
|  | unsigned ResNumResults = Res->getNumValues(); | 
|  | // Move the flag if needed. | 
|  | if ((EmitNodeInfo & OPFL_FlagOutput) && OldFlagResultNo != -1 && | 
|  | (unsigned)OldFlagResultNo != ResNumResults-1) | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldFlagResultNo), | 
|  | SDValue(Res, ResNumResults-1)); | 
|  |  | 
|  | if ((EmitNodeInfo & OPFL_FlagOutput) != 0) | 
|  | --ResNumResults; | 
|  |  | 
|  | // Move the chain reference if needed. | 
|  | if ((EmitNodeInfo & OPFL_Chain) && OldChainResultNo != -1 && | 
|  | (unsigned)OldChainResultNo != ResNumResults-1) | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(Node, OldChainResultNo), | 
|  | SDValue(Res, ResNumResults-1)); | 
|  |  | 
|  | // Otherwise, no replacement happened because the node already exists. Replace | 
|  | // Uses of the old node with the new one. | 
|  | if (Res != Node) | 
|  | CurDAG->ReplaceAllUsesWith(Node, Res); | 
|  |  | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. | 
|  | ALWAYS_INLINE static bool | 
|  | CheckSame(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N, const SmallVectorImpl<SDValue> &RecordedNodes) { | 
|  | // Accept if it is exactly the same as a previously recorded node. | 
|  | unsigned RecNo = MatcherTable[MatcherIndex++]; | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); | 
|  | return N == RecordedNodes[RecNo]; | 
|  | } | 
|  |  | 
|  | /// CheckPatternPredicate - Implements OP_CheckPatternPredicate. | 
|  | ALWAYS_INLINE static bool | 
|  | CheckPatternPredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SelectionDAGISel &SDISel) { | 
|  | return SDISel.CheckPatternPredicate(MatcherTable[MatcherIndex++]); | 
|  | } | 
|  |  | 
|  | /// CheckNodePredicate - Implements OP_CheckNodePredicate. | 
|  | ALWAYS_INLINE static bool | 
|  | CheckNodePredicate(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SelectionDAGISel &SDISel, SDNode *N) { | 
|  | return SDISel.CheckNodePredicate(N, MatcherTable[MatcherIndex++]); | 
|  | } | 
|  |  | 
|  | ALWAYS_INLINE static bool | 
|  | CheckOpcode(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDNode *N) { | 
|  | return N->getOpcode() == MatcherTable[MatcherIndex++]; | 
|  | } | 
|  |  | 
|  | ALWAYS_INLINE static bool | 
|  | CheckType(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N, const TargetLowering &TLI) { | 
|  | MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; | 
|  | if (N.getValueType() == VT) return true; | 
|  |  | 
|  | // Handle the case when VT is iPTR. | 
|  | return VT == MVT::iPTR && N.getValueType() == TLI.getPointerTy(); | 
|  | } | 
|  |  | 
|  | ALWAYS_INLINE static bool | 
|  | CheckChildType(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N, const TargetLowering &TLI, | 
|  | unsigned ChildNo) { | 
|  | if (ChildNo >= N.getNumOperands()) | 
|  | return false;  // Match fails if out of range child #. | 
|  | return ::CheckType(MatcherTable, MatcherIndex, N.getOperand(ChildNo), TLI); | 
|  | } | 
|  |  | 
|  |  | 
|  | ALWAYS_INLINE static bool | 
|  | CheckCondCode(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N) { | 
|  | return cast<CondCodeSDNode>(N)->get() == | 
|  | (ISD::CondCode)MatcherTable[MatcherIndex++]; | 
|  | } | 
|  |  | 
|  | ALWAYS_INLINE static bool | 
|  | CheckValueType(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N, const TargetLowering &TLI) { | 
|  | MVT::SimpleValueType VT = (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; | 
|  | if (cast<VTSDNode>(N)->getVT() == VT) | 
|  | return true; | 
|  |  | 
|  | // Handle the case when VT is iPTR. | 
|  | return VT == MVT::iPTR && cast<VTSDNode>(N)->getVT() == TLI.getPointerTy(); | 
|  | } | 
|  |  | 
|  | ALWAYS_INLINE static bool | 
|  | CheckInteger(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N) { | 
|  | int64_t Val = MatcherTable[MatcherIndex++]; | 
|  | if (Val & 128) | 
|  | Val = GetVBR(Val, MatcherTable, MatcherIndex); | 
|  |  | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N); | 
|  | return C != 0 && C->getSExtValue() == Val; | 
|  | } | 
|  |  | 
|  | ALWAYS_INLINE static bool | 
|  | CheckAndImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N, SelectionDAGISel &SDISel) { | 
|  | int64_t Val = MatcherTable[MatcherIndex++]; | 
|  | if (Val & 128) | 
|  | Val = GetVBR(Val, MatcherTable, MatcherIndex); | 
|  |  | 
|  | if (N->getOpcode() != ISD::AND) return false; | 
|  |  | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | return C != 0 && SDISel.CheckAndMask(N.getOperand(0), C, Val); | 
|  | } | 
|  |  | 
|  | ALWAYS_INLINE static bool | 
|  | CheckOrImm(const unsigned char *MatcherTable, unsigned &MatcherIndex, | 
|  | SDValue N, SelectionDAGISel &SDISel) { | 
|  | int64_t Val = MatcherTable[MatcherIndex++]; | 
|  | if (Val & 128) | 
|  | Val = GetVBR(Val, MatcherTable, MatcherIndex); | 
|  |  | 
|  | if (N->getOpcode() != ISD::OR) return false; | 
|  |  | 
|  | ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(1)); | 
|  | return C != 0 && SDISel.CheckOrMask(N.getOperand(0), C, Val); | 
|  | } | 
|  |  | 
|  | /// IsPredicateKnownToFail - If we know how and can do so without pushing a | 
|  | /// scope, evaluate the current node.  If the current predicate is known to | 
|  | /// fail, set Result=true and return anything.  If the current predicate is | 
|  | /// known to pass, set Result=false and return the MatcherIndex to continue | 
|  | /// with.  If the current predicate is unknown, set Result=false and return the | 
|  | /// MatcherIndex to continue with. | 
|  | static unsigned IsPredicateKnownToFail(const unsigned char *Table, | 
|  | unsigned Index, SDValue N, | 
|  | bool &Result, SelectionDAGISel &SDISel, | 
|  | SmallVectorImpl<SDValue> &RecordedNodes){ | 
|  | switch (Table[Index++]) { | 
|  | default: | 
|  | Result = false; | 
|  | return Index-1;  // Could not evaluate this predicate. | 
|  | case SelectionDAGISel::OPC_CheckSame: | 
|  | Result = !::CheckSame(Table, Index, N, RecordedNodes); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckPatternPredicate: | 
|  | Result = !::CheckPatternPredicate(Table, Index, SDISel); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckPredicate: | 
|  | Result = !::CheckNodePredicate(Table, Index, SDISel, N.getNode()); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckOpcode: | 
|  | Result = !::CheckOpcode(Table, Index, N.getNode()); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckType: | 
|  | Result = !::CheckType(Table, Index, N, SDISel.TLI); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckChild0Type: | 
|  | case SelectionDAGISel::OPC_CheckChild1Type: | 
|  | case SelectionDAGISel::OPC_CheckChild2Type: | 
|  | case SelectionDAGISel::OPC_CheckChild3Type: | 
|  | case SelectionDAGISel::OPC_CheckChild4Type: | 
|  | case SelectionDAGISel::OPC_CheckChild5Type: | 
|  | case SelectionDAGISel::OPC_CheckChild6Type: | 
|  | case SelectionDAGISel::OPC_CheckChild7Type: | 
|  | Result = !::CheckChildType(Table, Index, N, SDISel.TLI, | 
|  | Table[Index-1] - SelectionDAGISel::OPC_CheckChild0Type); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckCondCode: | 
|  | Result = !::CheckCondCode(Table, Index, N); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckValueType: | 
|  | Result = !::CheckValueType(Table, Index, N, SDISel.TLI); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckInteger: | 
|  | Result = !::CheckInteger(Table, Index, N); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckAndImm: | 
|  | Result = !::CheckAndImm(Table, Index, N, SDISel); | 
|  | return Index; | 
|  | case SelectionDAGISel::OPC_CheckOrImm: | 
|  | Result = !::CheckOrImm(Table, Index, N, SDISel); | 
|  | return Index; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | struct MatchScope { | 
|  | /// FailIndex - If this match fails, this is the index to continue with. | 
|  | unsigned FailIndex; | 
|  |  | 
|  | /// NodeStack - The node stack when the scope was formed. | 
|  | SmallVector<SDValue, 4> NodeStack; | 
|  |  | 
|  | /// NumRecordedNodes - The number of recorded nodes when the scope was formed. | 
|  | unsigned NumRecordedNodes; | 
|  |  | 
|  | /// NumMatchedMemRefs - The number of matched memref entries. | 
|  | unsigned NumMatchedMemRefs; | 
|  |  | 
|  | /// InputChain/InputFlag - The current chain/flag | 
|  | SDValue InputChain, InputFlag; | 
|  |  | 
|  | /// HasChainNodesMatched - True if the ChainNodesMatched list is non-empty. | 
|  | bool HasChainNodesMatched, HasFlagResultNodesMatched; | 
|  | }; | 
|  |  | 
|  | SDNode *SelectionDAGISel:: | 
|  | SelectCodeCommon(SDNode *NodeToMatch, const unsigned char *MatcherTable, | 
|  | unsigned TableSize) { | 
|  | // FIXME: Should these even be selected?  Handle these cases in the caller? | 
|  | switch (NodeToMatch->getOpcode()) { | 
|  | default: | 
|  | break; | 
|  | case ISD::EntryToken:       // These nodes remain the same. | 
|  | case ISD::BasicBlock: | 
|  | case ISD::Register: | 
|  | //case ISD::VALUETYPE: | 
|  | //case ISD::CONDCODE: | 
|  | case ISD::HANDLENODE: | 
|  | case ISD::TargetConstant: | 
|  | case ISD::TargetConstantFP: | 
|  | case ISD::TargetConstantPool: | 
|  | case ISD::TargetFrameIndex: | 
|  | case ISD::TargetExternalSymbol: | 
|  | case ISD::TargetBlockAddress: | 
|  | case ISD::TargetJumpTable: | 
|  | case ISD::TargetGlobalTLSAddress: | 
|  | case ISD::TargetGlobalAddress: | 
|  | case ISD::TokenFactor: | 
|  | case ISD::CopyFromReg: | 
|  | case ISD::CopyToReg: | 
|  | case ISD::EH_LABEL: | 
|  | NodeToMatch->setNodeId(-1); // Mark selected. | 
|  | return 0; | 
|  | case ISD::AssertSext: | 
|  | case ISD::AssertZext: | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, 0), | 
|  | NodeToMatch->getOperand(0)); | 
|  | return 0; | 
|  | case ISD::INLINEASM: return Select_INLINEASM(NodeToMatch); | 
|  | case ISD::UNDEF:     return Select_UNDEF(NodeToMatch); | 
|  | } | 
|  |  | 
|  | assert(!NodeToMatch->isMachineOpcode() && "Node already selected!"); | 
|  |  | 
|  | // Set up the node stack with NodeToMatch as the only node on the stack. | 
|  | SmallVector<SDValue, 8> NodeStack; | 
|  | SDValue N = SDValue(NodeToMatch, 0); | 
|  | NodeStack.push_back(N); | 
|  |  | 
|  | // MatchScopes - Scopes used when matching, if a match failure happens, this | 
|  | // indicates where to continue checking. | 
|  | SmallVector<MatchScope, 8> MatchScopes; | 
|  |  | 
|  | // RecordedNodes - This is the set of nodes that have been recorded by the | 
|  | // state machine. | 
|  | SmallVector<SDValue, 8> RecordedNodes; | 
|  |  | 
|  | // MatchedMemRefs - This is the set of MemRef's we've seen in the input | 
|  | // pattern. | 
|  | SmallVector<MachineMemOperand*, 2> MatchedMemRefs; | 
|  |  | 
|  | // These are the current input chain and flag for use when generating nodes. | 
|  | // Various Emit operations change these.  For example, emitting a copytoreg | 
|  | // uses and updates these. | 
|  | SDValue InputChain, InputFlag; | 
|  |  | 
|  | // ChainNodesMatched - If a pattern matches nodes that have input/output | 
|  | // chains, the OPC_EmitMergeInputChains operation is emitted which indicates | 
|  | // which ones they are.  The result is captured into this list so that we can | 
|  | // update the chain results when the pattern is complete. | 
|  | SmallVector<SDNode*, 3> ChainNodesMatched; | 
|  | SmallVector<SDNode*, 3> FlagResultNodesMatched; | 
|  |  | 
|  | DEBUG(errs() << "ISEL: Starting pattern match on root node: "; | 
|  | NodeToMatch->dump(CurDAG); | 
|  | errs() << '\n'); | 
|  |  | 
|  | // Determine where to start the interpreter.  Normally we start at opcode #0, | 
|  | // but if the state machine starts with an OPC_SwitchOpcode, then we | 
|  | // accelerate the first lookup (which is guaranteed to be hot) with the | 
|  | // OpcodeOffset table. | 
|  | unsigned MatcherIndex = 0; | 
|  |  | 
|  | if (!OpcodeOffset.empty()) { | 
|  | // Already computed the OpcodeOffset table, just index into it. | 
|  | if (N.getOpcode() < OpcodeOffset.size()) | 
|  | MatcherIndex = OpcodeOffset[N.getOpcode()]; | 
|  | DEBUG(errs() << "  Initial Opcode index to " << MatcherIndex << "\n"); | 
|  |  | 
|  | } else if (MatcherTable[0] == OPC_SwitchOpcode) { | 
|  | // Otherwise, the table isn't computed, but the state machine does start | 
|  | // with an OPC_SwitchOpcode instruction.  Populate the table now, since this | 
|  | // is the first time we're selecting an instruction. | 
|  | unsigned Idx = 1; | 
|  | while (1) { | 
|  | // Get the size of this case. | 
|  | unsigned CaseSize = MatcherTable[Idx++]; | 
|  | if (CaseSize & 128) | 
|  | CaseSize = GetVBR(CaseSize, MatcherTable, Idx); | 
|  | if (CaseSize == 0) break; | 
|  |  | 
|  | // Get the opcode, add the index to the table. | 
|  | unsigned Opc = MatcherTable[Idx++]; | 
|  | if (Opc >= OpcodeOffset.size()) | 
|  | OpcodeOffset.resize((Opc+1)*2); | 
|  | OpcodeOffset[Opc] = Idx; | 
|  | Idx += CaseSize; | 
|  | } | 
|  |  | 
|  | // Okay, do the lookup for the first opcode. | 
|  | if (N.getOpcode() < OpcodeOffset.size()) | 
|  | MatcherIndex = OpcodeOffset[N.getOpcode()]; | 
|  | } | 
|  |  | 
|  | while (1) { | 
|  | assert(MatcherIndex < TableSize && "Invalid index"); | 
|  | #ifndef NDEBUG | 
|  | unsigned CurrentOpcodeIndex = MatcherIndex; | 
|  | #endif | 
|  | BuiltinOpcodes Opcode = (BuiltinOpcodes)MatcherTable[MatcherIndex++]; | 
|  | switch (Opcode) { | 
|  | case OPC_Scope: { | 
|  | // Okay, the semantics of this operation are that we should push a scope | 
|  | // then evaluate the first child.  However, pushing a scope only to have | 
|  | // the first check fail (which then pops it) is inefficient.  If we can | 
|  | // determine immediately that the first check (or first several) will | 
|  | // immediately fail, don't even bother pushing a scope for them. | 
|  | unsigned FailIndex; | 
|  |  | 
|  | while (1) { | 
|  | unsigned NumToSkip = MatcherTable[MatcherIndex++]; | 
|  | if (NumToSkip & 128) | 
|  | NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); | 
|  | // Found the end of the scope with no match. | 
|  | if (NumToSkip == 0) { | 
|  | FailIndex = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | FailIndex = MatcherIndex+NumToSkip; | 
|  |  | 
|  | // If we can't evaluate this predicate without pushing a scope (e.g. if | 
|  | // it is a 'MoveParent') or if the predicate succeeds on this node, we | 
|  | // push the scope and evaluate the full predicate chain. | 
|  | bool Result; | 
|  | MatcherIndex = IsPredicateKnownToFail(MatcherTable, MatcherIndex, N, | 
|  | Result, *this, RecordedNodes); | 
|  | if (!Result) | 
|  | break; | 
|  |  | 
|  | DEBUG(errs() << "  Skipped scope entry at index " << MatcherIndex | 
|  | << " continuing at " << FailIndex << "\n"); | 
|  |  | 
|  |  | 
|  | // Otherwise, we know that this case of the Scope is guaranteed to fail, | 
|  | // move to the next case. | 
|  | MatcherIndex = FailIndex; | 
|  | } | 
|  |  | 
|  | // If the whole scope failed to match, bail. | 
|  | if (FailIndex == 0) break; | 
|  |  | 
|  | // Push a MatchScope which indicates where to go if the first child fails | 
|  | // to match. | 
|  | MatchScope NewEntry; | 
|  | NewEntry.FailIndex = FailIndex; | 
|  | NewEntry.NodeStack.append(NodeStack.begin(), NodeStack.end()); | 
|  | NewEntry.NumRecordedNodes = RecordedNodes.size(); | 
|  | NewEntry.NumMatchedMemRefs = MatchedMemRefs.size(); | 
|  | NewEntry.InputChain = InputChain; | 
|  | NewEntry.InputFlag = InputFlag; | 
|  | NewEntry.HasChainNodesMatched = !ChainNodesMatched.empty(); | 
|  | NewEntry.HasFlagResultNodesMatched = !FlagResultNodesMatched.empty(); | 
|  | MatchScopes.push_back(NewEntry); | 
|  | continue; | 
|  | } | 
|  | case OPC_RecordNode: | 
|  | // Remember this node, it may end up being an operand in the pattern. | 
|  | RecordedNodes.push_back(N); | 
|  | continue; | 
|  |  | 
|  | case OPC_RecordChild0: case OPC_RecordChild1: | 
|  | case OPC_RecordChild2: case OPC_RecordChild3: | 
|  | case OPC_RecordChild4: case OPC_RecordChild5: | 
|  | case OPC_RecordChild6: case OPC_RecordChild7: { | 
|  | unsigned ChildNo = Opcode-OPC_RecordChild0; | 
|  | if (ChildNo >= N.getNumOperands()) | 
|  | break;  // Match fails if out of range child #. | 
|  |  | 
|  | RecordedNodes.push_back(N->getOperand(ChildNo)); | 
|  | continue; | 
|  | } | 
|  | case OPC_RecordMemRef: | 
|  | MatchedMemRefs.push_back(cast<MemSDNode>(N)->getMemOperand()); | 
|  | continue; | 
|  |  | 
|  | case OPC_CaptureFlagInput: | 
|  | // If the current node has an input flag, capture it in InputFlag. | 
|  | if (N->getNumOperands() != 0 && | 
|  | N->getOperand(N->getNumOperands()-1).getValueType() == MVT::Flag) | 
|  | InputFlag = N->getOperand(N->getNumOperands()-1); | 
|  | continue; | 
|  |  | 
|  | case OPC_MoveChild: { | 
|  | unsigned ChildNo = MatcherTable[MatcherIndex++]; | 
|  | if (ChildNo >= N.getNumOperands()) | 
|  | break;  // Match fails if out of range child #. | 
|  | N = N.getOperand(ChildNo); | 
|  | NodeStack.push_back(N); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_MoveParent: | 
|  | // Pop the current node off the NodeStack. | 
|  | NodeStack.pop_back(); | 
|  | assert(!NodeStack.empty() && "Node stack imbalance!"); | 
|  | N = NodeStack.back(); | 
|  | continue; | 
|  |  | 
|  | case OPC_CheckSame: | 
|  | if (!::CheckSame(MatcherTable, MatcherIndex, N, RecordedNodes)) break; | 
|  | continue; | 
|  | case OPC_CheckPatternPredicate: | 
|  | if (!::CheckPatternPredicate(MatcherTable, MatcherIndex, *this)) break; | 
|  | continue; | 
|  | case OPC_CheckPredicate: | 
|  | if (!::CheckNodePredicate(MatcherTable, MatcherIndex, *this, | 
|  | N.getNode())) | 
|  | break; | 
|  | continue; | 
|  | case OPC_CheckComplexPat: { | 
|  | unsigned CPNum = MatcherTable[MatcherIndex++]; | 
|  | unsigned RecNo = MatcherTable[MatcherIndex++]; | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid CheckComplexPat"); | 
|  | if (!CheckComplexPattern(NodeToMatch, RecordedNodes[RecNo], CPNum, | 
|  | RecordedNodes)) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  | case OPC_CheckOpcode: | 
|  | if (!::CheckOpcode(MatcherTable, MatcherIndex, N.getNode())) break; | 
|  | continue; | 
|  |  | 
|  | case OPC_CheckType: | 
|  | if (!::CheckType(MatcherTable, MatcherIndex, N, TLI)) break; | 
|  | continue; | 
|  |  | 
|  | case OPC_SwitchOpcode: { | 
|  | unsigned CurNodeOpcode = N.getOpcode(); | 
|  | unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; | 
|  | unsigned CaseSize; | 
|  | while (1) { | 
|  | // Get the size of this case. | 
|  | CaseSize = MatcherTable[MatcherIndex++]; | 
|  | if (CaseSize & 128) | 
|  | CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); | 
|  | if (CaseSize == 0) break; | 
|  |  | 
|  | // If the opcode matches, then we will execute this case. | 
|  | if (CurNodeOpcode == MatcherTable[MatcherIndex++]) | 
|  | break; | 
|  |  | 
|  | // Otherwise, skip over this case. | 
|  | MatcherIndex += CaseSize; | 
|  | } | 
|  |  | 
|  | // If no cases matched, bail out. | 
|  | if (CaseSize == 0) break; | 
|  |  | 
|  | // Otherwise, execute the case we found. | 
|  | DEBUG(errs() << "  OpcodeSwitch from " << SwitchStart | 
|  | << " to " << MatcherIndex << "\n"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_SwitchType: { | 
|  | MVT::SimpleValueType CurNodeVT = N.getValueType().getSimpleVT().SimpleTy; | 
|  | unsigned SwitchStart = MatcherIndex-1; (void)SwitchStart; | 
|  | unsigned CaseSize; | 
|  | while (1) { | 
|  | // Get the size of this case. | 
|  | CaseSize = MatcherTable[MatcherIndex++]; | 
|  | if (CaseSize & 128) | 
|  | CaseSize = GetVBR(CaseSize, MatcherTable, MatcherIndex); | 
|  | if (CaseSize == 0) break; | 
|  |  | 
|  | MVT::SimpleValueType CaseVT = | 
|  | (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; | 
|  | if (CaseVT == MVT::iPTR) | 
|  | CaseVT = TLI.getPointerTy().SimpleTy; | 
|  |  | 
|  | // If the VT matches, then we will execute this case. | 
|  | if (CurNodeVT == CaseVT) | 
|  | break; | 
|  |  | 
|  | // Otherwise, skip over this case. | 
|  | MatcherIndex += CaseSize; | 
|  | } | 
|  |  | 
|  | // If no cases matched, bail out. | 
|  | if (CaseSize == 0) break; | 
|  |  | 
|  | // Otherwise, execute the case we found. | 
|  | DEBUG(errs() << "  TypeSwitch[" << EVT(CurNodeVT).getEVTString() | 
|  | << "] from " << SwitchStart << " to " << MatcherIndex<<'\n'); | 
|  | continue; | 
|  | } | 
|  | case OPC_CheckChild0Type: case OPC_CheckChild1Type: | 
|  | case OPC_CheckChild2Type: case OPC_CheckChild3Type: | 
|  | case OPC_CheckChild4Type: case OPC_CheckChild5Type: | 
|  | case OPC_CheckChild6Type: case OPC_CheckChild7Type: | 
|  | if (!::CheckChildType(MatcherTable, MatcherIndex, N, TLI, | 
|  | Opcode-OPC_CheckChild0Type)) | 
|  | break; | 
|  | continue; | 
|  | case OPC_CheckCondCode: | 
|  | if (!::CheckCondCode(MatcherTable, MatcherIndex, N)) break; | 
|  | continue; | 
|  | case OPC_CheckValueType: | 
|  | if (!::CheckValueType(MatcherTable, MatcherIndex, N, TLI)) break; | 
|  | continue; | 
|  | case OPC_CheckInteger: | 
|  | if (!::CheckInteger(MatcherTable, MatcherIndex, N)) break; | 
|  | continue; | 
|  | case OPC_CheckAndImm: | 
|  | if (!::CheckAndImm(MatcherTable, MatcherIndex, N, *this)) break; | 
|  | continue; | 
|  | case OPC_CheckOrImm: | 
|  | if (!::CheckOrImm(MatcherTable, MatcherIndex, N, *this)) break; | 
|  | continue; | 
|  |  | 
|  | case OPC_CheckFoldableChainNode: { | 
|  | assert(NodeStack.size() != 1 && "No parent node"); | 
|  | // Verify that all intermediate nodes between the root and this one have | 
|  | // a single use. | 
|  | bool HasMultipleUses = false; | 
|  | for (unsigned i = 1, e = NodeStack.size()-1; i != e; ++i) | 
|  | if (!NodeStack[i].hasOneUse()) { | 
|  | HasMultipleUses = true; | 
|  | break; | 
|  | } | 
|  | if (HasMultipleUses) break; | 
|  |  | 
|  | // Check to see that the target thinks this is profitable to fold and that | 
|  | // we can fold it without inducing cycles in the graph. | 
|  | if (!IsProfitableToFold(N, NodeStack[NodeStack.size()-2].getNode(), | 
|  | NodeToMatch) || | 
|  | !IsLegalToFold(N, NodeStack[NodeStack.size()-2].getNode(), | 
|  | NodeToMatch, true/*We validate our own chains*/)) | 
|  | break; | 
|  |  | 
|  | continue; | 
|  | } | 
|  | case OPC_EmitInteger: { | 
|  | MVT::SimpleValueType VT = | 
|  | (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; | 
|  | int64_t Val = MatcherTable[MatcherIndex++]; | 
|  | if (Val & 128) | 
|  | Val = GetVBR(Val, MatcherTable, MatcherIndex); | 
|  | RecordedNodes.push_back(CurDAG->getTargetConstant(Val, VT)); | 
|  | continue; | 
|  | } | 
|  | case OPC_EmitRegister: { | 
|  | MVT::SimpleValueType VT = | 
|  | (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; | 
|  | unsigned RegNo = MatcherTable[MatcherIndex++]; | 
|  | RecordedNodes.push_back(CurDAG->getRegister(RegNo, VT)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_EmitConvertToTarget:  { | 
|  | // Convert from IMM/FPIMM to target version. | 
|  | unsigned RecNo = MatcherTable[MatcherIndex++]; | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); | 
|  | SDValue Imm = RecordedNodes[RecNo]; | 
|  |  | 
|  | if (Imm->getOpcode() == ISD::Constant) { | 
|  | int64_t Val = cast<ConstantSDNode>(Imm)->getZExtValue(); | 
|  | Imm = CurDAG->getTargetConstant(Val, Imm.getValueType()); | 
|  | } else if (Imm->getOpcode() == ISD::ConstantFP) { | 
|  | const ConstantFP *Val=cast<ConstantFPSDNode>(Imm)->getConstantFPValue(); | 
|  | Imm = CurDAG->getTargetConstantFP(*Val, Imm.getValueType()); | 
|  | } | 
|  |  | 
|  | RecordedNodes.push_back(Imm); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_EmitMergeInputChains: { | 
|  | assert(InputChain.getNode() == 0 && | 
|  | "EmitMergeInputChains should be the first chain producing node"); | 
|  | // This node gets a list of nodes we matched in the input that have | 
|  | // chains.  We want to token factor all of the input chains to these nodes | 
|  | // together.  However, if any of the input chains is actually one of the | 
|  | // nodes matched in this pattern, then we have an intra-match reference. | 
|  | // Ignore these because the newly token factored chain should not refer to | 
|  | // the old nodes. | 
|  | unsigned NumChains = MatcherTable[MatcherIndex++]; | 
|  | assert(NumChains != 0 && "Can't TF zero chains"); | 
|  |  | 
|  | assert(ChainNodesMatched.empty() && | 
|  | "Should only have one EmitMergeInputChains per match"); | 
|  |  | 
|  | // Read all of the chained nodes. | 
|  | for (unsigned i = 0; i != NumChains; ++i) { | 
|  | unsigned RecNo = MatcherTable[MatcherIndex++]; | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); | 
|  | ChainNodesMatched.push_back(RecordedNodes[RecNo].getNode()); | 
|  |  | 
|  | // FIXME: What if other value results of the node have uses not matched | 
|  | // by this pattern? | 
|  | if (ChainNodesMatched.back() != NodeToMatch && | 
|  | !RecordedNodes[RecNo].hasOneUse()) { | 
|  | ChainNodesMatched.clear(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the inner loop broke out, the match fails. | 
|  | if (ChainNodesMatched.empty()) | 
|  | break; | 
|  |  | 
|  | // Merge the input chains if they are not intra-pattern references. | 
|  | InputChain = HandleMergeInputChains(ChainNodesMatched, CurDAG); | 
|  |  | 
|  | if (InputChain.getNode() == 0) | 
|  | break;  // Failed to merge. | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_EmitCopyToReg: { | 
|  | unsigned RecNo = MatcherTable[MatcherIndex++]; | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); | 
|  | unsigned DestPhysReg = MatcherTable[MatcherIndex++]; | 
|  |  | 
|  | if (InputChain.getNode() == 0) | 
|  | InputChain = CurDAG->getEntryNode(); | 
|  |  | 
|  | InputChain = CurDAG->getCopyToReg(InputChain, NodeToMatch->getDebugLoc(), | 
|  | DestPhysReg, RecordedNodes[RecNo], | 
|  | InputFlag); | 
|  |  | 
|  | InputFlag = InputChain.getValue(1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_EmitNodeXForm: { | 
|  | unsigned XFormNo = MatcherTable[MatcherIndex++]; | 
|  | unsigned RecNo = MatcherTable[MatcherIndex++]; | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); | 
|  | RecordedNodes.push_back(RunSDNodeXForm(RecordedNodes[RecNo], XFormNo)); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_EmitNode: | 
|  | case OPC_MorphNodeTo: { | 
|  | uint16_t TargetOpc = MatcherTable[MatcherIndex++]; | 
|  | TargetOpc |= (unsigned short)MatcherTable[MatcherIndex++] << 8; | 
|  | unsigned EmitNodeInfo = MatcherTable[MatcherIndex++]; | 
|  | // Get the result VT list. | 
|  | unsigned NumVTs = MatcherTable[MatcherIndex++]; | 
|  | SmallVector<EVT, 4> VTs; | 
|  | for (unsigned i = 0; i != NumVTs; ++i) { | 
|  | MVT::SimpleValueType VT = | 
|  | (MVT::SimpleValueType)MatcherTable[MatcherIndex++]; | 
|  | if (VT == MVT::iPTR) VT = TLI.getPointerTy().SimpleTy; | 
|  | VTs.push_back(VT); | 
|  | } | 
|  |  | 
|  | if (EmitNodeInfo & OPFL_Chain) | 
|  | VTs.push_back(MVT::Other); | 
|  | if (EmitNodeInfo & OPFL_FlagOutput) | 
|  | VTs.push_back(MVT::Flag); | 
|  |  | 
|  | // This is hot code, so optimize the two most common cases of 1 and 2 | 
|  | // results. | 
|  | SDVTList VTList; | 
|  | if (VTs.size() == 1) | 
|  | VTList = CurDAG->getVTList(VTs[0]); | 
|  | else if (VTs.size() == 2) | 
|  | VTList = CurDAG->getVTList(VTs[0], VTs[1]); | 
|  | else | 
|  | VTList = CurDAG->getVTList(VTs.data(), VTs.size()); | 
|  |  | 
|  | // Get the operand list. | 
|  | unsigned NumOps = MatcherTable[MatcherIndex++]; | 
|  | SmallVector<SDValue, 8> Ops; | 
|  | for (unsigned i = 0; i != NumOps; ++i) { | 
|  | unsigned RecNo = MatcherTable[MatcherIndex++]; | 
|  | if (RecNo & 128) | 
|  | RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); | 
|  |  | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid EmitNode"); | 
|  | Ops.push_back(RecordedNodes[RecNo]); | 
|  | } | 
|  |  | 
|  | // If there are variadic operands to add, handle them now. | 
|  | if (EmitNodeInfo & OPFL_VariadicInfo) { | 
|  | // Determine the start index to copy from. | 
|  | unsigned FirstOpToCopy = getNumFixedFromVariadicInfo(EmitNodeInfo); | 
|  | FirstOpToCopy += (EmitNodeInfo & OPFL_Chain) ? 1 : 0; | 
|  | assert(NodeToMatch->getNumOperands() >= FirstOpToCopy && | 
|  | "Invalid variadic node"); | 
|  | // Copy all of the variadic operands, not including a potential flag | 
|  | // input. | 
|  | for (unsigned i = FirstOpToCopy, e = NodeToMatch->getNumOperands(); | 
|  | i != e; ++i) { | 
|  | SDValue V = NodeToMatch->getOperand(i); | 
|  | if (V.getValueType() == MVT::Flag) break; | 
|  | Ops.push_back(V); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this has chain/flag inputs, add them. | 
|  | if (EmitNodeInfo & OPFL_Chain) | 
|  | Ops.push_back(InputChain); | 
|  | if ((EmitNodeInfo & OPFL_FlagInput) && InputFlag.getNode() != 0) | 
|  | Ops.push_back(InputFlag); | 
|  |  | 
|  | // Create the node. | 
|  | SDNode *Res = 0; | 
|  | if (Opcode != OPC_MorphNodeTo) { | 
|  | // If this is a normal EmitNode command, just create the new node and | 
|  | // add the results to the RecordedNodes list. | 
|  | Res = CurDAG->getMachineNode(TargetOpc, NodeToMatch->getDebugLoc(), | 
|  | VTList, Ops.data(), Ops.size()); | 
|  |  | 
|  | // Add all the non-flag/non-chain results to the RecordedNodes list. | 
|  | for (unsigned i = 0, e = VTs.size(); i != e; ++i) { | 
|  | if (VTs[i] == MVT::Other || VTs[i] == MVT::Flag) break; | 
|  | RecordedNodes.push_back(SDValue(Res, i)); | 
|  | } | 
|  |  | 
|  | } else { | 
|  | Res = MorphNode(NodeToMatch, TargetOpc, VTList, Ops.data(), Ops.size(), | 
|  | EmitNodeInfo); | 
|  | } | 
|  |  | 
|  | // If the node had chain/flag results, update our notion of the current | 
|  | // chain and flag. | 
|  | if (EmitNodeInfo & OPFL_FlagOutput) { | 
|  | InputFlag = SDValue(Res, VTs.size()-1); | 
|  | if (EmitNodeInfo & OPFL_Chain) | 
|  | InputChain = SDValue(Res, VTs.size()-2); | 
|  | } else if (EmitNodeInfo & OPFL_Chain) | 
|  | InputChain = SDValue(Res, VTs.size()-1); | 
|  |  | 
|  | // If the OPFL_MemRefs flag is set on this node, slap all of the | 
|  | // accumulated memrefs onto it. | 
|  | // | 
|  | // FIXME: This is vastly incorrect for patterns with multiple outputs | 
|  | // instructions that access memory and for ComplexPatterns that match | 
|  | // loads. | 
|  | if (EmitNodeInfo & OPFL_MemRefs) { | 
|  | MachineSDNode::mmo_iterator MemRefs = | 
|  | MF->allocateMemRefsArray(MatchedMemRefs.size()); | 
|  | std::copy(MatchedMemRefs.begin(), MatchedMemRefs.end(), MemRefs); | 
|  | cast<MachineSDNode>(Res) | 
|  | ->setMemRefs(MemRefs, MemRefs + MatchedMemRefs.size()); | 
|  | } | 
|  |  | 
|  | DEBUG(errs() << "  " | 
|  | << (Opcode == OPC_MorphNodeTo ? "Morphed" : "Created") | 
|  | << " node: "; Res->dump(CurDAG); errs() << "\n"); | 
|  |  | 
|  | // If this was a MorphNodeTo then we're completely done! | 
|  | if (Opcode == OPC_MorphNodeTo) { | 
|  | // Update chain and flag uses. | 
|  | UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched, | 
|  | InputFlag, FlagResultNodesMatched, true); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_MarkFlagResults: { | 
|  | unsigned NumNodes = MatcherTable[MatcherIndex++]; | 
|  |  | 
|  | // Read and remember all the flag-result nodes. | 
|  | for (unsigned i = 0; i != NumNodes; ++i) { | 
|  | unsigned RecNo = MatcherTable[MatcherIndex++]; | 
|  | if (RecNo & 128) | 
|  | RecNo = GetVBR(RecNo, MatcherTable, MatcherIndex); | 
|  |  | 
|  | assert(RecNo < RecordedNodes.size() && "Invalid CheckSame"); | 
|  | FlagResultNodesMatched.push_back(RecordedNodes[RecNo].getNode()); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | case OPC_CompleteMatch: { | 
|  | // The match has been completed, and any new nodes (if any) have been | 
|  | // created.  Patch up references to the matched dag to use the newly | 
|  | // created nodes. | 
|  | unsigned NumResults = MatcherTable[MatcherIndex++]; | 
|  |  | 
|  | for (unsigned i = 0; i != NumResults; ++i) { | 
|  | unsigned ResSlot = MatcherTable[MatcherIndex++]; | 
|  | if (ResSlot & 128) | 
|  | ResSlot = GetVBR(ResSlot, MatcherTable, MatcherIndex); | 
|  |  | 
|  | assert(ResSlot < RecordedNodes.size() && "Invalid CheckSame"); | 
|  | SDValue Res = RecordedNodes[ResSlot]; | 
|  |  | 
|  | // FIXME2: Eliminate this horrible hack by fixing the 'Gen' program | 
|  | // after (parallel) on input patterns are removed.  This would also | 
|  | // allow us to stop encoding #results in OPC_CompleteMatch's table | 
|  | // entry. | 
|  | if (NodeToMatch->getNumValues() <= i || | 
|  | NodeToMatch->getValueType(i) == MVT::Other || | 
|  | NodeToMatch->getValueType(i) == MVT::Flag) | 
|  | break; | 
|  | assert((NodeToMatch->getValueType(i) == Res.getValueType() || | 
|  | NodeToMatch->getValueType(i) == MVT::iPTR || | 
|  | Res.getValueType() == MVT::iPTR || | 
|  | NodeToMatch->getValueType(i).getSizeInBits() == | 
|  | Res.getValueType().getSizeInBits()) && | 
|  | "invalid replacement"); | 
|  | CurDAG->ReplaceAllUsesOfValueWith(SDValue(NodeToMatch, i), Res); | 
|  | } | 
|  |  | 
|  | // If the root node defines a flag, add it to the flag nodes to update | 
|  | // list. | 
|  | if (NodeToMatch->getValueType(NodeToMatch->getNumValues()-1) == MVT::Flag) | 
|  | FlagResultNodesMatched.push_back(NodeToMatch); | 
|  |  | 
|  | // Update chain and flag uses. | 
|  | UpdateChainsAndFlags(NodeToMatch, InputChain, ChainNodesMatched, | 
|  | InputFlag, FlagResultNodesMatched, false); | 
|  |  | 
|  | assert(NodeToMatch->use_empty() && | 
|  | "Didn't replace all uses of the node?"); | 
|  |  | 
|  | // FIXME: We just return here, which interacts correctly with SelectRoot | 
|  | // above.  We should fix this to not return an SDNode* anymore. | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the code reached this point, then the match failed.  See if there is | 
|  | // another child to try in the current 'Scope', otherwise pop it until we | 
|  | // find a case to check. | 
|  | DEBUG(errs() << "  Match failed at index " << CurrentOpcodeIndex << "\n"); | 
|  | while (1) { | 
|  | if (MatchScopes.empty()) { | 
|  | CannotYetSelect(NodeToMatch); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | // Restore the interpreter state back to the point where the scope was | 
|  | // formed. | 
|  | MatchScope &LastScope = MatchScopes.back(); | 
|  | RecordedNodes.resize(LastScope.NumRecordedNodes); | 
|  | NodeStack.clear(); | 
|  | NodeStack.append(LastScope.NodeStack.begin(), LastScope.NodeStack.end()); | 
|  | N = NodeStack.back(); | 
|  |  | 
|  | if (LastScope.NumMatchedMemRefs != MatchedMemRefs.size()) | 
|  | MatchedMemRefs.resize(LastScope.NumMatchedMemRefs); | 
|  | MatcherIndex = LastScope.FailIndex; | 
|  |  | 
|  | DEBUG(errs() << "  Continuing at " << MatcherIndex << "\n"); | 
|  |  | 
|  | InputChain = LastScope.InputChain; | 
|  | InputFlag = LastScope.InputFlag; | 
|  | if (!LastScope.HasChainNodesMatched) | 
|  | ChainNodesMatched.clear(); | 
|  | if (!LastScope.HasFlagResultNodesMatched) | 
|  | FlagResultNodesMatched.clear(); | 
|  |  | 
|  | // Check to see what the offset is at the new MatcherIndex.  If it is zero | 
|  | // we have reached the end of this scope, otherwise we have another child | 
|  | // in the current scope to try. | 
|  | unsigned NumToSkip = MatcherTable[MatcherIndex++]; | 
|  | if (NumToSkip & 128) | 
|  | NumToSkip = GetVBR(NumToSkip, MatcherTable, MatcherIndex); | 
|  |  | 
|  | // If we have another child in this scope to match, update FailIndex and | 
|  | // try it. | 
|  | if (NumToSkip != 0) { | 
|  | LastScope.FailIndex = MatcherIndex+NumToSkip; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // End of this scope, pop it and try the next child in the containing | 
|  | // scope. | 
|  | MatchScopes.pop_back(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | void SelectionDAGISel::CannotYetSelect(SDNode *N) { | 
|  | std::string msg; | 
|  | raw_string_ostream Msg(msg); | 
|  | Msg << "Cannot yet select: "; | 
|  |  | 
|  | if (N->getOpcode() != ISD::INTRINSIC_W_CHAIN && | 
|  | N->getOpcode() != ISD::INTRINSIC_WO_CHAIN && | 
|  | N->getOpcode() != ISD::INTRINSIC_VOID) { | 
|  | N->printrFull(Msg, CurDAG); | 
|  | } else { | 
|  | bool HasInputChain = N->getOperand(0).getValueType() == MVT::Other; | 
|  | unsigned iid = | 
|  | cast<ConstantSDNode>(N->getOperand(HasInputChain))->getZExtValue(); | 
|  | if (iid < Intrinsic::num_intrinsics) | 
|  | Msg << "intrinsic %" << Intrinsic::getName((Intrinsic::ID)iid); | 
|  | else if (const TargetIntrinsicInfo *TII = TM.getIntrinsicInfo()) | 
|  | Msg << "target intrinsic %" << TII->getName(iid); | 
|  | else | 
|  | Msg << "unknown intrinsic #" << iid; | 
|  | } | 
|  | llvm_report_error(Msg.str()); | 
|  | } | 
|  |  | 
|  | char SelectionDAGISel::ID = 0; |