|  | //===- UnrollLoopPeel.cpp - Loop peeling utilities ------------------------===// | 
|  | // | 
|  | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | 
|  | // See https://llvm.org/LICENSE.txt for license information. | 
|  | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements some loop unrolling utilities for peeling loops | 
|  | // with dynamically inferred (from PGO) trip counts. See LoopUnroll.cpp for | 
|  | // unrolling loops with compile-time constant trip counts. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/LoopIterator.h" | 
|  | #include "llvm/Analysis/ScalarEvolution.h" | 
|  | #include "llvm/Analysis/ScalarEvolutionExpressions.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/MDBuilder.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/PatternMatch.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Cloning.h" | 
|  | #include "llvm/Transforms/Utils/LoopSimplify.h" | 
|  | #include "llvm/Transforms/Utils/LoopUtils.h" | 
|  | #include "llvm/Transforms/Utils/UnrollLoop.h" | 
|  | #include "llvm/Transforms/Utils/ValueMapper.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <limits> | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::PatternMatch; | 
|  |  | 
|  | #define DEBUG_TYPE "loop-unroll" | 
|  |  | 
|  | STATISTIC(NumPeeled, "Number of loops peeled"); | 
|  |  | 
|  | static cl::opt<unsigned> UnrollPeelMaxCount( | 
|  | "unroll-peel-max-count", cl::init(7), cl::Hidden, | 
|  | cl::desc("Max average trip count which will cause loop peeling.")); | 
|  |  | 
|  | static cl::opt<unsigned> UnrollForcePeelCount( | 
|  | "unroll-force-peel-count", cl::init(0), cl::Hidden, | 
|  | cl::desc("Force a peel count regardless of profiling information.")); | 
|  |  | 
|  | static cl::opt<bool> UnrollPeelMultiDeoptExit( | 
|  | "unroll-peel-multi-deopt-exit", cl::init(true), cl::Hidden, | 
|  | cl::desc("Allow peeling of loops with multiple deopt exits.")); | 
|  |  | 
|  | static const char *PeeledCountMetaData = "llvm.loop.peeled.count"; | 
|  |  | 
|  | // Designates that a Phi is estimated to become invariant after an "infinite" | 
|  | // number of loop iterations (i.e. only may become an invariant if the loop is | 
|  | // fully unrolled). | 
|  | static const unsigned InfiniteIterationsToInvariance = | 
|  | std::numeric_limits<unsigned>::max(); | 
|  |  | 
|  | // Check whether we are capable of peeling this loop. | 
|  | bool llvm::canPeel(Loop *L) { | 
|  | // Make sure the loop is in simplified form | 
|  | if (!L->isLoopSimplifyForm()) | 
|  | return false; | 
|  |  | 
|  | if (UnrollPeelMultiDeoptExit) { | 
|  | SmallVector<BasicBlock *, 4> Exits; | 
|  | L->getUniqueNonLatchExitBlocks(Exits); | 
|  |  | 
|  | if (!Exits.empty()) { | 
|  | // Latch's terminator is a conditional branch, Latch is exiting and | 
|  | // all non Latch exits ends up with deoptimize. | 
|  | const BasicBlock *Latch = L->getLoopLatch(); | 
|  | const BranchInst *T = dyn_cast<BranchInst>(Latch->getTerminator()); | 
|  | return T && T->isConditional() && L->isLoopExiting(Latch) && | 
|  | all_of(Exits, [](const BasicBlock *BB) { | 
|  | return BB->getTerminatingDeoptimizeCall(); | 
|  | }); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Only peel loops that contain a single exit | 
|  | if (!L->getExitingBlock() || !L->getUniqueExitBlock()) | 
|  | return false; | 
|  |  | 
|  | // Don't try to peel loops where the latch is not the exiting block. | 
|  | // This can be an indication of two different things: | 
|  | // 1) The loop is not rotated. | 
|  | // 2) The loop contains irreducible control flow that involves the latch. | 
|  | if (L->getLoopLatch() != L->getExitingBlock()) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // This function calculates the number of iterations after which the given Phi | 
|  | // becomes an invariant. The pre-calculated values are memorized in the map. The | 
|  | // function (shortcut is I) is calculated according to the following definition: | 
|  | // Given %x = phi <Inputs from above the loop>, ..., [%y, %back.edge]. | 
|  | //   If %y is a loop invariant, then I(%x) = 1. | 
|  | //   If %y is a Phi from the loop header, I(%x) = I(%y) + 1. | 
|  | //   Otherwise, I(%x) is infinite. | 
|  | // TODO: Actually if %y is an expression that depends only on Phi %z and some | 
|  | //       loop invariants, we can estimate I(%x) = I(%z) + 1. The example | 
|  | //       looks like: | 
|  | //         %x = phi(0, %a),  <-- becomes invariant starting from 3rd iteration. | 
|  | //         %y = phi(0, 5), | 
|  | //         %a = %y + 1. | 
|  | static unsigned calculateIterationsToInvariance( | 
|  | PHINode *Phi, Loop *L, BasicBlock *BackEdge, | 
|  | SmallDenseMap<PHINode *, unsigned> &IterationsToInvariance) { | 
|  | assert(Phi->getParent() == L->getHeader() && | 
|  | "Non-loop Phi should not be checked for turning into invariant."); | 
|  | assert(BackEdge == L->getLoopLatch() && "Wrong latch?"); | 
|  | // If we already know the answer, take it from the map. | 
|  | auto I = IterationsToInvariance.find(Phi); | 
|  | if (I != IterationsToInvariance.end()) | 
|  | return I->second; | 
|  |  | 
|  | // Otherwise we need to analyze the input from the back edge. | 
|  | Value *Input = Phi->getIncomingValueForBlock(BackEdge); | 
|  | // Place infinity to map to avoid infinite recursion for cycled Phis. Such | 
|  | // cycles can never stop on an invariant. | 
|  | IterationsToInvariance[Phi] = InfiniteIterationsToInvariance; | 
|  | unsigned ToInvariance = InfiniteIterationsToInvariance; | 
|  |  | 
|  | if (L->isLoopInvariant(Input)) | 
|  | ToInvariance = 1u; | 
|  | else if (PHINode *IncPhi = dyn_cast<PHINode>(Input)) { | 
|  | // Only consider Phis in header block. | 
|  | if (IncPhi->getParent() != L->getHeader()) | 
|  | return InfiniteIterationsToInvariance; | 
|  | // If the input becomes an invariant after X iterations, then our Phi | 
|  | // becomes an invariant after X + 1 iterations. | 
|  | unsigned InputToInvariance = calculateIterationsToInvariance( | 
|  | IncPhi, L, BackEdge, IterationsToInvariance); | 
|  | if (InputToInvariance != InfiniteIterationsToInvariance) | 
|  | ToInvariance = InputToInvariance + 1u; | 
|  | } | 
|  |  | 
|  | // If we found that this Phi lies in an invariant chain, update the map. | 
|  | if (ToInvariance != InfiniteIterationsToInvariance) | 
|  | IterationsToInvariance[Phi] = ToInvariance; | 
|  | return ToInvariance; | 
|  | } | 
|  |  | 
|  | // Return the number of iterations to peel off that make conditions in the | 
|  | // body true/false. For example, if we peel 2 iterations off the loop below, | 
|  | // the condition i < 2 can be evaluated at compile time. | 
|  | //  for (i = 0; i < n; i++) | 
|  | //    if (i < 2) | 
|  | //      .. | 
|  | //    else | 
|  | //      .. | 
|  | //   } | 
|  | static unsigned countToEliminateCompares(Loop &L, unsigned MaxPeelCount, | 
|  | ScalarEvolution &SE) { | 
|  | assert(L.isLoopSimplifyForm() && "Loop needs to be in loop simplify form"); | 
|  | unsigned DesiredPeelCount = 0; | 
|  |  | 
|  | for (auto *BB : L.blocks()) { | 
|  | auto *BI = dyn_cast<BranchInst>(BB->getTerminator()); | 
|  | if (!BI || BI->isUnconditional()) | 
|  | continue; | 
|  |  | 
|  | // Ignore loop exit condition. | 
|  | if (L.getLoopLatch() == BB) | 
|  | continue; | 
|  |  | 
|  | Value *Condition = BI->getCondition(); | 
|  | Value *LeftVal, *RightVal; | 
|  | CmpInst::Predicate Pred; | 
|  | if (!match(Condition, m_ICmp(Pred, m_Value(LeftVal), m_Value(RightVal)))) | 
|  | continue; | 
|  |  | 
|  | const SCEV *LeftSCEV = SE.getSCEV(LeftVal); | 
|  | const SCEV *RightSCEV = SE.getSCEV(RightVal); | 
|  |  | 
|  | // Do not consider predicates that are known to be true or false | 
|  | // independently of the loop iteration. | 
|  | if (SE.isKnownPredicate(Pred, LeftSCEV, RightSCEV) || | 
|  | SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), LeftSCEV, | 
|  | RightSCEV)) | 
|  | continue; | 
|  |  | 
|  | // Check if we have a condition with one AddRec and one non AddRec | 
|  | // expression. Normalize LeftSCEV to be the AddRec. | 
|  | if (!isa<SCEVAddRecExpr>(LeftSCEV)) { | 
|  | if (isa<SCEVAddRecExpr>(RightSCEV)) { | 
|  | std::swap(LeftSCEV, RightSCEV); | 
|  | Pred = ICmpInst::getSwappedPredicate(Pred); | 
|  | } else | 
|  | continue; | 
|  | } | 
|  |  | 
|  | const SCEVAddRecExpr *LeftAR = cast<SCEVAddRecExpr>(LeftSCEV); | 
|  |  | 
|  | // Avoid huge SCEV computations in the loop below, make sure we only | 
|  | // consider AddRecs of the loop we are trying to peel. | 
|  | if (!LeftAR->isAffine() || LeftAR->getLoop() != &L) | 
|  | continue; | 
|  | bool Increasing; | 
|  | if (!(ICmpInst::isEquality(Pred) && LeftAR->hasNoSelfWrap()) && | 
|  | !SE.isMonotonicPredicate(LeftAR, Pred, Increasing)) | 
|  | continue; | 
|  | (void)Increasing; | 
|  |  | 
|  | // Check if extending the current DesiredPeelCount lets us evaluate Pred | 
|  | // or !Pred in the loop body statically. | 
|  | unsigned NewPeelCount = DesiredPeelCount; | 
|  |  | 
|  | const SCEV *IterVal = LeftAR->evaluateAtIteration( | 
|  | SE.getConstant(LeftSCEV->getType(), NewPeelCount), SE); | 
|  |  | 
|  | // If the original condition is not known, get the negated predicate | 
|  | // (which holds on the else branch) and check if it is known. This allows | 
|  | // us to peel of iterations that make the original condition false. | 
|  | if (!SE.isKnownPredicate(Pred, IterVal, RightSCEV)) | 
|  | Pred = ICmpInst::getInversePredicate(Pred); | 
|  |  | 
|  | const SCEV *Step = LeftAR->getStepRecurrence(SE); | 
|  | const SCEV *NextIterVal = SE.getAddExpr(IterVal, Step); | 
|  | auto PeelOneMoreIteration = [&IterVal, &NextIterVal, &SE, Step, | 
|  | &NewPeelCount]() { | 
|  | IterVal = NextIterVal; | 
|  | NextIterVal = SE.getAddExpr(IterVal, Step); | 
|  | NewPeelCount++; | 
|  | }; | 
|  |  | 
|  | auto CanPeelOneMoreIteration = [&NewPeelCount, &MaxPeelCount]() { | 
|  | return NewPeelCount < MaxPeelCount; | 
|  | }; | 
|  |  | 
|  | while (CanPeelOneMoreIteration() && | 
|  | SE.isKnownPredicate(Pred, IterVal, RightSCEV)) | 
|  | PeelOneMoreIteration(); | 
|  |  | 
|  | // With *that* peel count, does the predicate !Pred become known in the | 
|  | // first iteration of the loop body after peeling? | 
|  | if (!SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), IterVal, | 
|  | RightSCEV)) | 
|  | continue; // If not, give up. | 
|  |  | 
|  | // However, for equality comparisons, that isn't always sufficient to | 
|  | // eliminate the comparsion in loop body, we may need to peel one more | 
|  | // iteration. See if that makes !Pred become unknown again. | 
|  | if (ICmpInst::isEquality(Pred) && | 
|  | !SE.isKnownPredicate(ICmpInst::getInversePredicate(Pred), NextIterVal, | 
|  | RightSCEV) && | 
|  | !SE.isKnownPredicate(Pred, IterVal, RightSCEV) && | 
|  | SE.isKnownPredicate(Pred, NextIterVal, RightSCEV)) { | 
|  | if (!CanPeelOneMoreIteration()) | 
|  | continue; // Need to peel one more iteration, but can't. Give up. | 
|  | PeelOneMoreIteration(); // Great! | 
|  | } | 
|  |  | 
|  | DesiredPeelCount = std::max(DesiredPeelCount, NewPeelCount); | 
|  | } | 
|  |  | 
|  | return DesiredPeelCount; | 
|  | } | 
|  |  | 
|  | // Return the number of iterations we want to peel off. | 
|  | void llvm::computePeelCount(Loop *L, unsigned LoopSize, | 
|  | TargetTransformInfo::UnrollingPreferences &UP, | 
|  | unsigned &TripCount, ScalarEvolution &SE) { | 
|  | assert(LoopSize > 0 && "Zero loop size is not allowed!"); | 
|  | // Save the UP.PeelCount value set by the target in | 
|  | // TTI.getUnrollingPreferences or by the flag -unroll-peel-count. | 
|  | unsigned TargetPeelCount = UP.PeelCount; | 
|  | UP.PeelCount = 0; | 
|  | if (!canPeel(L)) | 
|  | return; | 
|  |  | 
|  | // Only try to peel innermost loops by default. | 
|  | // The constraint can be relaxed by the target in TTI.getUnrollingPreferences | 
|  | // or by the flag -unroll-allow-loop-nests-peeling. | 
|  | if (!UP.AllowLoopNestsPeeling && !L->empty()) | 
|  | return; | 
|  |  | 
|  | // If the user provided a peel count, use that. | 
|  | bool UserPeelCount = UnrollForcePeelCount.getNumOccurrences() > 0; | 
|  | if (UserPeelCount) { | 
|  | LLVM_DEBUG(dbgs() << "Force-peeling first " << UnrollForcePeelCount | 
|  | << " iterations.\n"); | 
|  | UP.PeelCount = UnrollForcePeelCount; | 
|  | UP.PeelProfiledIterations = true; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Skip peeling if it's disabled. | 
|  | if (!UP.AllowPeeling) | 
|  | return; | 
|  |  | 
|  | unsigned AlreadyPeeled = 0; | 
|  | if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) | 
|  | AlreadyPeeled = *Peeled; | 
|  | // Stop if we already peeled off the maximum number of iterations. | 
|  | if (AlreadyPeeled >= UnrollPeelMaxCount) | 
|  | return; | 
|  |  | 
|  | // Here we try to get rid of Phis which become invariants after 1, 2, ..., N | 
|  | // iterations of the loop. For this we compute the number for iterations after | 
|  | // which every Phi is guaranteed to become an invariant, and try to peel the | 
|  | // maximum number of iterations among these values, thus turning all those | 
|  | // Phis into invariants. | 
|  | // First, check that we can peel at least one iteration. | 
|  | if (2 * LoopSize <= UP.Threshold && UnrollPeelMaxCount > 0) { | 
|  | // Store the pre-calculated values here. | 
|  | SmallDenseMap<PHINode *, unsigned> IterationsToInvariance; | 
|  | // Now go through all Phis to calculate their the number of iterations they | 
|  | // need to become invariants. | 
|  | // Start the max computation with the UP.PeelCount value set by the target | 
|  | // in TTI.getUnrollingPreferences or by the flag -unroll-peel-count. | 
|  | unsigned DesiredPeelCount = TargetPeelCount; | 
|  | BasicBlock *BackEdge = L->getLoopLatch(); | 
|  | assert(BackEdge && "Loop is not in simplified form?"); | 
|  | for (auto BI = L->getHeader()->begin(); isa<PHINode>(&*BI); ++BI) { | 
|  | PHINode *Phi = cast<PHINode>(&*BI); | 
|  | unsigned ToInvariance = calculateIterationsToInvariance( | 
|  | Phi, L, BackEdge, IterationsToInvariance); | 
|  | if (ToInvariance != InfiniteIterationsToInvariance) | 
|  | DesiredPeelCount = std::max(DesiredPeelCount, ToInvariance); | 
|  | } | 
|  |  | 
|  | // Pay respect to limitations implied by loop size and the max peel count. | 
|  | unsigned MaxPeelCount = UnrollPeelMaxCount; | 
|  | MaxPeelCount = std::min(MaxPeelCount, UP.Threshold / LoopSize - 1); | 
|  |  | 
|  | DesiredPeelCount = std::max(DesiredPeelCount, | 
|  | countToEliminateCompares(*L, MaxPeelCount, SE)); | 
|  |  | 
|  | if (DesiredPeelCount > 0) { | 
|  | DesiredPeelCount = std::min(DesiredPeelCount, MaxPeelCount); | 
|  | // Consider max peel count limitation. | 
|  | assert(DesiredPeelCount > 0 && "Wrong loop size estimation?"); | 
|  | if (DesiredPeelCount + AlreadyPeeled <= UnrollPeelMaxCount) { | 
|  | LLVM_DEBUG(dbgs() << "Peel " << DesiredPeelCount | 
|  | << " iteration(s) to turn" | 
|  | << " some Phis into invariants.\n"); | 
|  | UP.PeelCount = DesiredPeelCount; | 
|  | UP.PeelProfiledIterations = false; | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Bail if we know the statically calculated trip count. | 
|  | // In this case we rather prefer partial unrolling. | 
|  | if (TripCount) | 
|  | return; | 
|  |  | 
|  | // Do not apply profile base peeling if it is disabled. | 
|  | if (!UP.PeelProfiledIterations) | 
|  | return; | 
|  | // If we don't know the trip count, but have reason to believe the average | 
|  | // trip count is low, peeling should be beneficial, since we will usually | 
|  | // hit the peeled section. | 
|  | // We only do this in the presence of profile information, since otherwise | 
|  | // our estimates of the trip count are not reliable enough. | 
|  | if (L->getHeader()->getParent()->hasProfileData()) { | 
|  | Optional<unsigned> PeelCount = getLoopEstimatedTripCount(L); | 
|  | if (!PeelCount) | 
|  | return; | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "Profile-based estimated trip count is " << *PeelCount | 
|  | << "\n"); | 
|  |  | 
|  | if (*PeelCount) { | 
|  | if ((*PeelCount + AlreadyPeeled <= UnrollPeelMaxCount) && | 
|  | (LoopSize * (*PeelCount + 1) <= UP.Threshold)) { | 
|  | LLVM_DEBUG(dbgs() << "Peeling first " << *PeelCount | 
|  | << " iterations.\n"); | 
|  | UP.PeelCount = *PeelCount; | 
|  | return; | 
|  | } | 
|  | LLVM_DEBUG(dbgs() << "Requested peel count: " << *PeelCount << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "Already peel count: " << AlreadyPeeled << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "Max peel count: " << UnrollPeelMaxCount << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "Peel cost: " << LoopSize * (*PeelCount + 1) | 
|  | << "\n"); | 
|  | LLVM_DEBUG(dbgs() << "Max peel cost: " << UP.Threshold << "\n"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Update the branch weights of the latch of a peeled-off loop | 
|  | /// iteration. | 
|  | /// This sets the branch weights for the latch of the recently peeled off loop | 
|  | /// iteration correctly. | 
|  | /// Let F is a weight of the edge from latch to header. | 
|  | /// Let E is a weight of the edge from latch to exit. | 
|  | /// F/(F+E) is a probability to go to loop and E/(F+E) is a probability to | 
|  | /// go to exit. | 
|  | /// Then, Estimated TripCount = F / E. | 
|  | /// For I-th (counting from 0) peeled off iteration we set the the weights for | 
|  | /// the peeled latch as (TC - I, 1). It gives us reasonable distribution, | 
|  | /// The probability to go to exit 1/(TC-I) increases. At the same time | 
|  | /// the estimated trip count of remaining loop reduces by I. | 
|  | /// To avoid dealing with division rounding we can just multiple both part | 
|  | /// of weights to E and use weight as (F - I * E, E). | 
|  | /// | 
|  | /// \param Header The copy of the header block that belongs to next iteration. | 
|  | /// \param LatchBR The copy of the latch branch that belongs to this iteration. | 
|  | /// \param[in,out] FallThroughWeight The weight of the edge from latch to | 
|  | /// header before peeling (in) and after peeled off one iteration (out). | 
|  | static void updateBranchWeights(BasicBlock *Header, BranchInst *LatchBR, | 
|  | uint64_t ExitWeight, | 
|  | uint64_t &FallThroughWeight) { | 
|  | // FallThroughWeight is 0 means that there is no branch weights on original | 
|  | // latch block or estimated trip count is zero. | 
|  | if (!FallThroughWeight) | 
|  | return; | 
|  |  | 
|  | unsigned HeaderIdx = (LatchBR->getSuccessor(0) == Header ? 0 : 1); | 
|  | MDBuilder MDB(LatchBR->getContext()); | 
|  | MDNode *WeightNode = | 
|  | HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight) | 
|  | : MDB.createBranchWeights(FallThroughWeight, ExitWeight); | 
|  | LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); | 
|  | FallThroughWeight = | 
|  | FallThroughWeight > ExitWeight ? FallThroughWeight - ExitWeight : 1; | 
|  | } | 
|  |  | 
|  | /// Initialize the weights. | 
|  | /// | 
|  | /// \param Header The header block. | 
|  | /// \param LatchBR The latch branch. | 
|  | /// \param[out] ExitWeight The weight of the edge from Latch to Exit. | 
|  | /// \param[out] FallThroughWeight The weight of the edge from Latch to Header. | 
|  | static void initBranchWeights(BasicBlock *Header, BranchInst *LatchBR, | 
|  | uint64_t &ExitWeight, | 
|  | uint64_t &FallThroughWeight) { | 
|  | uint64_t TrueWeight, FalseWeight; | 
|  | if (!LatchBR->extractProfMetadata(TrueWeight, FalseWeight)) | 
|  | return; | 
|  | unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1; | 
|  | ExitWeight = HeaderIdx ? TrueWeight : FalseWeight; | 
|  | FallThroughWeight = HeaderIdx ? FalseWeight : TrueWeight; | 
|  | } | 
|  |  | 
|  | /// Update the weights of original Latch block after peeling off all iterations. | 
|  | /// | 
|  | /// \param Header The header block. | 
|  | /// \param LatchBR The latch branch. | 
|  | /// \param ExitWeight The weight of the edge from Latch to Exit. | 
|  | /// \param FallThroughWeight The weight of the edge from Latch to Header. | 
|  | static void fixupBranchWeights(BasicBlock *Header, BranchInst *LatchBR, | 
|  | uint64_t ExitWeight, | 
|  | uint64_t FallThroughWeight) { | 
|  | // FallThroughWeight is 0 means that there is no branch weights on original | 
|  | // latch block or estimated trip count is zero. | 
|  | if (!FallThroughWeight) | 
|  | return; | 
|  |  | 
|  | // Sets the branch weights on the loop exit. | 
|  | MDBuilder MDB(LatchBR->getContext()); | 
|  | unsigned HeaderIdx = LatchBR->getSuccessor(0) == Header ? 0 : 1; | 
|  | MDNode *WeightNode = | 
|  | HeaderIdx ? MDB.createBranchWeights(ExitWeight, FallThroughWeight) | 
|  | : MDB.createBranchWeights(FallThroughWeight, ExitWeight); | 
|  | LatchBR->setMetadata(LLVMContext::MD_prof, WeightNode); | 
|  | } | 
|  |  | 
|  | /// Clones the body of the loop L, putting it between \p InsertTop and \p | 
|  | /// InsertBot. | 
|  | /// \param IterNumber The serial number of the iteration currently being | 
|  | /// peeled off. | 
|  | /// \param ExitEdges The exit edges of the original loop. | 
|  | /// \param[out] NewBlocks A list of the blocks in the newly created clone | 
|  | /// \param[out] VMap The value map between the loop and the new clone. | 
|  | /// \param LoopBlocks A helper for DFS-traversal of the loop. | 
|  | /// \param LVMap A value-map that maps instructions from the original loop to | 
|  | /// instructions in the last peeled-off iteration. | 
|  | static void cloneLoopBlocks( | 
|  | Loop *L, unsigned IterNumber, BasicBlock *InsertTop, BasicBlock *InsertBot, | 
|  | SmallVectorImpl<std::pair<BasicBlock *, BasicBlock *> > &ExitEdges, | 
|  | SmallVectorImpl<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks, | 
|  | ValueToValueMapTy &VMap, ValueToValueMapTy &LVMap, DominatorTree *DT, | 
|  | LoopInfo *LI) { | 
|  | BasicBlock *Header = L->getHeader(); | 
|  | BasicBlock *Latch = L->getLoopLatch(); | 
|  | BasicBlock *PreHeader = L->getLoopPreheader(); | 
|  |  | 
|  | Function *F = Header->getParent(); | 
|  | LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO(); | 
|  | LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO(); | 
|  | Loop *ParentLoop = L->getParentLoop(); | 
|  |  | 
|  | // For each block in the original loop, create a new copy, | 
|  | // and update the value map with the newly created values. | 
|  | for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { | 
|  | BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, ".peel", F); | 
|  | NewBlocks.push_back(NewBB); | 
|  |  | 
|  | // If an original block is an immediate child of the loop L, its copy | 
|  | // is a child of a ParentLoop after peeling. If a block is a child of | 
|  | // a nested loop, it is handled in the cloneLoop() call below. | 
|  | if (ParentLoop && LI->getLoopFor(*BB) == L) | 
|  | ParentLoop->addBasicBlockToLoop(NewBB, *LI); | 
|  |  | 
|  | VMap[*BB] = NewBB; | 
|  |  | 
|  | // If dominator tree is available, insert nodes to represent cloned blocks. | 
|  | if (DT) { | 
|  | if (Header == *BB) | 
|  | DT->addNewBlock(NewBB, InsertTop); | 
|  | else { | 
|  | DomTreeNode *IDom = DT->getNode(*BB)->getIDom(); | 
|  | // VMap must contain entry for IDom, as the iteration order is RPO. | 
|  | DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDom->getBlock()])); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Recursively create the new Loop objects for nested loops, if any, | 
|  | // to preserve LoopInfo. | 
|  | for (Loop *ChildLoop : *L) { | 
|  | cloneLoop(ChildLoop, ParentLoop, VMap, LI, nullptr); | 
|  | } | 
|  |  | 
|  | // Hook-up the control flow for the newly inserted blocks. | 
|  | // The new header is hooked up directly to the "top", which is either | 
|  | // the original loop preheader (for the first iteration) or the previous | 
|  | // iteration's exiting block (for every other iteration) | 
|  | InsertTop->getTerminator()->setSuccessor(0, cast<BasicBlock>(VMap[Header])); | 
|  |  | 
|  | // Similarly, for the latch: | 
|  | // The original exiting edge is still hooked up to the loop exit. | 
|  | // The backedge now goes to the "bottom", which is either the loop's real | 
|  | // header (for the last peeled iteration) or the copied header of the next | 
|  | // iteration (for every other iteration) | 
|  | BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]); | 
|  | BranchInst *LatchBR = cast<BranchInst>(NewLatch->getTerminator()); | 
|  | for (unsigned idx = 0, e = LatchBR->getNumSuccessors(); idx < e; ++idx) | 
|  | if (LatchBR->getSuccessor(idx) == Header) { | 
|  | LatchBR->setSuccessor(idx, InsertBot); | 
|  | break; | 
|  | } | 
|  | if (DT) | 
|  | DT->changeImmediateDominator(InsertBot, NewLatch); | 
|  |  | 
|  | // The new copy of the loop body starts with a bunch of PHI nodes | 
|  | // that pick an incoming value from either the preheader, or the previous | 
|  | // loop iteration. Since this copy is no longer part of the loop, we | 
|  | // resolve this statically: | 
|  | // For the first iteration, we use the value from the preheader directly. | 
|  | // For any other iteration, we replace the phi with the value generated by | 
|  | // the immediately preceding clone of the loop body (which represents | 
|  | // the previous iteration). | 
|  | for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { | 
|  | PHINode *NewPHI = cast<PHINode>(VMap[&*I]); | 
|  | if (IterNumber == 0) { | 
|  | VMap[&*I] = NewPHI->getIncomingValueForBlock(PreHeader); | 
|  | } else { | 
|  | Value *LatchVal = NewPHI->getIncomingValueForBlock(Latch); | 
|  | Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); | 
|  | if (LatchInst && L->contains(LatchInst)) | 
|  | VMap[&*I] = LVMap[LatchInst]; | 
|  | else | 
|  | VMap[&*I] = LatchVal; | 
|  | } | 
|  | cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI); | 
|  | } | 
|  |  | 
|  | // Fix up the outgoing values - we need to add a value for the iteration | 
|  | // we've just created. Note that this must happen *after* the incoming | 
|  | // values are adjusted, since the value going out of the latch may also be | 
|  | // a value coming into the header. | 
|  | for (auto Edge : ExitEdges) | 
|  | for (PHINode &PHI : Edge.second->phis()) { | 
|  | Value *LatchVal = PHI.getIncomingValueForBlock(Edge.first); | 
|  | Instruction *LatchInst = dyn_cast<Instruction>(LatchVal); | 
|  | if (LatchInst && L->contains(LatchInst)) | 
|  | LatchVal = VMap[LatchVal]; | 
|  | PHI.addIncoming(LatchVal, cast<BasicBlock>(VMap[Edge.first])); | 
|  | } | 
|  |  | 
|  | // LastValueMap is updated with the values for the current loop | 
|  | // which are used the next time this function is called. | 
|  | for (auto KV : VMap) | 
|  | LVMap[KV.first] = KV.second; | 
|  | } | 
|  |  | 
|  | /// Peel off the first \p PeelCount iterations of loop \p L. | 
|  | /// | 
|  | /// Note that this does not peel them off as a single straight-line block. | 
|  | /// Rather, each iteration is peeled off separately, and needs to check the | 
|  | /// exit condition. | 
|  | /// For loops that dynamically execute \p PeelCount iterations or less | 
|  | /// this provides a benefit, since the peeled off iterations, which account | 
|  | /// for the bulk of dynamic execution, can be further simplified by scalar | 
|  | /// optimizations. | 
|  | bool llvm::peelLoop(Loop *L, unsigned PeelCount, LoopInfo *LI, | 
|  | ScalarEvolution *SE, DominatorTree *DT, | 
|  | AssumptionCache *AC, bool PreserveLCSSA) { | 
|  | assert(PeelCount > 0 && "Attempt to peel out zero iterations?"); | 
|  | assert(canPeel(L) && "Attempt to peel a loop which is not peelable?"); | 
|  |  | 
|  | LoopBlocksDFS LoopBlocks(L); | 
|  | LoopBlocks.perform(LI); | 
|  |  | 
|  | BasicBlock *Header = L->getHeader(); | 
|  | BasicBlock *PreHeader = L->getLoopPreheader(); | 
|  | BasicBlock *Latch = L->getLoopLatch(); | 
|  | SmallVector<std::pair<BasicBlock *, BasicBlock *>, 4> ExitEdges; | 
|  | L->getExitEdges(ExitEdges); | 
|  |  | 
|  | DenseMap<BasicBlock *, BasicBlock *> ExitIDom; | 
|  | if (DT) { | 
|  | // We'd like to determine the idom of exit block after peeling one | 
|  | // iteration. | 
|  | // Let Exit is exit block. | 
|  | // Let ExitingSet - is a set of predecessors of Exit block. They are exiting | 
|  | // blocks. | 
|  | // Let Latch' and ExitingSet' are copies after a peeling. | 
|  | // We'd like to find an idom'(Exit) - idom of Exit after peeling. | 
|  | // It is an evident that idom'(Exit) will be the nearest common dominator | 
|  | // of ExitingSet and ExitingSet'. | 
|  | // idom(Exit) is a nearest common dominator of ExitingSet. | 
|  | // idom(Exit)' is a nearest common dominator of ExitingSet'. | 
|  | // Taking into account that we have a single Latch, Latch' will dominate | 
|  | // Header and idom(Exit). | 
|  | // So the idom'(Exit) is nearest common dominator of idom(Exit)' and Latch'. | 
|  | // All these basic blocks are in the same loop, so what we find is | 
|  | // (nearest common dominator of idom(Exit) and Latch)'. | 
|  | // In the loop below we remember nearest common dominator of idom(Exit) and | 
|  | // Latch to update idom of Exit later. | 
|  | assert(L->hasDedicatedExits() && "No dedicated exits?"); | 
|  | for (auto Edge : ExitEdges) { | 
|  | if (ExitIDom.count(Edge.second)) | 
|  | continue; | 
|  | BasicBlock *BB = DT->findNearestCommonDominator( | 
|  | DT->getNode(Edge.second)->getIDom()->getBlock(), Latch); | 
|  | assert(L->contains(BB) && "IDom is not in a loop"); | 
|  | ExitIDom[Edge.second] = BB; | 
|  | } | 
|  | } | 
|  |  | 
|  | Function *F = Header->getParent(); | 
|  |  | 
|  | // Set up all the necessary basic blocks. It is convenient to split the | 
|  | // preheader into 3 parts - two blocks to anchor the peeled copy of the loop | 
|  | // body, and a new preheader for the "real" loop. | 
|  |  | 
|  | // Peeling the first iteration transforms. | 
|  | // | 
|  | // PreHeader: | 
|  | // ... | 
|  | // Header: | 
|  | //   LoopBody | 
|  | //   If (cond) goto Header | 
|  | // Exit: | 
|  | // | 
|  | // into | 
|  | // | 
|  | // InsertTop: | 
|  | //   LoopBody | 
|  | //   If (!cond) goto Exit | 
|  | // InsertBot: | 
|  | // NewPreHeader: | 
|  | // ... | 
|  | // Header: | 
|  | //  LoopBody | 
|  | //  If (cond) goto Header | 
|  | // Exit: | 
|  | // | 
|  | // Each following iteration will split the current bottom anchor in two, | 
|  | // and put the new copy of the loop body between these two blocks. That is, | 
|  | // after peeling another iteration from the example above, we'll split | 
|  | // InsertBot, and get: | 
|  | // | 
|  | // InsertTop: | 
|  | //   LoopBody | 
|  | //   If (!cond) goto Exit | 
|  | // InsertBot: | 
|  | //   LoopBody | 
|  | //   If (!cond) goto Exit | 
|  | // InsertBot.next: | 
|  | // NewPreHeader: | 
|  | // ... | 
|  | // Header: | 
|  | //  LoopBody | 
|  | //  If (cond) goto Header | 
|  | // Exit: | 
|  |  | 
|  | BasicBlock *InsertTop = SplitEdge(PreHeader, Header, DT, LI); | 
|  | BasicBlock *InsertBot = | 
|  | SplitBlock(InsertTop, InsertTop->getTerminator(), DT, LI); | 
|  | BasicBlock *NewPreHeader = | 
|  | SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI); | 
|  |  | 
|  | InsertTop->setName(Header->getName() + ".peel.begin"); | 
|  | InsertBot->setName(Header->getName() + ".peel.next"); | 
|  | NewPreHeader->setName(PreHeader->getName() + ".peel.newph"); | 
|  |  | 
|  | ValueToValueMapTy LVMap; | 
|  |  | 
|  | // If we have branch weight information, we'll want to update it for the | 
|  | // newly created branches. | 
|  | BranchInst *LatchBR = | 
|  | cast<BranchInst>(cast<BasicBlock>(Latch)->getTerminator()); | 
|  | uint64_t ExitWeight = 0, FallThroughWeight = 0; | 
|  | initBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight); | 
|  |  | 
|  | // For each peeled-off iteration, make a copy of the loop. | 
|  | for (unsigned Iter = 0; Iter < PeelCount; ++Iter) { | 
|  | SmallVector<BasicBlock *, 8> NewBlocks; | 
|  | ValueToValueMapTy VMap; | 
|  |  | 
|  | cloneLoopBlocks(L, Iter, InsertTop, InsertBot, ExitEdges, NewBlocks, | 
|  | LoopBlocks, VMap, LVMap, DT, LI); | 
|  |  | 
|  | // Remap to use values from the current iteration instead of the | 
|  | // previous one. | 
|  | remapInstructionsInBlocks(NewBlocks, VMap); | 
|  |  | 
|  | if (DT) { | 
|  | // Latches of the cloned loops dominate over the loop exit, so idom of the | 
|  | // latter is the first cloned loop body, as original PreHeader dominates | 
|  | // the original loop body. | 
|  | if (Iter == 0) | 
|  | for (auto Exit : ExitIDom) | 
|  | DT->changeImmediateDominator(Exit.first, | 
|  | cast<BasicBlock>(LVMap[Exit.second])); | 
|  | #ifdef EXPENSIVE_CHECKS | 
|  | assert(DT->verify(DominatorTree::VerificationLevel::Fast)); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | auto *LatchBRCopy = cast<BranchInst>(VMap[LatchBR]); | 
|  | updateBranchWeights(InsertBot, LatchBRCopy, ExitWeight, FallThroughWeight); | 
|  | // Remove Loop metadata from the latch branch instruction | 
|  | // because it is not the Loop's latch branch anymore. | 
|  | LatchBRCopy->setMetadata(LLVMContext::MD_loop, nullptr); | 
|  |  | 
|  | InsertTop = InsertBot; | 
|  | InsertBot = SplitBlock(InsertBot, InsertBot->getTerminator(), DT, LI); | 
|  | InsertBot->setName(Header->getName() + ".peel.next"); | 
|  |  | 
|  | F->getBasicBlockList().splice(InsertTop->getIterator(), | 
|  | F->getBasicBlockList(), | 
|  | NewBlocks[0]->getIterator(), F->end()); | 
|  | } | 
|  |  | 
|  | // Now adjust the phi nodes in the loop header to get their initial values | 
|  | // from the last peeled-off iteration instead of the preheader. | 
|  | for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { | 
|  | PHINode *PHI = cast<PHINode>(I); | 
|  | Value *NewVal = PHI->getIncomingValueForBlock(Latch); | 
|  | Instruction *LatchInst = dyn_cast<Instruction>(NewVal); | 
|  | if (LatchInst && L->contains(LatchInst)) | 
|  | NewVal = LVMap[LatchInst]; | 
|  |  | 
|  | PHI->setIncomingValueForBlock(NewPreHeader, NewVal); | 
|  | } | 
|  |  | 
|  | fixupBranchWeights(Header, LatchBR, ExitWeight, FallThroughWeight); | 
|  |  | 
|  | // Update Metadata for count of peeled off iterations. | 
|  | unsigned AlreadyPeeled = 0; | 
|  | if (auto Peeled = getOptionalIntLoopAttribute(L, PeeledCountMetaData)) | 
|  | AlreadyPeeled = *Peeled; | 
|  | addStringMetadataToLoop(L, PeeledCountMetaData, AlreadyPeeled + PeelCount); | 
|  |  | 
|  | if (Loop *ParentLoop = L->getParentLoop()) | 
|  | L = ParentLoop; | 
|  |  | 
|  | // We modified the loop, update SE. | 
|  | SE->forgetTopmostLoop(L); | 
|  |  | 
|  | // Finally DomtTree must be correct. | 
|  | assert(DT->verify(DominatorTree::VerificationLevel::Fast)); | 
|  |  | 
|  | // FIXME: Incrementally update loop-simplify | 
|  | simplifyLoop(L, DT, LI, SE, AC, nullptr, PreserveLCSSA); | 
|  |  | 
|  | NumPeeled++; | 
|  |  | 
|  | return true; | 
|  | } |