|  | //===- CloneFunction.cpp - Clone a function into another function ---------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the CloneFunctionInto interface, which is used as the | 
|  | // low-level function cloner.  This is used by the CloneFunction and function | 
|  | // inliner to do the dirty work of copying the body of a function around. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/SetVector.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/Analysis/ConstantFolding.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DebugInfo.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/Transforms/Utils/BasicBlockUtils.h" | 
|  | #include "llvm/Transforms/Utils/Cloning.h" | 
|  | #include "llvm/Transforms/Utils/ValueMapper.h" | 
|  | #include <map> | 
|  | using namespace llvm; | 
|  |  | 
|  | /// See comments in Cloning.h. | 
|  | BasicBlock *llvm::CloneBasicBlock(const BasicBlock *BB, ValueToValueMapTy &VMap, | 
|  | const Twine &NameSuffix, Function *F, | 
|  | ClonedCodeInfo *CodeInfo, | 
|  | DebugInfoFinder *DIFinder) { | 
|  | DenseMap<const MDNode *, MDNode *> Cache; | 
|  | BasicBlock *NewBB = BasicBlock::Create(BB->getContext(), "", F); | 
|  | if (BB->hasName()) | 
|  | NewBB->setName(BB->getName() + NameSuffix); | 
|  |  | 
|  | bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; | 
|  | Module *TheModule = F ? F->getParent() : nullptr; | 
|  |  | 
|  | // Loop over all instructions, and copy them over. | 
|  | for (const Instruction &I : *BB) { | 
|  | if (DIFinder && TheModule) | 
|  | DIFinder->processInstruction(*TheModule, I); | 
|  |  | 
|  | Instruction *NewInst = I.clone(); | 
|  | if (I.hasName()) | 
|  | NewInst->setName(I.getName() + NameSuffix); | 
|  | NewBB->getInstList().push_back(NewInst); | 
|  | VMap[&I] = NewInst; // Add instruction map to value. | 
|  |  | 
|  | hasCalls |= (isa<CallInst>(I) && !isa<DbgInfoIntrinsic>(I)); | 
|  | if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { | 
|  | if (isa<ConstantInt>(AI->getArraySize())) | 
|  | hasStaticAllocas = true; | 
|  | else | 
|  | hasDynamicAllocas = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (CodeInfo) { | 
|  | CodeInfo->ContainsCalls          |= hasCalls; | 
|  | CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; | 
|  | CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && | 
|  | BB != &BB->getParent()->getEntryBlock(); | 
|  | } | 
|  | return NewBB; | 
|  | } | 
|  |  | 
|  | // Clone OldFunc into NewFunc, transforming the old arguments into references to | 
|  | // VMap values. | 
|  | // | 
|  | void llvm::CloneFunctionInto(Function *NewFunc, const Function *OldFunc, | 
|  | ValueToValueMapTy &VMap, | 
|  | bool ModuleLevelChanges, | 
|  | SmallVectorImpl<ReturnInst*> &Returns, | 
|  | const char *NameSuffix, ClonedCodeInfo *CodeInfo, | 
|  | ValueMapTypeRemapper *TypeMapper, | 
|  | ValueMaterializer *Materializer) { | 
|  | assert(NameSuffix && "NameSuffix cannot be null!"); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | for (const Argument &I : OldFunc->args()) | 
|  | assert(VMap.count(&I) && "No mapping from source argument specified!"); | 
|  | #endif | 
|  |  | 
|  | // Copy all attributes other than those stored in the AttributeList.  We need | 
|  | // to remap the parameter indices of the AttributeList. | 
|  | AttributeList NewAttrs = NewFunc->getAttributes(); | 
|  | NewFunc->copyAttributesFrom(OldFunc); | 
|  | NewFunc->setAttributes(NewAttrs); | 
|  |  | 
|  | // Fix up the personality function that got copied over. | 
|  | if (OldFunc->hasPersonalityFn()) | 
|  | NewFunc->setPersonalityFn( | 
|  | MapValue(OldFunc->getPersonalityFn(), VMap, | 
|  | ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, | 
|  | TypeMapper, Materializer)); | 
|  |  | 
|  | SmallVector<AttributeSet, 4> NewArgAttrs(NewFunc->arg_size()); | 
|  | AttributeList OldAttrs = OldFunc->getAttributes(); | 
|  |  | 
|  | // Clone any argument attributes that are present in the VMap. | 
|  | for (const Argument &OldArg : OldFunc->args()) { | 
|  | if (Argument *NewArg = dyn_cast<Argument>(VMap[&OldArg])) { | 
|  | NewArgAttrs[NewArg->getArgNo()] = | 
|  | OldAttrs.getParamAttributes(OldArg.getArgNo()); | 
|  | } | 
|  | } | 
|  |  | 
|  | NewFunc->setAttributes( | 
|  | AttributeList::get(NewFunc->getContext(), OldAttrs.getFnAttributes(), | 
|  | OldAttrs.getRetAttributes(), NewArgAttrs)); | 
|  |  | 
|  | bool MustCloneSP = | 
|  | OldFunc->getParent() && OldFunc->getParent() == NewFunc->getParent(); | 
|  | DISubprogram *SP = OldFunc->getSubprogram(); | 
|  | if (SP) { | 
|  | assert(!MustCloneSP || ModuleLevelChanges); | 
|  | // Add mappings for some DebugInfo nodes that we don't want duplicated | 
|  | // even if they're distinct. | 
|  | auto &MD = VMap.MD(); | 
|  | MD[SP->getUnit()].reset(SP->getUnit()); | 
|  | MD[SP->getType()].reset(SP->getType()); | 
|  | MD[SP->getFile()].reset(SP->getFile()); | 
|  | // If we're not cloning into the same module, no need to clone the | 
|  | // subprogram | 
|  | if (!MustCloneSP) | 
|  | MD[SP].reset(SP); | 
|  | } | 
|  |  | 
|  | SmallVector<std::pair<unsigned, MDNode *>, 1> MDs; | 
|  | OldFunc->getAllMetadata(MDs); | 
|  | for (auto MD : MDs) { | 
|  | NewFunc->addMetadata( | 
|  | MD.first, | 
|  | *MapMetadata(MD.second, VMap, | 
|  | ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, | 
|  | TypeMapper, Materializer)); | 
|  | } | 
|  |  | 
|  | // When we remap instructions, we want to avoid duplicating inlined | 
|  | // DISubprograms, so record all subprograms we find as we duplicate | 
|  | // instructions and then freeze them in the MD map. | 
|  | // We also record information about dbg.value and dbg.declare to avoid | 
|  | // duplicating the types. | 
|  | DebugInfoFinder DIFinder; | 
|  |  | 
|  | // Loop over all of the basic blocks in the function, cloning them as | 
|  | // appropriate.  Note that we save BE this way in order to handle cloning of | 
|  | // recursive functions into themselves. | 
|  | // | 
|  | for (Function::const_iterator BI = OldFunc->begin(), BE = OldFunc->end(); | 
|  | BI != BE; ++BI) { | 
|  | const BasicBlock &BB = *BI; | 
|  |  | 
|  | // Create a new basic block and copy instructions into it! | 
|  | BasicBlock *CBB = CloneBasicBlock(&BB, VMap, NameSuffix, NewFunc, CodeInfo, | 
|  | ModuleLevelChanges ? &DIFinder : nullptr); | 
|  |  | 
|  | // Add basic block mapping. | 
|  | VMap[&BB] = CBB; | 
|  |  | 
|  | // It is only legal to clone a function if a block address within that | 
|  | // function is never referenced outside of the function.  Given that, we | 
|  | // want to map block addresses from the old function to block addresses in | 
|  | // the clone. (This is different from the generic ValueMapper | 
|  | // implementation, which generates an invalid blockaddress when | 
|  | // cloning a function.) | 
|  | if (BB.hasAddressTaken()) { | 
|  | Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), | 
|  | const_cast<BasicBlock*>(&BB)); | 
|  | VMap[OldBBAddr] = BlockAddress::get(NewFunc, CBB); | 
|  | } | 
|  |  | 
|  | // Note return instructions for the caller. | 
|  | if (ReturnInst *RI = dyn_cast<ReturnInst>(CBB->getTerminator())) | 
|  | Returns.push_back(RI); | 
|  | } | 
|  |  | 
|  | for (DISubprogram *ISP : DIFinder.subprograms()) | 
|  | if (ISP != SP) | 
|  | VMap.MD()[ISP].reset(ISP); | 
|  |  | 
|  | for (DICompileUnit *CU : DIFinder.compile_units()) | 
|  | VMap.MD()[CU].reset(CU); | 
|  |  | 
|  | for (DIType *Type : DIFinder.types()) | 
|  | VMap.MD()[Type].reset(Type); | 
|  |  | 
|  | // Loop over all of the instructions in the function, fixing up operand | 
|  | // references as we go.  This uses VMap to do all the hard work. | 
|  | for (Function::iterator BB = | 
|  | cast<BasicBlock>(VMap[&OldFunc->front()])->getIterator(), | 
|  | BE = NewFunc->end(); | 
|  | BB != BE; ++BB) | 
|  | // Loop over all instructions, fixing each one as we find it... | 
|  | for (Instruction &II : *BB) | 
|  | RemapInstruction(&II, VMap, | 
|  | ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, | 
|  | TypeMapper, Materializer); | 
|  | } | 
|  |  | 
|  | /// Return a copy of the specified function and add it to that function's | 
|  | /// module.  Also, any references specified in the VMap are changed to refer to | 
|  | /// their mapped value instead of the original one.  If any of the arguments to | 
|  | /// the function are in the VMap, the arguments are deleted from the resultant | 
|  | /// function.  The VMap is updated to include mappings from all of the | 
|  | /// instructions and basicblocks in the function from their old to new values. | 
|  | /// | 
|  | Function *llvm::CloneFunction(Function *F, ValueToValueMapTy &VMap, | 
|  | ClonedCodeInfo *CodeInfo) { | 
|  | std::vector<Type*> ArgTypes; | 
|  |  | 
|  | // The user might be deleting arguments to the function by specifying them in | 
|  | // the VMap.  If so, we need to not add the arguments to the arg ty vector | 
|  | // | 
|  | for (const Argument &I : F->args()) | 
|  | if (VMap.count(&I) == 0) // Haven't mapped the argument to anything yet? | 
|  | ArgTypes.push_back(I.getType()); | 
|  |  | 
|  | // Create a new function type... | 
|  | FunctionType *FTy = FunctionType::get(F->getFunctionType()->getReturnType(), | 
|  | ArgTypes, F->getFunctionType()->isVarArg()); | 
|  |  | 
|  | // Create the new function... | 
|  | Function *NewF = Function::Create(FTy, F->getLinkage(), F->getAddressSpace(), | 
|  | F->getName(), F->getParent()); | 
|  |  | 
|  | // Loop over the arguments, copying the names of the mapped arguments over... | 
|  | Function::arg_iterator DestI = NewF->arg_begin(); | 
|  | for (const Argument & I : F->args()) | 
|  | if (VMap.count(&I) == 0) {     // Is this argument preserved? | 
|  | DestI->setName(I.getName()); // Copy the name over... | 
|  | VMap[&I] = &*DestI++;        // Add mapping to VMap | 
|  | } | 
|  |  | 
|  | SmallVector<ReturnInst*, 8> Returns;  // Ignore returns cloned. | 
|  | CloneFunctionInto(NewF, F, VMap, F->getSubprogram() != nullptr, Returns, "", | 
|  | CodeInfo); | 
|  |  | 
|  | return NewF; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | namespace { | 
|  | /// This is a private class used to implement CloneAndPruneFunctionInto. | 
|  | struct PruningFunctionCloner { | 
|  | Function *NewFunc; | 
|  | const Function *OldFunc; | 
|  | ValueToValueMapTy &VMap; | 
|  | bool ModuleLevelChanges; | 
|  | const char *NameSuffix; | 
|  | ClonedCodeInfo *CodeInfo; | 
|  |  | 
|  | public: | 
|  | PruningFunctionCloner(Function *newFunc, const Function *oldFunc, | 
|  | ValueToValueMapTy &valueMap, bool moduleLevelChanges, | 
|  | const char *nameSuffix, ClonedCodeInfo *codeInfo) | 
|  | : NewFunc(newFunc), OldFunc(oldFunc), VMap(valueMap), | 
|  | ModuleLevelChanges(moduleLevelChanges), NameSuffix(nameSuffix), | 
|  | CodeInfo(codeInfo) {} | 
|  |  | 
|  | /// The specified block is found to be reachable, clone it and | 
|  | /// anything that it can reach. | 
|  | void CloneBlock(const BasicBlock *BB, | 
|  | BasicBlock::const_iterator StartingInst, | 
|  | std::vector<const BasicBlock*> &ToClone); | 
|  | }; | 
|  | } | 
|  |  | 
|  | /// The specified block is found to be reachable, clone it and | 
|  | /// anything that it can reach. | 
|  | void PruningFunctionCloner::CloneBlock(const BasicBlock *BB, | 
|  | BasicBlock::const_iterator StartingInst, | 
|  | std::vector<const BasicBlock*> &ToClone){ | 
|  | WeakTrackingVH &BBEntry = VMap[BB]; | 
|  |  | 
|  | // Have we already cloned this block? | 
|  | if (BBEntry) return; | 
|  |  | 
|  | // Nope, clone it now. | 
|  | BasicBlock *NewBB; | 
|  | BBEntry = NewBB = BasicBlock::Create(BB->getContext()); | 
|  | if (BB->hasName()) NewBB->setName(BB->getName()+NameSuffix); | 
|  |  | 
|  | // It is only legal to clone a function if a block address within that | 
|  | // function is never referenced outside of the function.  Given that, we | 
|  | // want to map block addresses from the old function to block addresses in | 
|  | // the clone. (This is different from the generic ValueMapper | 
|  | // implementation, which generates an invalid blockaddress when | 
|  | // cloning a function.) | 
|  | // | 
|  | // Note that we don't need to fix the mapping for unreachable blocks; | 
|  | // the default mapping there is safe. | 
|  | if (BB->hasAddressTaken()) { | 
|  | Constant *OldBBAddr = BlockAddress::get(const_cast<Function*>(OldFunc), | 
|  | const_cast<BasicBlock*>(BB)); | 
|  | VMap[OldBBAddr] = BlockAddress::get(NewFunc, NewBB); | 
|  | } | 
|  |  | 
|  | bool hasCalls = false, hasDynamicAllocas = false, hasStaticAllocas = false; | 
|  |  | 
|  | // Loop over all instructions, and copy them over, DCE'ing as we go.  This | 
|  | // loop doesn't include the terminator. | 
|  | for (BasicBlock::const_iterator II = StartingInst, IE = --BB->end(); | 
|  | II != IE; ++II) { | 
|  |  | 
|  | Instruction *NewInst = II->clone(); | 
|  |  | 
|  | // Eagerly remap operands to the newly cloned instruction, except for PHI | 
|  | // nodes for which we defer processing until we update the CFG. | 
|  | if (!isa<PHINode>(NewInst)) { | 
|  | RemapInstruction(NewInst, VMap, | 
|  | ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); | 
|  |  | 
|  | // If we can simplify this instruction to some other value, simply add | 
|  | // a mapping to that value rather than inserting a new instruction into | 
|  | // the basic block. | 
|  | if (Value *V = | 
|  | SimplifyInstruction(NewInst, BB->getModule()->getDataLayout())) { | 
|  | // On the off-chance that this simplifies to an instruction in the old | 
|  | // function, map it back into the new function. | 
|  | if (NewFunc != OldFunc) | 
|  | if (Value *MappedV = VMap.lookup(V)) | 
|  | V = MappedV; | 
|  |  | 
|  | if (!NewInst->mayHaveSideEffects()) { | 
|  | VMap[&*II] = V; | 
|  | NewInst->deleteValue(); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (II->hasName()) | 
|  | NewInst->setName(II->getName()+NameSuffix); | 
|  | VMap[&*II] = NewInst; // Add instruction map to value. | 
|  | NewBB->getInstList().push_back(NewInst); | 
|  | hasCalls |= (isa<CallInst>(II) && !isa<DbgInfoIntrinsic>(II)); | 
|  |  | 
|  | if (CodeInfo) | 
|  | if (auto CS = ImmutableCallSite(&*II)) | 
|  | if (CS.hasOperandBundles()) | 
|  | CodeInfo->OperandBundleCallSites.push_back(NewInst); | 
|  |  | 
|  | if (const AllocaInst *AI = dyn_cast<AllocaInst>(II)) { | 
|  | if (isa<ConstantInt>(AI->getArraySize())) | 
|  | hasStaticAllocas = true; | 
|  | else | 
|  | hasDynamicAllocas = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Finally, clone over the terminator. | 
|  | const TerminatorInst *OldTI = BB->getTerminator(); | 
|  | bool TerminatorDone = false; | 
|  | if (const BranchInst *BI = dyn_cast<BranchInst>(OldTI)) { | 
|  | if (BI->isConditional()) { | 
|  | // If the condition was a known constant in the callee... | 
|  | ConstantInt *Cond = dyn_cast<ConstantInt>(BI->getCondition()); | 
|  | // Or is a known constant in the caller... | 
|  | if (!Cond) { | 
|  | Value *V = VMap.lookup(BI->getCondition()); | 
|  | Cond = dyn_cast_or_null<ConstantInt>(V); | 
|  | } | 
|  |  | 
|  | // Constant fold to uncond branch! | 
|  | if (Cond) { | 
|  | BasicBlock *Dest = BI->getSuccessor(!Cond->getZExtValue()); | 
|  | VMap[OldTI] = BranchInst::Create(Dest, NewBB); | 
|  | ToClone.push_back(Dest); | 
|  | TerminatorDone = true; | 
|  | } | 
|  | } | 
|  | } else if (const SwitchInst *SI = dyn_cast<SwitchInst>(OldTI)) { | 
|  | // If switching on a value known constant in the caller. | 
|  | ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition()); | 
|  | if (!Cond) { // Or known constant after constant prop in the callee... | 
|  | Value *V = VMap.lookup(SI->getCondition()); | 
|  | Cond = dyn_cast_or_null<ConstantInt>(V); | 
|  | } | 
|  | if (Cond) {     // Constant fold to uncond branch! | 
|  | SwitchInst::ConstCaseHandle Case = *SI->findCaseValue(Cond); | 
|  | BasicBlock *Dest = const_cast<BasicBlock*>(Case.getCaseSuccessor()); | 
|  | VMap[OldTI] = BranchInst::Create(Dest, NewBB); | 
|  | ToClone.push_back(Dest); | 
|  | TerminatorDone = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!TerminatorDone) { | 
|  | Instruction *NewInst = OldTI->clone(); | 
|  | if (OldTI->hasName()) | 
|  | NewInst->setName(OldTI->getName()+NameSuffix); | 
|  | NewBB->getInstList().push_back(NewInst); | 
|  | VMap[OldTI] = NewInst;             // Add instruction map to value. | 
|  |  | 
|  | if (CodeInfo) | 
|  | if (auto CS = ImmutableCallSite(OldTI)) | 
|  | if (CS.hasOperandBundles()) | 
|  | CodeInfo->OperandBundleCallSites.push_back(NewInst); | 
|  |  | 
|  | // Recursively clone any reachable successor blocks. | 
|  | const TerminatorInst *TI = BB->getTerminator(); | 
|  | for (const BasicBlock *Succ : successors(TI)) | 
|  | ToClone.push_back(Succ); | 
|  | } | 
|  |  | 
|  | if (CodeInfo) { | 
|  | CodeInfo->ContainsCalls          |= hasCalls; | 
|  | CodeInfo->ContainsDynamicAllocas |= hasDynamicAllocas; | 
|  | CodeInfo->ContainsDynamicAllocas |= hasStaticAllocas && | 
|  | BB != &BB->getParent()->front(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// This works like CloneAndPruneFunctionInto, except that it does not clone the | 
|  | /// entire function. Instead it starts at an instruction provided by the caller | 
|  | /// and copies (and prunes) only the code reachable from that instruction. | 
|  | void llvm::CloneAndPruneIntoFromInst(Function *NewFunc, const Function *OldFunc, | 
|  | const Instruction *StartingInst, | 
|  | ValueToValueMapTy &VMap, | 
|  | bool ModuleLevelChanges, | 
|  | SmallVectorImpl<ReturnInst *> &Returns, | 
|  | const char *NameSuffix, | 
|  | ClonedCodeInfo *CodeInfo) { | 
|  | assert(NameSuffix && "NameSuffix cannot be null!"); | 
|  |  | 
|  | ValueMapTypeRemapper *TypeMapper = nullptr; | 
|  | ValueMaterializer *Materializer = nullptr; | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // If the cloning starts at the beginning of the function, verify that | 
|  | // the function arguments are mapped. | 
|  | if (!StartingInst) | 
|  | for (const Argument &II : OldFunc->args()) | 
|  | assert(VMap.count(&II) && "No mapping from source argument specified!"); | 
|  | #endif | 
|  |  | 
|  | PruningFunctionCloner PFC(NewFunc, OldFunc, VMap, ModuleLevelChanges, | 
|  | NameSuffix, CodeInfo); | 
|  | const BasicBlock *StartingBB; | 
|  | if (StartingInst) | 
|  | StartingBB = StartingInst->getParent(); | 
|  | else { | 
|  | StartingBB = &OldFunc->getEntryBlock(); | 
|  | StartingInst = &StartingBB->front(); | 
|  | } | 
|  |  | 
|  | // Clone the entry block, and anything recursively reachable from it. | 
|  | std::vector<const BasicBlock*> CloneWorklist; | 
|  | PFC.CloneBlock(StartingBB, StartingInst->getIterator(), CloneWorklist); | 
|  | while (!CloneWorklist.empty()) { | 
|  | const BasicBlock *BB = CloneWorklist.back(); | 
|  | CloneWorklist.pop_back(); | 
|  | PFC.CloneBlock(BB, BB->begin(), CloneWorklist); | 
|  | } | 
|  |  | 
|  | // Loop over all of the basic blocks in the old function.  If the block was | 
|  | // reachable, we have cloned it and the old block is now in the value map: | 
|  | // insert it into the new function in the right order.  If not, ignore it. | 
|  | // | 
|  | // Defer PHI resolution until rest of function is resolved. | 
|  | SmallVector<const PHINode*, 16> PHIToResolve; | 
|  | for (const BasicBlock &BI : *OldFunc) { | 
|  | Value *V = VMap.lookup(&BI); | 
|  | BasicBlock *NewBB = cast_or_null<BasicBlock>(V); | 
|  | if (!NewBB) continue;  // Dead block. | 
|  |  | 
|  | // Add the new block to the new function. | 
|  | NewFunc->getBasicBlockList().push_back(NewBB); | 
|  |  | 
|  | // Handle PHI nodes specially, as we have to remove references to dead | 
|  | // blocks. | 
|  | for (const PHINode &PN : BI.phis()) { | 
|  | // PHI nodes may have been remapped to non-PHI nodes by the caller or | 
|  | // during the cloning process. | 
|  | if (isa<PHINode>(VMap[&PN])) | 
|  | PHIToResolve.push_back(&PN); | 
|  | else | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Finally, remap the terminator instructions, as those can't be remapped | 
|  | // until all BBs are mapped. | 
|  | RemapInstruction(NewBB->getTerminator(), VMap, | 
|  | ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges, | 
|  | TypeMapper, Materializer); | 
|  | } | 
|  |  | 
|  | // Defer PHI resolution until rest of function is resolved, PHI resolution | 
|  | // requires the CFG to be up-to-date. | 
|  | for (unsigned phino = 0, e = PHIToResolve.size(); phino != e; ) { | 
|  | const PHINode *OPN = PHIToResolve[phino]; | 
|  | unsigned NumPreds = OPN->getNumIncomingValues(); | 
|  | const BasicBlock *OldBB = OPN->getParent(); | 
|  | BasicBlock *NewBB = cast<BasicBlock>(VMap[OldBB]); | 
|  |  | 
|  | // Map operands for blocks that are live and remove operands for blocks | 
|  | // that are dead. | 
|  | for (; phino != PHIToResolve.size() && | 
|  | PHIToResolve[phino]->getParent() == OldBB; ++phino) { | 
|  | OPN = PHIToResolve[phino]; | 
|  | PHINode *PN = cast<PHINode>(VMap[OPN]); | 
|  | for (unsigned pred = 0, e = NumPreds; pred != e; ++pred) { | 
|  | Value *V = VMap.lookup(PN->getIncomingBlock(pred)); | 
|  | if (BasicBlock *MappedBlock = cast_or_null<BasicBlock>(V)) { | 
|  | Value *InVal = MapValue(PN->getIncomingValue(pred), | 
|  | VMap, | 
|  | ModuleLevelChanges ? RF_None : RF_NoModuleLevelChanges); | 
|  | assert(InVal && "Unknown input value?"); | 
|  | PN->setIncomingValue(pred, InVal); | 
|  | PN->setIncomingBlock(pred, MappedBlock); | 
|  | } else { | 
|  | PN->removeIncomingValue(pred, false); | 
|  | --pred;  // Revisit the next entry. | 
|  | --e; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // The loop above has removed PHI entries for those blocks that are dead | 
|  | // and has updated others.  However, if a block is live (i.e. copied over) | 
|  | // but its terminator has been changed to not go to this block, then our | 
|  | // phi nodes will have invalid entries.  Update the PHI nodes in this | 
|  | // case. | 
|  | PHINode *PN = cast<PHINode>(NewBB->begin()); | 
|  | NumPreds = pred_size(NewBB); | 
|  | if (NumPreds != PN->getNumIncomingValues()) { | 
|  | assert(NumPreds < PN->getNumIncomingValues()); | 
|  | // Count how many times each predecessor comes to this block. | 
|  | std::map<BasicBlock*, unsigned> PredCount; | 
|  | for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); | 
|  | PI != E; ++PI) | 
|  | --PredCount[*PI]; | 
|  |  | 
|  | // Figure out how many entries to remove from each PHI. | 
|  | for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) | 
|  | ++PredCount[PN->getIncomingBlock(i)]; | 
|  |  | 
|  | // At this point, the excess predecessor entries are positive in the | 
|  | // map.  Loop over all of the PHIs and remove excess predecessor | 
|  | // entries. | 
|  | BasicBlock::iterator I = NewBB->begin(); | 
|  | for (; (PN = dyn_cast<PHINode>(I)); ++I) { | 
|  | for (const auto &PCI : PredCount) { | 
|  | BasicBlock *Pred = PCI.first; | 
|  | for (unsigned NumToRemove = PCI.second; NumToRemove; --NumToRemove) | 
|  | PN->removeIncomingValue(Pred, false); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the loops above have made these phi nodes have 0 or 1 operand, | 
|  | // replace them with undef or the input value.  We must do this for | 
|  | // correctness, because 0-operand phis are not valid. | 
|  | PN = cast<PHINode>(NewBB->begin()); | 
|  | if (PN->getNumIncomingValues() == 0) { | 
|  | BasicBlock::iterator I = NewBB->begin(); | 
|  | BasicBlock::const_iterator OldI = OldBB->begin(); | 
|  | while ((PN = dyn_cast<PHINode>(I++))) { | 
|  | Value *NV = UndefValue::get(PN->getType()); | 
|  | PN->replaceAllUsesWith(NV); | 
|  | assert(VMap[&*OldI] == PN && "VMap mismatch"); | 
|  | VMap[&*OldI] = NV; | 
|  | PN->eraseFromParent(); | 
|  | ++OldI; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Make a second pass over the PHINodes now that all of them have been | 
|  | // remapped into the new function, simplifying the PHINode and performing any | 
|  | // recursive simplifications exposed. This will transparently update the | 
|  | // WeakTrackingVH in the VMap. Notably, we rely on that so that if we coalesce | 
|  | // two PHINodes, the iteration over the old PHIs remains valid, and the | 
|  | // mapping will just map us to the new node (which may not even be a PHI | 
|  | // node). | 
|  | const DataLayout &DL = NewFunc->getParent()->getDataLayout(); | 
|  | SmallSetVector<const Value *, 8> Worklist; | 
|  | for (unsigned Idx = 0, Size = PHIToResolve.size(); Idx != Size; ++Idx) | 
|  | if (isa<PHINode>(VMap[PHIToResolve[Idx]])) | 
|  | Worklist.insert(PHIToResolve[Idx]); | 
|  |  | 
|  | // Note that we must test the size on each iteration, the worklist can grow. | 
|  | for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { | 
|  | const Value *OrigV = Worklist[Idx]; | 
|  | auto *I = dyn_cast_or_null<Instruction>(VMap.lookup(OrigV)); | 
|  | if (!I) | 
|  | continue; | 
|  |  | 
|  | // Skip over non-intrinsic callsites, we don't want to remove any nodes from | 
|  | // the CGSCC. | 
|  | CallSite CS = CallSite(I); | 
|  | if (CS && CS.getCalledFunction() && !CS.getCalledFunction()->isIntrinsic()) | 
|  | continue; | 
|  |  | 
|  | // See if this instruction simplifies. | 
|  | Value *SimpleV = SimplifyInstruction(I, DL); | 
|  | if (!SimpleV) | 
|  | continue; | 
|  |  | 
|  | // Stash away all the uses of the old instruction so we can check them for | 
|  | // recursive simplifications after a RAUW. This is cheaper than checking all | 
|  | // uses of To on the recursive step in most cases. | 
|  | for (const User *U : OrigV->users()) | 
|  | Worklist.insert(cast<Instruction>(U)); | 
|  |  | 
|  | // Replace the instruction with its simplified value. | 
|  | I->replaceAllUsesWith(SimpleV); | 
|  |  | 
|  | // If the original instruction had no side effects, remove it. | 
|  | if (isInstructionTriviallyDead(I)) | 
|  | I->eraseFromParent(); | 
|  | else | 
|  | VMap[OrigV] = I; | 
|  | } | 
|  |  | 
|  | // Now that the inlined function body has been fully constructed, go through | 
|  | // and zap unconditional fall-through branches. This happens all the time when | 
|  | // specializing code: code specialization turns conditional branches into | 
|  | // uncond branches, and this code folds them. | 
|  | Function::iterator Begin = cast<BasicBlock>(VMap[StartingBB])->getIterator(); | 
|  | Function::iterator I = Begin; | 
|  | while (I != NewFunc->end()) { | 
|  | // We need to simplify conditional branches and switches with a constant | 
|  | // operand. We try to prune these out when cloning, but if the | 
|  | // simplification required looking through PHI nodes, those are only | 
|  | // available after forming the full basic block. That may leave some here, | 
|  | // and we still want to prune the dead code as early as possible. | 
|  | // | 
|  | // Do the folding before we check if the block is dead since we want code | 
|  | // like | 
|  | //  bb: | 
|  | //    br i1 undef, label %bb, label %bb | 
|  | // to be simplified to | 
|  | //  bb: | 
|  | //    br label %bb | 
|  | // before we call I->getSinglePredecessor(). | 
|  | ConstantFoldTerminator(&*I); | 
|  |  | 
|  | // Check if this block has become dead during inlining or other | 
|  | // simplifications. Note that the first block will appear dead, as it has | 
|  | // not yet been wired up properly. | 
|  | if (I != Begin && (pred_begin(&*I) == pred_end(&*I) || | 
|  | I->getSinglePredecessor() == &*I)) { | 
|  | BasicBlock *DeadBB = &*I++; | 
|  | DeleteDeadBlock(DeadBB); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | BranchInst *BI = dyn_cast<BranchInst>(I->getTerminator()); | 
|  | if (!BI || BI->isConditional()) { ++I; continue; } | 
|  |  | 
|  | BasicBlock *Dest = BI->getSuccessor(0); | 
|  | if (!Dest->getSinglePredecessor()) { | 
|  | ++I; continue; | 
|  | } | 
|  |  | 
|  | // We shouldn't be able to get single-entry PHI nodes here, as instsimplify | 
|  | // above should have zapped all of them.. | 
|  | assert(!isa<PHINode>(Dest->begin())); | 
|  |  | 
|  | // We know all single-entry PHI nodes in the inlined function have been | 
|  | // removed, so we just need to splice the blocks. | 
|  | BI->eraseFromParent(); | 
|  |  | 
|  | // Make all PHI nodes that referred to Dest now refer to I as their source. | 
|  | Dest->replaceAllUsesWith(&*I); | 
|  |  | 
|  | // Move all the instructions in the succ to the pred. | 
|  | I->getInstList().splice(I->end(), Dest->getInstList()); | 
|  |  | 
|  | // Remove the dest block. | 
|  | Dest->eraseFromParent(); | 
|  |  | 
|  | // Do not increment I, iteratively merge all things this block branches to. | 
|  | } | 
|  |  | 
|  | // Make a final pass over the basic blocks from the old function to gather | 
|  | // any return instructions which survived folding. We have to do this here | 
|  | // because we can iteratively remove and merge returns above. | 
|  | for (Function::iterator I = cast<BasicBlock>(VMap[StartingBB])->getIterator(), | 
|  | E = NewFunc->end(); | 
|  | I != E; ++I) | 
|  | if (ReturnInst *RI = dyn_cast<ReturnInst>(I->getTerminator())) | 
|  | Returns.push_back(RI); | 
|  | } | 
|  |  | 
|  |  | 
|  | /// This works exactly like CloneFunctionInto, | 
|  | /// except that it does some simple constant prop and DCE on the fly.  The | 
|  | /// effect of this is to copy significantly less code in cases where (for | 
|  | /// example) a function call with constant arguments is inlined, and those | 
|  | /// constant arguments cause a significant amount of code in the callee to be | 
|  | /// dead.  Since this doesn't produce an exact copy of the input, it can't be | 
|  | /// used for things like CloneFunction or CloneModule. | 
|  | void llvm::CloneAndPruneFunctionInto(Function *NewFunc, const Function *OldFunc, | 
|  | ValueToValueMapTy &VMap, | 
|  | bool ModuleLevelChanges, | 
|  | SmallVectorImpl<ReturnInst*> &Returns, | 
|  | const char *NameSuffix, | 
|  | ClonedCodeInfo *CodeInfo, | 
|  | Instruction *TheCall) { | 
|  | CloneAndPruneIntoFromInst(NewFunc, OldFunc, &OldFunc->front().front(), VMap, | 
|  | ModuleLevelChanges, Returns, NameSuffix, CodeInfo); | 
|  | } | 
|  |  | 
|  | /// Remaps instructions in \p Blocks using the mapping in \p VMap. | 
|  | void llvm::remapInstructionsInBlocks( | 
|  | const SmallVectorImpl<BasicBlock *> &Blocks, ValueToValueMapTy &VMap) { | 
|  | // Rewrite the code to refer to itself. | 
|  | for (auto *BB : Blocks) | 
|  | for (auto &Inst : *BB) | 
|  | RemapInstruction(&Inst, VMap, | 
|  | RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); | 
|  | } | 
|  |  | 
|  | /// Clones a loop \p OrigLoop.  Returns the loop and the blocks in \p | 
|  | /// Blocks. | 
|  | /// | 
|  | /// Updates LoopInfo and DominatorTree assuming the loop is dominated by block | 
|  | /// \p LoopDomBB.  Insert the new blocks before block specified in \p Before. | 
|  | Loop *llvm::cloneLoopWithPreheader(BasicBlock *Before, BasicBlock *LoopDomBB, | 
|  | Loop *OrigLoop, ValueToValueMapTy &VMap, | 
|  | const Twine &NameSuffix, LoopInfo *LI, | 
|  | DominatorTree *DT, | 
|  | SmallVectorImpl<BasicBlock *> &Blocks) { | 
|  | assert(OrigLoop->getSubLoops().empty() && | 
|  | "Loop to be cloned cannot have inner loop"); | 
|  | Function *F = OrigLoop->getHeader()->getParent(); | 
|  | Loop *ParentLoop = OrigLoop->getParentLoop(); | 
|  |  | 
|  | Loop *NewLoop = LI->AllocateLoop(); | 
|  | if (ParentLoop) | 
|  | ParentLoop->addChildLoop(NewLoop); | 
|  | else | 
|  | LI->addTopLevelLoop(NewLoop); | 
|  |  | 
|  | BasicBlock *OrigPH = OrigLoop->getLoopPreheader(); | 
|  | assert(OrigPH && "No preheader"); | 
|  | BasicBlock *NewPH = CloneBasicBlock(OrigPH, VMap, NameSuffix, F); | 
|  | // To rename the loop PHIs. | 
|  | VMap[OrigPH] = NewPH; | 
|  | Blocks.push_back(NewPH); | 
|  |  | 
|  | // Update LoopInfo. | 
|  | if (ParentLoop) | 
|  | ParentLoop->addBasicBlockToLoop(NewPH, *LI); | 
|  |  | 
|  | // Update DominatorTree. | 
|  | DT->addNewBlock(NewPH, LoopDomBB); | 
|  |  | 
|  | for (BasicBlock *BB : OrigLoop->getBlocks()) { | 
|  | BasicBlock *NewBB = CloneBasicBlock(BB, VMap, NameSuffix, F); | 
|  | VMap[BB] = NewBB; | 
|  |  | 
|  | // Update LoopInfo. | 
|  | NewLoop->addBasicBlockToLoop(NewBB, *LI); | 
|  |  | 
|  | // Add DominatorTree node. After seeing all blocks, update to correct IDom. | 
|  | DT->addNewBlock(NewBB, NewPH); | 
|  |  | 
|  | Blocks.push_back(NewBB); | 
|  | } | 
|  |  | 
|  | for (BasicBlock *BB : OrigLoop->getBlocks()) { | 
|  | // Update DominatorTree. | 
|  | BasicBlock *IDomBB = DT->getNode(BB)->getIDom()->getBlock(); | 
|  | DT->changeImmediateDominator(cast<BasicBlock>(VMap[BB]), | 
|  | cast<BasicBlock>(VMap[IDomBB])); | 
|  | } | 
|  |  | 
|  | // Move them physically from the end of the block list. | 
|  | F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), | 
|  | NewPH); | 
|  | F->getBasicBlockList().splice(Before->getIterator(), F->getBasicBlockList(), | 
|  | NewLoop->getHeader()->getIterator(), F->end()); | 
|  |  | 
|  | return NewLoop; | 
|  | } | 
|  |  | 
|  | /// Duplicate non-Phi instructions from the beginning of block up to | 
|  | /// StopAt instruction into a split block between BB and its predecessor. | 
|  | BasicBlock * | 
|  | llvm::DuplicateInstructionsInSplitBetween(BasicBlock *BB, BasicBlock *PredBB, | 
|  | Instruction *StopAt, | 
|  | ValueToValueMapTy &ValueMapping, | 
|  | DominatorTree *DT) { | 
|  | // We are going to have to map operands from the original BB block to the new | 
|  | // copy of the block 'NewBB'.  If there are PHI nodes in BB, evaluate them to | 
|  | // account for entry from PredBB. | 
|  | BasicBlock::iterator BI = BB->begin(); | 
|  | for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI) | 
|  | ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB); | 
|  |  | 
|  | BasicBlock *NewBB = SplitEdge(PredBB, BB, DT); | 
|  | NewBB->setName(PredBB->getName() + ".split"); | 
|  | Instruction *NewTerm = NewBB->getTerminator(); | 
|  |  | 
|  | // Clone the non-phi instructions of BB into NewBB, keeping track of the | 
|  | // mapping and using it to remap operands in the cloned instructions. | 
|  | // Stop once we see the terminator too. This covers the case where BB's | 
|  | // terminator gets replaced and StopAt == BB's terminator. | 
|  | for (; StopAt != &*BI && BB->getTerminator() != &*BI; ++BI) { | 
|  | Instruction *New = BI->clone(); | 
|  | New->setName(BI->getName()); | 
|  | New->insertBefore(NewTerm); | 
|  | ValueMapping[&*BI] = New; | 
|  |  | 
|  | // Remap operands to patch up intra-block references. | 
|  | for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i) | 
|  | if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) { | 
|  | auto I = ValueMapping.find(Inst); | 
|  | if (I != ValueMapping.end()) | 
|  | New->setOperand(i, I->second); | 
|  | } | 
|  | } | 
|  |  | 
|  | return NewBB; | 
|  | } |