|  | //===-- X86ISelLowering.h - X86 DAG Lowering Interface ----------*- C++ -*-===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file was developed by Chris Lattner and is distributed under | 
|  | // the University of Illinois Open Source License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file defines the interfaces that X86 uses to lower LLVM code into a | 
|  | // selection DAG. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "X86.h" | 
|  | #include "X86InstrBuilder.h" | 
|  | #include "X86ISelLowering.h" | 
|  | #include "X86TargetMachine.h" | 
|  | #include "llvm/CallingConv.h" | 
|  | #include "llvm/Function.h" | 
|  | #include "llvm/CodeGen/MachineFrameInfo.h" | 
|  | #include "llvm/CodeGen/MachineFunction.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/SelectionDAG.h" | 
|  | #include "llvm/CodeGen/SSARegMap.h" | 
|  | #include "llvm/Target/TargetOptions.h" | 
|  | using namespace llvm; | 
|  |  | 
|  | // FIXME: temporary. | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | static cl::opt<bool> EnableFastCC("enable-x86-fastcc", cl::Hidden, | 
|  | cl::desc("Enable fastcc on X86")); | 
|  |  | 
|  | X86TargetLowering::X86TargetLowering(TargetMachine &TM) | 
|  | : TargetLowering(TM) { | 
|  | // Set up the TargetLowering object. | 
|  |  | 
|  | // X86 is weird, it always uses i8 for shift amounts and setcc results. | 
|  | setShiftAmountType(MVT::i8); | 
|  | setSetCCResultType(MVT::i8); | 
|  | setSetCCResultContents(ZeroOrOneSetCCResult); | 
|  | setShiftAmountFlavor(Mask);   // shl X, 32 == shl X, 0 | 
|  | setStackPointerRegisterToSaveRestore(X86::ESP); | 
|  |  | 
|  | // Set up the register classes. | 
|  | addRegisterClass(MVT::i8, X86::R8RegisterClass); | 
|  | addRegisterClass(MVT::i16, X86::R16RegisterClass); | 
|  | addRegisterClass(MVT::i32, X86::R32RegisterClass); | 
|  |  | 
|  | // Promote all UINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have this | 
|  | // operation. | 
|  | setOperationAction(ISD::UINT_TO_FP       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP       , MVT::i8   , Promote); | 
|  | setOperationAction(ISD::UINT_TO_FP       , MVT::i16  , Promote); | 
|  |  | 
|  | if (X86ScalarSSE) | 
|  | // No SSE i64 SINT_TO_FP, so expand i32 UINT_TO_FP instead. | 
|  | setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Expand); | 
|  | else | 
|  | setOperationAction(ISD::UINT_TO_FP     , MVT::i32  , Promote); | 
|  |  | 
|  | // Promote i1/i8 SINT_TO_FP to larger SINT_TO_FP's, as X86 doesn't have | 
|  | // this operation. | 
|  | setOperationAction(ISD::SINT_TO_FP       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::SINT_TO_FP       , MVT::i8   , Promote); | 
|  |  | 
|  | if (!X86ScalarSSE) { | 
|  | // We can handle SINT_TO_FP and FP_TO_SINT from/TO i64 even though i64 | 
|  | // isn't legal. | 
|  | setOperationAction(ISD::SINT_TO_FP     , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i64  , Custom); | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::FP_TO_SINT     , MVT::i16  , Custom); | 
|  | } | 
|  |  | 
|  | // Handle FP_TO_UINT by promoting the destination to a larger signed | 
|  | // conversion. | 
|  | setOperationAction(ISD::FP_TO_UINT       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::FP_TO_UINT       , MVT::i8   , Promote); | 
|  | setOperationAction(ISD::FP_TO_UINT       , MVT::i16  , Promote); | 
|  |  | 
|  | if (!X86ScalarSSE) | 
|  | setOperationAction(ISD::FP_TO_UINT     , MVT::i32  , Promote); | 
|  |  | 
|  | // Promote i1/i8 FP_TO_SINT to larger FP_TO_SINTS's, as X86 doesn't have | 
|  | // this operation. | 
|  | setOperationAction(ISD::FP_TO_SINT       , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::FP_TO_SINT       , MVT::i8   , Promote); | 
|  | setOperationAction(ISD::FP_TO_SINT       , MVT::i16  , Promote); | 
|  |  | 
|  | setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand); | 
|  | setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand); | 
|  |  | 
|  | if (X86DAGIsel) { | 
|  | setOperationAction(ISD::BRCOND         , MVT::Other, Custom); | 
|  | } | 
|  | setOperationAction(ISD::BRCONDTWOWAY     , MVT::Other, Expand); | 
|  | setOperationAction(ISD::BRTWOWAY_CC      , MVT::Other, Expand); | 
|  | setOperationAction(ISD::MEMMOVE          , MVT::Other, Expand); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i16  , Expand); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i8   , Expand); | 
|  | setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1   , Expand); | 
|  | setOperationAction(ISD::FP_ROUND_INREG   , MVT::f32  , Expand); | 
|  | setOperationAction(ISD::SEXTLOAD         , MVT::i1   , Expand); | 
|  | setOperationAction(ISD::FREM             , MVT::f64  , Expand); | 
|  | setOperationAction(ISD::CTPOP            , MVT::i8   , Expand); | 
|  | setOperationAction(ISD::CTTZ             , MVT::i8   , Expand); | 
|  | setOperationAction(ISD::CTLZ             , MVT::i8   , Expand); | 
|  | setOperationAction(ISD::CTPOP            , MVT::i16  , Expand); | 
|  | setOperationAction(ISD::CTTZ             , MVT::i16  , Expand); | 
|  | setOperationAction(ISD::CTLZ             , MVT::i16  , Expand); | 
|  | setOperationAction(ISD::CTPOP            , MVT::i32  , Expand); | 
|  | setOperationAction(ISD::CTTZ             , MVT::i32  , Expand); | 
|  | setOperationAction(ISD::CTLZ             , MVT::i32  , Expand); | 
|  | setOperationAction(ISD::READCYCLECOUNTER , MVT::i64  , Custom); | 
|  |  | 
|  | if (!X86DAGIsel) { | 
|  | setOperationAction(ISD::BSWAP          , MVT::i32  , Expand); | 
|  | setOperationAction(ISD::ROTL           , MVT::i8   , Expand); | 
|  | setOperationAction(ISD::ROTR           , MVT::i8   , Expand); | 
|  | setOperationAction(ISD::ROTL           , MVT::i16  , Expand); | 
|  | setOperationAction(ISD::ROTR           , MVT::i16  , Expand); | 
|  | setOperationAction(ISD::ROTL           , MVT::i32  , Expand); | 
|  | setOperationAction(ISD::ROTR           , MVT::i32  , Expand); | 
|  | } | 
|  | setOperationAction(ISD::BSWAP            , MVT::i16  , Expand); | 
|  |  | 
|  | setOperationAction(ISD::READIO           , MVT::i1   , Expand); | 
|  | setOperationAction(ISD::READIO           , MVT::i8   , Expand); | 
|  | setOperationAction(ISD::READIO           , MVT::i16  , Expand); | 
|  | setOperationAction(ISD::READIO           , MVT::i32  , Expand); | 
|  | setOperationAction(ISD::WRITEIO          , MVT::i1   , Expand); | 
|  | setOperationAction(ISD::WRITEIO          , MVT::i8   , Expand); | 
|  | setOperationAction(ISD::WRITEIO          , MVT::i16  , Expand); | 
|  | setOperationAction(ISD::WRITEIO          , MVT::i32  , Expand); | 
|  |  | 
|  | // These should be promoted to a larger select which is supported. | 
|  | setOperationAction(ISD::SELECT           , MVT::i1   , Promote); | 
|  | setOperationAction(ISD::SELECT           , MVT::i8   , Promote); | 
|  | if (X86DAGIsel) { | 
|  | // X86 wants to expand cmov itself. | 
|  | setOperationAction(ISD::SELECT         , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::SELECT         , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SELECT         , MVT::f32  , Custom); | 
|  | setOperationAction(ISD::SELECT         , MVT::f64  , Custom); | 
|  | setOperationAction(ISD::SETCC          , MVT::i8   , Custom); | 
|  | setOperationAction(ISD::SETCC          , MVT::i16  , Custom); | 
|  | setOperationAction(ISD::SETCC          , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SETCC          , MVT::f32  , Custom); | 
|  | setOperationAction(ISD::SETCC          , MVT::f64  , Custom); | 
|  | // X86 ret instruction may pop stack. | 
|  | setOperationAction(ISD::RET            , MVT::Other, Custom); | 
|  | // Darwin ABI issue. | 
|  | setOperationAction(ISD::GlobalAddress  , MVT::i32  , Custom); | 
|  | // 64-bit addm sub, shl, sra, srl (iff 32-bit x86) | 
|  | setOperationAction(ISD::ADD_PARTS      , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SUB_PARTS      , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SHL_PARTS      , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SRA_PARTS      , MVT::i32  , Custom); | 
|  | setOperationAction(ISD::SRL_PARTS      , MVT::i32  , Custom); | 
|  | // X86 wants to expand memset / memcpy itself. | 
|  | setOperationAction(ISD::MEMSET         , MVT::Other, Custom); | 
|  | setOperationAction(ISD::MEMCPY         , MVT::Other, Custom); | 
|  | } | 
|  |  | 
|  | // We don't have line number support yet. | 
|  | setOperationAction(ISD::LOCATION, MVT::Other, Expand); | 
|  | setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand); | 
|  | setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand); | 
|  |  | 
|  | // Expand to the default code. | 
|  | setOperationAction(ISD::STACKSAVE,          MVT::Other, Expand); | 
|  | setOperationAction(ISD::STACKRESTORE,       MVT::Other, Expand); | 
|  | setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Expand); | 
|  |  | 
|  | if (X86ScalarSSE) { | 
|  | // Set up the FP register classes. | 
|  | addRegisterClass(MVT::f32, X86::FR32RegisterClass); | 
|  | addRegisterClass(MVT::f64, X86::FR64RegisterClass); | 
|  |  | 
|  | // SSE has no load+extend ops | 
|  | setOperationAction(ISD::EXTLOAD,  MVT::f32, Expand); | 
|  | setOperationAction(ISD::ZEXTLOAD, MVT::f32, Expand); | 
|  |  | 
|  | // SSE has no i16 to fp conversion, only i32 | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote); | 
|  | setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote); | 
|  |  | 
|  | // Expand FP_TO_UINT into a select. | 
|  | // FIXME: We would like to use a Custom expander here eventually to do | 
|  | // the optimal thing for SSE vs. the default expansion in the legalizer. | 
|  | setOperationAction(ISD::FP_TO_UINT       , MVT::i32  , Expand); | 
|  |  | 
|  | // We don't support sin/cos/sqrt/fmod | 
|  | setOperationAction(ISD::FSIN , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FCOS , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FABS , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FNEG , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FREM , MVT::f64, Expand); | 
|  | setOperationAction(ISD::FSIN , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FCOS , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FABS , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FNEG , MVT::f32, Expand); | 
|  | setOperationAction(ISD::FREM , MVT::f32, Expand); | 
|  |  | 
|  | addLegalFPImmediate(+0.0); // xorps / xorpd | 
|  | } else { | 
|  | // Set up the FP register classes. | 
|  | addRegisterClass(MVT::f64, X86::RFPRegisterClass); | 
|  |  | 
|  | if (X86DAGIsel) { | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i16, Custom); | 
|  | setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom); | 
|  | } | 
|  |  | 
|  | if (!UnsafeFPMath) { | 
|  | setOperationAction(ISD::FSIN           , MVT::f64  , Expand); | 
|  | setOperationAction(ISD::FCOS           , MVT::f64  , Expand); | 
|  | } | 
|  |  | 
|  | addLegalFPImmediate(+0.0); // FLD0 | 
|  | addLegalFPImmediate(+1.0); // FLD1 | 
|  | addLegalFPImmediate(-0.0); // FLD0/FCHS | 
|  | addLegalFPImmediate(-1.0); // FLD1/FCHS | 
|  | } | 
|  | computeRegisterProperties(); | 
|  |  | 
|  | maxStoresPerMemSet = 8; // For %llvm.memset -> sequence of stores | 
|  | maxStoresPerMemCpy = 8; // For %llvm.memcpy -> sequence of stores | 
|  | maxStoresPerMemMove = 8; // For %llvm.memmove -> sequence of stores | 
|  | allowUnalignedMemoryAccesses = true; // x86 supports it! | 
|  | } | 
|  |  | 
|  | std::vector<SDOperand> | 
|  | X86TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) { | 
|  | if (F.getCallingConv() == CallingConv::Fast && EnableFastCC) | 
|  | return LowerFastCCArguments(F, DAG); | 
|  | return LowerCCCArguments(F, DAG); | 
|  | } | 
|  |  | 
|  | std::pair<SDOperand, SDOperand> | 
|  | X86TargetLowering::LowerCallTo(SDOperand Chain, const Type *RetTy, | 
|  | bool isVarArg, unsigned CallingConv, | 
|  | bool isTailCall, | 
|  | SDOperand Callee, ArgListTy &Args, | 
|  | SelectionDAG &DAG) { | 
|  | assert((!isVarArg || CallingConv == CallingConv::C) && | 
|  | "Only C takes varargs!"); | 
|  |  | 
|  | // If the callee is a GlobalAddress node (quite common, every direct call is) | 
|  | // turn it into a TargetGlobalAddress node so that legalize doesn't hack it. | 
|  | if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) | 
|  | Callee = DAG.getTargetGlobalAddress(G->getGlobal(), getPointerTy()); | 
|  | else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) | 
|  | Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); | 
|  |  | 
|  | if (CallingConv == CallingConv::Fast && EnableFastCC) | 
|  | return LowerFastCCCallTo(Chain, RetTy, isTailCall, Callee, Args, DAG); | 
|  | return  LowerCCCCallTo(Chain, RetTy, isVarArg, isTailCall, Callee, Args, DAG); | 
|  | } | 
|  |  | 
|  | SDOperand X86TargetLowering::LowerReturnTo(SDOperand Chain, SDOperand Op, | 
|  | SelectionDAG &DAG) { | 
|  | if (!X86DAGIsel) | 
|  | return DAG.getNode(ISD::RET, MVT::Other, Chain, Op); | 
|  |  | 
|  | SDOperand Copy; | 
|  | MVT::ValueType OpVT = Op.getValueType(); | 
|  | switch (OpVT) { | 
|  | default: assert(0 && "Unknown type to return!"); | 
|  | case MVT::i32: | 
|  | Copy = DAG.getCopyToReg(Chain, X86::EAX, Op, SDOperand()); | 
|  | break; | 
|  | case MVT::i64: { | 
|  | SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op, | 
|  | DAG.getConstant(1, MVT::i32)); | 
|  | SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op, | 
|  | DAG.getConstant(0, MVT::i32)); | 
|  | Copy = DAG.getCopyToReg(Chain, X86::EDX, Hi, SDOperand()); | 
|  | Copy = DAG.getCopyToReg(Copy,  X86::EAX, Lo, Copy.getValue(1)); | 
|  | break; | 
|  | } | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | if (!X86ScalarSSE) { | 
|  | if (OpVT == MVT::f32) | 
|  | Op = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Op); | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | Tys.push_back(MVT::Other); | 
|  | Tys.push_back(MVT::Flag); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Op); | 
|  | Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops); | 
|  | } else { | 
|  | // Spill the value to memory and reload it into top of stack. | 
|  | unsigned Size = MVT::getSizeInBits(OpVT)/8; | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); | 
|  | SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  | Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, Op, | 
|  | StackSlot, DAG.getSrcValue(NULL)); | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | Tys.push_back(MVT::f64); | 
|  | Tys.push_back(MVT::Other); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(StackSlot); | 
|  | Ops.push_back(DAG.getValueType(OpVT)); | 
|  | Copy = DAG.getNode(X86ISD::FLD, Tys, Ops); | 
|  | Tys.clear(); | 
|  | Tys.push_back(MVT::Other); | 
|  | Tys.push_back(MVT::Flag); | 
|  | Ops.clear(); | 
|  | Ops.push_back(Copy.getValue(1)); | 
|  | Ops.push_back(Copy); | 
|  | Copy = DAG.getNode(X86ISD::FP_SET_RESULT, Tys, Ops); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, | 
|  | Copy, DAG.getConstant(getBytesToPopOnReturn(), MVT::i16), | 
|  | Copy.getValue(1)); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                    C Calling Convention implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | std::vector<SDOperand> | 
|  | X86TargetLowering::LowerCCCArguments(Function &F, SelectionDAG &DAG) { | 
|  | std::vector<SDOperand> ArgValues; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  |  | 
|  | // Add DAG nodes to load the arguments...  On entry to a function on the X86, | 
|  | // the stack frame looks like this: | 
|  | // | 
|  | // [ESP] -- return address | 
|  | // [ESP + 4] -- first argument (leftmost lexically) | 
|  | // [ESP + 8] -- second argument, if first argument is four bytes in size | 
|  | //    ... | 
|  | // | 
|  | unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot | 
|  | for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { | 
|  | MVT::ValueType ObjectVT = getValueType(I->getType()); | 
|  | unsigned ArgIncrement = 4; | 
|  | unsigned ObjSize; | 
|  | switch (ObjectVT) { | 
|  | default: assert(0 && "Unhandled argument type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8:  ObjSize = 1;                break; | 
|  | case MVT::i16: ObjSize = 2;                break; | 
|  | case MVT::i32: ObjSize = 4;                break; | 
|  | case MVT::i64: ObjSize = ArgIncrement = 8; break; | 
|  | case MVT::f32: ObjSize = 4;                break; | 
|  | case MVT::f64: ObjSize = ArgIncrement = 8; break; | 
|  | } | 
|  | // Create the frame index object for this incoming parameter... | 
|  | int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); | 
|  |  | 
|  | // Create the SelectionDAG nodes corresponding to a load from this parameter | 
|  | SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); | 
|  |  | 
|  | // Don't codegen dead arguments.  FIXME: remove this check when we can nuke | 
|  | // dead loads. | 
|  | SDOperand ArgValue; | 
|  | if (!I->use_empty()) | 
|  | ArgValue = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN, | 
|  | DAG.getSrcValue(NULL)); | 
|  | else { | 
|  | if (MVT::isInteger(ObjectVT)) | 
|  | ArgValue = DAG.getConstant(0, ObjectVT); | 
|  | else | 
|  | ArgValue = DAG.getConstantFP(0, ObjectVT); | 
|  | } | 
|  | ArgValues.push_back(ArgValue); | 
|  |  | 
|  | ArgOffset += ArgIncrement;   // Move on to the next argument... | 
|  | } | 
|  |  | 
|  | // If the function takes variable number of arguments, make a frame index for | 
|  | // the start of the first vararg value... for expansion of llvm.va_start. | 
|  | if (F.isVarArg()) | 
|  | VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset); | 
|  | ReturnAddrIndex = 0;     // No return address slot generated yet. | 
|  | BytesToPopOnReturn = 0;  // Callee pops nothing. | 
|  | BytesCallerReserves = ArgOffset; | 
|  |  | 
|  | // Finally, inform the code generator which regs we return values in. | 
|  | switch (getValueType(F.getReturnType())) { | 
|  | default: assert(0 && "Unknown type!"); | 
|  | case MVT::isVoid: break; | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | MF.addLiveOut(X86::EAX); | 
|  | break; | 
|  | case MVT::i64: | 
|  | MF.addLiveOut(X86::EAX); | 
|  | MF.addLiveOut(X86::EDX); | 
|  | break; | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | MF.addLiveOut(X86::ST0); | 
|  | break; | 
|  | } | 
|  | return ArgValues; | 
|  | } | 
|  |  | 
|  | std::pair<SDOperand, SDOperand> | 
|  | X86TargetLowering::LowerCCCCallTo(SDOperand Chain, const Type *RetTy, | 
|  | bool isVarArg, bool isTailCall, | 
|  | SDOperand Callee, ArgListTy &Args, | 
|  | SelectionDAG &DAG) { | 
|  | // Count how many bytes are to be pushed on the stack. | 
|  | unsigned NumBytes = 0; | 
|  |  | 
|  | if (Args.empty()) { | 
|  | // Save zero bytes. | 
|  | Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain, | 
|  | DAG.getConstant(0, getPointerTy())); | 
|  | } else { | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) | 
|  | switch (getValueType(Args[i].second)) { | 
|  | default: assert(0 && "Unknown value type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | case MVT::f32: | 
|  | NumBytes += 4; | 
|  | break; | 
|  | case MVT::i64: | 
|  | case MVT::f64: | 
|  | NumBytes += 8; | 
|  | break; | 
|  | } | 
|  |  | 
|  | Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain, | 
|  | DAG.getConstant(NumBytes, getPointerTy())); | 
|  |  | 
|  | // Arguments go on the stack in reverse order, as specified by the ABI. | 
|  | unsigned ArgOffset = 0; | 
|  | SDOperand StackPtr = DAG.getRegister(X86::ESP, MVT::i32); | 
|  | std::vector<SDOperand> Stores; | 
|  |  | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
|  | SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); | 
|  | PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); | 
|  |  | 
|  | switch (getValueType(Args[i].second)) { | 
|  | default: assert(0 && "Unexpected ValueType for argument!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | // Promote the integer to 32 bits.  If the input type is signed use a | 
|  | // sign extend, otherwise use a zero extend. | 
|  | if (Args[i].second->isSigned()) | 
|  | Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first); | 
|  | else | 
|  | Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first); | 
|  |  | 
|  | // FALL THROUGH | 
|  | case MVT::i32: | 
|  | case MVT::f32: | 
|  | Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
|  | Args[i].first, PtrOff, | 
|  | DAG.getSrcValue(NULL))); | 
|  | ArgOffset += 4; | 
|  | break; | 
|  | case MVT::i64: | 
|  | case MVT::f64: | 
|  | Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
|  | Args[i].first, PtrOff, | 
|  | DAG.getSrcValue(NULL))); | 
|  | ArgOffset += 8; | 
|  | break; | 
|  | } | 
|  | } | 
|  | Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores); | 
|  | } | 
|  |  | 
|  | std::vector<MVT::ValueType> RetVals; | 
|  | MVT::ValueType RetTyVT = getValueType(RetTy); | 
|  | RetVals.push_back(MVT::Other); | 
|  |  | 
|  | // The result values produced have to be legal.  Promote the result. | 
|  | switch (RetTyVT) { | 
|  | case MVT::isVoid: break; | 
|  | default: | 
|  | RetVals.push_back(RetTyVT); | 
|  | break; | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | RetVals.push_back(MVT::i32); | 
|  | break; | 
|  | case MVT::f32: | 
|  | if (X86ScalarSSE) | 
|  | RetVals.push_back(MVT::f32); | 
|  | else | 
|  | RetVals.push_back(MVT::f64); | 
|  | break; | 
|  | case MVT::i64: | 
|  | RetVals.push_back(MVT::i32); | 
|  | RetVals.push_back(MVT::i32); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (X86DAGIsel) { | 
|  | std::vector<MVT::ValueType> NodeTys; | 
|  | NodeTys.push_back(MVT::Other);   // Returns a chain | 
|  | NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use. | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Callee); | 
|  |  | 
|  | // FIXME: Do not generate X86ISD::TAILCALL for now. | 
|  | Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops); | 
|  | SDOperand InFlag = Chain.getValue(1); | 
|  |  | 
|  | SDOperand RetVal; | 
|  | if (RetTyVT != MVT::isVoid) { | 
|  | switch (RetTyVT) { | 
|  | default: assert(0 && "Unknown value type to return!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | RetVal = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag); | 
|  | Chain = RetVal.getValue(1); | 
|  | if (RetTyVT == MVT::i1) | 
|  | RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal); | 
|  | break; | 
|  | case MVT::i16: | 
|  | RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag); | 
|  | Chain = RetVal.getValue(1); | 
|  | break; | 
|  | case MVT::i32: | 
|  | RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); | 
|  | Chain = RetVal.getValue(1); | 
|  | break; | 
|  | case MVT::i64: { | 
|  | SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); | 
|  | SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32, | 
|  | Lo.getValue(2)); | 
|  | RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi); | 
|  | Chain = Hi.getValue(1); | 
|  | break; | 
|  | } | 
|  | case MVT::f32: | 
|  | case MVT::f64: { | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | Tys.push_back(MVT::f64); | 
|  | Tys.push_back(MVT::Other); | 
|  | Tys.push_back(MVT::Flag); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(InFlag); | 
|  | RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops); | 
|  | Chain  = RetVal.getValue(1); | 
|  | InFlag = RetVal.getValue(2); | 
|  | if (X86ScalarSSE) { | 
|  | // FIXME:Currently the FST is flagged to the FP_GET_RESULT. This | 
|  | // shouldn't be necessary except for RFP cannot be live across | 
|  | // multiple blocks. When stackifier is fixed, they can be uncoupled. | 
|  | unsigned Size = MVT::getSizeInBits(MVT::f64)/8; | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); | 
|  | SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  | Tys.clear(); | 
|  | Tys.push_back(MVT::Other); | 
|  | Ops.clear(); | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(RetVal); | 
|  | Ops.push_back(StackSlot); | 
|  | Ops.push_back(DAG.getValueType(RetTyVT)); | 
|  | Ops.push_back(InFlag); | 
|  | Chain = DAG.getNode(X86ISD::FST, Tys, Ops); | 
|  | RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot, | 
|  | DAG.getSrcValue(NULL)); | 
|  | Chain = RetVal.getValue(1); | 
|  | } | 
|  |  | 
|  | if (RetTyVT == MVT::f32 && !X86ScalarSSE) | 
|  | // FIXME: we would really like to remember that this FP_ROUND | 
|  | // operation is okay to eliminate if we allow excess FP precision. | 
|  | RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain, | 
|  | DAG.getConstant(NumBytes, getPointerTy()), | 
|  | DAG.getConstant(0, getPointerTy())); | 
|  | return std::make_pair(RetVal, Chain); | 
|  | } else { | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Callee); | 
|  | Ops.push_back(DAG.getConstant(NumBytes, getPointerTy())); | 
|  | Ops.push_back(DAG.getConstant(0, getPointerTy())); | 
|  |  | 
|  | SDOperand TheCall = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL, | 
|  | RetVals, Ops); | 
|  |  | 
|  | SDOperand ResultVal; | 
|  | switch (RetTyVT) { | 
|  | case MVT::isVoid: break; | 
|  | default: | 
|  | ResultVal = TheCall.getValue(1); | 
|  | break; | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | ResultVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, TheCall.getValue(1)); | 
|  | break; | 
|  | case MVT::f32: | 
|  | // FIXME: we would really like to remember that this FP_ROUND operation is | 
|  | // okay to eliminate if we allow excess FP precision. | 
|  | ResultVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, TheCall.getValue(1)); | 
|  | break; | 
|  | case MVT::i64: | 
|  | ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, TheCall.getValue(1), | 
|  | TheCall.getValue(2)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, TheCall); | 
|  | return std::make_pair(ResultVal, Chain); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDOperand | 
|  | X86TargetLowering::LowerVAStart(SDOperand Chain, SDOperand VAListP, | 
|  | Value *VAListV, SelectionDAG &DAG) { | 
|  | // vastart just stores the address of the VarArgsFrameIndex slot. | 
|  | SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32); | 
|  | return DAG.getNode(ISD::STORE, MVT::Other, Chain, FR, VAListP, | 
|  | DAG.getSrcValue(VAListV)); | 
|  | } | 
|  |  | 
|  |  | 
|  | std::pair<SDOperand,SDOperand> | 
|  | X86TargetLowering::LowerVAArg(SDOperand Chain, SDOperand VAListP, | 
|  | Value *VAListV, const Type *ArgTy, | 
|  | SelectionDAG &DAG) { | 
|  | MVT::ValueType ArgVT = getValueType(ArgTy); | 
|  | SDOperand Val = DAG.getLoad(MVT::i32, Chain, | 
|  | VAListP, DAG.getSrcValue(VAListV)); | 
|  | SDOperand Result = DAG.getLoad(ArgVT, Chain, Val, | 
|  | DAG.getSrcValue(NULL)); | 
|  | unsigned Amt; | 
|  | if (ArgVT == MVT::i32) | 
|  | Amt = 4; | 
|  | else { | 
|  | assert((ArgVT == MVT::i64 || ArgVT == MVT::f64) && | 
|  | "Other types should have been promoted for varargs!"); | 
|  | Amt = 8; | 
|  | } | 
|  | Val = DAG.getNode(ISD::ADD, Val.getValueType(), Val, | 
|  | DAG.getConstant(Amt, Val.getValueType())); | 
|  | Chain = DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
|  | Val, VAListP, DAG.getSrcValue(VAListV)); | 
|  | return std::make_pair(Result, Chain); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                    Fast Calling Convention implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // The X86 'fast' calling convention passes up to two integer arguments in | 
|  | // registers (an appropriate portion of EAX/EDX), passes arguments in C order, | 
|  | // and requires that the callee pop its arguments off the stack (allowing proper | 
|  | // tail calls), and has the same return value conventions as C calling convs. | 
|  | // | 
|  | // This calling convention always arranges for the callee pop value to be 8n+4 | 
|  | // bytes, which is needed for tail recursion elimination and stack alignment | 
|  | // reasons. | 
|  | // | 
|  | // Note that this can be enhanced in the future to pass fp vals in registers | 
|  | // (when we have a global fp allocator) and do other tricks. | 
|  | // | 
|  |  | 
|  | /// AddLiveIn - This helper function adds the specified physical register to the | 
|  | /// MachineFunction as a live in value.  It also creates a corresponding virtual | 
|  | /// register for it. | 
|  | static unsigned AddLiveIn(MachineFunction &MF, unsigned PReg, | 
|  | TargetRegisterClass *RC) { | 
|  | assert(RC->contains(PReg) && "Not the correct regclass!"); | 
|  | unsigned VReg = MF.getSSARegMap()->createVirtualRegister(RC); | 
|  | MF.addLiveIn(PReg, VReg); | 
|  | return VReg; | 
|  | } | 
|  |  | 
|  |  | 
|  | std::vector<SDOperand> | 
|  | X86TargetLowering::LowerFastCCArguments(Function &F, SelectionDAG &DAG) { | 
|  | std::vector<SDOperand> ArgValues; | 
|  |  | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | MachineFrameInfo *MFI = MF.getFrameInfo(); | 
|  |  | 
|  | // Add DAG nodes to load the arguments...  On entry to a function the stack | 
|  | // frame looks like this: | 
|  | // | 
|  | // [ESP] -- return address | 
|  | // [ESP + 4] -- first nonreg argument (leftmost lexically) | 
|  | // [ESP + 8] -- second nonreg argument, if first argument is 4 bytes in size | 
|  | //    ... | 
|  | unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot | 
|  |  | 
|  | // Keep track of the number of integer regs passed so far.  This can be either | 
|  | // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both | 
|  | // used). | 
|  | unsigned NumIntRegs = 0; | 
|  |  | 
|  | for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) { | 
|  | MVT::ValueType ObjectVT = getValueType(I->getType()); | 
|  | unsigned ArgIncrement = 4; | 
|  | unsigned ObjSize = 0; | 
|  | SDOperand ArgValue; | 
|  |  | 
|  | switch (ObjectVT) { | 
|  | default: assert(0 && "Unhandled argument type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | if (NumIntRegs < 2) { | 
|  | if (!I->use_empty()) { | 
|  | unsigned VReg = AddLiveIn(MF, NumIntRegs ? X86::DL : X86::AL, | 
|  | X86::R8RegisterClass); | 
|  | ArgValue = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i8); | 
|  | DAG.setRoot(ArgValue.getValue(1)); | 
|  | if (ObjectVT == MVT::i1) | 
|  | // FIXME: Should insert a assertzext here. | 
|  | ArgValue = DAG.getNode(ISD::TRUNCATE, MVT::i1, ArgValue); | 
|  | } | 
|  | ++NumIntRegs; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ObjSize = 1; | 
|  | break; | 
|  | case MVT::i16: | 
|  | if (NumIntRegs < 2) { | 
|  | if (!I->use_empty()) { | 
|  | unsigned VReg = AddLiveIn(MF, NumIntRegs ? X86::DX : X86::AX, | 
|  | X86::R16RegisterClass); | 
|  | ArgValue = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i16); | 
|  | DAG.setRoot(ArgValue.getValue(1)); | 
|  | } | 
|  | ++NumIntRegs; | 
|  | break; | 
|  | } | 
|  | ObjSize = 2; | 
|  | break; | 
|  | case MVT::i32: | 
|  | if (NumIntRegs < 2) { | 
|  | if (!I->use_empty()) { | 
|  | unsigned VReg = AddLiveIn(MF,NumIntRegs ? X86::EDX : X86::EAX, | 
|  | X86::R32RegisterClass); | 
|  | ArgValue = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32); | 
|  | DAG.setRoot(ArgValue.getValue(1)); | 
|  | } | 
|  | ++NumIntRegs; | 
|  | break; | 
|  | } | 
|  | ObjSize = 4; | 
|  | break; | 
|  | case MVT::i64: | 
|  | if (NumIntRegs == 0) { | 
|  | if (!I->use_empty()) { | 
|  | unsigned BotReg = AddLiveIn(MF, X86::EAX, X86::R32RegisterClass); | 
|  | unsigned TopReg = AddLiveIn(MF, X86::EDX, X86::R32RegisterClass); | 
|  |  | 
|  | SDOperand Low = DAG.getCopyFromReg(DAG.getRoot(), BotReg, MVT::i32); | 
|  | SDOperand Hi  = DAG.getCopyFromReg(Low.getValue(1), TopReg, MVT::i32); | 
|  | DAG.setRoot(Hi.getValue(1)); | 
|  |  | 
|  | ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Low, Hi); | 
|  | } | 
|  | NumIntRegs = 2; | 
|  | break; | 
|  | } else if (NumIntRegs == 1) { | 
|  | if (!I->use_empty()) { | 
|  | unsigned BotReg = AddLiveIn(MF, X86::EDX, X86::R32RegisterClass); | 
|  | SDOperand Low = DAG.getCopyFromReg(DAG.getRoot(), BotReg, MVT::i32); | 
|  | DAG.setRoot(Low.getValue(1)); | 
|  |  | 
|  | // Load the high part from memory. | 
|  | // Create the frame index object for this incoming parameter... | 
|  | int FI = MFI->CreateFixedObject(4, ArgOffset); | 
|  | SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); | 
|  | SDOperand Hi = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN, | 
|  | DAG.getSrcValue(NULL)); | 
|  | ArgValue = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Low, Hi); | 
|  | } | 
|  | ArgOffset += 4; | 
|  | NumIntRegs = 2; | 
|  | break; | 
|  | } | 
|  | ObjSize = ArgIncrement = 8; | 
|  | break; | 
|  | case MVT::f32: ObjSize = 4;                break; | 
|  | case MVT::f64: ObjSize = ArgIncrement = 8; break; | 
|  | } | 
|  |  | 
|  | // Don't codegen dead arguments.  FIXME: remove this check when we can nuke | 
|  | // dead loads. | 
|  | if (ObjSize && !I->use_empty()) { | 
|  | // Create the frame index object for this incoming parameter... | 
|  | int FI = MFI->CreateFixedObject(ObjSize, ArgOffset); | 
|  |  | 
|  | // Create the SelectionDAG nodes corresponding to a load from this | 
|  | // parameter. | 
|  | SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32); | 
|  |  | 
|  | ArgValue = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN, | 
|  | DAG.getSrcValue(NULL)); | 
|  | } else if (ArgValue.Val == 0) { | 
|  | if (MVT::isInteger(ObjectVT)) | 
|  | ArgValue = DAG.getConstant(0, ObjectVT); | 
|  | else | 
|  | ArgValue = DAG.getConstantFP(0, ObjectVT); | 
|  | } | 
|  | ArgValues.push_back(ArgValue); | 
|  |  | 
|  | if (ObjSize) | 
|  | ArgOffset += ArgIncrement;   // Move on to the next argument. | 
|  | } | 
|  |  | 
|  | // Make sure the instruction takes 8n+4 bytes to make sure the start of the | 
|  | // arguments and the arguments after the retaddr has been pushed are aligned. | 
|  | if ((ArgOffset & 7) == 0) | 
|  | ArgOffset += 4; | 
|  |  | 
|  | VarArgsFrameIndex = 0xAAAAAAA;   // fastcc functions can't have varargs. | 
|  | ReturnAddrIndex = 0;             // No return address slot generated yet. | 
|  | BytesToPopOnReturn = ArgOffset;  // Callee pops all stack arguments. | 
|  | BytesCallerReserves = 0; | 
|  |  | 
|  | // Finally, inform the code generator which regs we return values in. | 
|  | switch (getValueType(F.getReturnType())) { | 
|  | default: assert(0 && "Unknown type!"); | 
|  | case MVT::isVoid: break; | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | MF.addLiveOut(X86::EAX); | 
|  | break; | 
|  | case MVT::i64: | 
|  | MF.addLiveOut(X86::EAX); | 
|  | MF.addLiveOut(X86::EDX); | 
|  | break; | 
|  | case MVT::f32: | 
|  | case MVT::f64: | 
|  | MF.addLiveOut(X86::ST0); | 
|  | break; | 
|  | } | 
|  | return ArgValues; | 
|  | } | 
|  |  | 
|  | std::pair<SDOperand, SDOperand> | 
|  | X86TargetLowering::LowerFastCCCallTo(SDOperand Chain, const Type *RetTy, | 
|  | bool isTailCall, SDOperand Callee, | 
|  | ArgListTy &Args, SelectionDAG &DAG) { | 
|  | // Count how many bytes are to be pushed on the stack. | 
|  | unsigned NumBytes = 0; | 
|  |  | 
|  | // Keep track of the number of integer regs passed so far.  This can be either | 
|  | // 0 (neither EAX or EDX used), 1 (EAX is used) or 2 (EAX and EDX are both | 
|  | // used). | 
|  | unsigned NumIntRegs = 0; | 
|  |  | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) | 
|  | switch (getValueType(Args[i].second)) { | 
|  | default: assert(0 && "Unknown value type!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | if (NumIntRegs < 2) { | 
|  | ++NumIntRegs; | 
|  | break; | 
|  | } | 
|  | // fall through | 
|  | case MVT::f32: | 
|  | NumBytes += 4; | 
|  | break; | 
|  | case MVT::i64: | 
|  | if (NumIntRegs == 0) { | 
|  | NumIntRegs = 2; | 
|  | break; | 
|  | } else if (NumIntRegs == 1) { | 
|  | NumIntRegs = 2; | 
|  | NumBytes += 4; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // fall through | 
|  | case MVT::f64: | 
|  | NumBytes += 8; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Make sure the instruction takes 8n+4 bytes to make sure the start of the | 
|  | // arguments and the arguments after the retaddr has been pushed are aligned. | 
|  | if ((NumBytes & 7) == 0) | 
|  | NumBytes += 4; | 
|  |  | 
|  | Chain = DAG.getNode(ISD::CALLSEQ_START, MVT::Other, Chain, | 
|  | DAG.getConstant(NumBytes, getPointerTy())); | 
|  |  | 
|  | // Arguments go on the stack in reverse order, as specified by the ABI. | 
|  | unsigned ArgOffset = 0; | 
|  | SDOperand StackPtr = DAG.getCopyFromReg(DAG.getEntryNode(), | 
|  | X86::ESP, MVT::i32); | 
|  | NumIntRegs = 0; | 
|  | std::vector<SDOperand> Stores; | 
|  | std::vector<SDOperand> RegValuesToPass; | 
|  | for (unsigned i = 0, e = Args.size(); i != e; ++i) { | 
|  | switch (getValueType(Args[i].second)) { | 
|  | default: assert(0 && "Unexpected ValueType for argument!"); | 
|  | case MVT::i1: | 
|  | Args[i].first = DAG.getNode(ISD::ANY_EXTEND, MVT::i8, Args[i].first); | 
|  | // Fall through. | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | case MVT::i32: | 
|  | if (NumIntRegs < 2) { | 
|  | RegValuesToPass.push_back(Args[i].first); | 
|  | ++NumIntRegs; | 
|  | break; | 
|  | } | 
|  | // Fall through | 
|  | case MVT::f32: { | 
|  | SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); | 
|  | PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); | 
|  | Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
|  | Args[i].first, PtrOff, | 
|  | DAG.getSrcValue(NULL))); | 
|  | ArgOffset += 4; | 
|  | break; | 
|  | } | 
|  | case MVT::i64: | 
|  | if (NumIntRegs < 2) {    // Can pass part of it in regs? | 
|  | SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, | 
|  | Args[i].first, DAG.getConstant(1, MVT::i32)); | 
|  | SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, | 
|  | Args[i].first, DAG.getConstant(0, MVT::i32)); | 
|  | RegValuesToPass.push_back(Lo); | 
|  | ++NumIntRegs; | 
|  | if (NumIntRegs < 2) {   // Pass both parts in regs? | 
|  | RegValuesToPass.push_back(Hi); | 
|  | ++NumIntRegs; | 
|  | } else { | 
|  | // Pass the high part in memory. | 
|  | SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); | 
|  | PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); | 
|  | Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
|  | Hi, PtrOff, DAG.getSrcValue(NULL))); | 
|  | ArgOffset += 4; | 
|  | } | 
|  | break; | 
|  | } | 
|  | // Fall through | 
|  | case MVT::f64: | 
|  | SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy()); | 
|  | PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff); | 
|  | Stores.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain, | 
|  | Args[i].first, PtrOff, | 
|  | DAG.getSrcValue(NULL))); | 
|  | ArgOffset += 8; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!Stores.empty()) | 
|  | Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, Stores); | 
|  |  | 
|  | // Make sure the instruction takes 8n+4 bytes to make sure the start of the | 
|  | // arguments and the arguments after the retaddr has been pushed are aligned. | 
|  | if ((ArgOffset & 7) == 0) | 
|  | ArgOffset += 4; | 
|  |  | 
|  | std::vector<MVT::ValueType> RetVals; | 
|  | MVT::ValueType RetTyVT = getValueType(RetTy); | 
|  |  | 
|  | RetVals.push_back(MVT::Other); | 
|  |  | 
|  | // The result values produced have to be legal.  Promote the result. | 
|  | switch (RetTyVT) { | 
|  | case MVT::isVoid: break; | 
|  | default: | 
|  | RetVals.push_back(RetTyVT); | 
|  | break; | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | RetVals.push_back(MVT::i32); | 
|  | break; | 
|  | case MVT::f32: | 
|  | if (X86ScalarSSE) | 
|  | RetVals.push_back(MVT::f32); | 
|  | else | 
|  | RetVals.push_back(MVT::f64); | 
|  | break; | 
|  | case MVT::i64: | 
|  | RetVals.push_back(MVT::i32); | 
|  | RetVals.push_back(MVT::i32); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (X86DAGIsel) { | 
|  | // Build a sequence of copy-to-reg nodes chained together with token chain | 
|  | // and flag operands which copy the outgoing args into registers. | 
|  | SDOperand InFlag; | 
|  | for (unsigned i = 0, e = RegValuesToPass.size(); i != e; ++i) { | 
|  | unsigned CCReg; | 
|  | SDOperand RegToPass = RegValuesToPass[i]; | 
|  | switch (RegToPass.getValueType()) { | 
|  | default: assert(0 && "Bad thing to pass in regs"); | 
|  | case MVT::i8: | 
|  | CCReg = (i == 0) ? X86::AL  : X86::DL; | 
|  | break; | 
|  | case MVT::i16: | 
|  | CCReg = (i == 0) ? X86::AX  : X86::DX; | 
|  | break; | 
|  | case MVT::i32: | 
|  | CCReg = (i == 0) ? X86::EAX : X86::EDX; | 
|  | break; | 
|  | } | 
|  |  | 
|  | Chain = DAG.getCopyToReg(Chain, CCReg, RegToPass, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | std::vector<MVT::ValueType> NodeTys; | 
|  | NodeTys.push_back(MVT::Other);   // Returns a chain | 
|  | NodeTys.push_back(MVT::Flag);    // Returns a flag for retval copy to use. | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Callee); | 
|  | if (InFlag.Val) | 
|  | Ops.push_back(InFlag); | 
|  |  | 
|  | // FIXME: Do not generate X86ISD::TAILCALL for now. | 
|  | Chain = DAG.getNode(X86ISD::CALL, NodeTys, Ops); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | SDOperand RetVal; | 
|  | if (RetTyVT != MVT::isVoid) { | 
|  | switch (RetTyVT) { | 
|  | default: assert(0 && "Unknown value type to return!"); | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | RetVal = DAG.getCopyFromReg(Chain, X86::AL, MVT::i8, InFlag); | 
|  | Chain = RetVal.getValue(1); | 
|  | if (RetTyVT == MVT::i1) | 
|  | RetVal = DAG.getNode(ISD::TRUNCATE, MVT::i1, RetVal); | 
|  | break; | 
|  | case MVT::i16: | 
|  | RetVal = DAG.getCopyFromReg(Chain, X86::AX, MVT::i16, InFlag); | 
|  | Chain = RetVal.getValue(1); | 
|  | break; | 
|  | case MVT::i32: | 
|  | RetVal = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); | 
|  | Chain = RetVal.getValue(1); | 
|  | break; | 
|  | case MVT::i64: { | 
|  | SDOperand Lo = DAG.getCopyFromReg(Chain, X86::EAX, MVT::i32, InFlag); | 
|  | SDOperand Hi = DAG.getCopyFromReg(Lo.getValue(1), X86::EDX, MVT::i32, | 
|  | Lo.getValue(2)); | 
|  | RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, Lo, Hi); | 
|  | Chain = Hi.getValue(1); | 
|  | break; | 
|  | } | 
|  | case MVT::f32: | 
|  | case MVT::f64: { | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | Tys.push_back(MVT::f64); | 
|  | Tys.push_back(MVT::Other); | 
|  | Tys.push_back(MVT::Flag); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(InFlag); | 
|  | RetVal = DAG.getNode(X86ISD::FP_GET_RESULT, Tys, Ops); | 
|  | Chain  = RetVal.getValue(1); | 
|  | InFlag = RetVal.getValue(2); | 
|  | if (X86ScalarSSE) { | 
|  | // FIXME:Currently the FST is flagged to the FP_GET_RESULT. This | 
|  | // shouldn't be necessary except for RFP cannot be live across | 
|  | // multiple blocks. When stackifier is fixed, they can be uncoupled. | 
|  | unsigned Size = MVT::getSizeInBits(MVT::f64)/8; | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); | 
|  | SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  | Tys.clear(); | 
|  | Tys.push_back(MVT::Other); | 
|  | Ops.clear(); | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(RetVal); | 
|  | Ops.push_back(StackSlot); | 
|  | Ops.push_back(DAG.getValueType(RetTyVT)); | 
|  | Ops.push_back(InFlag); | 
|  | Chain = DAG.getNode(X86ISD::FST, Tys, Ops); | 
|  | RetVal = DAG.getLoad(RetTyVT, Chain, StackSlot, | 
|  | DAG.getSrcValue(NULL)); | 
|  | Chain = RetVal.getValue(1); | 
|  | } | 
|  |  | 
|  | if (RetTyVT == MVT::f32 && !X86ScalarSSE) | 
|  | // FIXME: we would really like to remember that this FP_ROUND | 
|  | // operation is okay to eliminate if we allow excess FP precision. | 
|  | RetVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, RetVal); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain, | 
|  | DAG.getConstant(ArgOffset, getPointerTy()), | 
|  | DAG.getConstant(ArgOffset, getPointerTy())); | 
|  | return std::make_pair(RetVal, Chain); | 
|  | } else { | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(Callee); | 
|  | Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); | 
|  | // Callee pops all arg values on the stack. | 
|  | Ops.push_back(DAG.getConstant(ArgOffset, getPointerTy())); | 
|  |  | 
|  | // Pass register arguments as needed. | 
|  | Ops.insert(Ops.end(), RegValuesToPass.begin(), RegValuesToPass.end()); | 
|  |  | 
|  | SDOperand TheCall = DAG.getNode(isTailCall ? X86ISD::TAILCALL : X86ISD::CALL, | 
|  | RetVals, Ops); | 
|  | Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, TheCall); | 
|  |  | 
|  | SDOperand ResultVal; | 
|  | switch (RetTyVT) { | 
|  | case MVT::isVoid: break; | 
|  | default: | 
|  | ResultVal = TheCall.getValue(1); | 
|  | break; | 
|  | case MVT::i1: | 
|  | case MVT::i8: | 
|  | case MVT::i16: | 
|  | ResultVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, TheCall.getValue(1)); | 
|  | break; | 
|  | case MVT::f32: | 
|  | // FIXME: we would really like to remember that this FP_ROUND operation is | 
|  | // okay to eliminate if we allow excess FP precision. | 
|  | ResultVal = DAG.getNode(ISD::FP_ROUND, MVT::f32, TheCall.getValue(1)); | 
|  | break; | 
|  | case MVT::i64: | 
|  | ResultVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, TheCall.getValue(1), | 
|  | TheCall.getValue(2)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return std::make_pair(ResultVal, Chain); | 
|  | } | 
|  | } | 
|  |  | 
|  | SDOperand X86TargetLowering::getReturnAddressFrameIndex(SelectionDAG &DAG) { | 
|  | if (ReturnAddrIndex == 0) { | 
|  | // Set up a frame object for the return address. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | ReturnAddrIndex = MF.getFrameInfo()->CreateFixedObject(4, -4); | 
|  | } | 
|  |  | 
|  | return DAG.getFrameIndex(ReturnAddrIndex, MVT::i32); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | std::pair<SDOperand, SDOperand> X86TargetLowering:: | 
|  | LowerFrameReturnAddress(bool isFrameAddress, SDOperand Chain, unsigned Depth, | 
|  | SelectionDAG &DAG) { | 
|  | SDOperand Result; | 
|  | if (Depth)        // Depths > 0 not supported yet! | 
|  | Result = DAG.getConstant(0, getPointerTy()); | 
|  | else { | 
|  | SDOperand RetAddrFI = getReturnAddressFrameIndex(DAG); | 
|  | if (!isFrameAddress) | 
|  | // Just load the return address | 
|  | Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(), RetAddrFI, | 
|  | DAG.getSrcValue(NULL)); | 
|  | else | 
|  | Result = DAG.getNode(ISD::SUB, MVT::i32, RetAddrFI, | 
|  | DAG.getConstant(4, MVT::i32)); | 
|  | } | 
|  | return std::make_pair(Result, Chain); | 
|  | } | 
|  |  | 
|  | /// getCondBrOpcodeForX86CC - Returns the X86 conditional branch opcode | 
|  | /// which corresponds to the condition code. | 
|  | static unsigned getCondBrOpcodeForX86CC(unsigned X86CC) { | 
|  | switch (X86CC) { | 
|  | default: assert(0 && "Unknown X86 conditional code!"); | 
|  | case X86ISD::COND_A:  return X86::JA; | 
|  | case X86ISD::COND_AE: return X86::JAE; | 
|  | case X86ISD::COND_B:  return X86::JB; | 
|  | case X86ISD::COND_BE: return X86::JBE; | 
|  | case X86ISD::COND_E:  return X86::JE; | 
|  | case X86ISD::COND_G:  return X86::JG; | 
|  | case X86ISD::COND_GE: return X86::JGE; | 
|  | case X86ISD::COND_L:  return X86::JL; | 
|  | case X86ISD::COND_LE: return X86::JLE; | 
|  | case X86ISD::COND_NE: return X86::JNE; | 
|  | case X86ISD::COND_NO: return X86::JNO; | 
|  | case X86ISD::COND_NP: return X86::JNP; | 
|  | case X86ISD::COND_NS: return X86::JNS; | 
|  | case X86ISD::COND_O:  return X86::JO; | 
|  | case X86ISD::COND_P:  return X86::JP; | 
|  | case X86ISD::COND_S:  return X86::JS; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// getX86CC - do a one to one translation of a ISD::CondCode to the X86 | 
|  | /// specific condition code. It returns a X86ISD::COND_INVALID if it cannot | 
|  | /// do a direct translation. | 
|  | static unsigned getX86CC(SDOperand CC, bool isFP) { | 
|  | ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); | 
|  | unsigned X86CC = X86ISD::COND_INVALID; | 
|  | if (!isFP) { | 
|  | switch (SetCCOpcode) { | 
|  | default: break; | 
|  | case ISD::SETEQ:  X86CC = X86ISD::COND_E;  break; | 
|  | case ISD::SETGT:  X86CC = X86ISD::COND_G;  break; | 
|  | case ISD::SETGE:  X86CC = X86ISD::COND_GE; break; | 
|  | case ISD::SETLT:  X86CC = X86ISD::COND_L;  break; | 
|  | case ISD::SETLE:  X86CC = X86ISD::COND_LE; break; | 
|  | case ISD::SETNE:  X86CC = X86ISD::COND_NE; break; | 
|  | case ISD::SETULT: X86CC = X86ISD::COND_B;  break; | 
|  | case ISD::SETUGT: X86CC = X86ISD::COND_A;  break; | 
|  | case ISD::SETULE: X86CC = X86ISD::COND_BE; break; | 
|  | case ISD::SETUGE: X86CC = X86ISD::COND_AE; break; | 
|  | } | 
|  | } else { | 
|  | // On a floating point condition, the flags are set as follows: | 
|  | // ZF  PF  CF   op | 
|  | //  0 | 0 | 0 | X > Y | 
|  | //  0 | 0 | 1 | X < Y | 
|  | //  1 | 0 | 0 | X == Y | 
|  | //  1 | 1 | 1 | unordered | 
|  | switch (SetCCOpcode) { | 
|  | default: break; | 
|  | case ISD::SETUEQ: | 
|  | case ISD::SETEQ: X86CC = X86ISD::COND_E;  break; | 
|  | case ISD::SETOGT: | 
|  | case ISD::SETGT: X86CC = X86ISD::COND_A;  break; | 
|  | case ISD::SETOGE: | 
|  | case ISD::SETGE: X86CC = X86ISD::COND_AE; break; | 
|  | case ISD::SETULT: | 
|  | case ISD::SETLT: X86CC = X86ISD::COND_B;  break; | 
|  | case ISD::SETULE: | 
|  | case ISD::SETLE: X86CC = X86ISD::COND_BE; break; | 
|  | case ISD::SETONE: | 
|  | case ISD::SETNE: X86CC = X86ISD::COND_NE; break; | 
|  | case ISD::SETUO: X86CC = X86ISD::COND_P;  break; | 
|  | case ISD::SETO:  X86CC = X86ISD::COND_NP; break; | 
|  | } | 
|  | } | 
|  | return X86CC; | 
|  | } | 
|  |  | 
|  | /// hasFPCMov - is there a floating point cmov for the specific X86 condition | 
|  | /// code. Current x86 isa includes the following FP cmov instructions: | 
|  | /// fcmovb, fcomvbe, fcomve, fcmovu, fcmovae, fcmova, fcmovne, fcmovnu. | 
|  | static bool hasFPCMov(unsigned X86CC) { | 
|  | switch (X86CC) { | 
|  | default: | 
|  | return false; | 
|  | case X86ISD::COND_B: | 
|  | case X86ISD::COND_BE: | 
|  | case X86ISD::COND_E: | 
|  | case X86ISD::COND_P: | 
|  | case X86ISD::COND_A: | 
|  | case X86ISD::COND_AE: | 
|  | case X86ISD::COND_NE: | 
|  | case X86ISD::COND_NP: | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | MachineBasicBlock * | 
|  | X86TargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI, | 
|  | MachineBasicBlock *BB) { | 
|  | switch (MI->getOpcode()) { | 
|  | default: assert(false && "Unexpected instr type to insert"); | 
|  | case X86::CMOV_FR32: | 
|  | case X86::CMOV_FR64: { | 
|  | // To "insert" a SELECT_CC instruction, we actually have to insert the diamond | 
|  | // control-flow pattern.  The incoming instruction knows the destination vreg | 
|  | // to set, the condition code register to branch on, the true/false values to | 
|  | // select between, and a branch opcode to use. | 
|  | const BasicBlock *LLVM_BB = BB->getBasicBlock(); | 
|  | ilist<MachineBasicBlock>::iterator It = BB; | 
|  | ++It; | 
|  |  | 
|  | //  thisMBB: | 
|  | //  ... | 
|  | //   TrueVal = ... | 
|  | //   cmpTY ccX, r1, r2 | 
|  | //   bCC copy1MBB | 
|  | //   fallthrough --> copy0MBB | 
|  | MachineBasicBlock *thisMBB = BB; | 
|  | MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB); | 
|  | MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB); | 
|  | unsigned Opc = getCondBrOpcodeForX86CC(MI->getOperand(3).getImmedValue()); | 
|  | BuildMI(BB, Opc, 1).addMBB(sinkMBB); | 
|  | MachineFunction *F = BB->getParent(); | 
|  | F->getBasicBlockList().insert(It, copy0MBB); | 
|  | F->getBasicBlockList().insert(It, sinkMBB); | 
|  | // Update machine-CFG edges | 
|  | BB->addSuccessor(copy0MBB); | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | //  copy0MBB: | 
|  | //   %FalseValue = ... | 
|  | //   # fallthrough to sinkMBB | 
|  | BB = copy0MBB; | 
|  |  | 
|  | // Update machine-CFG edges | 
|  | BB->addSuccessor(sinkMBB); | 
|  |  | 
|  | //  sinkMBB: | 
|  | //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ] | 
|  | //  ... | 
|  | BB = sinkMBB; | 
|  | BuildMI(BB, X86::PHI, 4, MI->getOperand(0).getReg()) | 
|  | .addReg(MI->getOperand(1).getReg()).addMBB(copy0MBB) | 
|  | .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB); | 
|  |  | 
|  | delete MI;   // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  |  | 
|  | case X86::FP_TO_INT16_IN_MEM: | 
|  | case X86::FP_TO_INT32_IN_MEM: | 
|  | case X86::FP_TO_INT64_IN_MEM: { | 
|  | // Change the floating point control register to use "round towards zero" | 
|  | // mode when truncating to an integer value. | 
|  | MachineFunction *F = BB->getParent(); | 
|  | int CWFrameIdx = F->getFrameInfo()->CreateStackObject(2, 2); | 
|  | addFrameReference(BuildMI(BB, X86::FNSTCW16m, 4), CWFrameIdx); | 
|  |  | 
|  | // Load the old value of the high byte of the control word... | 
|  | unsigned OldCW = | 
|  | F->getSSARegMap()->createVirtualRegister(X86::R16RegisterClass); | 
|  | addFrameReference(BuildMI(BB, X86::MOV16rm, 4, OldCW), CWFrameIdx); | 
|  |  | 
|  | // Set the high part to be round to zero... | 
|  | addFrameReference(BuildMI(BB, X86::MOV16mi, 5), CWFrameIdx).addImm(0xC7F); | 
|  |  | 
|  | // Reload the modified control word now... | 
|  | addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); | 
|  |  | 
|  | // Restore the memory image of control word to original value | 
|  | addFrameReference(BuildMI(BB, X86::MOV16mr, 5), CWFrameIdx).addReg(OldCW); | 
|  |  | 
|  | // Get the X86 opcode to use. | 
|  | unsigned Opc; | 
|  | switch (MI->getOpcode()) { | 
|  | case X86::FP_TO_INT16_IN_MEM: Opc = X86::FpIST16m; break; | 
|  | case X86::FP_TO_INT32_IN_MEM: Opc = X86::FpIST32m; break; | 
|  | case X86::FP_TO_INT64_IN_MEM: Opc = X86::FpIST64m; break; | 
|  | } | 
|  |  | 
|  | X86AddressMode AM; | 
|  | MachineOperand &Op = MI->getOperand(0); | 
|  | if (Op.isRegister()) { | 
|  | AM.BaseType = X86AddressMode::RegBase; | 
|  | AM.Base.Reg = Op.getReg(); | 
|  | } else { | 
|  | AM.BaseType = X86AddressMode::FrameIndexBase; | 
|  | AM.Base.FrameIndex = Op.getFrameIndex(); | 
|  | } | 
|  | Op = MI->getOperand(1); | 
|  | if (Op.isImmediate()) | 
|  | AM.Scale = Op.getImmedValue(); | 
|  | Op = MI->getOperand(2); | 
|  | if (Op.isImmediate()) | 
|  | AM.IndexReg = Op.getImmedValue(); | 
|  | Op = MI->getOperand(3); | 
|  | if (Op.isGlobalAddress()) { | 
|  | AM.GV = Op.getGlobal(); | 
|  | } else { | 
|  | AM.Disp = Op.getImmedValue(); | 
|  | } | 
|  | addFullAddress(BuildMI(BB, Opc, 5), AM).addReg(MI->getOperand(4).getReg()); | 
|  |  | 
|  | // Reload the original control word now. | 
|  | addFrameReference(BuildMI(BB, X86::FLDCW16m, 4), CWFrameIdx); | 
|  |  | 
|  | delete MI;   // The pseudo instruction is gone now. | 
|  | return BB; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                           X86 Custom Lowering Hooks | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// LowerOperation - Provide custom lowering hooks for some operations. | 
|  | /// | 
|  | SDOperand X86TargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) { | 
|  | switch (Op.getOpcode()) { | 
|  | default: assert(0 && "Should not custom lower this!"); | 
|  | case ISD::ADD_PARTS: | 
|  | case ISD::SUB_PARTS: { | 
|  | assert(Op.getNumOperands() == 4 && Op.getValueType() == MVT::i32 && | 
|  | "Not an i64 add/sub!"); | 
|  | bool isAdd = Op.getOpcode() == ISD::ADD_PARTS; | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | Tys.push_back(MVT::i32); | 
|  | Tys.push_back(MVT::Flag); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Op.getOperand(0)); | 
|  | Ops.push_back(Op.getOperand(2)); | 
|  | SDOperand Lo = DAG.getNode(isAdd ? X86ISD::ADD_FLAG : X86ISD::SUB_FLAG, | 
|  | Tys, Ops); | 
|  | SDOperand Hi = DAG.getNode(isAdd ? X86ISD::ADC : X86ISD::SBB, MVT::i32, | 
|  | Op.getOperand(1), Op.getOperand(3), | 
|  | Lo.getValue(1)); | 
|  | Tys.clear(); | 
|  | Tys.push_back(MVT::i32); | 
|  | Tys.push_back(MVT::i32); | 
|  | Ops.clear(); | 
|  | Ops.push_back(Lo); | 
|  | Ops.push_back(Hi); | 
|  | return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops); | 
|  | } | 
|  | case ISD::SHL_PARTS: | 
|  | case ISD::SRA_PARTS: | 
|  | case ISD::SRL_PARTS: { | 
|  | assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 && | 
|  | "Not an i64 shift!"); | 
|  | bool isSRA = Op.getOpcode() == ISD::SRA_PARTS; | 
|  | SDOperand ShOpLo = Op.getOperand(0); | 
|  | SDOperand ShOpHi = Op.getOperand(1); | 
|  | SDOperand ShAmt  = Op.getOperand(2); | 
|  | SDOperand Tmp1 = isSRA ? DAG.getNode(ISD::SRA, MVT::i32, ShOpHi, | 
|  | DAG.getConstant(31, MVT::i8)) | 
|  | : DAG.getConstant(0, MVT::i32); | 
|  |  | 
|  | SDOperand Tmp2, Tmp3; | 
|  | if (Op.getOpcode() == ISD::SHL_PARTS) { | 
|  | Tmp2 = DAG.getNode(X86ISD::SHLD, MVT::i32, ShOpHi, ShOpLo, ShAmt); | 
|  | Tmp3 = DAG.getNode(ISD::SHL, MVT::i32, ShOpLo, ShAmt); | 
|  | } else { | 
|  | Tmp2 = DAG.getNode(X86ISD::SHRD, MVT::i32, ShOpLo, ShOpHi, ShAmt); | 
|  | Tmp3 = DAG.getNode(isSRA ? ISD::SRA : ISD::SHL, MVT::i32, ShOpHi, ShAmt); | 
|  | } | 
|  |  | 
|  | SDOperand InFlag = DAG.getNode(X86ISD::TEST, MVT::Flag, | 
|  | ShAmt, DAG.getConstant(32, MVT::i8)); | 
|  |  | 
|  | SDOperand Hi, Lo; | 
|  | SDOperand CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8); | 
|  |  | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | Tys.push_back(MVT::i32); | 
|  | Tys.push_back(MVT::Flag); | 
|  | std::vector<SDOperand> Ops; | 
|  | if (Op.getOpcode() == ISD::SHL_PARTS) { | 
|  | Ops.push_back(Tmp2); | 
|  | Ops.push_back(Tmp3); | 
|  | Ops.push_back(CC); | 
|  | Ops.push_back(InFlag); | 
|  | Hi = DAG.getNode(X86ISD::CMOV, Tys, Ops); | 
|  | InFlag = Hi.getValue(1); | 
|  |  | 
|  | Ops.clear(); | 
|  | Ops.push_back(Tmp3); | 
|  | Ops.push_back(Tmp1); | 
|  | Ops.push_back(CC); | 
|  | Ops.push_back(InFlag); | 
|  | Lo = DAG.getNode(X86ISD::CMOV, Tys, Ops); | 
|  | } else { | 
|  | Ops.push_back(Tmp2); | 
|  | Ops.push_back(Tmp3); | 
|  | Ops.push_back(CC); | 
|  | Ops.push_back(InFlag); | 
|  | Lo = DAG.getNode(X86ISD::CMOV, Tys, Ops); | 
|  | InFlag = Lo.getValue(1); | 
|  |  | 
|  | Ops.clear(); | 
|  | Ops.push_back(Tmp3); | 
|  | Ops.push_back(Tmp1); | 
|  | Ops.push_back(CC); | 
|  | Ops.push_back(InFlag); | 
|  | Hi = DAG.getNode(X86ISD::CMOV, Tys, Ops); | 
|  | } | 
|  |  | 
|  | Tys.clear(); | 
|  | Tys.push_back(MVT::i32); | 
|  | Tys.push_back(MVT::i32); | 
|  | Ops.clear(); | 
|  | Ops.push_back(Lo); | 
|  | Ops.push_back(Hi); | 
|  | return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops); | 
|  | } | 
|  | case ISD::SINT_TO_FP: { | 
|  | assert(Op.getValueType() == MVT::f64 && | 
|  | Op.getOperand(0).getValueType() <= MVT::i64 && | 
|  | Op.getOperand(0).getValueType() >= MVT::i16 && | 
|  | "Unknown SINT_TO_FP to lower!"); | 
|  |  | 
|  | SDOperand Result; | 
|  | MVT::ValueType SrcVT = Op.getOperand(0).getValueType(); | 
|  | unsigned Size = MVT::getSizeInBits(SrcVT)/8; | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(Size, Size); | 
|  | SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  | SDOperand Chain = DAG.getNode(ISD::STORE, MVT::Other, | 
|  | DAG.getEntryNode(), Op.getOperand(0), | 
|  | StackSlot, DAG.getSrcValue(NULL)); | 
|  |  | 
|  | // Build the FILD | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | Tys.push_back(MVT::f64); | 
|  | Tys.push_back(MVT::Flag); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Chain); | 
|  | Ops.push_back(StackSlot); | 
|  | Ops.push_back(DAG.getValueType(SrcVT)); | 
|  | Result = DAG.getNode(X86ISD::FILD, Tys, Ops); | 
|  | return Result; | 
|  | } | 
|  | case ISD::FP_TO_SINT: { | 
|  | assert(Op.getValueType() <= MVT::i64 && Op.getValueType() >= MVT::i16 && | 
|  | Op.getOperand(0).getValueType() == MVT::f64 && | 
|  | "Unknown FP_TO_SINT to lower!"); | 
|  | // We lower FP->sint64 into FISTP64, followed by a load, all to a temporary | 
|  | // stack slot. | 
|  | MachineFunction &MF = DAG.getMachineFunction(); | 
|  | unsigned MemSize = MVT::getSizeInBits(Op.getValueType())/8; | 
|  | int SSFI = MF.getFrameInfo()->CreateStackObject(MemSize, MemSize); | 
|  | SDOperand StackSlot = DAG.getFrameIndex(SSFI, getPointerTy()); | 
|  |  | 
|  | unsigned Opc; | 
|  | switch (Op.getValueType()) { | 
|  | default: assert(0 && "Invalid FP_TO_SINT to lower!"); | 
|  | case MVT::i16: Opc = X86ISD::FP_TO_INT16_IN_MEM; break; | 
|  | case MVT::i32: Opc = X86ISD::FP_TO_INT32_IN_MEM; break; | 
|  | case MVT::i64: Opc = X86ISD::FP_TO_INT64_IN_MEM; break; | 
|  | } | 
|  |  | 
|  | // Build the FP_TO_INT*_IN_MEM | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(DAG.getEntryNode()); | 
|  | Ops.push_back(Op.getOperand(0)); | 
|  | Ops.push_back(StackSlot); | 
|  | SDOperand FIST = DAG.getNode(Opc, MVT::Other, Ops); | 
|  |  | 
|  | // Load the result. | 
|  | return DAG.getLoad(Op.getValueType(), FIST, StackSlot, | 
|  | DAG.getSrcValue(NULL)); | 
|  | } | 
|  | case ISD::READCYCLECOUNTER: { | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | Tys.push_back(MVT::Other); | 
|  | Tys.push_back(MVT::Flag); | 
|  | std::vector<SDOperand> Ops; | 
|  | Ops.push_back(Op.getOperand(0)); | 
|  | SDOperand rd = DAG.getNode(X86ISD::RDTSC_DAG, Tys, Ops); | 
|  | Ops.clear(); | 
|  | Ops.push_back(DAG.getCopyFromReg(rd, X86::EAX, MVT::i32, rd.getValue(1))); | 
|  | Ops.push_back(DAG.getCopyFromReg(Ops[0].getValue(1), X86::EDX, | 
|  | MVT::i32, Ops[0].getValue(2))); | 
|  | Ops.push_back(Ops[1].getValue(1)); | 
|  | Tys[0] = Tys[1] = MVT::i32; | 
|  | Tys.push_back(MVT::Other); | 
|  | return DAG.getNode(ISD::MERGE_VALUES, Tys, Ops); | 
|  | } | 
|  | case ISD::SETCC: { | 
|  | assert(Op.getValueType() == MVT::i8 && "SetCC type must be 8-bit integer"); | 
|  | SDOperand CC   = Op.getOperand(2); | 
|  | SDOperand Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, | 
|  | Op.getOperand(0), Op.getOperand(1)); | 
|  | ISD::CondCode SetCCOpcode = cast<CondCodeSDNode>(CC)->get(); | 
|  | bool isFP = MVT::isFloatingPoint(Op.getOperand(1).getValueType()); | 
|  | unsigned X86CC = getX86CC(CC, isFP); | 
|  | if (X86CC != X86ISD::COND_INVALID) { | 
|  | return DAG.getNode(X86ISD::SETCC, MVT::i8, | 
|  | DAG.getConstant(X86CC, MVT::i8), Cond); | 
|  | } else { | 
|  | assert(isFP && "Illegal integer SetCC!"); | 
|  |  | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | std::vector<SDOperand> Ops; | 
|  | switch (SetCCOpcode) { | 
|  | default: assert(false && "Illegal floating point SetCC!"); | 
|  | case ISD::SETOEQ: {  // !PF & ZF | 
|  | Tys.push_back(MVT::i8); | 
|  | Tys.push_back(MVT::Flag); | 
|  | Ops.push_back(DAG.getConstant(X86ISD::COND_NP, MVT::i8)); | 
|  | Ops.push_back(Cond); | 
|  | SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, Ops); | 
|  | SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, | 
|  | DAG.getConstant(X86ISD::COND_E, MVT::i8), | 
|  | Tmp1.getValue(1)); | 
|  | return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2); | 
|  | } | 
|  | case ISD::SETOLT: {  // !PF & CF | 
|  | Tys.push_back(MVT::i8); | 
|  | Tys.push_back(MVT::Flag); | 
|  | Ops.push_back(DAG.getConstant(X86ISD::COND_NP, MVT::i8)); | 
|  | Ops.push_back(Cond); | 
|  | SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, Ops); | 
|  | SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, | 
|  | DAG.getConstant(X86ISD::COND_B, MVT::i8), | 
|  | Tmp1.getValue(1)); | 
|  | return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2); | 
|  | } | 
|  | case ISD::SETOLE: {  // !PF & (CF || ZF) | 
|  | Tys.push_back(MVT::i8); | 
|  | Tys.push_back(MVT::Flag); | 
|  | Ops.push_back(DAG.getConstant(X86ISD::COND_NP, MVT::i8)); | 
|  | Ops.push_back(Cond); | 
|  | SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, Ops); | 
|  | SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, | 
|  | DAG.getConstant(X86ISD::COND_BE, MVT::i8), | 
|  | Tmp1.getValue(1)); | 
|  | return DAG.getNode(ISD::AND, MVT::i8, Tmp1, Tmp2); | 
|  | } | 
|  | case ISD::SETUGT: {  // PF | (!ZF & !CF) | 
|  | Tys.push_back(MVT::i8); | 
|  | Tys.push_back(MVT::Flag); | 
|  | Ops.push_back(DAG.getConstant(X86ISD::COND_P, MVT::i8)); | 
|  | Ops.push_back(Cond); | 
|  | SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, Ops); | 
|  | SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, | 
|  | DAG.getConstant(X86ISD::COND_A, MVT::i8), | 
|  | Tmp1.getValue(1)); | 
|  | return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2); | 
|  | } | 
|  | case ISD::SETUGE: {  // PF | !CF | 
|  | Tys.push_back(MVT::i8); | 
|  | Tys.push_back(MVT::Flag); | 
|  | Ops.push_back(DAG.getConstant(X86ISD::COND_P, MVT::i8)); | 
|  | Ops.push_back(Cond); | 
|  | SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, Ops); | 
|  | SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, | 
|  | DAG.getConstant(X86ISD::COND_AE, MVT::i8), | 
|  | Tmp1.getValue(1)); | 
|  | return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2); | 
|  | } | 
|  | case ISD::SETUNE: {  // PF | !ZF | 
|  | Tys.push_back(MVT::i8); | 
|  | Tys.push_back(MVT::Flag); | 
|  | Ops.push_back(DAG.getConstant(X86ISD::COND_P, MVT::i8)); | 
|  | Ops.push_back(Cond); | 
|  | SDOperand Tmp1 = DAG.getNode(X86ISD::SETCC, Tys, Ops); | 
|  | SDOperand Tmp2 = DAG.getNode(X86ISD::SETCC, MVT::i8, | 
|  | DAG.getConstant(X86ISD::COND_NE, MVT::i8), | 
|  | Tmp1.getValue(1)); | 
|  | return DAG.getNode(ISD::OR, MVT::i8, Tmp1, Tmp2); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | case ISD::SELECT: { | 
|  | MVT::ValueType VT = Op.getValueType(); | 
|  | bool isFP      = MVT::isFloatingPoint(VT); | 
|  | bool isFPStack = isFP && (X86Vector < SSE2); | 
|  | bool isFPSSE   = isFP && (X86Vector >= SSE2); | 
|  | bool addTest   = false; | 
|  | SDOperand Op0 = Op.getOperand(0); | 
|  | SDOperand Cond, CC; | 
|  | if (Op0.getOpcode() == X86ISD::SETCC) { | 
|  | // If condition flag is set by a X86ISD::CMP, then make a copy of it | 
|  | // (since flag operand cannot be shared). If the X86ISD::SETCC does not | 
|  | // have another use it will be eliminated. | 
|  | // If the X86ISD::SETCC has more than one use, then it's probably better | 
|  | // to use a test instead of duplicating the X86ISD::CMP (for register | 
|  | // pressure reason). | 
|  | if (Op0.hasOneUse() && Op0.getOperand(1).getOpcode() == X86ISD::CMP) { | 
|  | CC   = Op0.getOperand(0); | 
|  | Cond = Op0.getOperand(1); | 
|  | addTest = | 
|  | isFPStack && !hasFPCMov(cast<ConstantSDNode>(CC)->getSignExtended()); | 
|  | } else | 
|  | addTest = true; | 
|  | } else if (Op0.getOpcode() == ISD::SETCC) { | 
|  | CC = Op0.getOperand(2); | 
|  | bool isFP = MVT::isFloatingPoint(Op0.getOperand(1).getValueType()); | 
|  | unsigned X86CC = getX86CC(CC, isFP); | 
|  | CC = DAG.getConstant(X86CC, MVT::i8); | 
|  | Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, | 
|  | Op0.getOperand(0), Op0.getOperand(1)); | 
|  | addTest = true; | 
|  | } else | 
|  | addTest = true; | 
|  |  | 
|  | if (addTest) { | 
|  | CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8); | 
|  | Cond = DAG.getNode(X86ISD::TEST, MVT::Flag, Op0, Op0); | 
|  | } | 
|  |  | 
|  | std::vector<MVT::ValueType> Tys; | 
|  | Tys.push_back(Op.getValueType()); | 
|  | Tys.push_back(MVT::Flag); | 
|  | std::vector<SDOperand> Ops; | 
|  | // X86ISD::CMOV means set the result (which is operand 1) to the RHS if | 
|  | // condition is true. | 
|  | Ops.push_back(Op.getOperand(2)); | 
|  | Ops.push_back(Op.getOperand(1)); | 
|  | Ops.push_back(CC); | 
|  | Ops.push_back(Cond); | 
|  | return DAG.getNode(X86ISD::CMOV, Tys, Ops); | 
|  | } | 
|  | case ISD::BRCOND: { | 
|  | bool addTest = false; | 
|  | SDOperand Cond  = Op.getOperand(1); | 
|  | SDOperand Dest  = Op.getOperand(2); | 
|  | SDOperand CC; | 
|  | if (Cond.getOpcode() == X86ISD::SETCC) { | 
|  | // If condition flag is set by a X86ISD::CMP, then make a copy of it | 
|  | // (since flag operand cannot be shared). If the X86ISD::SETCC does not | 
|  | // have another use it will be eliminated. | 
|  | // If the X86ISD::SETCC has more than one use, then it's probably better | 
|  | // to use a test instead of duplicating the X86ISD::CMP (for register | 
|  | // pressure reason). | 
|  | if (Cond.hasOneUse() && Cond.getOperand(1).getOpcode() == X86ISD::CMP) { | 
|  | CC   = Cond.getOperand(0); | 
|  | Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, | 
|  | Cond.getOperand(1).getOperand(0), | 
|  | Cond.getOperand(1).getOperand(1)); | 
|  | } else | 
|  | addTest = true; | 
|  | } else if (Cond.getOpcode() == ISD::SETCC) { | 
|  | CC = Cond.getOperand(2); | 
|  | bool isFP = MVT::isFloatingPoint(Cond.getOperand(1).getValueType()); | 
|  | unsigned X86CC = getX86CC(CC, isFP); | 
|  | CC = DAG.getConstant(X86CC, MVT::i8); | 
|  | Cond = DAG.getNode(X86ISD::CMP, MVT::Flag, | 
|  | Cond.getOperand(0), Cond.getOperand(1)); | 
|  | } else | 
|  | addTest = true; | 
|  |  | 
|  | if (addTest) { | 
|  | CC = DAG.getConstant(X86ISD::COND_NE, MVT::i8); | 
|  | Cond = DAG.getNode(X86ISD::TEST, MVT::Flag, Cond, Cond); | 
|  | } | 
|  | return DAG.getNode(X86ISD::BRCOND, Op.getValueType(), | 
|  | Op.getOperand(0), Op.getOperand(2), CC, Cond); | 
|  | } | 
|  | case ISD::RET: { | 
|  | // Can only be return void. | 
|  | return DAG.getNode(X86ISD::RET_FLAG, MVT::Other, Op.getOperand(0), | 
|  | DAG.getConstant(getBytesToPopOnReturn(), MVT::i16)); | 
|  | } | 
|  | case ISD::MEMSET: { | 
|  | SDOperand InFlag; | 
|  | SDOperand Chain = Op.getOperand(0); | 
|  | unsigned Align = | 
|  | (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue(); | 
|  | if (Align == 0) Align = 1; | 
|  |  | 
|  | MVT::ValueType AVT; | 
|  | SDOperand Count; | 
|  | if (ConstantSDNode *ValC = dyn_cast<ConstantSDNode>(Op.getOperand(2))) { | 
|  | unsigned ValReg; | 
|  | unsigned Val = ValC->getValue() & 255; | 
|  |  | 
|  | // If the value is a constant, then we can potentially use larger sets. | 
|  | switch (Align & 3) { | 
|  | case 2:   // WORD aligned | 
|  | AVT = MVT::i16; | 
|  | if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3))) | 
|  | Count = DAG.getConstant(I->getValue() / 2, MVT::i32); | 
|  | else | 
|  | Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3), | 
|  | DAG.getConstant(1, MVT::i8)); | 
|  | Val    = (Val << 8) | Val; | 
|  | ValReg = X86::AX; | 
|  | break; | 
|  | case 0:   // DWORD aligned | 
|  | AVT = MVT::i32; | 
|  | if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3))) | 
|  | Count = DAG.getConstant(I->getValue() / 4, MVT::i32); | 
|  | else | 
|  | Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3), | 
|  | DAG.getConstant(2, MVT::i8)); | 
|  | Val = (Val << 8)  | Val; | 
|  | Val = (Val << 16) | Val; | 
|  | ValReg = X86::EAX; | 
|  | break; | 
|  | default:  // Byte aligned | 
|  | AVT = MVT::i8; | 
|  | Count = Op.getOperand(3); | 
|  | ValReg = X86::AL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | Chain  = DAG.getCopyToReg(Chain, ValReg, DAG.getConstant(Val, AVT), | 
|  | InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } else { | 
|  | AVT    = MVT::i8; | 
|  | Count  = Op.getOperand(3); | 
|  | Chain  = DAG.getCopyToReg(Chain, X86::AL, Op.getOperand(2), InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | } | 
|  |  | 
|  | Chain  = DAG.getCopyToReg(Chain, X86::ECX, Count, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | Chain  = DAG.getCopyToReg(Chain, X86::EDI, Op.getOperand(1), InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | return DAG.getNode(X86ISD::REP_STOS, MVT::Other, Chain, | 
|  | DAG.getValueType(AVT), InFlag); | 
|  | } | 
|  | case ISD::MEMCPY: { | 
|  | SDOperand Chain = Op.getOperand(0); | 
|  | unsigned Align = | 
|  | (unsigned)cast<ConstantSDNode>(Op.getOperand(4))->getValue(); | 
|  | if (Align == 0) Align = 1; | 
|  |  | 
|  | MVT::ValueType AVT; | 
|  | SDOperand Count; | 
|  | switch (Align & 3) { | 
|  | case 2:   // WORD aligned | 
|  | AVT = MVT::i16; | 
|  | if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3))) | 
|  | Count = DAG.getConstant(I->getValue() / 2, MVT::i32); | 
|  | else | 
|  | Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3), | 
|  | DAG.getConstant(1, MVT::i8)); | 
|  | break; | 
|  | case 0:   // DWORD aligned | 
|  | AVT = MVT::i32; | 
|  | if (ConstantSDNode *I = dyn_cast<ConstantSDNode>(Op.getOperand(3))) | 
|  | Count = DAG.getConstant(I->getValue() / 4, MVT::i32); | 
|  | else | 
|  | Count = DAG.getNode(ISD::SRL, MVT::i32, Op.getOperand(3), | 
|  | DAG.getConstant(2, MVT::i8)); | 
|  | break; | 
|  | default:  // Byte aligned | 
|  | AVT = MVT::i8; | 
|  | Count = Op.getOperand(3); | 
|  | break; | 
|  | } | 
|  |  | 
|  | SDOperand InFlag; | 
|  | Chain  = DAG.getCopyToReg(Chain, X86::ECX, Count, InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | Chain  = DAG.getCopyToReg(Chain, X86::EDI, Op.getOperand(1), InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  | Chain  = DAG.getCopyToReg(Chain, X86::ESI, Op.getOperand(2), InFlag); | 
|  | InFlag = Chain.getValue(1); | 
|  |  | 
|  | return DAG.getNode(X86ISD::REP_MOVS, MVT::Other, Chain, | 
|  | DAG.getValueType(AVT), InFlag); | 
|  | } | 
|  | case ISD::GlobalAddress: { | 
|  | SDOperand Result; | 
|  | GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); | 
|  | // For Darwin, external and weak symbols are indirect, so we want to load | 
|  | // the value at address GV, not the value of GV itself.  This means that | 
|  | // the GlobalAddress must be in the base or index register of the address, | 
|  | // not the GV offset field. | 
|  | if (getTargetMachine(). | 
|  | getSubtarget<X86Subtarget>().getIndirectExternAndWeakGlobals() && | 
|  | (GV->hasWeakLinkage() || GV->isExternal())) | 
|  | Result = DAG.getLoad(MVT::i32, DAG.getEntryNode(), | 
|  | DAG.getTargetGlobalAddress(GV, getPointerTy()), | 
|  | DAG.getSrcValue(NULL)); | 
|  | return Result; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | const char *X86TargetLowering::getTargetNodeName(unsigned Opcode) const { | 
|  | switch (Opcode) { | 
|  | default: return NULL; | 
|  | case X86ISD::ADD_FLAG:           return "X86ISD::ADD_FLAG"; | 
|  | case X86ISD::SUB_FLAG:           return "X86ISD::SUB_FLAG"; | 
|  | case X86ISD::ADC:                return "X86ISD::ADC"; | 
|  | case X86ISD::SBB:                return "X86ISD::SBB"; | 
|  | case X86ISD::SHLD:               return "X86ISD::SHLD"; | 
|  | case X86ISD::SHRD:               return "X86ISD::SHRD"; | 
|  | case X86ISD::FILD:               return "X86ISD::FILD"; | 
|  | case X86ISD::FP_TO_INT16_IN_MEM: return "X86ISD::FP_TO_INT16_IN_MEM"; | 
|  | case X86ISD::FP_TO_INT32_IN_MEM: return "X86ISD::FP_TO_INT32_IN_MEM"; | 
|  | case X86ISD::FP_TO_INT64_IN_MEM: return "X86ISD::FP_TO_INT64_IN_MEM"; | 
|  | case X86ISD::FLD:                return "X86ISD::FLD"; | 
|  | case X86ISD::FST:                return "X86ISD::FST"; | 
|  | case X86ISD::FP_GET_RESULT:      return "X86ISD::FP_GET_RESULT"; | 
|  | case X86ISD::FP_SET_RESULT:      return "X86ISD::FP_SET_RESULT"; | 
|  | case X86ISD::CALL:               return "X86ISD::CALL"; | 
|  | case X86ISD::TAILCALL:           return "X86ISD::TAILCALL"; | 
|  | case X86ISD::RDTSC_DAG:          return "X86ISD::RDTSC_DAG"; | 
|  | case X86ISD::CMP:                return "X86ISD::CMP"; | 
|  | case X86ISD::TEST:               return "X86ISD::TEST"; | 
|  | case X86ISD::SETCC:              return "X86ISD::SETCC"; | 
|  | case X86ISD::CMOV:               return "X86ISD::CMOV"; | 
|  | case X86ISD::BRCOND:             return "X86ISD::BRCOND"; | 
|  | case X86ISD::RET_FLAG:           return "X86ISD::RET_FLAG"; | 
|  | case X86ISD::REP_STOS:           return "X86ISD::RET_STOS"; | 
|  | case X86ISD::REP_MOVS:           return "X86ISD::RET_MOVS"; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool X86TargetLowering::isMaskedValueZeroForTargetNode(const SDOperand &Op, | 
|  | uint64_t Mask) const { | 
|  |  | 
|  | unsigned Opc = Op.getOpcode(); | 
|  |  | 
|  | switch (Opc) { | 
|  | default: | 
|  | assert(Opc >= ISD::BUILTIN_OP_END && "Expected a target specific node"); | 
|  | break; | 
|  | case X86ISD::SETCC: return (Mask & 1) == 0; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } |