|  | //===- PartialInlining.cpp - Inline parts of functions --------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass performs partial inlining, typically by inlining an if statement | 
|  | // that surrounds the body of the function. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/IPO/PartialInlining.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/BlockFrequencyInfo.h" | 
|  | #include "llvm/Analysis/BranchProbabilityInfo.h" | 
|  | #include "llvm/Analysis/InlineCost.h" | 
|  | #include "llvm/Analysis/LoopInfo.h" | 
|  | #include "llvm/Analysis/OptimizationRemarkEmitter.h" | 
|  | #include "llvm/Analysis/ProfileSummaryInfo.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/TargetTransformInfo.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/DiagnosticInfo.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/BlockFrequency.h" | 
|  | #include "llvm/Support/BranchProbability.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Transforms/IPO.h" | 
|  | #include "llvm/Transforms/Utils/Cloning.h" | 
|  | #include "llvm/Transforms/Utils/CodeExtractor.h" | 
|  | #include "llvm/Transforms/Utils/ValueMapper.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <functional> | 
|  | #include <iterator> | 
|  | #include <memory> | 
|  | #include <tuple> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "partial-inlining" | 
|  |  | 
|  | STATISTIC(NumPartialInlined, | 
|  | "Number of callsites functions partially inlined into."); | 
|  | STATISTIC(NumColdOutlinePartialInlined, "Number of times functions with " | 
|  | "cold outlined regions were partially " | 
|  | "inlined into its caller(s)."); | 
|  | STATISTIC(NumColdRegionsFound, | 
|  | "Number of cold single entry/exit regions found."); | 
|  | STATISTIC(NumColdRegionsOutlined, | 
|  | "Number of cold single entry/exit regions outlined."); | 
|  |  | 
|  | // Command line option to disable partial-inlining. The default is false: | 
|  | static cl::opt<bool> | 
|  | DisablePartialInlining("disable-partial-inlining", cl::init(false), | 
|  | cl::Hidden, cl::desc("Disable partial inlining")); | 
|  | // Command line option to disable multi-region partial-inlining. The default is | 
|  | // false: | 
|  | static cl::opt<bool> DisableMultiRegionPartialInline( | 
|  | "disable-mr-partial-inlining", cl::init(false), cl::Hidden, | 
|  | cl::desc("Disable multi-region partial inlining")); | 
|  |  | 
|  | // Command line option to force outlining in regions with live exit variables. | 
|  | // The default is false: | 
|  | static cl::opt<bool> | 
|  | ForceLiveExit("pi-force-live-exit-outline", cl::init(false), cl::Hidden, | 
|  | cl::desc("Force outline regions with live exits")); | 
|  |  | 
|  | // Command line option to enable marking outline functions with Cold Calling | 
|  | // Convention. The default is false: | 
|  | static cl::opt<bool> | 
|  | MarkOutlinedColdCC("pi-mark-coldcc", cl::init(false), cl::Hidden, | 
|  | cl::desc("Mark outline function calls with ColdCC")); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // Command line option to debug partial-inlining. The default is none: | 
|  | static cl::opt<bool> TracePartialInlining("trace-partial-inlining", | 
|  | cl::init(false), cl::Hidden, | 
|  | cl::desc("Trace partial inlining.")); | 
|  | #endif | 
|  |  | 
|  | // This is an option used by testing: | 
|  | static cl::opt<bool> SkipCostAnalysis("skip-partial-inlining-cost-analysis", | 
|  | cl::init(false), cl::ZeroOrMore, | 
|  | cl::ReallyHidden, | 
|  | cl::desc("Skip Cost Analysis")); | 
|  | // Used to determine if a cold region is worth outlining based on | 
|  | // its inlining cost compared to the original function.  Default is set at 10%. | 
|  | // ie. if the cold region reduces the inlining cost of the original function by | 
|  | // at least 10%. | 
|  | static cl::opt<float> MinRegionSizeRatio( | 
|  | "min-region-size-ratio", cl::init(0.1), cl::Hidden, | 
|  | cl::desc("Minimum ratio comparing relative sizes of each " | 
|  | "outline candidate and original function")); | 
|  | // Used to tune the minimum number of execution counts needed in the predecessor | 
|  | // block to the cold edge. ie. confidence interval. | 
|  | static cl::opt<unsigned> | 
|  | MinBlockCounterExecution("min-block-execution", cl::init(100), cl::Hidden, | 
|  | cl::desc("Minimum block executions to consider " | 
|  | "its BranchProbabilityInfo valid")); | 
|  | // Used to determine when an edge is considered cold. Default is set to 10%. ie. | 
|  | // if the branch probability is 10% or less, then it is deemed as 'cold'. | 
|  | static cl::opt<float> ColdBranchRatio( | 
|  | "cold-branch-ratio", cl::init(0.1), cl::Hidden, | 
|  | cl::desc("Minimum BranchProbability to consider a region cold.")); | 
|  |  | 
|  | static cl::opt<unsigned> MaxNumInlineBlocks( | 
|  | "max-num-inline-blocks", cl::init(5), cl::Hidden, | 
|  | cl::desc("Max number of blocks to be partially inlined")); | 
|  |  | 
|  | // Command line option to set the maximum number of partial inlining allowed | 
|  | // for the module. The default value of -1 means no limit. | 
|  | static cl::opt<int> MaxNumPartialInlining( | 
|  | "max-partial-inlining", cl::init(-1), cl::Hidden, cl::ZeroOrMore, | 
|  | cl::desc("Max number of partial inlining. The default is unlimited")); | 
|  |  | 
|  | // Used only when PGO or user annotated branch data is absent. It is | 
|  | // the least value that is used to weigh the outline region. If BFI | 
|  | // produces larger value, the BFI value will be used. | 
|  | static cl::opt<int> | 
|  | OutlineRegionFreqPercent("outline-region-freq-percent", cl::init(75), | 
|  | cl::Hidden, cl::ZeroOrMore, | 
|  | cl::desc("Relative frequency of outline region to " | 
|  | "the entry block")); | 
|  |  | 
|  | static cl::opt<unsigned> ExtraOutliningPenalty( | 
|  | "partial-inlining-extra-penalty", cl::init(0), cl::Hidden, | 
|  | cl::desc("A debug option to add additional penalty to the computed one.")); | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct FunctionOutliningInfo { | 
|  | FunctionOutliningInfo() = default; | 
|  |  | 
|  | // Returns the number of blocks to be inlined including all blocks | 
|  | // in Entries and one return block. | 
|  | unsigned GetNumInlinedBlocks() const { return Entries.size() + 1; } | 
|  |  | 
|  | // A set of blocks including the function entry that guard | 
|  | // the region to be outlined. | 
|  | SmallVector<BasicBlock *, 4> Entries; | 
|  |  | 
|  | // The return block that is not included in the outlined region. | 
|  | BasicBlock *ReturnBlock = nullptr; | 
|  |  | 
|  | // The dominating block of the region to be outlined. | 
|  | BasicBlock *NonReturnBlock = nullptr; | 
|  |  | 
|  | // The set of blocks in Entries that that are predecessors to ReturnBlock | 
|  | SmallVector<BasicBlock *, 4> ReturnBlockPreds; | 
|  | }; | 
|  |  | 
|  | struct FunctionOutliningMultiRegionInfo { | 
|  | FunctionOutliningMultiRegionInfo() | 
|  | : ORI() {} | 
|  |  | 
|  | // Container for outline regions | 
|  | struct OutlineRegionInfo { | 
|  | OutlineRegionInfo(SmallVector<BasicBlock *, 8> Region, | 
|  | BasicBlock *EntryBlock, BasicBlock *ExitBlock, | 
|  | BasicBlock *ReturnBlock) | 
|  | : Region(Region), EntryBlock(EntryBlock), ExitBlock(ExitBlock), | 
|  | ReturnBlock(ReturnBlock) {} | 
|  | SmallVector<BasicBlock *, 8> Region; | 
|  | BasicBlock *EntryBlock; | 
|  | BasicBlock *ExitBlock; | 
|  | BasicBlock *ReturnBlock; | 
|  | }; | 
|  |  | 
|  | SmallVector<OutlineRegionInfo, 4> ORI; | 
|  | }; | 
|  |  | 
|  | struct PartialInlinerImpl { | 
|  |  | 
|  | PartialInlinerImpl( | 
|  | std::function<AssumptionCache &(Function &)> *GetAC, | 
|  | std::function<TargetTransformInfo &(Function &)> *GTTI, | 
|  | Optional<function_ref<BlockFrequencyInfo &(Function &)>> GBFI, | 
|  | ProfileSummaryInfo *ProfSI) | 
|  | : GetAssumptionCache(GetAC), GetTTI(GTTI), GetBFI(GBFI), PSI(ProfSI) {} | 
|  |  | 
|  | bool run(Module &M); | 
|  | // Main part of the transformation that calls helper functions to find | 
|  | // outlining candidates, clone & outline the function, and attempt to | 
|  | // partially inline the resulting function. Returns true if | 
|  | // inlining was successful, false otherwise.  Also returns the outline | 
|  | // function (only if we partially inlined early returns) as there is a | 
|  | // possibility to further "peel" early return statements that were left in the | 
|  | // outline function due to code size. | 
|  | std::pair<bool, Function *> unswitchFunction(Function *F); | 
|  |  | 
|  | // This class speculatively clones the function to be partial inlined. | 
|  | // At the end of partial inlining, the remaining callsites to the cloned | 
|  | // function that are not partially inlined will be fixed up to reference | 
|  | // the original function, and the cloned function will be erased. | 
|  | struct FunctionCloner { | 
|  | // Two constructors, one for single region outlining, the other for | 
|  | // multi-region outlining. | 
|  | FunctionCloner(Function *F, FunctionOutliningInfo *OI, | 
|  | OptimizationRemarkEmitter &ORE); | 
|  | FunctionCloner(Function *F, FunctionOutliningMultiRegionInfo *OMRI, | 
|  | OptimizationRemarkEmitter &ORE); | 
|  | ~FunctionCloner(); | 
|  |  | 
|  | // Prepare for function outlining: making sure there is only | 
|  | // one incoming edge from the extracted/outlined region to | 
|  | // the return block. | 
|  | void NormalizeReturnBlock(); | 
|  |  | 
|  | // Do function outlining for cold regions. | 
|  | bool doMultiRegionFunctionOutlining(); | 
|  | // Do function outlining for region after early return block(s). | 
|  | // NOTE: For vararg functions that do the vararg handling in the outlined | 
|  | //       function, we temporarily generate IR that does not properly | 
|  | //       forward varargs to the outlined function. Calling InlineFunction | 
|  | //       will update calls to the outlined functions to properly forward | 
|  | //       the varargs. | 
|  | Function *doSingleRegionFunctionOutlining(); | 
|  |  | 
|  | Function *OrigFunc = nullptr; | 
|  | Function *ClonedFunc = nullptr; | 
|  |  | 
|  | typedef std::pair<Function *, BasicBlock *> FuncBodyCallerPair; | 
|  | // Keep track of Outlined Functions and the basic block they're called from. | 
|  | SmallVector<FuncBodyCallerPair, 4> OutlinedFunctions; | 
|  |  | 
|  | // ClonedFunc is inlined in one of its callers after function | 
|  | // outlining. | 
|  | bool IsFunctionInlined = false; | 
|  | // The cost of the region to be outlined. | 
|  | int OutlinedRegionCost = 0; | 
|  | // ClonedOI is specific to outlining non-early return blocks. | 
|  | std::unique_ptr<FunctionOutliningInfo> ClonedOI = nullptr; | 
|  | // ClonedOMRI is specific to outlining cold regions. | 
|  | std::unique_ptr<FunctionOutliningMultiRegionInfo> ClonedOMRI = nullptr; | 
|  | std::unique_ptr<BlockFrequencyInfo> ClonedFuncBFI = nullptr; | 
|  | OptimizationRemarkEmitter &ORE; | 
|  | }; | 
|  |  | 
|  | private: | 
|  | int NumPartialInlining = 0; | 
|  | std::function<AssumptionCache &(Function &)> *GetAssumptionCache; | 
|  | std::function<TargetTransformInfo &(Function &)> *GetTTI; | 
|  | Optional<function_ref<BlockFrequencyInfo &(Function &)>> GetBFI; | 
|  | ProfileSummaryInfo *PSI; | 
|  |  | 
|  | // Return the frequency of the OutlininingBB relative to F's entry point. | 
|  | // The result is no larger than 1 and is represented using BP. | 
|  | // (Note that the outlined region's 'head' block can only have incoming | 
|  | // edges from the guarding entry blocks). | 
|  | BranchProbability getOutliningCallBBRelativeFreq(FunctionCloner &Cloner); | 
|  |  | 
|  | // Return true if the callee of CS should be partially inlined with | 
|  | // profit. | 
|  | bool shouldPartialInline(CallSite CS, FunctionCloner &Cloner, | 
|  | BlockFrequency WeightedOutliningRcost, | 
|  | OptimizationRemarkEmitter &ORE); | 
|  |  | 
|  | // Try to inline DuplicateFunction (cloned from F with call to | 
|  | // the OutlinedFunction into its callers. Return true | 
|  | // if there is any successful inlining. | 
|  | bool tryPartialInline(FunctionCloner &Cloner); | 
|  |  | 
|  | // Compute the mapping from use site of DuplicationFunction to the enclosing | 
|  | // BB's profile count. | 
|  | void computeCallsiteToProfCountMap(Function *DuplicateFunction, | 
|  | DenseMap<User *, uint64_t> &SiteCountMap); | 
|  |  | 
|  | bool IsLimitReached() { | 
|  | return (MaxNumPartialInlining != -1 && | 
|  | NumPartialInlining >= MaxNumPartialInlining); | 
|  | } | 
|  |  | 
|  | static CallSite getCallSite(User *U) { | 
|  | CallSite CS; | 
|  | if (CallInst *CI = dyn_cast<CallInst>(U)) | 
|  | CS = CallSite(CI); | 
|  | else if (InvokeInst *II = dyn_cast<InvokeInst>(U)) | 
|  | CS = CallSite(II); | 
|  | else | 
|  | llvm_unreachable("All uses must be calls"); | 
|  | return CS; | 
|  | } | 
|  |  | 
|  | static CallSite getOneCallSiteTo(Function *F) { | 
|  | User *User = *F->user_begin(); | 
|  | return getCallSite(User); | 
|  | } | 
|  |  | 
|  | std::tuple<DebugLoc, BasicBlock *> getOneDebugLoc(Function *F) { | 
|  | CallSite CS = getOneCallSiteTo(F); | 
|  | DebugLoc DLoc = CS.getInstruction()->getDebugLoc(); | 
|  | BasicBlock *Block = CS.getParent(); | 
|  | return std::make_tuple(DLoc, Block); | 
|  | } | 
|  |  | 
|  | // Returns the costs associated with function outlining: | 
|  | // - The first value is the non-weighted runtime cost for making the call | 
|  | //   to the outlined function, including the addtional  setup cost in the | 
|  | //    outlined function itself; | 
|  | // - The second value is the estimated size of the new call sequence in | 
|  | //   basic block Cloner.OutliningCallBB; | 
|  | std::tuple<int, int> computeOutliningCosts(FunctionCloner &Cloner); | 
|  |  | 
|  | // Compute the 'InlineCost' of block BB. InlineCost is a proxy used to | 
|  | // approximate both the size and runtime cost (Note that in the current | 
|  | // inline cost analysis, there is no clear distinction there either). | 
|  | static int computeBBInlineCost(BasicBlock *BB); | 
|  |  | 
|  | std::unique_ptr<FunctionOutliningInfo> computeOutliningInfo(Function *F); | 
|  | std::unique_ptr<FunctionOutliningMultiRegionInfo> | 
|  | computeOutliningColdRegionsInfo(Function *F, OptimizationRemarkEmitter &ORE); | 
|  | }; | 
|  |  | 
|  | struct PartialInlinerLegacyPass : public ModulePass { | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  |  | 
|  | PartialInlinerLegacyPass() : ModulePass(ID) { | 
|  | initializePartialInlinerLegacyPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  | AU.addRequired<ProfileSummaryInfoWrapperPass>(); | 
|  | AU.addRequired<TargetTransformInfoWrapperPass>(); | 
|  | } | 
|  |  | 
|  | bool runOnModule(Module &M) override { | 
|  | if (skipModule(M)) | 
|  | return false; | 
|  |  | 
|  | AssumptionCacheTracker *ACT = &getAnalysis<AssumptionCacheTracker>(); | 
|  | TargetTransformInfoWrapperPass *TTIWP = | 
|  | &getAnalysis<TargetTransformInfoWrapperPass>(); | 
|  | ProfileSummaryInfo *PSI = | 
|  | getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); | 
|  |  | 
|  | std::function<AssumptionCache &(Function &)> GetAssumptionCache = | 
|  | [&ACT](Function &F) -> AssumptionCache & { | 
|  | return ACT->getAssumptionCache(F); | 
|  | }; | 
|  |  | 
|  | std::function<TargetTransformInfo &(Function &)> GetTTI = | 
|  | [&TTIWP](Function &F) -> TargetTransformInfo & { | 
|  | return TTIWP->getTTI(F); | 
|  | }; | 
|  |  | 
|  | return PartialInlinerImpl(&GetAssumptionCache, &GetTTI, NoneType::None, PSI) | 
|  | .run(M); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | std::unique_ptr<FunctionOutliningMultiRegionInfo> | 
|  | PartialInlinerImpl::computeOutliningColdRegionsInfo(Function *F, | 
|  | OptimizationRemarkEmitter &ORE) { | 
|  | BasicBlock *EntryBlock = &F->front(); | 
|  |  | 
|  | DominatorTree DT(*F); | 
|  | LoopInfo LI(DT); | 
|  | BranchProbabilityInfo BPI(*F, LI); | 
|  | std::unique_ptr<BlockFrequencyInfo> ScopedBFI; | 
|  | BlockFrequencyInfo *BFI; | 
|  | if (!GetBFI) { | 
|  | ScopedBFI.reset(new BlockFrequencyInfo(*F, BPI, LI)); | 
|  | BFI = ScopedBFI.get(); | 
|  | } else | 
|  | BFI = &(*GetBFI)(*F); | 
|  |  | 
|  | // Return if we don't have profiling information. | 
|  | if (!PSI->hasInstrumentationProfile()) | 
|  | return std::unique_ptr<FunctionOutliningMultiRegionInfo>(); | 
|  |  | 
|  | std::unique_ptr<FunctionOutliningMultiRegionInfo> OutliningInfo = | 
|  | llvm::make_unique<FunctionOutliningMultiRegionInfo>(); | 
|  |  | 
|  | auto IsSingleEntry = [](SmallVectorImpl<BasicBlock *> &BlockList) { | 
|  | BasicBlock *Dom = BlockList.front(); | 
|  | return BlockList.size() > 1 && pred_size(Dom) == 1; | 
|  | }; | 
|  |  | 
|  | auto IsSingleExit = | 
|  | [&ORE](SmallVectorImpl<BasicBlock *> &BlockList) -> BasicBlock * { | 
|  | BasicBlock *ExitBlock = nullptr; | 
|  | for (auto *Block : BlockList) { | 
|  | for (auto SI = succ_begin(Block); SI != succ_end(Block); ++SI) { | 
|  | if (!is_contained(BlockList, *SI)) { | 
|  | if (ExitBlock) { | 
|  | ORE.emit([&]() { | 
|  | return OptimizationRemarkMissed(DEBUG_TYPE, "MultiExitRegion", | 
|  | &SI->front()) | 
|  | << "Region dominated by " | 
|  | << ore::NV("Block", BlockList.front()->getName()) | 
|  | << " has more than one region exit edge."; | 
|  | }); | 
|  | return nullptr; | 
|  | } else | 
|  | ExitBlock = Block; | 
|  | } | 
|  | } | 
|  | } | 
|  | return ExitBlock; | 
|  | }; | 
|  |  | 
|  | auto BBProfileCount = [BFI](BasicBlock *BB) { | 
|  | return BFI->getBlockProfileCount(BB) | 
|  | ? BFI->getBlockProfileCount(BB).getValue() | 
|  | : 0; | 
|  | }; | 
|  |  | 
|  | // Use the same computeBBInlineCost function to compute the cost savings of | 
|  | // the outlining the candidate region. | 
|  | int OverallFunctionCost = 0; | 
|  | for (auto &BB : *F) | 
|  | OverallFunctionCost += computeBBInlineCost(&BB); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | if (TracePartialInlining) | 
|  | dbgs() << "OverallFunctionCost = " << OverallFunctionCost << "\n"; | 
|  | #endif | 
|  | int MinOutlineRegionCost = | 
|  | static_cast<int>(OverallFunctionCost * MinRegionSizeRatio); | 
|  | BranchProbability MinBranchProbability( | 
|  | static_cast<int>(ColdBranchRatio * MinBlockCounterExecution), | 
|  | MinBlockCounterExecution); | 
|  | bool ColdCandidateFound = false; | 
|  | BasicBlock *CurrEntry = EntryBlock; | 
|  | std::vector<BasicBlock *> DFS; | 
|  | DenseMap<BasicBlock *, bool> VisitedMap; | 
|  | DFS.push_back(CurrEntry); | 
|  | VisitedMap[CurrEntry] = true; | 
|  | // Use Depth First Search on the basic blocks to find CFG edges that are | 
|  | // considered cold. | 
|  | // Cold regions considered must also have its inline cost compared to the | 
|  | // overall inline cost of the original function.  The region is outlined only | 
|  | // if it reduced the inline cost of the function by 'MinOutlineRegionCost' or | 
|  | // more. | 
|  | while (!DFS.empty()) { | 
|  | auto *thisBB = DFS.back(); | 
|  | DFS.pop_back(); | 
|  | // Only consider regions with predecessor blocks that are considered | 
|  | // not-cold (default: part of the top 99.99% of all block counters) | 
|  | // AND greater than our minimum block execution count (default: 100). | 
|  | if (PSI->isColdBB(thisBB, BFI) || | 
|  | BBProfileCount(thisBB) < MinBlockCounterExecution) | 
|  | continue; | 
|  | for (auto SI = succ_begin(thisBB); SI != succ_end(thisBB); ++SI) { | 
|  | if (VisitedMap[*SI]) | 
|  | continue; | 
|  | VisitedMap[*SI] = true; | 
|  | DFS.push_back(*SI); | 
|  | // If branch isn't cold, we skip to the next one. | 
|  | BranchProbability SuccProb = BPI.getEdgeProbability(thisBB, *SI); | 
|  | if (SuccProb > MinBranchProbability) | 
|  | continue; | 
|  | #ifndef NDEBUG | 
|  | if (TracePartialInlining) { | 
|  | dbgs() << "Found cold edge: " << thisBB->getName() << "->" | 
|  | << (*SI)->getName() << "\nBranch Probability = " << SuccProb | 
|  | << "\n"; | 
|  | } | 
|  | #endif | 
|  | SmallVector<BasicBlock *, 8> DominateVector; | 
|  | DT.getDescendants(*SI, DominateVector); | 
|  | // We can only outline single entry regions (for now). | 
|  | if (!IsSingleEntry(DominateVector)) | 
|  | continue; | 
|  | BasicBlock *ExitBlock = nullptr; | 
|  | // We can only outline single exit regions (for now). | 
|  | if (!(ExitBlock = IsSingleExit(DominateVector))) | 
|  | continue; | 
|  | int OutlineRegionCost = 0; | 
|  | for (auto *BB : DominateVector) | 
|  | OutlineRegionCost += computeBBInlineCost(BB); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | if (TracePartialInlining) | 
|  | dbgs() << "OutlineRegionCost = " << OutlineRegionCost << "\n"; | 
|  | #endif | 
|  |  | 
|  | if (OutlineRegionCost < MinOutlineRegionCost) { | 
|  | ORE.emit([&]() { | 
|  | return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", | 
|  | &SI->front()) | 
|  | << ore::NV("Callee", F) << " inline cost-savings smaller than " | 
|  | << ore::NV("Cost", MinOutlineRegionCost); | 
|  | }); | 
|  | continue; | 
|  | } | 
|  | // For now, ignore blocks that belong to a SISE region that is a | 
|  | // candidate for outlining.  In the future, we may want to look | 
|  | // at inner regions because the outer region may have live-exit | 
|  | // variables. | 
|  | for (auto *BB : DominateVector) | 
|  | VisitedMap[BB] = true; | 
|  | // ReturnBlock here means the block after the outline call | 
|  | BasicBlock *ReturnBlock = ExitBlock->getSingleSuccessor(); | 
|  | // assert(ReturnBlock && "ReturnBlock is NULL somehow!"); | 
|  | FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegInfo( | 
|  | DominateVector, DominateVector.front(), ExitBlock, ReturnBlock); | 
|  | RegInfo.Region = DominateVector; | 
|  | OutliningInfo->ORI.push_back(RegInfo); | 
|  | #ifndef NDEBUG | 
|  | if (TracePartialInlining) { | 
|  | dbgs() << "Found Cold Candidate starting at block: " | 
|  | << DominateVector.front()->getName() << "\n"; | 
|  | } | 
|  | #endif | 
|  | ColdCandidateFound = true; | 
|  | NumColdRegionsFound++; | 
|  | } | 
|  | } | 
|  | if (ColdCandidateFound) | 
|  | return OutliningInfo; | 
|  | else | 
|  | return std::unique_ptr<FunctionOutliningMultiRegionInfo>(); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<FunctionOutliningInfo> | 
|  | PartialInlinerImpl::computeOutliningInfo(Function *F) { | 
|  | BasicBlock *EntryBlock = &F->front(); | 
|  | BranchInst *BR = dyn_cast<BranchInst>(EntryBlock->getTerminator()); | 
|  | if (!BR || BR->isUnconditional()) | 
|  | return std::unique_ptr<FunctionOutliningInfo>(); | 
|  |  | 
|  | // Returns true if Succ is BB's successor | 
|  | auto IsSuccessor = [](BasicBlock *Succ, BasicBlock *BB) { | 
|  | return is_contained(successors(BB), Succ); | 
|  | }; | 
|  |  | 
|  | auto IsReturnBlock = [](BasicBlock *BB) { | 
|  | TerminatorInst *TI = BB->getTerminator(); | 
|  | return isa<ReturnInst>(TI); | 
|  | }; | 
|  |  | 
|  | auto GetReturnBlock = [&](BasicBlock *Succ1, BasicBlock *Succ2) { | 
|  | if (IsReturnBlock(Succ1)) | 
|  | return std::make_tuple(Succ1, Succ2); | 
|  | if (IsReturnBlock(Succ2)) | 
|  | return std::make_tuple(Succ2, Succ1); | 
|  |  | 
|  | return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr); | 
|  | }; | 
|  |  | 
|  | // Detect a triangular shape: | 
|  | auto GetCommonSucc = [&](BasicBlock *Succ1, BasicBlock *Succ2) { | 
|  | if (IsSuccessor(Succ1, Succ2)) | 
|  | return std::make_tuple(Succ1, Succ2); | 
|  | if (IsSuccessor(Succ2, Succ1)) | 
|  | return std::make_tuple(Succ2, Succ1); | 
|  |  | 
|  | return std::make_tuple<BasicBlock *, BasicBlock *>(nullptr, nullptr); | 
|  | }; | 
|  |  | 
|  | std::unique_ptr<FunctionOutliningInfo> OutliningInfo = | 
|  | llvm::make_unique<FunctionOutliningInfo>(); | 
|  |  | 
|  | BasicBlock *CurrEntry = EntryBlock; | 
|  | bool CandidateFound = false; | 
|  | do { | 
|  | // The number of blocks to be inlined has already reached | 
|  | // the limit. When MaxNumInlineBlocks is set to 0 or 1, this | 
|  | // disables partial inlining for the function. | 
|  | if (OutliningInfo->GetNumInlinedBlocks() >= MaxNumInlineBlocks) | 
|  | break; | 
|  |  | 
|  | if (succ_size(CurrEntry) != 2) | 
|  | break; | 
|  |  | 
|  | BasicBlock *Succ1 = *succ_begin(CurrEntry); | 
|  | BasicBlock *Succ2 = *(succ_begin(CurrEntry) + 1); | 
|  |  | 
|  | BasicBlock *ReturnBlock, *NonReturnBlock; | 
|  | std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2); | 
|  |  | 
|  | if (ReturnBlock) { | 
|  | OutliningInfo->Entries.push_back(CurrEntry); | 
|  | OutliningInfo->ReturnBlock = ReturnBlock; | 
|  | OutliningInfo->NonReturnBlock = NonReturnBlock; | 
|  | CandidateFound = true; | 
|  | break; | 
|  | } | 
|  |  | 
|  | BasicBlock *CommSucc; | 
|  | BasicBlock *OtherSucc; | 
|  | std::tie(CommSucc, OtherSucc) = GetCommonSucc(Succ1, Succ2); | 
|  |  | 
|  | if (!CommSucc) | 
|  | break; | 
|  |  | 
|  | OutliningInfo->Entries.push_back(CurrEntry); | 
|  | CurrEntry = OtherSucc; | 
|  | } while (true); | 
|  |  | 
|  | if (!CandidateFound) | 
|  | return std::unique_ptr<FunctionOutliningInfo>(); | 
|  |  | 
|  | // Do sanity check of the entries: threre should not | 
|  | // be any successors (not in the entry set) other than | 
|  | // {ReturnBlock, NonReturnBlock} | 
|  | assert(OutliningInfo->Entries[0] == &F->front() && | 
|  | "Function Entry must be the first in Entries vector"); | 
|  | DenseSet<BasicBlock *> Entries; | 
|  | for (BasicBlock *E : OutliningInfo->Entries) | 
|  | Entries.insert(E); | 
|  |  | 
|  | // Returns true of BB has Predecessor which is not | 
|  | // in Entries set. | 
|  | auto HasNonEntryPred = [Entries](BasicBlock *BB) { | 
|  | for (auto Pred : predecessors(BB)) { | 
|  | if (!Entries.count(Pred)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | }; | 
|  | auto CheckAndNormalizeCandidate = | 
|  | [Entries, HasNonEntryPred](FunctionOutliningInfo *OutliningInfo) { | 
|  | for (BasicBlock *E : OutliningInfo->Entries) { | 
|  | for (auto Succ : successors(E)) { | 
|  | if (Entries.count(Succ)) | 
|  | continue; | 
|  | if (Succ == OutliningInfo->ReturnBlock) | 
|  | OutliningInfo->ReturnBlockPreds.push_back(E); | 
|  | else if (Succ != OutliningInfo->NonReturnBlock) | 
|  | return false; | 
|  | } | 
|  | // There should not be any outside incoming edges either: | 
|  | if (HasNonEntryPred(E)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | }; | 
|  |  | 
|  | if (!CheckAndNormalizeCandidate(OutliningInfo.get())) | 
|  | return std::unique_ptr<FunctionOutliningInfo>(); | 
|  |  | 
|  | // Now further growing the candidate's inlining region by | 
|  | // peeling off dominating blocks from the outlining region: | 
|  | while (OutliningInfo->GetNumInlinedBlocks() < MaxNumInlineBlocks) { | 
|  | BasicBlock *Cand = OutliningInfo->NonReturnBlock; | 
|  | if (succ_size(Cand) != 2) | 
|  | break; | 
|  |  | 
|  | if (HasNonEntryPred(Cand)) | 
|  | break; | 
|  |  | 
|  | BasicBlock *Succ1 = *succ_begin(Cand); | 
|  | BasicBlock *Succ2 = *(succ_begin(Cand) + 1); | 
|  |  | 
|  | BasicBlock *ReturnBlock, *NonReturnBlock; | 
|  | std::tie(ReturnBlock, NonReturnBlock) = GetReturnBlock(Succ1, Succ2); | 
|  | if (!ReturnBlock || ReturnBlock != OutliningInfo->ReturnBlock) | 
|  | break; | 
|  |  | 
|  | if (NonReturnBlock->getSinglePredecessor() != Cand) | 
|  | break; | 
|  |  | 
|  | // Now grow and update OutlininigInfo: | 
|  | OutliningInfo->Entries.push_back(Cand); | 
|  | OutliningInfo->NonReturnBlock = NonReturnBlock; | 
|  | OutliningInfo->ReturnBlockPreds.push_back(Cand); | 
|  | Entries.insert(Cand); | 
|  | } | 
|  |  | 
|  | return OutliningInfo; | 
|  | } | 
|  |  | 
|  | // Check if there is PGO data or user annoated branch data: | 
|  | static bool hasProfileData(Function *F, FunctionOutliningInfo *OI) { | 
|  | if (F->hasProfileData()) | 
|  | return true; | 
|  | // Now check if any of the entry block has MD_prof data: | 
|  | for (auto *E : OI->Entries) { | 
|  | BranchInst *BR = dyn_cast<BranchInst>(E->getTerminator()); | 
|  | if (!BR || BR->isUnconditional()) | 
|  | continue; | 
|  | uint64_t T, F; | 
|  | if (BR->extractProfMetadata(T, F)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | BranchProbability | 
|  | PartialInlinerImpl::getOutliningCallBBRelativeFreq(FunctionCloner &Cloner) { | 
|  | BasicBlock *OutliningCallBB = Cloner.OutlinedFunctions.back().second; | 
|  | auto EntryFreq = | 
|  | Cloner.ClonedFuncBFI->getBlockFreq(&Cloner.ClonedFunc->getEntryBlock()); | 
|  | auto OutliningCallFreq = | 
|  | Cloner.ClonedFuncBFI->getBlockFreq(OutliningCallBB); | 
|  | // FIXME Hackery needed because ClonedFuncBFI is based on the function BEFORE | 
|  | // we outlined any regions, so we may encounter situations where the | 
|  | // OutliningCallFreq is *slightly* bigger than the EntryFreq. | 
|  | if (OutliningCallFreq.getFrequency() > EntryFreq.getFrequency()) { | 
|  | OutliningCallFreq = EntryFreq; | 
|  | } | 
|  | auto OutlineRegionRelFreq = BranchProbability::getBranchProbability( | 
|  | OutliningCallFreq.getFrequency(), EntryFreq.getFrequency()); | 
|  |  | 
|  | if (hasProfileData(Cloner.OrigFunc, Cloner.ClonedOI.get())) | 
|  | return OutlineRegionRelFreq; | 
|  |  | 
|  | // When profile data is not available, we need to be conservative in | 
|  | // estimating the overall savings. Static branch prediction can usually | 
|  | // guess the branch direction right (taken/non-taken), but the guessed | 
|  | // branch probability is usually not biased enough. In case when the | 
|  | // outlined region is predicted to be likely, its probability needs | 
|  | // to be made higher (more biased) to not under-estimate the cost of | 
|  | // function outlining. On the other hand, if the outlined region | 
|  | // is predicted to be less likely, the predicted probablity is usually | 
|  | // higher than the actual. For instance, the actual probability of the | 
|  | // less likely target is only 5%, but the guessed probablity can be | 
|  | // 40%. In the latter case, there is no need for further adjustement. | 
|  | // FIXME: add an option for this. | 
|  | if (OutlineRegionRelFreq < BranchProbability(45, 100)) | 
|  | return OutlineRegionRelFreq; | 
|  |  | 
|  | OutlineRegionRelFreq = std::max( | 
|  | OutlineRegionRelFreq, BranchProbability(OutlineRegionFreqPercent, 100)); | 
|  |  | 
|  | return OutlineRegionRelFreq; | 
|  | } | 
|  |  | 
|  | bool PartialInlinerImpl::shouldPartialInline( | 
|  | CallSite CS, FunctionCloner &Cloner, | 
|  | BlockFrequency WeightedOutliningRcost, | 
|  | OptimizationRemarkEmitter &ORE) { | 
|  | using namespace ore; | 
|  |  | 
|  | Instruction *Call = CS.getInstruction(); | 
|  | Function *Callee = CS.getCalledFunction(); | 
|  | assert(Callee == Cloner.ClonedFunc); | 
|  |  | 
|  | if (SkipCostAnalysis) | 
|  | return isInlineViable(*Callee); | 
|  |  | 
|  | Function *Caller = CS.getCaller(); | 
|  | auto &CalleeTTI = (*GetTTI)(*Callee); | 
|  | InlineCost IC = getInlineCost(CS, getInlineParams(), CalleeTTI, | 
|  | *GetAssumptionCache, GetBFI, PSI, &ORE); | 
|  |  | 
|  | if (IC.isAlways()) { | 
|  | ORE.emit([&]() { | 
|  | return OptimizationRemarkAnalysis(DEBUG_TYPE, "AlwaysInline", Call) | 
|  | << NV("Callee", Cloner.OrigFunc) | 
|  | << " should always be fully inlined, not partially"; | 
|  | }); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (IC.isNever()) { | 
|  | ORE.emit([&]() { | 
|  | return OptimizationRemarkMissed(DEBUG_TYPE, "NeverInline", Call) | 
|  | << NV("Callee", Cloner.OrigFunc) << " not partially inlined into " | 
|  | << NV("Caller", Caller) | 
|  | << " because it should never be inlined (cost=never)"; | 
|  | }); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!IC) { | 
|  | ORE.emit([&]() { | 
|  | return OptimizationRemarkAnalysis(DEBUG_TYPE, "TooCostly", Call) | 
|  | << NV("Callee", Cloner.OrigFunc) << " not partially inlined into " | 
|  | << NV("Caller", Caller) << " because too costly to inline (cost=" | 
|  | << NV("Cost", IC.getCost()) << ", threshold=" | 
|  | << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")"; | 
|  | }); | 
|  | return false; | 
|  | } | 
|  | const DataLayout &DL = Caller->getParent()->getDataLayout(); | 
|  |  | 
|  | // The savings of eliminating the call: | 
|  | int NonWeightedSavings = getCallsiteCost(CS, DL); | 
|  | BlockFrequency NormWeightedSavings(NonWeightedSavings); | 
|  |  | 
|  | // Weighted saving is smaller than weighted cost, return false | 
|  | if (NormWeightedSavings < WeightedOutliningRcost) { | 
|  | ORE.emit([&]() { | 
|  | return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutliningCallcostTooHigh", | 
|  | Call) | 
|  | << NV("Callee", Cloner.OrigFunc) << " not partially inlined into " | 
|  | << NV("Caller", Caller) << " runtime overhead (overhead=" | 
|  | << NV("Overhead", (unsigned)WeightedOutliningRcost.getFrequency()) | 
|  | << ", savings=" | 
|  | << NV("Savings", (unsigned)NormWeightedSavings.getFrequency()) | 
|  | << ")" | 
|  | << " of making the outlined call is too high"; | 
|  | }); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ORE.emit([&]() { | 
|  | return OptimizationRemarkAnalysis(DEBUG_TYPE, "CanBePartiallyInlined", Call) | 
|  | << NV("Callee", Cloner.OrigFunc) << " can be partially inlined into " | 
|  | << NV("Caller", Caller) << " with cost=" << NV("Cost", IC.getCost()) | 
|  | << " (threshold=" | 
|  | << NV("Threshold", IC.getCostDelta() + IC.getCost()) << ")"; | 
|  | }); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // TODO: Ideally  we should share Inliner's InlineCost Analysis code. | 
|  | // For now use a simplified version. The returned 'InlineCost' will be used | 
|  | // to esimate the size cost as well as runtime cost of the BB. | 
|  | int PartialInlinerImpl::computeBBInlineCost(BasicBlock *BB) { | 
|  | int InlineCost = 0; | 
|  | const DataLayout &DL = BB->getParent()->getParent()->getDataLayout(); | 
|  | for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) { | 
|  | if (isa<DbgInfoIntrinsic>(I)) | 
|  | continue; | 
|  |  | 
|  | switch (I->getOpcode()) { | 
|  | case Instruction::BitCast: | 
|  | case Instruction::PtrToInt: | 
|  | case Instruction::IntToPtr: | 
|  | case Instruction::Alloca: | 
|  | continue; | 
|  | case Instruction::GetElementPtr: | 
|  | if (cast<GetElementPtrInst>(I)->hasAllZeroIndices()) | 
|  | continue; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | IntrinsicInst *IntrInst = dyn_cast<IntrinsicInst>(I); | 
|  | if (IntrInst) { | 
|  | if (IntrInst->getIntrinsicID() == Intrinsic::lifetime_start || | 
|  | IntrInst->getIntrinsicID() == Intrinsic::lifetime_end) | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (CallInst *CI = dyn_cast<CallInst>(I)) { | 
|  | InlineCost += getCallsiteCost(CallSite(CI), DL); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(I)) { | 
|  | InlineCost += getCallsiteCost(CallSite(II), DL); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { | 
|  | InlineCost += (SI->getNumCases() + 1) * InlineConstants::InstrCost; | 
|  | continue; | 
|  | } | 
|  | InlineCost += InlineConstants::InstrCost; | 
|  | } | 
|  | return InlineCost; | 
|  | } | 
|  |  | 
|  | std::tuple<int, int> | 
|  | PartialInlinerImpl::computeOutliningCosts(FunctionCloner &Cloner) { | 
|  | int OutliningFuncCallCost = 0, OutlinedFunctionCost = 0; | 
|  | for (auto FuncBBPair : Cloner.OutlinedFunctions) { | 
|  | Function *OutlinedFunc = FuncBBPair.first; | 
|  | BasicBlock* OutliningCallBB = FuncBBPair.second; | 
|  | // Now compute the cost of the call sequence to the outlined function | 
|  | // 'OutlinedFunction' in BB 'OutliningCallBB': | 
|  | OutliningFuncCallCost += computeBBInlineCost(OutliningCallBB); | 
|  |  | 
|  | // Now compute the cost of the extracted/outlined function itself: | 
|  | for (BasicBlock &BB : *OutlinedFunc) | 
|  | OutlinedFunctionCost += computeBBInlineCost(&BB); | 
|  | } | 
|  | assert(OutlinedFunctionCost >= Cloner.OutlinedRegionCost && | 
|  | "Outlined function cost should be no less than the outlined region"); | 
|  |  | 
|  | // The code extractor introduces a new root and exit stub blocks with | 
|  | // additional unconditional branches. Those branches will be eliminated | 
|  | // later with bb layout. The cost should be adjusted accordingly: | 
|  | OutlinedFunctionCost -= | 
|  | 2 * InlineConstants::InstrCost * Cloner.OutlinedFunctions.size(); | 
|  |  | 
|  | int OutliningRuntimeOverhead = | 
|  | OutliningFuncCallCost + | 
|  | (OutlinedFunctionCost - Cloner.OutlinedRegionCost) + | 
|  | ExtraOutliningPenalty; | 
|  |  | 
|  | return std::make_tuple(OutliningFuncCallCost, OutliningRuntimeOverhead); | 
|  | } | 
|  |  | 
|  | // Create the callsite to profile count map which is | 
|  | // used to update the original function's entry count, | 
|  | // after the function is partially inlined into the callsite. | 
|  | void PartialInlinerImpl::computeCallsiteToProfCountMap( | 
|  | Function *DuplicateFunction, | 
|  | DenseMap<User *, uint64_t> &CallSiteToProfCountMap) { | 
|  | std::vector<User *> Users(DuplicateFunction->user_begin(), | 
|  | DuplicateFunction->user_end()); | 
|  | Function *CurrentCaller = nullptr; | 
|  | std::unique_ptr<BlockFrequencyInfo> TempBFI; | 
|  | BlockFrequencyInfo *CurrentCallerBFI = nullptr; | 
|  |  | 
|  | auto ComputeCurrBFI = [&,this](Function *Caller) { | 
|  | // For the old pass manager: | 
|  | if (!GetBFI) { | 
|  | DominatorTree DT(*Caller); | 
|  | LoopInfo LI(DT); | 
|  | BranchProbabilityInfo BPI(*Caller, LI); | 
|  | TempBFI.reset(new BlockFrequencyInfo(*Caller, BPI, LI)); | 
|  | CurrentCallerBFI = TempBFI.get(); | 
|  | } else { | 
|  | // New pass manager: | 
|  | CurrentCallerBFI = &(*GetBFI)(*Caller); | 
|  | } | 
|  | }; | 
|  |  | 
|  | for (User *User : Users) { | 
|  | CallSite CS = getCallSite(User); | 
|  | Function *Caller = CS.getCaller(); | 
|  | if (CurrentCaller != Caller) { | 
|  | CurrentCaller = Caller; | 
|  | ComputeCurrBFI(Caller); | 
|  | } else { | 
|  | assert(CurrentCallerBFI && "CallerBFI is not set"); | 
|  | } | 
|  | BasicBlock *CallBB = CS.getInstruction()->getParent(); | 
|  | auto Count = CurrentCallerBFI->getBlockProfileCount(CallBB); | 
|  | if (Count) | 
|  | CallSiteToProfCountMap[User] = *Count; | 
|  | else | 
|  | CallSiteToProfCountMap[User] = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | PartialInlinerImpl::FunctionCloner::FunctionCloner( | 
|  | Function *F, FunctionOutliningInfo *OI, OptimizationRemarkEmitter &ORE) | 
|  | : OrigFunc(F), ORE(ORE) { | 
|  | ClonedOI = llvm::make_unique<FunctionOutliningInfo>(); | 
|  |  | 
|  | // Clone the function, so that we can hack away on it. | 
|  | ValueToValueMapTy VMap; | 
|  | ClonedFunc = CloneFunction(F, VMap); | 
|  |  | 
|  | ClonedOI->ReturnBlock = cast<BasicBlock>(VMap[OI->ReturnBlock]); | 
|  | ClonedOI->NonReturnBlock = cast<BasicBlock>(VMap[OI->NonReturnBlock]); | 
|  | for (BasicBlock *BB : OI->Entries) { | 
|  | ClonedOI->Entries.push_back(cast<BasicBlock>(VMap[BB])); | 
|  | } | 
|  | for (BasicBlock *E : OI->ReturnBlockPreds) { | 
|  | BasicBlock *NewE = cast<BasicBlock>(VMap[E]); | 
|  | ClonedOI->ReturnBlockPreds.push_back(NewE); | 
|  | } | 
|  | // Go ahead and update all uses to the duplicate, so that we can just | 
|  | // use the inliner functionality when we're done hacking. | 
|  | F->replaceAllUsesWith(ClonedFunc); | 
|  | } | 
|  |  | 
|  | PartialInlinerImpl::FunctionCloner::FunctionCloner( | 
|  | Function *F, FunctionOutliningMultiRegionInfo *OI, | 
|  | OptimizationRemarkEmitter &ORE) | 
|  | : OrigFunc(F), ORE(ORE) { | 
|  | ClonedOMRI = llvm::make_unique<FunctionOutliningMultiRegionInfo>(); | 
|  |  | 
|  | // Clone the function, so that we can hack away on it. | 
|  | ValueToValueMapTy VMap; | 
|  | ClonedFunc = CloneFunction(F, VMap); | 
|  |  | 
|  | // Go through all Outline Candidate Regions and update all BasicBlock | 
|  | // information. | 
|  | for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo : | 
|  | OI->ORI) { | 
|  | SmallVector<BasicBlock *, 8> Region; | 
|  | for (BasicBlock *BB : RegionInfo.Region) { | 
|  | Region.push_back(cast<BasicBlock>(VMap[BB])); | 
|  | } | 
|  | BasicBlock *NewEntryBlock = cast<BasicBlock>(VMap[RegionInfo.EntryBlock]); | 
|  | BasicBlock *NewExitBlock = cast<BasicBlock>(VMap[RegionInfo.ExitBlock]); | 
|  | BasicBlock *NewReturnBlock = nullptr; | 
|  | if (RegionInfo.ReturnBlock) | 
|  | NewReturnBlock = cast<BasicBlock>(VMap[RegionInfo.ReturnBlock]); | 
|  | FunctionOutliningMultiRegionInfo::OutlineRegionInfo MappedRegionInfo( | 
|  | Region, NewEntryBlock, NewExitBlock, NewReturnBlock); | 
|  | ClonedOMRI->ORI.push_back(MappedRegionInfo); | 
|  | } | 
|  | // Go ahead and update all uses to the duplicate, so that we can just | 
|  | // use the inliner functionality when we're done hacking. | 
|  | F->replaceAllUsesWith(ClonedFunc); | 
|  | } | 
|  |  | 
|  | void PartialInlinerImpl::FunctionCloner::NormalizeReturnBlock() { | 
|  | auto getFirstPHI = [](BasicBlock *BB) { | 
|  | BasicBlock::iterator I = BB->begin(); | 
|  | PHINode *FirstPhi = nullptr; | 
|  | while (I != BB->end()) { | 
|  | PHINode *Phi = dyn_cast<PHINode>(I); | 
|  | if (!Phi) | 
|  | break; | 
|  | if (!FirstPhi) { | 
|  | FirstPhi = Phi; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return FirstPhi; | 
|  | }; | 
|  |  | 
|  | // Shouldn't need to normalize PHIs if we're not outlining non-early return | 
|  | // blocks. | 
|  | if (!ClonedOI) | 
|  | return; | 
|  |  | 
|  | // Special hackery is needed with PHI nodes that have inputs from more than | 
|  | // one extracted block.  For simplicity, just split the PHIs into a two-level | 
|  | // sequence of PHIs, some of which will go in the extracted region, and some | 
|  | // of which will go outside. | 
|  | BasicBlock *PreReturn = ClonedOI->ReturnBlock; | 
|  | // only split block when necessary: | 
|  | PHINode *FirstPhi = getFirstPHI(PreReturn); | 
|  | unsigned NumPredsFromEntries = ClonedOI->ReturnBlockPreds.size(); | 
|  |  | 
|  | if (!FirstPhi || FirstPhi->getNumIncomingValues() <= NumPredsFromEntries + 1) | 
|  | return; | 
|  |  | 
|  | auto IsTrivialPhi = [](PHINode *PN) -> Value * { | 
|  | Value *CommonValue = PN->getIncomingValue(0); | 
|  | if (all_of(PN->incoming_values(), | 
|  | [&](Value *V) { return V == CommonValue; })) | 
|  | return CommonValue; | 
|  | return nullptr; | 
|  | }; | 
|  |  | 
|  | ClonedOI->ReturnBlock = ClonedOI->ReturnBlock->splitBasicBlock( | 
|  | ClonedOI->ReturnBlock->getFirstNonPHI()->getIterator()); | 
|  | BasicBlock::iterator I = PreReturn->begin(); | 
|  | Instruction *Ins = &ClonedOI->ReturnBlock->front(); | 
|  | SmallVector<Instruction *, 4> DeadPhis; | 
|  | while (I != PreReturn->end()) { | 
|  | PHINode *OldPhi = dyn_cast<PHINode>(I); | 
|  | if (!OldPhi) | 
|  | break; | 
|  |  | 
|  | PHINode *RetPhi = | 
|  | PHINode::Create(OldPhi->getType(), NumPredsFromEntries + 1, "", Ins); | 
|  | OldPhi->replaceAllUsesWith(RetPhi); | 
|  | Ins = ClonedOI->ReturnBlock->getFirstNonPHI(); | 
|  |  | 
|  | RetPhi->addIncoming(&*I, PreReturn); | 
|  | for (BasicBlock *E : ClonedOI->ReturnBlockPreds) { | 
|  | RetPhi->addIncoming(OldPhi->getIncomingValueForBlock(E), E); | 
|  | OldPhi->removeIncomingValue(E); | 
|  | } | 
|  |  | 
|  | // After incoming values splitting, the old phi may become trivial. | 
|  | // Keeping the trivial phi can introduce definition inside the outline | 
|  | // region which is live-out, causing necessary overhead (load, store | 
|  | // arg passing etc). | 
|  | if (auto *OldPhiVal = IsTrivialPhi(OldPhi)) { | 
|  | OldPhi->replaceAllUsesWith(OldPhiVal); | 
|  | DeadPhis.push_back(OldPhi); | 
|  | } | 
|  | ++I; | 
|  | } | 
|  | for (auto *DP : DeadPhis) | 
|  | DP->eraseFromParent(); | 
|  |  | 
|  | for (auto E : ClonedOI->ReturnBlockPreds) { | 
|  | E->getTerminator()->replaceUsesOfWith(PreReturn, ClonedOI->ReturnBlock); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool PartialInlinerImpl::FunctionCloner::doMultiRegionFunctionOutlining() { | 
|  |  | 
|  | auto ComputeRegionCost = [](SmallVectorImpl<BasicBlock *> &Region) { | 
|  | int Cost = 0; | 
|  | for (BasicBlock* BB : Region) | 
|  | Cost += computeBBInlineCost(BB); | 
|  | return Cost; | 
|  | }; | 
|  |  | 
|  | assert(ClonedOMRI && "Expecting OutlineInfo for multi region outline"); | 
|  |  | 
|  | if (ClonedOMRI->ORI.empty()) | 
|  | return false; | 
|  |  | 
|  | // The CodeExtractor needs a dominator tree. | 
|  | DominatorTree DT; | 
|  | DT.recalculate(*ClonedFunc); | 
|  |  | 
|  | // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo. | 
|  | LoopInfo LI(DT); | 
|  | BranchProbabilityInfo BPI(*ClonedFunc, LI); | 
|  | ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI)); | 
|  |  | 
|  | SetVector<Value *> Inputs, Outputs, Sinks; | 
|  | for (FunctionOutliningMultiRegionInfo::OutlineRegionInfo RegionInfo : | 
|  | ClonedOMRI->ORI) { | 
|  | int CurrentOutlinedRegionCost = ComputeRegionCost(RegionInfo.Region); | 
|  |  | 
|  | CodeExtractor CE(RegionInfo.Region, &DT, /*AggregateArgs*/ false, | 
|  | ClonedFuncBFI.get(), &BPI, /* AllowVarargs */ false); | 
|  |  | 
|  | CE.findInputsOutputs(Inputs, Outputs, Sinks); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | if (TracePartialInlining) { | 
|  | dbgs() << "inputs: " << Inputs.size() << "\n"; | 
|  | dbgs() << "outputs: " << Outputs.size() << "\n"; | 
|  | for (Value *value : Inputs) | 
|  | dbgs() << "value used in func: " << *value << "\n"; | 
|  | for (Value *output : Outputs) | 
|  | dbgs() << "instr used in func: " << *output << "\n"; | 
|  | } | 
|  | #endif | 
|  | // Do not extract regions that have live exit variables. | 
|  | if (Outputs.size() > 0 && !ForceLiveExit) | 
|  | continue; | 
|  |  | 
|  | Function *OutlinedFunc = CE.extractCodeRegion(); | 
|  |  | 
|  | if (OutlinedFunc) { | 
|  | CallSite OCS = PartialInlinerImpl::getOneCallSiteTo(OutlinedFunc); | 
|  | BasicBlock *OutliningCallBB = OCS.getInstruction()->getParent(); | 
|  | assert(OutliningCallBB->getParent() == ClonedFunc); | 
|  | OutlinedFunctions.push_back(std::make_pair(OutlinedFunc,OutliningCallBB)); | 
|  | NumColdRegionsOutlined++; | 
|  | OutlinedRegionCost += CurrentOutlinedRegionCost; | 
|  |  | 
|  | if (MarkOutlinedColdCC) { | 
|  | OutlinedFunc->setCallingConv(CallingConv::Cold); | 
|  | OCS.setCallingConv(CallingConv::Cold); | 
|  | } | 
|  | } else | 
|  | ORE.emit([&]() { | 
|  | return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", | 
|  | &RegionInfo.Region.front()->front()) | 
|  | << "Failed to extract region at block " | 
|  | << ore::NV("Block", RegionInfo.Region.front()); | 
|  | }); | 
|  | } | 
|  |  | 
|  | return !OutlinedFunctions.empty(); | 
|  | } | 
|  |  | 
|  | Function * | 
|  | PartialInlinerImpl::FunctionCloner::doSingleRegionFunctionOutlining() { | 
|  | // Returns true if the block is to be partial inlined into the caller | 
|  | // (i.e. not to be extracted to the out of line function) | 
|  | auto ToBeInlined = [&, this](BasicBlock *BB) { | 
|  | return BB == ClonedOI->ReturnBlock || | 
|  | (std::find(ClonedOI->Entries.begin(), ClonedOI->Entries.end(), BB) != | 
|  | ClonedOI->Entries.end()); | 
|  | }; | 
|  |  | 
|  | assert(ClonedOI && "Expecting OutlineInfo for single region outline"); | 
|  | // The CodeExtractor needs a dominator tree. | 
|  | DominatorTree DT; | 
|  | DT.recalculate(*ClonedFunc); | 
|  |  | 
|  | // Manually calculate a BlockFrequencyInfo and BranchProbabilityInfo. | 
|  | LoopInfo LI(DT); | 
|  | BranchProbabilityInfo BPI(*ClonedFunc, LI); | 
|  | ClonedFuncBFI.reset(new BlockFrequencyInfo(*ClonedFunc, BPI, LI)); | 
|  |  | 
|  | // Gather up the blocks that we're going to extract. | 
|  | std::vector<BasicBlock *> ToExtract; | 
|  | ToExtract.push_back(ClonedOI->NonReturnBlock); | 
|  | OutlinedRegionCost += | 
|  | PartialInlinerImpl::computeBBInlineCost(ClonedOI->NonReturnBlock); | 
|  | for (BasicBlock &BB : *ClonedFunc) | 
|  | if (!ToBeInlined(&BB) && &BB != ClonedOI->NonReturnBlock) { | 
|  | ToExtract.push_back(&BB); | 
|  | // FIXME: the code extractor may hoist/sink more code | 
|  | // into the outlined function which may make the outlining | 
|  | // overhead (the difference of the outlined function cost | 
|  | // and OutliningRegionCost) look larger. | 
|  | OutlinedRegionCost += computeBBInlineCost(&BB); | 
|  | } | 
|  |  | 
|  | // Extract the body of the if. | 
|  | Function *OutlinedFunc = | 
|  | CodeExtractor(ToExtract, &DT, /*AggregateArgs*/ false, | 
|  | ClonedFuncBFI.get(), &BPI, | 
|  | /* AllowVarargs */ true) | 
|  | .extractCodeRegion(); | 
|  |  | 
|  | if (OutlinedFunc) { | 
|  | BasicBlock *OutliningCallBB = | 
|  | PartialInlinerImpl::getOneCallSiteTo(OutlinedFunc) | 
|  | .getInstruction() | 
|  | ->getParent(); | 
|  | assert(OutliningCallBB->getParent() == ClonedFunc); | 
|  | OutlinedFunctions.push_back(std::make_pair(OutlinedFunc, OutliningCallBB)); | 
|  | } else | 
|  | ORE.emit([&]() { | 
|  | return OptimizationRemarkMissed(DEBUG_TYPE, "ExtractFailed", | 
|  | &ToExtract.front()->front()) | 
|  | << "Failed to extract region at block " | 
|  | << ore::NV("Block", ToExtract.front()); | 
|  | }); | 
|  |  | 
|  | return OutlinedFunc; | 
|  | } | 
|  |  | 
|  | PartialInlinerImpl::FunctionCloner::~FunctionCloner() { | 
|  | // Ditch the duplicate, since we're done with it, and rewrite all remaining | 
|  | // users (function pointers, etc.) back to the original function. | 
|  | ClonedFunc->replaceAllUsesWith(OrigFunc); | 
|  | ClonedFunc->eraseFromParent(); | 
|  | if (!IsFunctionInlined) { | 
|  | // Remove each function that was speculatively created if there is no | 
|  | // reference. | 
|  | for (auto FuncBBPair : OutlinedFunctions) { | 
|  | Function *Func = FuncBBPair.first; | 
|  | Func->eraseFromParent(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | std::pair<bool, Function *> PartialInlinerImpl::unswitchFunction(Function *F) { | 
|  |  | 
|  | if (F->hasAddressTaken()) | 
|  | return {false, nullptr}; | 
|  |  | 
|  | // Let inliner handle it | 
|  | if (F->hasFnAttribute(Attribute::AlwaysInline)) | 
|  | return {false, nullptr}; | 
|  |  | 
|  | if (F->hasFnAttribute(Attribute::NoInline)) | 
|  | return {false, nullptr}; | 
|  |  | 
|  | if (PSI->isFunctionEntryCold(F)) | 
|  | return {false, nullptr}; | 
|  |  | 
|  | if (F->user_begin() == F->user_end()) | 
|  | return {false, nullptr}; | 
|  |  | 
|  | OptimizationRemarkEmitter ORE(F); | 
|  |  | 
|  | // Only try to outline cold regions if we have a profile summary, which | 
|  | // implies we have profiling information. | 
|  | if (PSI->hasProfileSummary() && F->hasProfileData() && | 
|  | !DisableMultiRegionPartialInline) { | 
|  | std::unique_ptr<FunctionOutliningMultiRegionInfo> OMRI = | 
|  | computeOutliningColdRegionsInfo(F, ORE); | 
|  | if (OMRI) { | 
|  | FunctionCloner Cloner(F, OMRI.get(), ORE); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | if (TracePartialInlining) { | 
|  | dbgs() << "HotCountThreshold = " << PSI->getHotCountThreshold() << "\n"; | 
|  | dbgs() << "ColdCountThreshold = " << PSI->getColdCountThreshold() | 
|  | << "\n"; | 
|  | } | 
|  | #endif | 
|  | bool DidOutline = Cloner.doMultiRegionFunctionOutlining(); | 
|  |  | 
|  | if (DidOutline) { | 
|  | #ifndef NDEBUG | 
|  | if (TracePartialInlining) { | 
|  | dbgs() << ">>>>>> Outlined (Cloned) Function >>>>>>\n"; | 
|  | Cloner.ClonedFunc->print(dbgs()); | 
|  | dbgs() << "<<<<<< Outlined (Cloned) Function <<<<<<\n"; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (tryPartialInline(Cloner)) | 
|  | return {true, nullptr}; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Fall-thru to regular partial inlining if we: | 
|  | //    i) can't find any cold regions to outline, or | 
|  | //   ii) can't inline the outlined function anywhere. | 
|  | std::unique_ptr<FunctionOutliningInfo> OI = computeOutliningInfo(F); | 
|  | if (!OI) | 
|  | return {false, nullptr}; | 
|  |  | 
|  | FunctionCloner Cloner(F, OI.get(), ORE); | 
|  | Cloner.NormalizeReturnBlock(); | 
|  |  | 
|  | Function *OutlinedFunction = Cloner.doSingleRegionFunctionOutlining(); | 
|  |  | 
|  | if (!OutlinedFunction) | 
|  | return {false, nullptr}; | 
|  |  | 
|  | bool AnyInline = tryPartialInline(Cloner); | 
|  |  | 
|  | if (AnyInline) | 
|  | return {true, OutlinedFunction}; | 
|  |  | 
|  | return {false, nullptr}; | 
|  | } | 
|  |  | 
|  | bool PartialInlinerImpl::tryPartialInline(FunctionCloner &Cloner) { | 
|  | if (Cloner.OutlinedFunctions.empty()) | 
|  | return false; | 
|  |  | 
|  | int SizeCost = 0; | 
|  | BlockFrequency WeightedRcost; | 
|  | int NonWeightedRcost; | 
|  | std::tie(SizeCost, NonWeightedRcost) = computeOutliningCosts(Cloner); | 
|  |  | 
|  | // Only calculate RelativeToEntryFreq when we are doing single region | 
|  | // outlining. | 
|  | BranchProbability RelativeToEntryFreq; | 
|  | if (Cloner.ClonedOI) { | 
|  | RelativeToEntryFreq = getOutliningCallBBRelativeFreq(Cloner); | 
|  | } else | 
|  | // RelativeToEntryFreq doesn't make sense when we have more than one | 
|  | // outlined call because each call will have a different relative frequency | 
|  | // to the entry block.  We can consider using the average, but the | 
|  | // usefulness of that information is questionable. For now, assume we never | 
|  | // execute the calls to outlined functions. | 
|  | RelativeToEntryFreq = BranchProbability(0, 1); | 
|  |  | 
|  | WeightedRcost = BlockFrequency(NonWeightedRcost) * RelativeToEntryFreq; | 
|  |  | 
|  | // The call sequence(s) to the outlined function(s) are larger than the sum of | 
|  | // the original outlined region size(s), it does not increase the chances of | 
|  | // inlining the function with outlining (The inliner uses the size increase to | 
|  | // model the cost of inlining a callee). | 
|  | if (!SkipCostAnalysis && Cloner.OutlinedRegionCost < SizeCost) { | 
|  | OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc); | 
|  | DebugLoc DLoc; | 
|  | BasicBlock *Block; | 
|  | std::tie(DLoc, Block) = getOneDebugLoc(Cloner.ClonedFunc); | 
|  | OrigFuncORE.emit([&]() { | 
|  | return OptimizationRemarkAnalysis(DEBUG_TYPE, "OutlineRegionTooSmall", | 
|  | DLoc, Block) | 
|  | << ore::NV("Function", Cloner.OrigFunc) | 
|  | << " not partially inlined into callers (Original Size = " | 
|  | << ore::NV("OutlinedRegionOriginalSize", Cloner.OutlinedRegionCost) | 
|  | << ", Size of call sequence to outlined function = " | 
|  | << ore::NV("NewSize", SizeCost) << ")"; | 
|  | }); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | assert(Cloner.OrigFunc->user_begin() == Cloner.OrigFunc->user_end() && | 
|  | "F's users should all be replaced!"); | 
|  |  | 
|  | std::vector<User *> Users(Cloner.ClonedFunc->user_begin(), | 
|  | Cloner.ClonedFunc->user_end()); | 
|  |  | 
|  | DenseMap<User *, uint64_t> CallSiteToProfCountMap; | 
|  | auto CalleeEntryCount = Cloner.OrigFunc->getEntryCount(); | 
|  | if (CalleeEntryCount) | 
|  | computeCallsiteToProfCountMap(Cloner.ClonedFunc, CallSiteToProfCountMap); | 
|  |  | 
|  | uint64_t CalleeEntryCountV = | 
|  | (CalleeEntryCount ? CalleeEntryCount.getCount() : 0); | 
|  |  | 
|  | bool AnyInline = false; | 
|  | for (User *User : Users) { | 
|  | CallSite CS = getCallSite(User); | 
|  |  | 
|  | if (IsLimitReached()) | 
|  | continue; | 
|  |  | 
|  | OptimizationRemarkEmitter CallerORE(CS.getCaller()); | 
|  | if (!shouldPartialInline(CS, Cloner, WeightedRcost, CallerORE)) | 
|  | continue; | 
|  |  | 
|  | // Construct remark before doing the inlining, as after successful inlining | 
|  | // the callsite is removed. | 
|  | OptimizationRemark OR(DEBUG_TYPE, "PartiallyInlined", CS.getInstruction()); | 
|  | OR << ore::NV("Callee", Cloner.OrigFunc) << " partially inlined into " | 
|  | << ore::NV("Caller", CS.getCaller()); | 
|  |  | 
|  | InlineFunctionInfo IFI(nullptr, GetAssumptionCache, PSI); | 
|  | // We can only forward varargs when we outlined a single region, else we | 
|  | // bail on vararg functions. | 
|  | if (!InlineFunction(CS, IFI, nullptr, true, | 
|  | (Cloner.ClonedOI ? Cloner.OutlinedFunctions.back().first | 
|  | : nullptr))) | 
|  | continue; | 
|  |  | 
|  | CallerORE.emit(OR); | 
|  |  | 
|  | // Now update the entry count: | 
|  | if (CalleeEntryCountV && CallSiteToProfCountMap.count(User)) { | 
|  | uint64_t CallSiteCount = CallSiteToProfCountMap[User]; | 
|  | CalleeEntryCountV -= std::min(CalleeEntryCountV, CallSiteCount); | 
|  | } | 
|  |  | 
|  | AnyInline = true; | 
|  | NumPartialInlining++; | 
|  | // Update the stats | 
|  | if (Cloner.ClonedOI) | 
|  | NumPartialInlined++; | 
|  | else | 
|  | NumColdOutlinePartialInlined++; | 
|  |  | 
|  | } | 
|  |  | 
|  | if (AnyInline) { | 
|  | Cloner.IsFunctionInlined = true; | 
|  | if (CalleeEntryCount) | 
|  | Cloner.OrigFunc->setEntryCount( | 
|  | CalleeEntryCount.setCount(CalleeEntryCountV)); | 
|  | OptimizationRemarkEmitter OrigFuncORE(Cloner.OrigFunc); | 
|  | OrigFuncORE.emit([&]() { | 
|  | return OptimizationRemark(DEBUG_TYPE, "PartiallyInlined", Cloner.OrigFunc) | 
|  | << "Partially inlined into at least one caller"; | 
|  | }); | 
|  |  | 
|  | } | 
|  |  | 
|  | return AnyInline; | 
|  | } | 
|  |  | 
|  | bool PartialInlinerImpl::run(Module &M) { | 
|  | if (DisablePartialInlining) | 
|  | return false; | 
|  |  | 
|  | std::vector<Function *> Worklist; | 
|  | Worklist.reserve(M.size()); | 
|  | for (Function &F : M) | 
|  | if (!F.use_empty() && !F.isDeclaration()) | 
|  | Worklist.push_back(&F); | 
|  |  | 
|  | bool Changed = false; | 
|  | while (!Worklist.empty()) { | 
|  | Function *CurrFunc = Worklist.back(); | 
|  | Worklist.pop_back(); | 
|  |  | 
|  | if (CurrFunc->use_empty()) | 
|  | continue; | 
|  |  | 
|  | bool Recursive = false; | 
|  | for (User *U : CurrFunc->users()) | 
|  | if (Instruction *I = dyn_cast<Instruction>(U)) | 
|  | if (I->getParent()->getParent() == CurrFunc) { | 
|  | Recursive = true; | 
|  | break; | 
|  | } | 
|  | if (Recursive) | 
|  | continue; | 
|  |  | 
|  | std::pair<bool, Function * > Result = unswitchFunction(CurrFunc); | 
|  | if (Result.second) | 
|  | Worklist.push_back(Result.second); | 
|  | if (Result.first) { | 
|  | Changed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | char PartialInlinerLegacyPass::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(PartialInlinerLegacyPass, "partial-inliner", | 
|  | "Partial Inliner", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
|  | INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(PartialInlinerLegacyPass, "partial-inliner", | 
|  | "Partial Inliner", false, false) | 
|  |  | 
|  | ModulePass *llvm::createPartialInliningPass() { | 
|  | return new PartialInlinerLegacyPass(); | 
|  | } | 
|  |  | 
|  | PreservedAnalyses PartialInlinerPass::run(Module &M, | 
|  | ModuleAnalysisManager &AM) { | 
|  | auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); | 
|  |  | 
|  | std::function<AssumptionCache &(Function &)> GetAssumptionCache = | 
|  | [&FAM](Function &F) -> AssumptionCache & { | 
|  | return FAM.getResult<AssumptionAnalysis>(F); | 
|  | }; | 
|  |  | 
|  | std::function<BlockFrequencyInfo &(Function &)> GetBFI = | 
|  | [&FAM](Function &F) -> BlockFrequencyInfo & { | 
|  | return FAM.getResult<BlockFrequencyAnalysis>(F); | 
|  | }; | 
|  |  | 
|  | std::function<TargetTransformInfo &(Function &)> GetTTI = | 
|  | [&FAM](Function &F) -> TargetTransformInfo & { | 
|  | return FAM.getResult<TargetIRAnalysis>(F); | 
|  | }; | 
|  |  | 
|  | ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); | 
|  |  | 
|  | if (PartialInlinerImpl(&GetAssumptionCache, &GetTTI, {GetBFI}, PSI) | 
|  | .run(M)) | 
|  | return PreservedAnalyses::none(); | 
|  | return PreservedAnalyses::all(); | 
|  | } |