|  | //===- SSAUpdater.cpp - Unstructured SSA Update Tool ----------------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the SSAUpdater class. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Utils/SSAUpdater.h" | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/TinyPtrVector.h" | 
|  | #include "llvm/Analysis/InstructionSimplify.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DebugLoc.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Use.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/IR/ValueHandle.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Utils/SSAUpdaterImpl.h" | 
|  | #include <cassert> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "ssaupdater" | 
|  |  | 
|  | using AvailableValsTy = DenseMap<BasicBlock *, Value *>; | 
|  |  | 
|  | static AvailableValsTy &getAvailableVals(void *AV) { | 
|  | return *static_cast<AvailableValsTy*>(AV); | 
|  | } | 
|  |  | 
|  | SSAUpdater::SSAUpdater(SmallVectorImpl<PHINode *> *NewPHI) | 
|  | : InsertedPHIs(NewPHI) {} | 
|  |  | 
|  | SSAUpdater::~SSAUpdater() { | 
|  | delete static_cast<AvailableValsTy*>(AV); | 
|  | } | 
|  |  | 
|  | void SSAUpdater::Initialize(Type *Ty, StringRef Name) { | 
|  | if (!AV) | 
|  | AV = new AvailableValsTy(); | 
|  | else | 
|  | getAvailableVals(AV).clear(); | 
|  | ProtoType = Ty; | 
|  | ProtoName = Name; | 
|  | } | 
|  |  | 
|  | bool SSAUpdater::HasValueForBlock(BasicBlock *BB) const { | 
|  | return getAvailableVals(AV).count(BB); | 
|  | } | 
|  |  | 
|  | void SSAUpdater::AddAvailableValue(BasicBlock *BB, Value *V) { | 
|  | assert(ProtoType && "Need to initialize SSAUpdater"); | 
|  | assert(ProtoType == V->getType() && | 
|  | "All rewritten values must have the same type"); | 
|  | getAvailableVals(AV)[BB] = V; | 
|  | } | 
|  |  | 
|  | static bool IsEquivalentPHI(PHINode *PHI, | 
|  | SmallDenseMap<BasicBlock *, Value *, 8> &ValueMapping) { | 
|  | unsigned PHINumValues = PHI->getNumIncomingValues(); | 
|  | if (PHINumValues != ValueMapping.size()) | 
|  | return false; | 
|  |  | 
|  | // Scan the phi to see if it matches. | 
|  | for (unsigned i = 0, e = PHINumValues; i != e; ++i) | 
|  | if (ValueMapping[PHI->getIncomingBlock(i)] != | 
|  | PHI->getIncomingValue(i)) { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | Value *SSAUpdater::GetValueAtEndOfBlock(BasicBlock *BB) { | 
|  | Value *Res = GetValueAtEndOfBlockInternal(BB); | 
|  | return Res; | 
|  | } | 
|  |  | 
|  | Value *SSAUpdater::GetValueInMiddleOfBlock(BasicBlock *BB) { | 
|  | // If there is no definition of the renamed variable in this block, just use | 
|  | // GetValueAtEndOfBlock to do our work. | 
|  | if (!HasValueForBlock(BB)) | 
|  | return GetValueAtEndOfBlock(BB); | 
|  |  | 
|  | // Otherwise, we have the hard case.  Get the live-in values for each | 
|  | // predecessor. | 
|  | SmallVector<std::pair<BasicBlock *, Value *>, 8> PredValues; | 
|  | Value *SingularValue = nullptr; | 
|  |  | 
|  | // We can get our predecessor info by walking the pred_iterator list, but it | 
|  | // is relatively slow.  If we already have PHI nodes in this block, walk one | 
|  | // of them to get the predecessor list instead. | 
|  | if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { | 
|  | for (unsigned i = 0, e = SomePhi->getNumIncomingValues(); i != e; ++i) { | 
|  | BasicBlock *PredBB = SomePhi->getIncomingBlock(i); | 
|  | Value *PredVal = GetValueAtEndOfBlock(PredBB); | 
|  | PredValues.push_back(std::make_pair(PredBB, PredVal)); | 
|  |  | 
|  | // Compute SingularValue. | 
|  | if (i == 0) | 
|  | SingularValue = PredVal; | 
|  | else if (PredVal != SingularValue) | 
|  | SingularValue = nullptr; | 
|  | } | 
|  | } else { | 
|  | bool isFirstPred = true; | 
|  | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { | 
|  | BasicBlock *PredBB = *PI; | 
|  | Value *PredVal = GetValueAtEndOfBlock(PredBB); | 
|  | PredValues.push_back(std::make_pair(PredBB, PredVal)); | 
|  |  | 
|  | // Compute SingularValue. | 
|  | if (isFirstPred) { | 
|  | SingularValue = PredVal; | 
|  | isFirstPred = false; | 
|  | } else if (PredVal != SingularValue) | 
|  | SingularValue = nullptr; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If there are no predecessors, just return undef. | 
|  | if (PredValues.empty()) | 
|  | return UndefValue::get(ProtoType); | 
|  |  | 
|  | // Otherwise, if all the merged values are the same, just use it. | 
|  | if (SingularValue) | 
|  | return SingularValue; | 
|  |  | 
|  | // Otherwise, we do need a PHI: check to see if we already have one available | 
|  | // in this block that produces the right value. | 
|  | if (isa<PHINode>(BB->begin())) { | 
|  | SmallDenseMap<BasicBlock *, Value *, 8> ValueMapping(PredValues.begin(), | 
|  | PredValues.end()); | 
|  | for (PHINode &SomePHI : BB->phis()) { | 
|  | if (IsEquivalentPHI(&SomePHI, ValueMapping)) | 
|  | return &SomePHI; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Ok, we have no way out, insert a new one now. | 
|  | PHINode *InsertedPHI = PHINode::Create(ProtoType, PredValues.size(), | 
|  | ProtoName, &BB->front()); | 
|  |  | 
|  | // Fill in all the predecessors of the PHI. | 
|  | for (const auto &PredValue : PredValues) | 
|  | InsertedPHI->addIncoming(PredValue.second, PredValue.first); | 
|  |  | 
|  | // See if the PHI node can be merged to a single value.  This can happen in | 
|  | // loop cases when we get a PHI of itself and one other value. | 
|  | if (Value *V = | 
|  | SimplifyInstruction(InsertedPHI, BB->getModule()->getDataLayout())) { | 
|  | InsertedPHI->eraseFromParent(); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // Set the DebugLoc of the inserted PHI, if available. | 
|  | DebugLoc DL; | 
|  | if (const Instruction *I = BB->getFirstNonPHI()) | 
|  | DL = I->getDebugLoc(); | 
|  | InsertedPHI->setDebugLoc(DL); | 
|  |  | 
|  | // If the client wants to know about all new instructions, tell it. | 
|  | if (InsertedPHIs) InsertedPHIs->push_back(InsertedPHI); | 
|  |  | 
|  | LLVM_DEBUG(dbgs() << "  Inserted PHI: " << *InsertedPHI << "\n"); | 
|  | return InsertedPHI; | 
|  | } | 
|  |  | 
|  | void SSAUpdater::RewriteUse(Use &U) { | 
|  | Instruction *User = cast<Instruction>(U.getUser()); | 
|  |  | 
|  | Value *V; | 
|  | if (PHINode *UserPN = dyn_cast<PHINode>(User)) | 
|  | V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); | 
|  | else | 
|  | V = GetValueInMiddleOfBlock(User->getParent()); | 
|  |  | 
|  | // Notify that users of the existing value that it is being replaced. | 
|  | Value *OldVal = U.get(); | 
|  | if (OldVal != V && OldVal->hasValueHandle()) | 
|  | ValueHandleBase::ValueIsRAUWd(OldVal, V); | 
|  |  | 
|  | U.set(V); | 
|  | } | 
|  |  | 
|  | void SSAUpdater::RewriteUseAfterInsertions(Use &U) { | 
|  | Instruction *User = cast<Instruction>(U.getUser()); | 
|  |  | 
|  | Value *V; | 
|  | if (PHINode *UserPN = dyn_cast<PHINode>(User)) | 
|  | V = GetValueAtEndOfBlock(UserPN->getIncomingBlock(U)); | 
|  | else | 
|  | V = GetValueAtEndOfBlock(User->getParent()); | 
|  |  | 
|  | U.set(V); | 
|  | } | 
|  |  | 
|  | namespace llvm { | 
|  |  | 
|  | template<> | 
|  | class SSAUpdaterTraits<SSAUpdater> { | 
|  | public: | 
|  | using BlkT = BasicBlock; | 
|  | using ValT = Value *; | 
|  | using PhiT = PHINode; | 
|  | using BlkSucc_iterator = succ_iterator; | 
|  |  | 
|  | static BlkSucc_iterator BlkSucc_begin(BlkT *BB) { return succ_begin(BB); } | 
|  | static BlkSucc_iterator BlkSucc_end(BlkT *BB) { return succ_end(BB); } | 
|  |  | 
|  | class PHI_iterator { | 
|  | private: | 
|  | PHINode *PHI; | 
|  | unsigned idx; | 
|  |  | 
|  | public: | 
|  | explicit PHI_iterator(PHINode *P) // begin iterator | 
|  | : PHI(P), idx(0) {} | 
|  | PHI_iterator(PHINode *P, bool) // end iterator | 
|  | : PHI(P), idx(PHI->getNumIncomingValues()) {} | 
|  |  | 
|  | PHI_iterator &operator++() { ++idx; return *this; } | 
|  | bool operator==(const PHI_iterator& x) const { return idx == x.idx; } | 
|  | bool operator!=(const PHI_iterator& x) const { return !operator==(x); } | 
|  |  | 
|  | Value *getIncomingValue() { return PHI->getIncomingValue(idx); } | 
|  | BasicBlock *getIncomingBlock() { return PHI->getIncomingBlock(idx); } | 
|  | }; | 
|  |  | 
|  | static PHI_iterator PHI_begin(PhiT *PHI) { return PHI_iterator(PHI); } | 
|  | static PHI_iterator PHI_end(PhiT *PHI) { | 
|  | return PHI_iterator(PHI, true); | 
|  | } | 
|  |  | 
|  | /// FindPredecessorBlocks - Put the predecessors of Info->BB into the Preds | 
|  | /// vector, set Info->NumPreds, and allocate space in Info->Preds. | 
|  | static void FindPredecessorBlocks(BasicBlock *BB, | 
|  | SmallVectorImpl<BasicBlock *> *Preds) { | 
|  | // We can get our predecessor info by walking the pred_iterator list, | 
|  | // but it is relatively slow.  If we already have PHI nodes in this | 
|  | // block, walk one of them to get the predecessor list instead. | 
|  | if (PHINode *SomePhi = dyn_cast<PHINode>(BB->begin())) { | 
|  | Preds->append(SomePhi->block_begin(), SomePhi->block_end()); | 
|  | } else { | 
|  | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) | 
|  | Preds->push_back(*PI); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// GetUndefVal - Get an undefined value of the same type as the value | 
|  | /// being handled. | 
|  | static Value *GetUndefVal(BasicBlock *BB, SSAUpdater *Updater) { | 
|  | return UndefValue::get(Updater->ProtoType); | 
|  | } | 
|  |  | 
|  | /// CreateEmptyPHI - Create a new PHI instruction in the specified block. | 
|  | /// Reserve space for the operands but do not fill them in yet. | 
|  | static Value *CreateEmptyPHI(BasicBlock *BB, unsigned NumPreds, | 
|  | SSAUpdater *Updater) { | 
|  | PHINode *PHI = PHINode::Create(Updater->ProtoType, NumPreds, | 
|  | Updater->ProtoName, &BB->front()); | 
|  | return PHI; | 
|  | } | 
|  |  | 
|  | /// AddPHIOperand - Add the specified value as an operand of the PHI for | 
|  | /// the specified predecessor block. | 
|  | static void AddPHIOperand(PHINode *PHI, Value *Val, BasicBlock *Pred) { | 
|  | PHI->addIncoming(Val, Pred); | 
|  | } | 
|  |  | 
|  | /// InstrIsPHI - Check if an instruction is a PHI. | 
|  | /// | 
|  | static PHINode *InstrIsPHI(Instruction *I) { | 
|  | return dyn_cast<PHINode>(I); | 
|  | } | 
|  |  | 
|  | /// ValueIsPHI - Check if a value is a PHI. | 
|  | static PHINode *ValueIsPHI(Value *Val, SSAUpdater *Updater) { | 
|  | return dyn_cast<PHINode>(Val); | 
|  | } | 
|  |  | 
|  | /// ValueIsNewPHI - Like ValueIsPHI but also check if the PHI has no source | 
|  | /// operands, i.e., it was just added. | 
|  | static PHINode *ValueIsNewPHI(Value *Val, SSAUpdater *Updater) { | 
|  | PHINode *PHI = ValueIsPHI(Val, Updater); | 
|  | if (PHI && PHI->getNumIncomingValues() == 0) | 
|  | return PHI; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// GetPHIValue - For the specified PHI instruction, return the value | 
|  | /// that it defines. | 
|  | static Value *GetPHIValue(PHINode *PHI) { | 
|  | return PHI; | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end namespace llvm | 
|  |  | 
|  | /// Check to see if AvailableVals has an entry for the specified BB and if so, | 
|  | /// return it.  If not, construct SSA form by first calculating the required | 
|  | /// placement of PHIs and then inserting new PHIs where needed. | 
|  | Value *SSAUpdater::GetValueAtEndOfBlockInternal(BasicBlock *BB) { | 
|  | AvailableValsTy &AvailableVals = getAvailableVals(AV); | 
|  | if (Value *V = AvailableVals[BB]) | 
|  | return V; | 
|  |  | 
|  | SSAUpdaterImpl<SSAUpdater> Impl(this, &AvailableVals, InsertedPHIs); | 
|  | return Impl.GetValue(BB); | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // LoadAndStorePromoter Implementation | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | LoadAndStorePromoter:: | 
|  | LoadAndStorePromoter(ArrayRef<const Instruction *> Insts, | 
|  | SSAUpdater &S, StringRef BaseName) : SSA(S) { | 
|  | if (Insts.empty()) return; | 
|  |  | 
|  | const Value *SomeVal; | 
|  | if (const LoadInst *LI = dyn_cast<LoadInst>(Insts[0])) | 
|  | SomeVal = LI; | 
|  | else | 
|  | SomeVal = cast<StoreInst>(Insts[0])->getOperand(0); | 
|  |  | 
|  | if (BaseName.empty()) | 
|  | BaseName = SomeVal->getName(); | 
|  | SSA.Initialize(SomeVal->getType(), BaseName); | 
|  | } | 
|  |  | 
|  | void LoadAndStorePromoter:: | 
|  | run(const SmallVectorImpl<Instruction *> &Insts) const { | 
|  | // First step: bucket up uses of the alloca by the block they occur in. | 
|  | // This is important because we have to handle multiple defs/uses in a block | 
|  | // ourselves: SSAUpdater is purely for cross-block references. | 
|  | DenseMap<BasicBlock *, TinyPtrVector<Instruction *>> UsesByBlock; | 
|  |  | 
|  | for (Instruction *User : Insts) | 
|  | UsesByBlock[User->getParent()].push_back(User); | 
|  |  | 
|  | // Okay, now we can iterate over all the blocks in the function with uses, | 
|  | // processing them.  Keep track of which loads are loading a live-in value. | 
|  | // Walk the uses in the use-list order to be determinstic. | 
|  | SmallVector<LoadInst *, 32> LiveInLoads; | 
|  | DenseMap<Value *, Value *> ReplacedLoads; | 
|  |  | 
|  | for (Instruction *User : Insts) { | 
|  | BasicBlock *BB = User->getParent(); | 
|  | TinyPtrVector<Instruction *> &BlockUses = UsesByBlock[BB]; | 
|  |  | 
|  | // If this block has already been processed, ignore this repeat use. | 
|  | if (BlockUses.empty()) continue; | 
|  |  | 
|  | // Okay, this is the first use in the block.  If this block just has a | 
|  | // single user in it, we can rewrite it trivially. | 
|  | if (BlockUses.size() == 1) { | 
|  | // If it is a store, it is a trivial def of the value in the block. | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(User)) { | 
|  | updateDebugInfo(SI); | 
|  | SSA.AddAvailableValue(BB, SI->getOperand(0)); | 
|  | } else | 
|  | // Otherwise it is a load, queue it to rewrite as a live-in load. | 
|  | LiveInLoads.push_back(cast<LoadInst>(User)); | 
|  | BlockUses.clear(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, check to see if this block is all loads. | 
|  | bool HasStore = false; | 
|  | for (Instruction *I : BlockUses) { | 
|  | if (isa<StoreInst>(I)) { | 
|  | HasStore = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If so, we can queue them all as live in loads.  We don't have an | 
|  | // efficient way to tell which on is first in the block and don't want to | 
|  | // scan large blocks, so just add all loads as live ins. | 
|  | if (!HasStore) { | 
|  | for (Instruction *I : BlockUses) | 
|  | LiveInLoads.push_back(cast<LoadInst>(I)); | 
|  | BlockUses.clear(); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, we have mixed loads and stores (or just a bunch of stores). | 
|  | // Since SSAUpdater is purely for cross-block values, we need to determine | 
|  | // the order of these instructions in the block.  If the first use in the | 
|  | // block is a load, then it uses the live in value.  The last store defines | 
|  | // the live out value.  We handle this by doing a linear scan of the block. | 
|  | Value *StoredValue = nullptr; | 
|  | for (Instruction &I : *BB) { | 
|  | if (LoadInst *L = dyn_cast<LoadInst>(&I)) { | 
|  | // If this is a load from an unrelated pointer, ignore it. | 
|  | if (!isInstInList(L, Insts)) continue; | 
|  |  | 
|  | // If we haven't seen a store yet, this is a live in use, otherwise | 
|  | // use the stored value. | 
|  | if (StoredValue) { | 
|  | replaceLoadWithValue(L, StoredValue); | 
|  | L->replaceAllUsesWith(StoredValue); | 
|  | ReplacedLoads[L] = StoredValue; | 
|  | } else { | 
|  | LiveInLoads.push_back(L); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { | 
|  | // If this is a store to an unrelated pointer, ignore it. | 
|  | if (!isInstInList(SI, Insts)) continue; | 
|  | updateDebugInfo(SI); | 
|  |  | 
|  | // Remember that this is the active value in the block. | 
|  | StoredValue = SI->getOperand(0); | 
|  | } | 
|  | } | 
|  |  | 
|  | // The last stored value that happened is the live-out for the block. | 
|  | assert(StoredValue && "Already checked that there is a store in block"); | 
|  | SSA.AddAvailableValue(BB, StoredValue); | 
|  | BlockUses.clear(); | 
|  | } | 
|  |  | 
|  | // Okay, now we rewrite all loads that use live-in values in the loop, | 
|  | // inserting PHI nodes as necessary. | 
|  | for (LoadInst *ALoad : LiveInLoads) { | 
|  | Value *NewVal = SSA.GetValueInMiddleOfBlock(ALoad->getParent()); | 
|  | replaceLoadWithValue(ALoad, NewVal); | 
|  |  | 
|  | // Avoid assertions in unreachable code. | 
|  | if (NewVal == ALoad) NewVal = UndefValue::get(NewVal->getType()); | 
|  | ALoad->replaceAllUsesWith(NewVal); | 
|  | ReplacedLoads[ALoad] = NewVal; | 
|  | } | 
|  |  | 
|  | // Allow the client to do stuff before we start nuking things. | 
|  | doExtraRewritesBeforeFinalDeletion(); | 
|  |  | 
|  | // Now that everything is rewritten, delete the old instructions from the | 
|  | // function.  They should all be dead now. | 
|  | for (Instruction *User : Insts) { | 
|  | // If this is a load that still has uses, then the load must have been added | 
|  | // as a live value in the SSAUpdate data structure for a block (e.g. because | 
|  | // the loaded value was stored later).  In this case, we need to recursively | 
|  | // propagate the updates until we get to the real value. | 
|  | if (!User->use_empty()) { | 
|  | Value *NewVal = ReplacedLoads[User]; | 
|  | assert(NewVal && "not a replaced load?"); | 
|  |  | 
|  | // Propagate down to the ultimate replacee.  The intermediately loads | 
|  | // could theoretically already have been deleted, so we don't want to | 
|  | // dereference the Value*'s. | 
|  | DenseMap<Value*, Value*>::iterator RLI = ReplacedLoads.find(NewVal); | 
|  | while (RLI != ReplacedLoads.end()) { | 
|  | NewVal = RLI->second; | 
|  | RLI = ReplacedLoads.find(NewVal); | 
|  | } | 
|  |  | 
|  | replaceLoadWithValue(cast<LoadInst>(User), NewVal); | 
|  | User->replaceAllUsesWith(NewVal); | 
|  | } | 
|  |  | 
|  | instructionDeleted(User); | 
|  | User->eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool | 
|  | LoadAndStorePromoter::isInstInList(Instruction *I, | 
|  | const SmallVectorImpl<Instruction *> &Insts) | 
|  | const { | 
|  | return is_contained(Insts, I); | 
|  | } |