| //===------ CodeGeneration.cpp - Code generate the Scops. -----------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // |
| // The CodeGeneration pass takes a Scop created by ScopInfo and translates it |
| // back to LLVM-IR using Cloog. |
| // |
| // The Scop describes the high level memory behaviour of a control flow region. |
| // Transformation passes can update the schedule (execution order) of statements |
| // in the Scop. Cloog is used to generate an abstract syntax tree (clast) that |
| // reflects the updated execution order. This clast is used to create new |
| // LLVM-IR that is computational equivalent to the original control flow region, |
| // but executes its code in the new execution order defined by the changed |
| // scattering. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #define DEBUG_TYPE "polly-codegen" |
| |
| #include "polly/LinkAllPasses.h" |
| #include "polly/Support/GICHelper.h" |
| #include "polly/Support/ScopHelper.h" |
| #include "polly/Cloog.h" |
| #include "polly/Dependences.h" |
| #include "polly/ScopInfo.h" |
| #include "polly/TempScopInfo.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Support/IRBuilder.h" |
| #include "llvm/Analysis/LoopInfo.h" |
| #include "llvm/Analysis/ScalarEvolutionExpander.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Target/TargetData.h" |
| #include "llvm/Module.h" |
| #include "llvm/ADT/SetVector.h" |
| |
| #define CLOOG_INT_GMP 1 |
| #include "cloog/cloog.h" |
| #include "cloog/isl/cloog.h" |
| |
| #include <vector> |
| #include <utility> |
| |
| using namespace polly; |
| using namespace llvm; |
| |
| struct isl_set; |
| |
| namespace polly { |
| |
| static cl::opt<bool> |
| Vector("enable-polly-vector", |
| cl::desc("Enable polly vector code generation"), cl::Hidden, |
| cl::value_desc("Vector code generation enabled if true"), |
| cl::init(false)); |
| |
| static cl::opt<bool> |
| OpenMP("enable-polly-openmp", |
| cl::desc("Generate OpenMP parallel code"), cl::Hidden, |
| cl::value_desc("OpenMP code generation enabled if true"), |
| cl::init(false)); |
| |
| static cl::opt<bool> |
| AtLeastOnce("enable-polly-atLeastOnce", |
| cl::desc("Give polly the hint, that every loop is executed at least" |
| "once"), cl::Hidden, |
| cl::value_desc("OpenMP code generation enabled if true"), |
| cl::init(false)); |
| |
| static cl::opt<bool> |
| Aligned("enable-polly-aligned", |
| cl::desc("Assumed aligned memory accesses."), cl::Hidden, |
| cl::value_desc("OpenMP code generation enabled if true"), |
| cl::init(false)); |
| |
| typedef DenseMap<const Value*, Value*> ValueMapT; |
| typedef DenseMap<const char*, Value*> CharMapT; |
| typedef std::vector<ValueMapT> VectorValueMapT; |
| |
| // Create a new loop. |
| // |
| // @param Builder The builder used to create the loop. It also defines the |
| // place where to create the loop. |
| // @param UB The upper bound of the loop iv. |
| // @param Stride The number by which the loop iv is incremented after every |
| // iteration. |
| static void createLoop(IRBuilder<> *Builder, Value *LB, Value *UB, APInt Stride, |
| PHINode*& IV, BasicBlock*& AfterBB, Value*& IncrementedIV, |
| DominatorTree *DT) { |
| Function *F = Builder->GetInsertBlock()->getParent(); |
| LLVMContext &Context = F->getContext(); |
| |
| BasicBlock *PreheaderBB = Builder->GetInsertBlock(); |
| BasicBlock *HeaderBB = BasicBlock::Create(Context, "polly.loop_header", F); |
| BasicBlock *BodyBB = BasicBlock::Create(Context, "polly.loop_body", F); |
| AfterBB = BasicBlock::Create(Context, "polly.after_loop", F); |
| |
| Builder->CreateBr(HeaderBB); |
| DT->addNewBlock(HeaderBB, PreheaderBB); |
| |
| Builder->SetInsertPoint(BodyBB); |
| |
| Builder->SetInsertPoint(HeaderBB); |
| |
| // Use the type of upper and lower bound. |
| assert(LB->getType() == UB->getType() |
| && "Different types for upper and lower bound."); |
| |
| IntegerType *LoopIVType = dyn_cast<IntegerType>(UB->getType()); |
| assert(LoopIVType && "UB is not integer?"); |
| |
| // IV |
| IV = Builder->CreatePHI(LoopIVType, 2, "polly.loopiv"); |
| IV->addIncoming(LB, PreheaderBB); |
| |
| // IV increment. |
| Value *StrideValue = ConstantInt::get(LoopIVType, |
| Stride.zext(LoopIVType->getBitWidth())); |
| IncrementedIV = Builder->CreateAdd(IV, StrideValue, "polly.next_loopiv"); |
| |
| // Exit condition. |
| if (AtLeastOnce) { // At least on iteration. |
| UB = Builder->CreateAdd(UB, Builder->getInt64(1)); |
| Value *CMP = Builder->CreateICmpEQ(IV, UB); |
| Builder->CreateCondBr(CMP, AfterBB, BodyBB); |
| } else { // Maybe not executed at all. |
| Value *CMP = Builder->CreateICmpSLE(IV, UB); |
| Builder->CreateCondBr(CMP, BodyBB, AfterBB); |
| } |
| DT->addNewBlock(BodyBB, HeaderBB); |
| DT->addNewBlock(AfterBB, HeaderBB); |
| |
| Builder->SetInsertPoint(BodyBB); |
| } |
| |
| class BlockGenerator { |
| IRBuilder<> &Builder; |
| ValueMapT &VMap; |
| VectorValueMapT &ValueMaps; |
| Scop &S; |
| ScopStmt &statement; |
| isl_set *scatteringDomain; |
| |
| public: |
| BlockGenerator(IRBuilder<> &B, ValueMapT &vmap, VectorValueMapT &vmaps, |
| ScopStmt &Stmt, isl_set *domain) |
| : Builder(B), VMap(vmap), ValueMaps(vmaps), S(*Stmt.getParent()), |
| statement(Stmt), scatteringDomain(domain) {} |
| |
| const Region &getRegion() { |
| return S.getRegion(); |
| } |
| |
| Value* makeVectorOperand(Value *operand, int vectorWidth) { |
| if (operand->getType()->isVectorTy()) |
| return operand; |
| |
| VectorType *vectorType = VectorType::get(operand->getType(), vectorWidth); |
| Value *vector = UndefValue::get(vectorType); |
| vector = Builder.CreateInsertElement(vector, operand, Builder.getInt32(0)); |
| |
| std::vector<Constant*> splat; |
| |
| for (int i = 0; i < vectorWidth; i++) |
| splat.push_back (Builder.getInt32(0)); |
| |
| Constant *splatVector = ConstantVector::get(splat); |
| |
| return Builder.CreateShuffleVector(vector, vector, splatVector); |
| } |
| |
| Value* getOperand(const Value *oldOperand, ValueMapT &BBMap, |
| ValueMapT *VectorMap = 0) { |
| const Instruction *OpInst = dyn_cast<Instruction>(oldOperand); |
| |
| if (!OpInst) |
| return const_cast<Value*>(oldOperand); |
| |
| if (VectorMap && VectorMap->count(oldOperand)) |
| return (*VectorMap)[oldOperand]; |
| |
| // IVS and Parameters. |
| if (VMap.count(oldOperand)) { |
| Value *NewOperand = VMap[oldOperand]; |
| |
| // Insert a cast if types are different |
| if (oldOperand->getType()->getScalarSizeInBits() |
| < NewOperand->getType()->getScalarSizeInBits()) |
| NewOperand = Builder.CreateTruncOrBitCast(NewOperand, |
| oldOperand->getType()); |
| |
| return NewOperand; |
| } |
| |
| // Instructions calculated in the current BB. |
| if (BBMap.count(oldOperand)) { |
| return BBMap[oldOperand]; |
| } |
| |
| // Ignore instructions that are referencing ops in the old BB. These |
| // instructions are unused. They where replace by new ones during |
| // createIndependentBlocks(). |
| if (getRegion().contains(OpInst->getParent())) |
| return NULL; |
| |
| return const_cast<Value*>(oldOperand); |
| } |
| |
| Type *getVectorPtrTy(const Value *V, int vectorWidth) { |
| PointerType *pointerType = dyn_cast<PointerType>(V->getType()); |
| assert(pointerType && "PointerType expected"); |
| |
| Type *scalarType = pointerType->getElementType(); |
| VectorType *vectorType = VectorType::get(scalarType, vectorWidth); |
| |
| return PointerType::getUnqual(vectorType); |
| } |
| |
| /// @brief Load a vector from a set of adjacent scalars |
| /// |
| /// In case a set of scalars is known to be next to each other in memory, |
| /// create a vector load that loads those scalars |
| /// |
| /// %vector_ptr= bitcast double* %p to <4 x double>* |
| /// %vec_full = load <4 x double>* %vector_ptr |
| /// |
| Value *generateStrideOneLoad(const LoadInst *load, ValueMapT &BBMap, |
| int size) { |
| const Value *pointer = load->getPointerOperand(); |
| Type *vectorPtrType = getVectorPtrTy(pointer, size); |
| Value *newPointer = getOperand(pointer, BBMap); |
| Value *VectorPtr = Builder.CreateBitCast(newPointer, vectorPtrType, |
| "vector_ptr"); |
| LoadInst *VecLoad = Builder.CreateLoad(VectorPtr, |
| load->getNameStr() |
| + "_p_vec_full"); |
| if (!Aligned) |
| VecLoad->setAlignment(8); |
| |
| return VecLoad; |
| } |
| |
| /// @brief Load a vector initialized from a single scalar in memory |
| /// |
| /// In case all elements of a vector are initialized to the same |
| /// scalar value, this value is loaded and shuffeled into all elements |
| /// of the vector. |
| /// |
| /// %splat_one = load <1 x double>* %p |
| /// %splat = shufflevector <1 x double> %splat_one, <1 x |
| /// double> %splat_one, <4 x i32> zeroinitializer |
| /// |
| Value *generateStrideZeroLoad(const LoadInst *load, ValueMapT &BBMap, |
| int size) { |
| const Value *pointer = load->getPointerOperand(); |
| Type *vectorPtrType = getVectorPtrTy(pointer, 1); |
| Value *newPointer = getOperand(pointer, BBMap); |
| Value *vectorPtr = Builder.CreateBitCast(newPointer, vectorPtrType, |
| load->getNameStr() + "_p_vec_p"); |
| LoadInst *scalarLoad= Builder.CreateLoad(vectorPtr, |
| load->getNameStr() + "_p_splat_one"); |
| |
| if (!Aligned) |
| scalarLoad->setAlignment(8); |
| |
| std::vector<Constant*> splat; |
| |
| for (int i = 0; i < size; i++) |
| splat.push_back (Builder.getInt32(0)); |
| |
| Constant *splatVector = ConstantVector::get(splat); |
| |
| Value *vectorLoad = Builder.CreateShuffleVector(scalarLoad, scalarLoad, |
| splatVector, |
| load->getNameStr() |
| + "_p_splat"); |
| return vectorLoad; |
| } |
| |
| /// @Load a vector from scalars distributed in memory |
| /// |
| /// In case some scalars a distributed randomly in memory. Create a vector |
| /// by loading each scalar and by inserting one after the other into the |
| /// vector. |
| /// |
| /// %scalar_1= load double* %p_1 |
| /// %vec_1 = insertelement <2 x double> undef, double %scalar_1, i32 0 |
| /// %scalar 2 = load double* %p_2 |
| /// %vec_2 = insertelement <2 x double> %vec_1, double %scalar_1, i32 1 |
| /// |
| Value *generateUnknownStrideLoad(const LoadInst *load, |
| VectorValueMapT &scalarMaps, |
| int size) { |
| const Value *pointer = load->getPointerOperand(); |
| VectorType *vectorType = VectorType::get( |
| dyn_cast<PointerType>(pointer->getType())->getElementType(), size); |
| |
| Value *vector = UndefValue::get(vectorType); |
| |
| for (int i = 0; i < size; i++) { |
| Value *newPointer = getOperand(pointer, scalarMaps[i]); |
| Value *scalarLoad = Builder.CreateLoad(newPointer, |
| load->getNameStr() + "_p_scalar_"); |
| vector = Builder.CreateInsertElement(vector, scalarLoad, |
| Builder.getInt32(i), |
| load->getNameStr() + "_p_vec_"); |
| } |
| |
| return vector; |
| } |
| |
| /// @brief Get the memory access offset to be added to the base address |
| std::vector <Value*> getMemoryAccessIndex(isl_map *accessRelation, |
| Value *baseAddr) { |
| isl_int offsetMPZ; |
| isl_int_init(offsetMPZ); |
| |
| assert((isl_map_dim(accessRelation, isl_dim_out) == 1) |
| && "Only single dimensional access functions supported"); |
| |
| if (isl_map_plain_is_fixed(accessRelation, isl_dim_out, |
| 0, &offsetMPZ) == -1) |
| errs() << "Only fixed value access functions supported\n"; |
| |
| // Convert the offset from MPZ to Value*. |
| APInt offset = APInt_from_MPZ(offsetMPZ); |
| Value *offsetValue = ConstantInt::get(Builder.getContext(), offset); |
| PointerType *baseAddrType = dyn_cast<PointerType>(baseAddr->getType()); |
| Type *arrayType = baseAddrType->getElementType(); |
| Type *arrayElementType = dyn_cast<ArrayType>(arrayType)->getElementType(); |
| offsetValue = Builder.CreateSExtOrBitCast(offsetValue, arrayElementType); |
| |
| std::vector<Value*> indexArray; |
| Value *nullValue = Constant::getNullValue(arrayElementType); |
| indexArray.push_back(nullValue); |
| indexArray.push_back(offsetValue); |
| |
| isl_int_clear(offsetMPZ); |
| return indexArray; |
| } |
| |
| /// @brief Get the new operand address according to the changed access in |
| /// JSCOP file. |
| Value *getNewAccessOperand(isl_map *newAccessRelation, Value *baseAddr, |
| const Value *oldOperand, ValueMapT &BBMap) { |
| std::vector<Value*> indexArray = getMemoryAccessIndex(newAccessRelation, |
| baseAddr); |
| Value *newOperand = Builder.CreateGEP(baseAddr, indexArray, |
| "p_newarrayidx_"); |
| return newOperand; |
| } |
| |
| /// @brief Generate the operand address |
| Value *generateLocationAccessed(const Instruction *Inst, |
| const Value *pointer, ValueMapT &BBMap ) { |
| MemoryAccess &access = statement.getAccessFor(Inst); |
| isl_map *currentAccessRelation = access.getAccessFunction(); |
| isl_map *newAccessRelation = access.getNewAccessFunction(); |
| |
| assert(isl_map_has_equal_dim(currentAccessRelation, newAccessRelation) |
| && "Current and new access function dimensions differ"); |
| |
| if (!newAccessRelation) { |
| Value *newPointer = getOperand(pointer, BBMap); |
| return newPointer; |
| } |
| |
| Value *baseAddr = const_cast<Value*>(access.getBaseAddr()); |
| Value *newPointer = getNewAccessOperand(newAccessRelation, baseAddr, |
| pointer, BBMap); |
| return newPointer; |
| } |
| |
| Value *generateScalarLoad(const LoadInst *load, ValueMapT &BBMap) { |
| const Value *pointer = load->getPointerOperand(); |
| const Instruction *Inst = dyn_cast<Instruction>(load); |
| Value *newPointer = generateLocationAccessed(Inst, pointer, BBMap); |
| Value *scalarLoad = Builder.CreateLoad(newPointer, |
| load->getNameStr() + "_p_scalar_"); |
| return scalarLoad; |
| } |
| |
| /// @brief Load a value (or several values as a vector) from memory. |
| void generateLoad(const LoadInst *load, ValueMapT &vectorMap, |
| VectorValueMapT &scalarMaps, int vectorWidth) { |
| if (scalarMaps.size() == 1) { |
| scalarMaps[0][load] = generateScalarLoad(load, scalarMaps[0]); |
| return; |
| } |
| |
| Value *newLoad; |
| |
| MemoryAccess &Access = statement.getAccessFor(load); |
| |
| assert(scatteringDomain && "No scattering domain available"); |
| |
| if (Access.isStrideZero(scatteringDomain)) |
| newLoad = generateStrideZeroLoad(load, scalarMaps[0], vectorWidth); |
| else if (Access.isStrideOne(scatteringDomain)) |
| newLoad = generateStrideOneLoad(load, scalarMaps[0], vectorWidth); |
| else |
| newLoad = generateUnknownStrideLoad(load, scalarMaps, vectorWidth); |
| |
| vectorMap[load] = newLoad; |
| } |
| |
| void copyUnaryInst(const UnaryInstruction *Inst, ValueMapT &BBMap, |
| ValueMapT &VectorMap, int VectorDimension, |
| int VectorWidth) { |
| Value *NewOperand = getOperand(Inst->getOperand(0), BBMap, &VectorMap); |
| NewOperand = makeVectorOperand(NewOperand, VectorWidth); |
| |
| if (const CastInst *Cast = dyn_cast<CastInst>(Inst)) { |
| VectorType *DestType = VectorType::get(Inst->getType(), VectorWidth); |
| VectorMap[Inst] = Builder.CreateCast(Cast->getOpcode(), NewOperand, |
| DestType); |
| } else |
| llvm_unreachable("Can not generate vector code for instruction"); |
| return; |
| } |
| |
| void copyBinInst(const BinaryOperator *Inst, ValueMapT &BBMap, |
| ValueMapT &vectorMap, int vectorDimension, int vectorWidth) { |
| Value *opZero = Inst->getOperand(0); |
| Value *opOne = Inst->getOperand(1); |
| |
| Value *newOpZero, *newOpOne; |
| newOpZero = getOperand(opZero, BBMap, &vectorMap); |
| newOpOne = getOperand(opOne, BBMap, &vectorMap); |
| |
| newOpZero = makeVectorOperand(newOpZero, vectorWidth); |
| newOpOne = makeVectorOperand(newOpOne, vectorWidth); |
| |
| Value *newInst = Builder.CreateBinOp(Inst->getOpcode(), newOpZero, |
| newOpOne, |
| Inst->getNameStr() + "p_vec"); |
| vectorMap[Inst] = newInst; |
| |
| return; |
| } |
| |
| void copyVectorStore(const StoreInst *store, ValueMapT &BBMap, |
| ValueMapT &vectorMap, VectorValueMapT &scalarMaps, |
| int vectorDimension, int vectorWidth) { |
| // In vector mode we only generate a store for the first dimension. |
| if (vectorDimension > 0) |
| return; |
| |
| MemoryAccess &Access = statement.getAccessFor(store); |
| |
| assert(scatteringDomain && "No scattering domain available"); |
| |
| const Value *pointer = store->getPointerOperand(); |
| Value *vector = getOperand(store->getValueOperand(), BBMap, &vectorMap); |
| |
| if (Access.isStrideOne(scatteringDomain)) { |
| Type *vectorPtrType = getVectorPtrTy(pointer, vectorWidth); |
| Value *newPointer = getOperand(pointer, BBMap, &vectorMap); |
| |
| Value *VectorPtr = Builder.CreateBitCast(newPointer, vectorPtrType, |
| "vector_ptr"); |
| StoreInst *Store = Builder.CreateStore(vector, VectorPtr); |
| |
| if (!Aligned) |
| Store->setAlignment(8); |
| } else { |
| for (unsigned i = 0; i < scalarMaps.size(); i++) { |
| Value *scalar = Builder.CreateExtractElement(vector, |
| Builder.getInt32(i)); |
| Value *newPointer = getOperand(pointer, scalarMaps[i]); |
| Builder.CreateStore(scalar, newPointer); |
| } |
| } |
| |
| return; |
| } |
| |
| void copyInstScalar(const Instruction *Inst, ValueMapT &BBMap) { |
| Instruction *NewInst = Inst->clone(); |
| |
| // Replace old operands with the new ones. |
| for (Instruction::const_op_iterator OI = Inst->op_begin(), |
| OE = Inst->op_end(); OI != OE; ++OI) { |
| Value *OldOperand = *OI; |
| Value *NewOperand = getOperand(OldOperand, BBMap); |
| |
| if (!NewOperand) { |
| assert(!isa<StoreInst>(NewInst) |
| && "Store instructions are always needed!"); |
| delete NewInst; |
| return; |
| } |
| |
| NewInst->replaceUsesOfWith(OldOperand, NewOperand); |
| } |
| |
| Builder.Insert(NewInst); |
| BBMap[Inst] = NewInst; |
| |
| if (!NewInst->getType()->isVoidTy()) |
| NewInst->setName("p_" + Inst->getName()); |
| } |
| |
| bool hasVectorOperands(const Instruction *Inst, ValueMapT &VectorMap) { |
| for (Instruction::const_op_iterator OI = Inst->op_begin(), |
| OE = Inst->op_end(); OI != OE; ++OI) |
| if (VectorMap.count(*OI)) |
| return true; |
| return false; |
| } |
| |
| int getVectorSize() { |
| return ValueMaps.size(); |
| } |
| |
| bool isVectorBlock() { |
| return getVectorSize() > 1; |
| } |
| |
| void copyInstruction(const Instruction *Inst, ValueMapT &BBMap, |
| ValueMapT &vectorMap, VectorValueMapT &scalarMaps, |
| int vectorDimension, int vectorWidth) { |
| // Terminator instructions control the control flow. They are explicitally |
| // expressed in the clast and do not need to be copied. |
| if (Inst->isTerminator()) |
| return; |
| |
| if (isVectorBlock()) { |
| // If this instruction is already in the vectorMap, a vector instruction |
| // was already issued, that calculates the values of all dimensions. No |
| // need to create any more instructions. |
| if (vectorMap.count(Inst)) |
| return; |
| } |
| |
| if (const LoadInst *load = dyn_cast<LoadInst>(Inst)) { |
| generateLoad(load, vectorMap, scalarMaps, vectorWidth); |
| return; |
| } |
| |
| if (isVectorBlock() && hasVectorOperands(Inst, vectorMap)) { |
| if (const UnaryInstruction *UnaryInst = dyn_cast<UnaryInstruction>(Inst)) |
| copyUnaryInst(UnaryInst, BBMap, vectorMap, vectorDimension, |
| vectorWidth); |
| else if |
| (const BinaryOperator *binaryInst = dyn_cast<BinaryOperator>(Inst)) |
| copyBinInst(binaryInst, BBMap, vectorMap, vectorDimension, vectorWidth); |
| else if (const StoreInst *store = dyn_cast<StoreInst>(Inst)) |
| copyVectorStore(store, BBMap, vectorMap, scalarMaps, vectorDimension, |
| vectorWidth); |
| else |
| llvm_unreachable("Cannot issue vector code for this instruction"); |
| |
| return; |
| } |
| |
| copyInstScalar(Inst, BBMap); |
| } |
| // Insert a copy of a basic block in the newly generated code. |
| // |
| // @param Builder The builder used to insert the code. It also specifies |
| // where to insert the code. |
| // @param BB The basic block to copy |
| // @param VMap A map returning for any old value its new equivalent. This |
| // is used to update the operands of the statements. |
| // For new statements a relation old->new is inserted in this |
| // map. |
| void copyBB(BasicBlock *BB, DominatorTree *DT) { |
| Function *F = Builder.GetInsertBlock()->getParent(); |
| LLVMContext &Context = F->getContext(); |
| BasicBlock *CopyBB = BasicBlock::Create(Context, |
| "polly." + BB->getNameStr() |
| + ".stmt", |
| F); |
| Builder.CreateBr(CopyBB); |
| DT->addNewBlock(CopyBB, Builder.GetInsertBlock()); |
| Builder.SetInsertPoint(CopyBB); |
| |
| // Create two maps that store the mapping from the original instructions of |
| // the old basic block to their copies in the new basic block. Those maps |
| // are basic block local. |
| // |
| // As vector code generation is supported there is one map for scalar values |
| // and one for vector values. |
| // |
| // In case we just do scalar code generation, the vectorMap is not used and |
| // the scalarMap has just one dimension, which contains the mapping. |
| // |
| // In case vector code generation is done, an instruction may either appear |
| // in the vector map once (as it is calculating >vectorwidth< values at a |
| // time. Or (if the values are calculated using scalar operations), it |
| // appears once in every dimension of the scalarMap. |
| VectorValueMapT scalarBlockMap(getVectorSize()); |
| ValueMapT vectorBlockMap; |
| |
| for (BasicBlock::const_iterator II = BB->begin(), IE = BB->end(); |
| II != IE; ++II) |
| for (int i = 0; i < getVectorSize(); i++) { |
| if (isVectorBlock()) |
| VMap = ValueMaps[i]; |
| |
| copyInstruction(II, scalarBlockMap[i], vectorBlockMap, |
| scalarBlockMap, i, getVectorSize()); |
| } |
| } |
| }; |
| |
| /// Class to generate LLVM-IR that calculates the value of a clast_expr. |
| class ClastExpCodeGen { |
| IRBuilder<> &Builder; |
| const CharMapT *IVS; |
| |
| Value *codegen(const clast_name *e, Type *Ty) { |
| CharMapT::const_iterator I = IVS->find(e->name); |
| |
| if (I != IVS->end()) |
| return Builder.CreateSExtOrBitCast(I->second, Ty); |
| else |
| llvm_unreachable("Clast name not found"); |
| } |
| |
| Value *codegen(const clast_term *e, Type *Ty) { |
| APInt a = APInt_from_MPZ(e->val); |
| |
| Value *ConstOne = ConstantInt::get(Builder.getContext(), a); |
| ConstOne = Builder.CreateSExtOrBitCast(ConstOne, Ty); |
| |
| if (e->var) { |
| Value *var = codegen(e->var, Ty); |
| return Builder.CreateMul(ConstOne, var); |
| } |
| |
| return ConstOne; |
| } |
| |
| Value *codegen(const clast_binary *e, Type *Ty) { |
| Value *LHS = codegen(e->LHS, Ty); |
| |
| APInt RHS_AP = APInt_from_MPZ(e->RHS); |
| |
| Value *RHS = ConstantInt::get(Builder.getContext(), RHS_AP); |
| RHS = Builder.CreateSExtOrBitCast(RHS, Ty); |
| |
| switch (e->type) { |
| case clast_bin_mod: |
| return Builder.CreateSRem(LHS, RHS); |
| case clast_bin_fdiv: |
| { |
| // floord(n,d) ((n < 0) ? (n - d + 1) : n) / d |
| Value *One = ConstantInt::get(Builder.getInt1Ty(), 1); |
| Value *Zero = ConstantInt::get(Builder.getInt1Ty(), 0); |
| One = Builder.CreateZExtOrBitCast(One, Ty); |
| Zero = Builder.CreateZExtOrBitCast(Zero, Ty); |
| Value *Sum1 = Builder.CreateSub(LHS, RHS); |
| Value *Sum2 = Builder.CreateAdd(Sum1, One); |
| Value *isNegative = Builder.CreateICmpSLT(LHS, Zero); |
| Value *Dividend = Builder.CreateSelect(isNegative, Sum2, LHS); |
| return Builder.CreateSDiv(Dividend, RHS); |
| } |
| case clast_bin_cdiv: |
| { |
| // ceild(n,d) ((n < 0) ? n : (n + d - 1)) / d |
| Value *One = ConstantInt::get(Builder.getInt1Ty(), 1); |
| Value *Zero = ConstantInt::get(Builder.getInt1Ty(), 0); |
| One = Builder.CreateZExtOrBitCast(One, Ty); |
| Zero = Builder.CreateZExtOrBitCast(Zero, Ty); |
| Value *Sum1 = Builder.CreateAdd(LHS, RHS); |
| Value *Sum2 = Builder.CreateSub(Sum1, One); |
| Value *isNegative = Builder.CreateICmpSLT(LHS, Zero); |
| Value *Dividend = Builder.CreateSelect(isNegative, LHS, Sum2); |
| return Builder.CreateSDiv(Dividend, RHS); |
| } |
| case clast_bin_div: |
| return Builder.CreateSDiv(LHS, RHS); |
| default: |
| llvm_unreachable("Unknown clast binary expression type"); |
| }; |
| } |
| |
| Value *codegen(const clast_reduction *r, Type *Ty) { |
| assert(( r->type == clast_red_min |
| || r->type == clast_red_max |
| || r->type == clast_red_sum) |
| && "Clast reduction type not supported"); |
| Value *old = codegen(r->elts[0], Ty); |
| |
| for (int i=1; i < r->n; ++i) { |
| Value *exprValue = codegen(r->elts[i], Ty); |
| |
| switch (r->type) { |
| case clast_red_min: |
| { |
| Value *cmp = Builder.CreateICmpSLT(old, exprValue); |
| old = Builder.CreateSelect(cmp, old, exprValue); |
| break; |
| } |
| case clast_red_max: |
| { |
| Value *cmp = Builder.CreateICmpSGT(old, exprValue); |
| old = Builder.CreateSelect(cmp, old, exprValue); |
| break; |
| } |
| case clast_red_sum: |
| old = Builder.CreateAdd(old, exprValue); |
| break; |
| default: |
| llvm_unreachable("Clast unknown reduction type"); |
| } |
| } |
| |
| return old; |
| } |
| |
| public: |
| |
| // A generator for clast expressions. |
| // |
| // @param B The IRBuilder that defines where the code to calculate the |
| // clast expressions should be inserted. |
| // @param IVMAP A Map that translates strings describing the induction |
| // variables to the Values* that represent these variables |
| // on the LLVM side. |
| ClastExpCodeGen(IRBuilder<> &B, CharMapT *IVMap) : Builder(B), IVS(IVMap) {} |
| |
| // Generates code to calculate a given clast expression. |
| // |
| // @param e The expression to calculate. |
| // @return The Value that holds the result. |
| Value *codegen(const clast_expr *e, Type *Ty) { |
| switch(e->type) { |
| case clast_expr_name: |
| return codegen((const clast_name *)e, Ty); |
| case clast_expr_term: |
| return codegen((const clast_term *)e, Ty); |
| case clast_expr_bin: |
| return codegen((const clast_binary *)e, Ty); |
| case clast_expr_red: |
| return codegen((const clast_reduction *)e, Ty); |
| default: |
| llvm_unreachable("Unknown clast expression!"); |
| } |
| } |
| |
| // @brief Reset the CharMap. |
| // |
| // This function is called to reset the CharMap to new one, while generating |
| // OpenMP code. |
| void setIVS(CharMapT *IVSNew) { |
| IVS = IVSNew; |
| } |
| |
| }; |
| |
| class ClastStmtCodeGen { |
| // The Scop we code generate. |
| Scop *S; |
| ScalarEvolution &SE; |
| DominatorTree *DT; |
| ScopDetection *SD; |
| Dependences *DP; |
| TargetData *TD; |
| |
| // The Builder specifies the current location to code generate at. |
| IRBuilder<> &Builder; |
| |
| // Map the Values from the old code to their counterparts in the new code. |
| ValueMapT ValueMap; |
| |
| // clastVars maps from the textual representation of a clast variable to its |
| // current *Value. clast variables are scheduling variables, original |
| // induction variables or parameters. They are used either in loop bounds or |
| // to define the statement instance that is executed. |
| // |
| // for (s = 0; s < n + 3; ++i) |
| // for (t = s; t < m; ++j) |
| // Stmt(i = s + 3 * m, j = t); |
| // |
| // {s,t,i,j,n,m} is the set of clast variables in this clast. |
| CharMapT *clastVars; |
| |
| // Codegenerator for clast expressions. |
| ClastExpCodeGen ExpGen; |
| |
| // Do we currently generate parallel code? |
| bool parallelCodeGeneration; |
| |
| std::vector<std::string> parallelLoops; |
| |
| public: |
| |
| const std::vector<std::string> &getParallelLoops() { |
| return parallelLoops; |
| } |
| |
| protected: |
| void codegen(const clast_assignment *a) { |
| (*clastVars)[a->LHS] = ExpGen.codegen(a->RHS, |
| TD->getIntPtrType(Builder.getContext())); |
| } |
| |
| void codegen(const clast_assignment *a, ScopStmt *Statement, |
| unsigned Dimension, int vectorDim, |
| std::vector<ValueMapT> *VectorVMap = 0) { |
| Value *RHS = ExpGen.codegen(a->RHS, |
| TD->getIntPtrType(Builder.getContext())); |
| |
| assert(!a->LHS && "Statement assignments do not have left hand side"); |
| const PHINode *PN; |
| PN = Statement->getInductionVariableForDimension(Dimension); |
| const Value *V = PN; |
| |
| if (VectorVMap) |
| (*VectorVMap)[vectorDim][V] = RHS; |
| |
| ValueMap[V] = RHS; |
| } |
| |
| void codegenSubstitutions(const clast_stmt *Assignment, |
| ScopStmt *Statement, int vectorDim = 0, |
| std::vector<ValueMapT> *VectorVMap = 0) { |
| int Dimension = 0; |
| |
| while (Assignment) { |
| assert(CLAST_STMT_IS_A(Assignment, stmt_ass) |
| && "Substitions are expected to be assignments"); |
| codegen((const clast_assignment *)Assignment, Statement, Dimension, |
| vectorDim, VectorVMap); |
| Assignment = Assignment->next; |
| Dimension++; |
| } |
| } |
| |
| void codegen(const clast_user_stmt *u, std::vector<Value*> *IVS = NULL, |
| const char *iterator = NULL, isl_set *scatteringDomain = 0) { |
| ScopStmt *Statement = (ScopStmt *)u->statement->usr; |
| BasicBlock *BB = Statement->getBasicBlock(); |
| |
| if (u->substitutions) |
| codegenSubstitutions(u->substitutions, Statement); |
| |
| int vectorDimensions = IVS ? IVS->size() : 1; |
| |
| VectorValueMapT VectorValueMap(vectorDimensions); |
| |
| if (IVS) { |
| assert (u->substitutions && "Substitutions expected!"); |
| int i = 0; |
| for (std::vector<Value*>::iterator II = IVS->begin(), IE = IVS->end(); |
| II != IE; ++II) { |
| (*clastVars)[iterator] = *II; |
| codegenSubstitutions(u->substitutions, Statement, i, &VectorValueMap); |
| i++; |
| } |
| } |
| |
| BlockGenerator Generator(Builder, ValueMap, VectorValueMap, *Statement, |
| scatteringDomain); |
| Generator.copyBB(BB, DT); |
| } |
| |
| void codegen(const clast_block *b) { |
| if (b->body) |
| codegen(b->body); |
| } |
| |
| /// @brief Create a classical sequential loop. |
| void codegenForSequential(const clast_for *f, Value *lowerBound = 0, |
| Value *upperBound = 0) { |
| APInt Stride = APInt_from_MPZ(f->stride); |
| PHINode *IV; |
| Value *IncrementedIV; |
| BasicBlock *AfterBB; |
| // The value of lowerbound and upperbound will be supplied, if this |
| // function is called while generating OpenMP code. Otherwise get |
| // the values. |
| assert(((lowerBound && upperBound) || (!lowerBound && !upperBound)) |
| && "Either give both bounds or none"); |
| if (lowerBound == 0 || upperBound == 0) { |
| lowerBound = ExpGen.codegen(f->LB, |
| TD->getIntPtrType(Builder.getContext())); |
| upperBound = ExpGen.codegen(f->UB, |
| TD->getIntPtrType(Builder.getContext())); |
| } |
| createLoop(&Builder, lowerBound, upperBound, Stride, IV, AfterBB, |
| IncrementedIV, DT); |
| |
| // Add loop iv to symbols. |
| (*clastVars)[f->iterator] = IV; |
| |
| if (f->body) |
| codegen(f->body); |
| |
| // Loop is finished, so remove its iv from the live symbols. |
| clastVars->erase(f->iterator); |
| |
| BasicBlock *HeaderBB = *pred_begin(AfterBB); |
| BasicBlock *LastBodyBB = Builder.GetInsertBlock(); |
| Builder.CreateBr(HeaderBB); |
| IV->addIncoming(IncrementedIV, LastBodyBB); |
| Builder.SetInsertPoint(AfterBB); |
| } |
| |
| /// @brief Add a new definition of an openmp subfunction. |
| Function* addOpenMPSubfunction(Module *M) { |
| Function *F = Builder.GetInsertBlock()->getParent(); |
| const std::string &Name = F->getNameStr() + ".omp_subfn"; |
| |
| std::vector<Type*> Arguments(1, Builder.getInt8PtrTy()); |
| FunctionType *FT = FunctionType::get(Builder.getVoidTy(), Arguments, false); |
| Function *FN = Function::Create(FT, Function::InternalLinkage, Name, M); |
| // Do not run any polly pass on the new function. |
| SD->markFunctionAsInvalid(FN); |
| |
| Function::arg_iterator AI = FN->arg_begin(); |
| AI->setName("omp.userContext"); |
| |
| return FN; |
| } |
| |
| /// @brief Add values to the OpenMP structure. |
| /// |
| /// Create the subfunction structure and add the values from the list. |
| Value *addValuesToOpenMPStruct(SetVector<Value*> OMPDataVals, |
| Function *SubFunction) { |
| std::vector<Type*> structMembers; |
| |
| // Create the structure. |
| for (unsigned i = 0; i < OMPDataVals.size(); i++) |
| structMembers.push_back(OMPDataVals[i]->getType()); |
| |
| StructType *structTy = StructType::get(Builder.getContext(), |
| structMembers); |
| // Store the values into the structure. |
| Value *structData = Builder.CreateAlloca(structTy, 0, "omp.userContext"); |
| for (unsigned i = 0; i < OMPDataVals.size(); i++) { |
| Value *storeAddr = Builder.CreateStructGEP(structData, i); |
| Builder.CreateStore(OMPDataVals[i], storeAddr); |
| } |
| |
| return structData; |
| } |
| |
| /// @brief Create OpenMP structure values. |
| /// |
| /// Create a list of values that has to be stored into the subfuncition |
| /// structure. |
| SetVector<Value*> createOpenMPStructValues() { |
| SetVector<Value*> OMPDataVals; |
| |
| // Push the clast variables available in the clastVars. |
| for (CharMapT::iterator I = clastVars->begin(), E = clastVars->end(); |
| I != E; I++) |
| OMPDataVals.insert(I->second); |
| |
| // Push the base addresses of memory references. |
| for (Scop::iterator SI = S->begin(), SE = S->end(); SI != SE; ++SI) { |
| ScopStmt *Stmt = *SI; |
| for (SmallVector<MemoryAccess*, 8>::iterator I = Stmt->memacc_begin(), |
| E = Stmt->memacc_end(); I != E; ++I) { |
| Value *BaseAddr = const_cast<Value*>((*I)->getBaseAddr()); |
| OMPDataVals.insert((BaseAddr)); |
| } |
| } |
| |
| return OMPDataVals; |
| } |
| |
| /// @brief Extract the values from the subfunction parameter. |
| /// |
| /// Extract the values from the subfunction parameter and update the clast |
| /// variables to point to the new values. |
| void extractValuesFromOpenMPStruct(CharMapT *clastVarsOMP, |
| SetVector<Value*> OMPDataVals, |
| Value *userContext) { |
| // Extract the clast variables. |
| unsigned i = 0; |
| for (CharMapT::iterator I = clastVars->begin(), E = clastVars->end(); |
| I != E; I++) { |
| Value *loadAddr = Builder.CreateStructGEP(userContext, i); |
| (*clastVarsOMP)[I->first] = Builder.CreateLoad(loadAddr); |
| i++; |
| } |
| |
| // Extract the base addresses of memory references. |
| for (unsigned j = i; j < OMPDataVals.size(); j++) { |
| Value *loadAddr = Builder.CreateStructGEP(userContext, j); |
| Value *baseAddr = OMPDataVals[j]; |
| ValueMap[baseAddr] = Builder.CreateLoad(loadAddr); |
| } |
| |
| } |
| |
| /// @brief Add body to the subfunction. |
| void addOpenMPSubfunctionBody(Function *FN, const clast_for *f, |
| Value *structData, |
| SetVector<Value*> OMPDataVals) { |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| LLVMContext &Context = FN->getContext(); |
| IntegerType *intPtrTy = TD->getIntPtrType(Context); |
| |
| // Store the previous basic block. |
| BasicBlock *PrevBB = Builder.GetInsertBlock(); |
| |
| // Create basic blocks. |
| BasicBlock *HeaderBB = BasicBlock::Create(Context, "omp.setup", FN); |
| BasicBlock *ExitBB = BasicBlock::Create(Context, "omp.exit", FN); |
| BasicBlock *checkNextBB = BasicBlock::Create(Context, "omp.checkNext", FN); |
| BasicBlock *loadIVBoundsBB = BasicBlock::Create(Context, "omp.loadIVBounds", |
| FN); |
| |
| DT->addNewBlock(HeaderBB, PrevBB); |
| DT->addNewBlock(ExitBB, HeaderBB); |
| DT->addNewBlock(checkNextBB, HeaderBB); |
| DT->addNewBlock(loadIVBoundsBB, HeaderBB); |
| |
| // Fill up basic block HeaderBB. |
| Builder.SetInsertPoint(HeaderBB); |
| Value *lowerBoundPtr = Builder.CreateAlloca(intPtrTy, 0, |
| "omp.lowerBoundPtr"); |
| Value *upperBoundPtr = Builder.CreateAlloca(intPtrTy, 0, |
| "omp.upperBoundPtr"); |
| Value *userContext = Builder.CreateBitCast(FN->arg_begin(), |
| structData->getType(), |
| "omp.userContext"); |
| |
| CharMapT clastVarsOMP; |
| extractValuesFromOpenMPStruct(&clastVarsOMP, OMPDataVals, userContext); |
| |
| Builder.CreateBr(checkNextBB); |
| |
| // Add code to check if another set of iterations will be executed. |
| Builder.SetInsertPoint(checkNextBB); |
| Function *runtimeNextFunction = M->getFunction("GOMP_loop_runtime_next"); |
| Value *ret1 = Builder.CreateCall2(runtimeNextFunction, |
| lowerBoundPtr, upperBoundPtr); |
| Value *hasNextSchedule = Builder.CreateTrunc(ret1, Builder.getInt1Ty(), |
| "omp.hasNextScheduleBlock"); |
| Builder.CreateCondBr(hasNextSchedule, loadIVBoundsBB, ExitBB); |
| |
| // Add code to to load the iv bounds for this set of iterations. |
| Builder.SetInsertPoint(loadIVBoundsBB); |
| Value *lowerBound = Builder.CreateLoad(lowerBoundPtr, "omp.lowerBound"); |
| Value *upperBound = Builder.CreateLoad(upperBoundPtr, "omp.upperBound"); |
| |
| // Subtract one as the upper bound provided by openmp is a < comparison |
| // whereas the codegenForSequential function creates a <= comparison. |
| upperBound = Builder.CreateSub(upperBound, ConstantInt::get(intPtrTy, 1), |
| "omp.upperBoundAdjusted"); |
| |
| // Use clastVarsOMP during code generation of the OpenMP subfunction. |
| CharMapT *oldClastVars = clastVars; |
| clastVars = &clastVarsOMP; |
| ExpGen.setIVS(&clastVarsOMP); |
| |
| codegenForSequential(f, lowerBound, upperBound); |
| |
| // Restore the old clastVars. |
| clastVars = oldClastVars; |
| ExpGen.setIVS(oldClastVars); |
| |
| Builder.CreateBr(checkNextBB); |
| |
| // Add code to terminate this openmp subfunction. |
| Builder.SetInsertPoint(ExitBB); |
| Function *endnowaitFunction = M->getFunction("GOMP_loop_end_nowait"); |
| Builder.CreateCall(endnowaitFunction); |
| Builder.CreateRetVoid(); |
| |
| // Restore the builder back to previous basic block. |
| Builder.SetInsertPoint(PrevBB); |
| } |
| |
| /// @brief Create an OpenMP parallel for loop. |
| /// |
| /// This loop reflects a loop as if it would have been created by an OpenMP |
| /// statement. |
| void codegenForOpenMP(const clast_for *f) { |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| IntegerType *intPtrTy = TD->getIntPtrType(Builder.getContext()); |
| |
| Function *SubFunction = addOpenMPSubfunction(M); |
| SetVector<Value*> OMPDataVals = createOpenMPStructValues(); |
| Value *structData = addValuesToOpenMPStruct(OMPDataVals, SubFunction); |
| |
| addOpenMPSubfunctionBody(SubFunction, f, structData, OMPDataVals); |
| |
| // Create call for GOMP_parallel_loop_runtime_start. |
| Value *subfunctionParam = Builder.CreateBitCast(structData, |
| Builder.getInt8PtrTy(), |
| "omp_data"); |
| |
| Value *numberOfThreads = Builder.getInt32(0); |
| Value *lowerBound = ExpGen.codegen(f->LB, intPtrTy); |
| Value *upperBound = ExpGen.codegen(f->UB, intPtrTy); |
| |
| // Add one as the upper bound provided by openmp is a < comparison |
| // whereas the codegenForSequential function creates a <= comparison. |
| upperBound = Builder.CreateAdd(upperBound, ConstantInt::get(intPtrTy, 1)); |
| APInt APStride = APInt_from_MPZ(f->stride); |
| Value *stride = ConstantInt::get(intPtrTy, |
| APStride.zext(intPtrTy->getBitWidth())); |
| |
| SmallVector<Value *, 6> Arguments; |
| Arguments.push_back(SubFunction); |
| Arguments.push_back(subfunctionParam); |
| Arguments.push_back(numberOfThreads); |
| Arguments.push_back(lowerBound); |
| Arguments.push_back(upperBound); |
| Arguments.push_back(stride); |
| |
| Function *parallelStartFunction = |
| M->getFunction("GOMP_parallel_loop_runtime_start"); |
| Builder.CreateCall(parallelStartFunction, Arguments); |
| |
| // Create call to the subfunction. |
| Builder.CreateCall(SubFunction, subfunctionParam); |
| |
| // Create call for GOMP_parallel_end. |
| Function *FN = M->getFunction("GOMP_parallel_end"); |
| Builder.CreateCall(FN); |
| } |
| |
| bool isInnermostLoop(const clast_for *f) { |
| const clast_stmt *stmt = f->body; |
| |
| while (stmt) { |
| if (!CLAST_STMT_IS_A(stmt, stmt_user)) |
| return false; |
| |
| stmt = stmt->next; |
| } |
| |
| return true; |
| } |
| |
| /// @brief Get the number of loop iterations for this loop. |
| /// @param f The clast for loop to check. |
| int getNumberOfIterations(const clast_for *f) { |
| isl_set *loopDomain = isl_set_copy(isl_set_from_cloog_domain(f->domain)); |
| isl_set *tmp = isl_set_copy(loopDomain); |
| |
| // Calculate a map similar to the identity map, but with the last input |
| // and output dimension not related. |
| // [i0, i1, i2, i3] -> [i0, i1, i2, o0] |
| isl_dim *dim = isl_set_get_dim(loopDomain); |
| dim = isl_dim_drop_outputs(dim, isl_set_n_dim(loopDomain) - 2, 1); |
| dim = isl_dim_map_from_set(dim); |
| isl_map *identity = isl_map_identity(dim); |
| identity = isl_map_add_dims(identity, isl_dim_in, 1); |
| identity = isl_map_add_dims(identity, isl_dim_out, 1); |
| |
| isl_map *map = isl_map_from_domain_and_range(tmp, loopDomain); |
| map = isl_map_intersect(map, identity); |
| |
| isl_map *lexmax = isl_map_lexmax(isl_map_copy(map)); |
| isl_map *lexmin = isl_map_lexmin(map); |
| isl_map *sub = isl_map_sum(lexmax, isl_map_neg(lexmin)); |
| |
| isl_set *elements = isl_map_range(sub); |
| |
| if (!isl_set_is_singleton(elements)) { |
| isl_set_free(elements); |
| return -1; |
| } |
| |
| isl_point *p = isl_set_sample_point(elements); |
| |
| isl_int v; |
| isl_int_init(v); |
| isl_point_get_coordinate(p, isl_dim_set, isl_set_n_dim(loopDomain) - 1, &v); |
| int numberIterations = isl_int_get_si(v); |
| isl_int_clear(v); |
| isl_point_free(p); |
| |
| return (numberIterations) / isl_int_get_si(f->stride) + 1; |
| } |
| |
| /// @brief Create vector instructions for this loop. |
| void codegenForVector(const clast_for *f) { |
| DEBUG(dbgs() << "Vectorizing loop '" << f->iterator << "'\n";); |
| int vectorWidth = getNumberOfIterations(f); |
| |
| Value *LB = ExpGen.codegen(f->LB, |
| TD->getIntPtrType(Builder.getContext())); |
| |
| APInt Stride = APInt_from_MPZ(f->stride); |
| IntegerType *LoopIVType = dyn_cast<IntegerType>(LB->getType()); |
| Stride = Stride.zext(LoopIVType->getBitWidth()); |
| Value *StrideValue = ConstantInt::get(LoopIVType, Stride); |
| |
| std::vector<Value*> IVS(vectorWidth); |
| IVS[0] = LB; |
| |
| for (int i = 1; i < vectorWidth; i++) |
| IVS[i] = Builder.CreateAdd(IVS[i-1], StrideValue, "p_vector_iv"); |
| |
| isl_set *scatteringDomain = isl_set_from_cloog_domain(f->domain); |
| |
| // Add loop iv to symbols. |
| (*clastVars)[f->iterator] = LB; |
| |
| const clast_stmt *stmt = f->body; |
| |
| while (stmt) { |
| codegen((const clast_user_stmt *)stmt, &IVS, f->iterator, |
| scatteringDomain); |
| stmt = stmt->next; |
| } |
| |
| // Loop is finished, so remove its iv from the live symbols. |
| clastVars->erase(f->iterator); |
| } |
| |
| void codegen(const clast_for *f) { |
| if (Vector && isInnermostLoop(f) && DP->isParallelFor(f) |
| && (-1 != getNumberOfIterations(f)) |
| && (getNumberOfIterations(f) <= 16)) { |
| codegenForVector(f); |
| } else if (OpenMP && !parallelCodeGeneration && DP->isParallelFor(f)) { |
| parallelCodeGeneration = true; |
| parallelLoops.push_back(f->iterator); |
| codegenForOpenMP(f); |
| parallelCodeGeneration = false; |
| } else |
| codegenForSequential(f); |
| } |
| |
| Value *codegen(const clast_equation *eq) { |
| Value *LHS = ExpGen.codegen(eq->LHS, |
| TD->getIntPtrType(Builder.getContext())); |
| Value *RHS = ExpGen.codegen(eq->RHS, |
| TD->getIntPtrType(Builder.getContext())); |
| CmpInst::Predicate P; |
| |
| if (eq->sign == 0) |
| P = ICmpInst::ICMP_EQ; |
| else if (eq->sign > 0) |
| P = ICmpInst::ICMP_SGE; |
| else |
| P = ICmpInst::ICMP_SLE; |
| |
| return Builder.CreateICmp(P, LHS, RHS); |
| } |
| |
| void codegen(const clast_guard *g) { |
| Function *F = Builder.GetInsertBlock()->getParent(); |
| LLVMContext &Context = F->getContext(); |
| BasicBlock *ThenBB = BasicBlock::Create(Context, "polly.then", F); |
| BasicBlock *MergeBB = BasicBlock::Create(Context, "polly.merge", F); |
| DT->addNewBlock(ThenBB, Builder.GetInsertBlock()); |
| DT->addNewBlock(MergeBB, Builder.GetInsertBlock()); |
| |
| Value *Predicate = codegen(&(g->eq[0])); |
| |
| for (int i = 1; i < g->n; ++i) { |
| Value *TmpPredicate = codegen(&(g->eq[i])); |
| Predicate = Builder.CreateAnd(Predicate, TmpPredicate); |
| } |
| |
| Builder.CreateCondBr(Predicate, ThenBB, MergeBB); |
| Builder.SetInsertPoint(ThenBB); |
| |
| codegen(g->then); |
| |
| Builder.CreateBr(MergeBB); |
| Builder.SetInsertPoint(MergeBB); |
| } |
| |
| void codegen(const clast_stmt *stmt) { |
| if (CLAST_STMT_IS_A(stmt, stmt_root)) |
| assert(false && "No second root statement expected"); |
| else if (CLAST_STMT_IS_A(stmt, stmt_ass)) |
| codegen((const clast_assignment *)stmt); |
| else if (CLAST_STMT_IS_A(stmt, stmt_user)) |
| codegen((const clast_user_stmt *)stmt); |
| else if (CLAST_STMT_IS_A(stmt, stmt_block)) |
| codegen((const clast_block *)stmt); |
| else if (CLAST_STMT_IS_A(stmt, stmt_for)) |
| codegen((const clast_for *)stmt); |
| else if (CLAST_STMT_IS_A(stmt, stmt_guard)) |
| codegen((const clast_guard *)stmt); |
| |
| if (stmt->next) |
| codegen(stmt->next); |
| } |
| |
| void addParameters(const CloogNames *names) { |
| SCEVExpander Rewriter(SE, "polly"); |
| |
| // Create an instruction that specifies the location where the parameters |
| // are expanded. |
| CastInst::CreateIntegerCast(ConstantInt::getTrue(Builder.getContext()), |
| Builder.getInt16Ty(), false, "insertInst", |
| Builder.GetInsertBlock()); |
| |
| int i = 0; |
| for (Scop::param_iterator PI = S->param_begin(), PE = S->param_end(); |
| PI != PE; ++PI) { |
| assert(i < names->nb_parameters && "Not enough parameter names"); |
| |
| const SCEV *Param = *PI; |
| Type *Ty = Param->getType(); |
| |
| Instruction *insertLocation = --(Builder.GetInsertBlock()->end()); |
| Value *V = Rewriter.expandCodeFor(Param, Ty, insertLocation); |
| (*clastVars)[names->parameters[i]] = V; |
| |
| ++i; |
| } |
| } |
| |
| public: |
| void codegen(const clast_root *r) { |
| clastVars = new CharMapT(); |
| addParameters(r->names); |
| ExpGen.setIVS(clastVars); |
| |
| parallelCodeGeneration = false; |
| |
| const clast_stmt *stmt = (const clast_stmt*) r; |
| if (stmt->next) |
| codegen(stmt->next); |
| |
| delete clastVars; |
| } |
| |
| ClastStmtCodeGen(Scop *scop, ScalarEvolution &se, DominatorTree *dt, |
| ScopDetection *sd, Dependences *dp, TargetData *td, |
| IRBuilder<> &B) : |
| S(scop), SE(se), DT(dt), SD(sd), DP(dp), TD(td), Builder(B), |
| ExpGen(Builder, NULL) {} |
| |
| }; |
| } |
| |
| namespace { |
| class CodeGeneration : public ScopPass { |
| Region *region; |
| Scop *S; |
| DominatorTree *DT; |
| ScalarEvolution *SE; |
| ScopDetection *SD; |
| TargetData *TD; |
| RegionInfo *RI; |
| |
| std::vector<std::string> parallelLoops; |
| |
| public: |
| static char ID; |
| |
| CodeGeneration() : ScopPass(ID) {} |
| |
| // Adding prototypes required if OpenMP is enabled. |
| void addOpenMPDefinitions(IRBuilder<> &Builder) |
| { |
| Module *M = Builder.GetInsertBlock()->getParent()->getParent(); |
| LLVMContext &Context = Builder.getContext(); |
| IntegerType *intPtrTy = TD->getIntPtrType(Context); |
| |
| if (!M->getFunction("GOMP_parallel_end")) { |
| FunctionType *FT = FunctionType::get(Type::getVoidTy(Context), false); |
| Function::Create(FT, Function::ExternalLinkage, "GOMP_parallel_end", M); |
| } |
| |
| if (!M->getFunction("GOMP_parallel_loop_runtime_start")) { |
| // Type of first argument. |
| std::vector<Type*> Arguments(1, Builder.getInt8PtrTy()); |
| FunctionType *FnArgTy = FunctionType::get(Builder.getVoidTy(), Arguments, |
| false); |
| PointerType *FnPtrTy = PointerType::getUnqual(FnArgTy); |
| |
| std::vector<Type*> args; |
| args.push_back(FnPtrTy); |
| args.push_back(Builder.getInt8PtrTy()); |
| args.push_back(Builder.getInt32Ty()); |
| args.push_back(intPtrTy); |
| args.push_back(intPtrTy); |
| args.push_back(intPtrTy); |
| |
| FunctionType *type = FunctionType::get(Builder.getVoidTy(), args, false); |
| Function::Create(type, Function::ExternalLinkage, |
| "GOMP_parallel_loop_runtime_start", M); |
| } |
| |
| if (!M->getFunction("GOMP_loop_runtime_next")) { |
| PointerType *intLongPtrTy = PointerType::getUnqual(intPtrTy); |
| |
| std::vector<Type*> args; |
| args.push_back(intLongPtrTy); |
| args.push_back(intLongPtrTy); |
| |
| FunctionType *type = FunctionType::get(Builder.getInt8Ty(), args, false); |
| Function::Create(type, Function::ExternalLinkage, |
| "GOMP_loop_runtime_next", M); |
| } |
| |
| if (!M->getFunction("GOMP_loop_end_nowait")) { |
| FunctionType *FT = FunctionType::get(Builder.getVoidTy(), |
| std::vector<Type*>(), false); |
| Function::Create(FT, Function::ExternalLinkage, |
| "GOMP_loop_end_nowait", M); |
| } |
| } |
| |
| // Split the entry edge of the region and generate a new basic block on this |
| // edge. This function also updates ScopInfo and RegionInfo. |
| // |
| // @param region The region where the entry edge will be splitted. |
| BasicBlock *splitEdgeAdvanced(Region *region) { |
| BasicBlock *newBlock; |
| BasicBlock *splitBlock; |
| |
| newBlock = SplitEdge(region->getEnteringBlock(), region->getEntry(), this); |
| |
| if (DT->dominates(region->getEntry(), newBlock)) { |
| // Update ScopInfo. |
| for (Scop::iterator SI = S->begin(), SE = S->end(); SI != SE; ++SI) |
| if ((*SI)->getBasicBlock() == newBlock) { |
| (*SI)->setBasicBlock(newBlock); |
| break; |
| } |
| |
| // Update RegionInfo. |
| splitBlock = region->getEntry(); |
| region->replaceEntry(newBlock); |
| RI->setRegionFor(newBlock, region); |
| } else { |
| RI->setRegionFor(newBlock, region->getParent()); |
| splitBlock = newBlock; |
| } |
| |
| return splitBlock; |
| } |
| |
| // Create a split block that branches either to the old code or to a new basic |
| // block where the new code can be inserted. |
| // |
| // @param builder A builder that will be set to point to a basic block, where |
| // the new code can be generated. |
| // @return The split basic block. |
| BasicBlock *addSplitAndStartBlock(IRBuilder<> *builder) { |
| BasicBlock *splitBlock = splitEdgeAdvanced(region); |
| |
| splitBlock->setName("polly.enterScop"); |
| |
| Function *function = splitBlock->getParent(); |
| BasicBlock *startBlock = BasicBlock::Create(function->getContext(), |
| "polly.start", function); |
| splitBlock->getTerminator()->eraseFromParent(); |
| builder->SetInsertPoint(splitBlock); |
| builder->CreateCondBr(builder->getTrue(), startBlock, region->getEntry()); |
| DT->addNewBlock(startBlock, splitBlock); |
| |
| // Start code generation here. |
| builder->SetInsertPoint(startBlock); |
| return splitBlock; |
| } |
| |
| // Merge the control flow of the newly generated code with the existing code. |
| // |
| // @param splitBlock The basic block where the control flow was split between |
| // old and new version of the Scop. |
| // @param builder An IRBuilder that points to the last instruction of the |
| // newly generated code. |
| void mergeControlFlow(BasicBlock *splitBlock, IRBuilder<> *builder) { |
| BasicBlock *mergeBlock; |
| Region *R = region; |
| |
| if (R->getExit()->getSinglePredecessor()) |
| // No splitEdge required. A block with a single predecessor cannot have |
| // PHI nodes that would complicate life. |
| mergeBlock = R->getExit(); |
| else { |
| mergeBlock = SplitEdge(R->getExitingBlock(), R->getExit(), this); |
| // SplitEdge will never split R->getExit(), as R->getExit() has more than |
| // one predecessor. Hence, mergeBlock is always a newly generated block. |
| mergeBlock->setName("polly.finalMerge"); |
| R->replaceExit(mergeBlock); |
| } |
| |
| builder->CreateBr(mergeBlock); |
| |
| if (DT->dominates(splitBlock, mergeBlock)) |
| DT->changeImmediateDominator(mergeBlock, splitBlock); |
| } |
| |
| bool runOnScop(Scop &scop) { |
| S = &scop; |
| region = &S->getRegion(); |
| DT = &getAnalysis<DominatorTree>(); |
| Dependences *DP = &getAnalysis<Dependences>(); |
| SE = &getAnalysis<ScalarEvolution>(); |
| SD = &getAnalysis<ScopDetection>(); |
| TD = &getAnalysis<TargetData>(); |
| RI = &getAnalysis<RegionInfo>(); |
| |
| parallelLoops.clear(); |
| |
| assert(region->isSimple() && "Only simple regions are supported"); |
| |
| // In the CFG and we generate next to original code of the Scop the |
| // optimized version. Both the new and the original version of the code |
| // remain in the CFG. A branch statement decides which version is executed. |
| // At the moment, we always execute the newly generated version (the old one |
| // is dead code eliminated by the cleanup passes). Later we may decide to |
| // execute the new version only under certain conditions. This will be the |
| // case if we support constructs for which we cannot prove all assumptions |
| // at compile time. |
| // |
| // Before transformation: |
| // |
| // bb0 |
| // | |
| // orig_scop |
| // | |
| // bb1 |
| // |
| // After transformation: |
| // bb0 |
| // | |
| // polly.splitBlock |
| // / \. |
| // | startBlock |
| // | | |
| // orig_scop new_scop |
| // \ / |
| // \ / |
| // bb1 (joinBlock) |
| IRBuilder<> builder(region->getEntry()); |
| |
| // The builder will be set to startBlock. |
| BasicBlock *splitBlock = addSplitAndStartBlock(&builder); |
| |
| if (OpenMP) |
| addOpenMPDefinitions(builder); |
| |
| ClastStmtCodeGen CodeGen(S, *SE, DT, SD, DP, TD, builder); |
| CloogInfo &C = getAnalysis<CloogInfo>(); |
| CodeGen.codegen(C.getClast()); |
| |
| parallelLoops.insert(parallelLoops.begin(), |
| CodeGen.getParallelLoops().begin(), |
| CodeGen.getParallelLoops().end()); |
| |
| mergeControlFlow(splitBlock, &builder); |
| |
| return true; |
| } |
| |
| virtual void printScop(raw_ostream &OS) const { |
| for (std::vector<std::string>::const_iterator PI = parallelLoops.begin(), |
| PE = parallelLoops.end(); PI != PE; ++PI) |
| OS << "Parallel loop with iterator '" << *PI << "' generated\n"; |
| } |
| |
| virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| AU.addRequired<CloogInfo>(); |
| AU.addRequired<Dependences>(); |
| AU.addRequired<DominatorTree>(); |
| AU.addRequired<ScalarEvolution>(); |
| AU.addRequired<RegionInfo>(); |
| AU.addRequired<ScopDetection>(); |
| AU.addRequired<ScopInfo>(); |
| AU.addRequired<TargetData>(); |
| |
| AU.addPreserved<CloogInfo>(); |
| AU.addPreserved<Dependences>(); |
| |
| // FIXME: We do not create LoopInfo for the newly generated loops. |
| AU.addPreserved<LoopInfo>(); |
| AU.addPreserved<DominatorTree>(); |
| AU.addPreserved<ScopDetection>(); |
| AU.addPreserved<ScalarEvolution>(); |
| |
| // FIXME: We do not yet add regions for the newly generated code to the |
| // region tree. |
| AU.addPreserved<RegionInfo>(); |
| AU.addPreserved<TempScopInfo>(); |
| AU.addPreserved<ScopInfo>(); |
| AU.addPreservedID(IndependentBlocksID); |
| } |
| }; |
| } |
| |
| char CodeGeneration::ID = 1; |
| |
| static RegisterPass<CodeGeneration> |
| Z("polly-codegen", "Polly - Create LLVM-IR from the polyhedral information"); |
| |
| Pass* polly::createCodeGenerationPass() { |
| return new CodeGeneration(); |
| } |