|  | //===- Writer.cpp ---------------------------------------------------------===// | 
|  | // | 
|  | //                             The LLVM Linker | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "Writer.h" | 
|  | #include "Config.h" | 
|  | #include "LinkerScript.h" | 
|  | #include "OutputSections.h" | 
|  | #include "Relocations.h" | 
|  | #include "Strings.h" | 
|  | #include "SymbolTable.h" | 
|  | #include "Target.h" | 
|  |  | 
|  | #include "llvm/ADT/StringMap.h" | 
|  | #include "llvm/ADT/StringSwitch.h" | 
|  | #include "llvm/Support/FileOutputBuffer.h" | 
|  | #include "llvm/Support/StringSaver.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  |  | 
|  | using namespace llvm; | 
|  | using namespace llvm::ELF; | 
|  | using namespace llvm::object; | 
|  |  | 
|  | using namespace lld; | 
|  | using namespace lld::elf; | 
|  |  | 
|  | namespace { | 
|  | // The writer writes a SymbolTable result to a file. | 
|  | template <class ELFT> class Writer { | 
|  | public: | 
|  | typedef typename ELFT::uint uintX_t; | 
|  | typedef typename ELFT::Shdr Elf_Shdr; | 
|  | typedef typename ELFT::Ehdr Elf_Ehdr; | 
|  | typedef typename ELFT::Phdr Elf_Phdr; | 
|  | typedef typename ELFT::Sym Elf_Sym; | 
|  | typedef typename ELFT::SymRange Elf_Sym_Range; | 
|  | typedef typename ELFT::Rela Elf_Rela; | 
|  | void run(); | 
|  |  | 
|  | private: | 
|  | typedef PhdrEntry<ELFT> Phdr; | 
|  |  | 
|  | void copyLocalSymbols(); | 
|  | void addReservedSymbols(); | 
|  | void createSections(); | 
|  | void forEachRelSec( | 
|  | std::function<void(InputSectionBase<ELFT> &, const typename ELFT::Shdr &)> | 
|  | Fn); | 
|  | void finalizeSections(); | 
|  | void addPredefinedSections(); | 
|  | bool needsGot(); | 
|  |  | 
|  | std::vector<Phdr> createPhdrs(); | 
|  | void assignAddresses(); | 
|  | void assignFileOffsets(); | 
|  | void assignFileOffsetsBinary(); | 
|  | void setPhdrs(); | 
|  | void fixHeaders(); | 
|  | void fixSectionAlignments(); | 
|  | void fixAbsoluteSymbols(); | 
|  | void openFile(); | 
|  | void writeHeader(); | 
|  | void writeSections(); | 
|  | void writeSectionsBinary(); | 
|  | void writeBuildId(); | 
|  |  | 
|  | std::unique_ptr<FileOutputBuffer> Buffer; | 
|  |  | 
|  | BumpPtrAllocator Alloc; | 
|  | std::vector<OutputSectionBase<ELFT> *> OutputSections; | 
|  | OutputSectionFactory<ELFT> Factory; | 
|  |  | 
|  | void addRelIpltSymbols(); | 
|  | void addStartEndSymbols(); | 
|  | void addStartStopSymbols(OutputSectionBase<ELFT> *Sec); | 
|  | OutputSectionBase<ELFT> *findSection(StringRef Name); | 
|  |  | 
|  | std::vector<Phdr> Phdrs; | 
|  |  | 
|  | uintX_t FileSize; | 
|  | uintX_t SectionHeaderOff; | 
|  | }; | 
|  | } // anonymous namespace | 
|  |  | 
|  | template <class ELFT> | 
|  | StringRef elf::getOutputSectionName(InputSectionBase<ELFT> *S) { | 
|  | StringRef Name = S->Name; | 
|  | for (StringRef V : {".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.", | 
|  | ".init_array.", ".fini_array.", ".ctors.", ".dtors.", | 
|  | ".tbss.", ".gcc_except_table.", ".tdata.", ".ARM.exidx."}) | 
|  | if (Name.startswith(V)) | 
|  | return V.drop_back(); | 
|  | return Name; | 
|  | } | 
|  |  | 
|  | template <class ELFT> void elf::reportDiscarded(InputSectionBase<ELFT> *IS) { | 
|  | if (!Config->PrintGcSections || !IS || IS->Live) | 
|  | return; | 
|  | errs() << "removing unused section from '" << IS->Name << "' in file '" | 
|  | << IS->getFile()->getName() << "'\n"; | 
|  | } | 
|  |  | 
|  | template <class ELFT> static bool needsInterpSection() { | 
|  | return !Symtab<ELFT>::X->getSharedFiles().empty() && | 
|  | !Config->DynamicLinker.empty() && | 
|  | !Script<ELFT>::X->ignoreInterpSection(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void elf::writeResult() { | 
|  | typedef typename ELFT::uint uintX_t; | 
|  | typedef typename ELFT::Ehdr Elf_Ehdr; | 
|  |  | 
|  | // Create singleton output sections. | 
|  | OutputSection<ELFT> Bss(".bss", SHT_NOBITS, SHF_ALLOC | SHF_WRITE); | 
|  | DynamicSection<ELFT> Dynamic; | 
|  | EhOutputSection<ELFT> EhFrame; | 
|  | GotSection<ELFT> Got; | 
|  | PltSection<ELFT> Plt; | 
|  | RelocationSection<ELFT> RelaDyn(Config->Rela ? ".rela.dyn" : ".rel.dyn", | 
|  | Config->ZCombreloc); | 
|  | StringTableSection<ELFT> ShStrTab(".shstrtab", false); | 
|  | VersionTableSection<ELFT> VerSym; | 
|  | VersionNeedSection<ELFT> VerNeed; | 
|  |  | 
|  | OutputSectionBase<ELFT> ElfHeader("", 0, SHF_ALLOC); | 
|  | ElfHeader.setSize(sizeof(Elf_Ehdr)); | 
|  | OutputSectionBase<ELFT> ProgramHeaders("", 0, SHF_ALLOC); | 
|  | ProgramHeaders.updateAlignment(sizeof(uintX_t)); | 
|  |  | 
|  | // Instantiate optional output sections if they are needed. | 
|  | std::unique_ptr<InterpSection<ELFT>> Interp; | 
|  | std::unique_ptr<BuildIdSection<ELFT>> BuildId; | 
|  | std::unique_ptr<StringTableSection<ELFT>> DynStrTab; | 
|  | std::unique_ptr<SymbolTableSection<ELFT>> DynSymTab; | 
|  | std::unique_ptr<EhFrameHeader<ELFT>> EhFrameHdr; | 
|  | std::unique_ptr<GnuHashTableSection<ELFT>> GnuHashTab; | 
|  | std::unique_ptr<GotPltSection<ELFT>> GotPlt; | 
|  | std::unique_ptr<HashTableSection<ELFT>> HashTab; | 
|  | std::unique_ptr<RelocationSection<ELFT>> RelaPlt; | 
|  | std::unique_ptr<StringTableSection<ELFT>> StrTab; | 
|  | std::unique_ptr<SymbolTableSection<ELFT>> SymTabSec; | 
|  | std::unique_ptr<OutputSection<ELFT>> MipsRldMap; | 
|  | std::unique_ptr<VersionDefinitionSection<ELFT>> VerDef; | 
|  |  | 
|  | if (needsInterpSection<ELFT>()) | 
|  | Interp.reset(new InterpSection<ELFT>); | 
|  |  | 
|  | if (Config->BuildId == BuildIdKind::Fast) | 
|  | BuildId.reset(new BuildIdFastHash<ELFT>); | 
|  | else if (Config->BuildId == BuildIdKind::Md5) | 
|  | BuildId.reset(new BuildIdMd5<ELFT>); | 
|  | else if (Config->BuildId == BuildIdKind::Sha1) | 
|  | BuildId.reset(new BuildIdSha1<ELFT>); | 
|  | else if (Config->BuildId == BuildIdKind::Uuid) | 
|  | BuildId.reset(new BuildIdUuid<ELFT>); | 
|  | else if (Config->BuildId == BuildIdKind::Hexstring) | 
|  | BuildId.reset(new BuildIdHexstring<ELFT>); | 
|  |  | 
|  | if (!Symtab<ELFT>::X->getSharedFiles().empty() || Config->Pic) { | 
|  | DynStrTab.reset(new StringTableSection<ELFT>(".dynstr", true)); | 
|  | DynSymTab.reset(new SymbolTableSection<ELFT>(*DynStrTab)); | 
|  | } | 
|  |  | 
|  | if (Config->EhFrameHdr) | 
|  | EhFrameHdr.reset(new EhFrameHeader<ELFT>); | 
|  |  | 
|  | if (Config->GnuHash) | 
|  | GnuHashTab.reset(new GnuHashTableSection<ELFT>); | 
|  | if (Config->SysvHash) | 
|  | HashTab.reset(new HashTableSection<ELFT>); | 
|  | StringRef S = Config->Rela ? ".rela.plt" : ".rel.plt"; | 
|  | GotPlt.reset(new GotPltSection<ELFT>); | 
|  | RelaPlt.reset(new RelocationSection<ELFT>(S, false /*Sort*/)); | 
|  | if (Config->Strip != StripPolicy::All) { | 
|  | StrTab.reset(new StringTableSection<ELFT>(".strtab", false)); | 
|  | SymTabSec.reset(new SymbolTableSection<ELFT>(*StrTab)); | 
|  | } | 
|  | if (Config->EMachine == EM_MIPS && !Config->Shared) { | 
|  | // This is a MIPS specific section to hold a space within the data segment | 
|  | // of executable file which is pointed to by the DT_MIPS_RLD_MAP entry. | 
|  | // See "Dynamic section" in Chapter 5 in the following document: | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | MipsRldMap.reset(new OutputSection<ELFT>(".rld_map", SHT_PROGBITS, | 
|  | SHF_ALLOC | SHF_WRITE)); | 
|  | MipsRldMap->setSize(sizeof(uintX_t)); | 
|  | MipsRldMap->updateAlignment(sizeof(uintX_t)); | 
|  | } | 
|  | if (!Config->VersionDefinitions.empty()) | 
|  | VerDef.reset(new VersionDefinitionSection<ELFT>()); | 
|  |  | 
|  | Out<ELFT>::Bss = &Bss; | 
|  | Out<ELFT>::BuildId = BuildId.get(); | 
|  | Out<ELFT>::DynStrTab = DynStrTab.get(); | 
|  | Out<ELFT>::DynSymTab = DynSymTab.get(); | 
|  | Out<ELFT>::Dynamic = &Dynamic; | 
|  | Out<ELFT>::EhFrame = &EhFrame; | 
|  | Out<ELFT>::EhFrameHdr = EhFrameHdr.get(); | 
|  | Out<ELFT>::GnuHashTab = GnuHashTab.get(); | 
|  | Out<ELFT>::Got = &Got; | 
|  | Out<ELFT>::GotPlt = GotPlt.get(); | 
|  | Out<ELFT>::HashTab = HashTab.get(); | 
|  | Out<ELFT>::Interp = Interp.get(); | 
|  | Out<ELFT>::Plt = &Plt; | 
|  | Out<ELFT>::RelaDyn = &RelaDyn; | 
|  | Out<ELFT>::RelaPlt = RelaPlt.get(); | 
|  | Out<ELFT>::ShStrTab = &ShStrTab; | 
|  | Out<ELFT>::StrTab = StrTab.get(); | 
|  | Out<ELFT>::SymTab = SymTabSec.get(); | 
|  | Out<ELFT>::VerDef = VerDef.get(); | 
|  | Out<ELFT>::VerSym = &VerSym; | 
|  | Out<ELFT>::VerNeed = &VerNeed; | 
|  | Out<ELFT>::MipsRldMap = MipsRldMap.get(); | 
|  | Out<ELFT>::Opd = nullptr; | 
|  | Out<ELFT>::OpdBuf = nullptr; | 
|  | Out<ELFT>::TlsPhdr = nullptr; | 
|  | Out<ELFT>::ElfHeader = &ElfHeader; | 
|  | Out<ELFT>::ProgramHeaders = &ProgramHeaders; | 
|  |  | 
|  | Out<ELFT>::PreinitArray = nullptr; | 
|  | Out<ELFT>::InitArray = nullptr; | 
|  | Out<ELFT>::FiniArray = nullptr; | 
|  |  | 
|  | Writer<ELFT>().run(); | 
|  | Out<ELFT>::Pool.clear(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> static std::vector<DefinedCommon *> getCommonSymbols() { | 
|  | std::vector<DefinedCommon *> V; | 
|  | for (Symbol *S : Symtab<ELFT>::X->getSymbols()) | 
|  | if (auto *B = dyn_cast<DefinedCommon>(S->body())) | 
|  | V.push_back(B); | 
|  | return V; | 
|  | } | 
|  |  | 
|  | // The main function of the writer. | 
|  | template <class ELFT> void Writer<ELFT>::run() { | 
|  | if (Config->Discard != DiscardPolicy::All) | 
|  | copyLocalSymbols(); | 
|  | addReservedSymbols(); | 
|  |  | 
|  | if (Target->NeedsThunks) | 
|  | forEachRelSec(createThunks<ELFT>); | 
|  |  | 
|  | CommonInputSection<ELFT> Common(getCommonSymbols<ELFT>()); | 
|  | CommonInputSection<ELFT>::X = &Common; | 
|  |  | 
|  | Script<ELFT>::X->OutputSections = &OutputSections; | 
|  | if (ScriptConfig->HasSections) { | 
|  | Script<ELFT>::X->createSections(Factory); | 
|  | } else { | 
|  | createSections(); | 
|  | Script<ELFT>::X->processCommands(Factory); | 
|  | } | 
|  |  | 
|  | finalizeSections(); | 
|  | if (HasError) | 
|  | return; | 
|  |  | 
|  | if (Config->Relocatable) { | 
|  | assignFileOffsets(); | 
|  | } else { | 
|  | Phdrs = Script<ELFT>::X->hasPhdrsCommands() ? Script<ELFT>::X->createPhdrs() | 
|  | : createPhdrs(); | 
|  | fixHeaders(); | 
|  | if (ScriptConfig->HasSections) { | 
|  | Script<ELFT>::X->assignAddresses(); | 
|  | } else { | 
|  | fixSectionAlignments(); | 
|  | assignAddresses(); | 
|  | } | 
|  |  | 
|  | if (!Config->OFormatBinary) | 
|  | assignFileOffsets(); | 
|  | else | 
|  | assignFileOffsetsBinary(); | 
|  |  | 
|  | setPhdrs(); | 
|  | fixAbsoluteSymbols(); | 
|  | } | 
|  |  | 
|  | openFile(); | 
|  | if (HasError) | 
|  | return; | 
|  | if (!Config->OFormatBinary) { | 
|  | writeHeader(); | 
|  | writeSections(); | 
|  | } else { | 
|  | writeSectionsBinary(); | 
|  | } | 
|  | writeBuildId(); | 
|  | if (HasError) | 
|  | return; | 
|  | if (auto EC = Buffer->commit()) | 
|  | error(EC, "failed to write to the output file"); | 
|  | } | 
|  |  | 
|  | template <class ELFT> static void reportUndefined(SymbolBody *Sym) { | 
|  | if (Config->UnresolvedSymbols == UnresolvedPolicy::Ignore) | 
|  | return; | 
|  |  | 
|  | if (Config->Shared && Sym->symbol()->Visibility == STV_DEFAULT && | 
|  | Config->UnresolvedSymbols != UnresolvedPolicy::NoUndef) | 
|  | return; | 
|  |  | 
|  | std::string Msg = "undefined symbol: "; | 
|  | Msg += Config->Demangle ? demangle(Sym->getName()) : Sym->getName().str(); | 
|  |  | 
|  | if (Sym->File) | 
|  | Msg += " in " + getFilename(Sym->File); | 
|  | if (Config->UnresolvedSymbols == UnresolvedPolicy::Warn) | 
|  | warning(Msg); | 
|  | else | 
|  | error(Msg); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static bool shouldKeepInSymtab(InputSectionBase<ELFT> *Sec, StringRef SymName, | 
|  | const SymbolBody &B) { | 
|  | if (B.isFile()) | 
|  | return false; | 
|  |  | 
|  | // We keep sections in symtab for relocatable output. | 
|  | if (B.isSection()) | 
|  | return Config->Relocatable; | 
|  |  | 
|  | // If sym references a section in a discarded group, don't keep it. | 
|  | if (Sec == &InputSection<ELFT>::Discarded) | 
|  | return false; | 
|  |  | 
|  | if (Config->Discard == DiscardPolicy::None) | 
|  | return true; | 
|  |  | 
|  | // In ELF assembly .L symbols are normally discarded by the assembler. | 
|  | // If the assembler fails to do so, the linker discards them if | 
|  | // * --discard-locals is used. | 
|  | // * The symbol is in a SHF_MERGE section, which is normally the reason for | 
|  | //   the assembler keeping the .L symbol. | 
|  | if (!SymName.startswith(".L") && !SymName.empty()) | 
|  | return true; | 
|  |  | 
|  | if (Config->Discard == DiscardPolicy::Locals) | 
|  | return false; | 
|  |  | 
|  | return !(Sec->getSectionHdr()->sh_flags & SHF_MERGE); | 
|  | } | 
|  |  | 
|  | template <class ELFT> static bool includeInSymtab(const SymbolBody &B) { | 
|  | if (!B.isLocal() && !B.symbol()->IsUsedInRegularObj) | 
|  | return false; | 
|  |  | 
|  | if (auto *D = dyn_cast<DefinedRegular<ELFT>>(&B)) { | 
|  | // Always include absolute symbols. | 
|  | if (!D->Section) | 
|  | return true; | 
|  | // Exclude symbols pointing to garbage-collected sections. | 
|  | if (!D->Section->Live) | 
|  | return false; | 
|  | if (auto *S = dyn_cast<MergeInputSection<ELFT>>(D->Section)) | 
|  | if (!S->getSectionPiece(D->Value)->Live) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Local symbols are not in the linker's symbol table. This function scans | 
|  | // each object file's symbol table to copy local symbols to the output. | 
|  | template <class ELFT> void Writer<ELFT>::copyLocalSymbols() { | 
|  | if (!Out<ELFT>::SymTab) | 
|  | return; | 
|  | for (elf::ObjectFile<ELFT> *F : Symtab<ELFT>::X->getObjectFiles()) { | 
|  | const char *StrTab = F->getStringTable().data(); | 
|  | for (SymbolBody *B : F->getLocalSymbols()) { | 
|  | auto *DR = dyn_cast<DefinedRegular<ELFT>>(B); | 
|  | // No reason to keep local undefined symbol in symtab. | 
|  | if (!DR) | 
|  | continue; | 
|  | if (!includeInSymtab<ELFT>(*B)) | 
|  | continue; | 
|  | StringRef SymName(StrTab + B->getNameOffset()); | 
|  | InputSectionBase<ELFT> *Sec = DR->Section; | 
|  | if (!shouldKeepInSymtab<ELFT>(Sec, SymName, *B)) | 
|  | continue; | 
|  | ++Out<ELFT>::SymTab->NumLocals; | 
|  | if (Config->Relocatable) | 
|  | B->DynsymIndex = Out<ELFT>::SymTab->NumLocals; | 
|  | F->KeptLocalSyms.push_back( | 
|  | std::make_pair(DR, Out<ELFT>::SymTab->StrTabSec.addString(SymName))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections that | 
|  | // we would like to make sure appear is a specific order to maximize their | 
|  | // coverage by a single signed 16-bit offset from the TOC base pointer. | 
|  | // Conversely, the special .tocbss section should be first among all SHT_NOBITS | 
|  | // sections. This will put it next to the loaded special PPC64 sections (and, | 
|  | // thus, within reach of the TOC base pointer). | 
|  | static int getPPC64SectionRank(StringRef SectionName) { | 
|  | return StringSwitch<int>(SectionName) | 
|  | .Case(".tocbss", 0) | 
|  | .Case(".branch_lt", 2) | 
|  | .Case(".toc", 3) | 
|  | .Case(".toc1", 4) | 
|  | .Case(".opd", 5) | 
|  | .Default(1); | 
|  | } | 
|  |  | 
|  | template <class ELFT> bool elf::isRelroSection(OutputSectionBase<ELFT> *Sec) { | 
|  | if (!Config->ZRelro) | 
|  | return false; | 
|  | typename ELFT::uint Flags = Sec->getFlags(); | 
|  | if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE)) | 
|  | return false; | 
|  | if (Flags & SHF_TLS) | 
|  | return true; | 
|  | uint32_t Type = Sec->getType(); | 
|  | if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY || | 
|  | Type == SHT_PREINIT_ARRAY) | 
|  | return true; | 
|  | if (Sec == Out<ELFT>::GotPlt) | 
|  | return Config->ZNow; | 
|  | if (Sec == Out<ELFT>::Dynamic || Sec == Out<ELFT>::Got) | 
|  | return true; | 
|  | StringRef S = Sec->getName(); | 
|  | return S == ".data.rel.ro" || S == ".ctors" || S == ".dtors" || S == ".jcr" || | 
|  | S == ".eh_frame"; | 
|  | } | 
|  |  | 
|  | // Output section ordering is determined by this function. | 
|  | template <class ELFT> | 
|  | static bool compareSections(OutputSectionBase<ELFT> *A, | 
|  | OutputSectionBase<ELFT> *B) { | 
|  | typedef typename ELFT::uint uintX_t; | 
|  |  | 
|  | int Comp = Script<ELFT>::X->compareSections(A->getName(), B->getName()); | 
|  | if (Comp != 0) | 
|  | return Comp < 0; | 
|  |  | 
|  | uintX_t AFlags = A->getFlags(); | 
|  | uintX_t BFlags = B->getFlags(); | 
|  |  | 
|  | // Allocatable sections go first to reduce the total PT_LOAD size and | 
|  | // so debug info doesn't change addresses in actual code. | 
|  | bool AIsAlloc = AFlags & SHF_ALLOC; | 
|  | bool BIsAlloc = BFlags & SHF_ALLOC; | 
|  | if (AIsAlloc != BIsAlloc) | 
|  | return AIsAlloc; | 
|  |  | 
|  | // We don't have any special requirements for the relative order of | 
|  | // two non allocatable sections. | 
|  | if (!AIsAlloc) | 
|  | return false; | 
|  |  | 
|  | // We want the read only sections first so that they go in the PT_LOAD | 
|  | // covering the program headers at the start of the file. | 
|  | bool AIsWritable = AFlags & SHF_WRITE; | 
|  | bool BIsWritable = BFlags & SHF_WRITE; | 
|  | if (AIsWritable != BIsWritable) | 
|  | return BIsWritable; | 
|  |  | 
|  | // For a corresponding reason, put non exec sections first (the program | 
|  | // header PT_LOAD is not executable). | 
|  | bool AIsExec = AFlags & SHF_EXECINSTR; | 
|  | bool BIsExec = BFlags & SHF_EXECINSTR; | 
|  | if (AIsExec != BIsExec) | 
|  | return BIsExec; | 
|  |  | 
|  | // If we got here we know that both A and B are in the same PT_LOAD. | 
|  |  | 
|  | // The TLS initialization block needs to be a single contiguous block in a R/W | 
|  | // PT_LOAD, so stick TLS sections directly before R/W sections. The TLS NOBITS | 
|  | // sections are placed here as they don't take up virtual address space in the | 
|  | // PT_LOAD. | 
|  | bool AIsTls = AFlags & SHF_TLS; | 
|  | bool BIsTls = BFlags & SHF_TLS; | 
|  | if (AIsTls != BIsTls) | 
|  | return AIsTls; | 
|  |  | 
|  | // The next requirement we have is to put nobits sections last. The | 
|  | // reason is that the only thing the dynamic linker will see about | 
|  | // them is a p_memsz that is larger than p_filesz. Seeing that it | 
|  | // zeros the end of the PT_LOAD, so that has to correspond to the | 
|  | // nobits sections. | 
|  | bool AIsNoBits = A->getType() == SHT_NOBITS; | 
|  | bool BIsNoBits = B->getType() == SHT_NOBITS; | 
|  | if (AIsNoBits != BIsNoBits) | 
|  | return BIsNoBits; | 
|  |  | 
|  | // We place RelRo section before plain r/w ones. | 
|  | bool AIsRelRo = isRelroSection(A); | 
|  | bool BIsRelRo = isRelroSection(B); | 
|  | if (AIsRelRo != BIsRelRo) | 
|  | return AIsRelRo; | 
|  |  | 
|  | // Some architectures have additional ordering restrictions for sections | 
|  | // within the same PT_LOAD. | 
|  | if (Config->EMachine == EM_PPC64) | 
|  | return getPPC64SectionRank(A->getName()) < | 
|  | getPPC64SectionRank(B->getName()); | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | template <class ELFT> static bool isDiscarded(InputSectionBase<ELFT> *S) { | 
|  | return !S || S == &InputSection<ELFT>::Discarded || !S->Live; | 
|  | } | 
|  |  | 
|  | // Program header entry | 
|  | template<class ELFT> | 
|  | PhdrEntry<ELFT>::PhdrEntry(unsigned Type, unsigned Flags) { | 
|  | H.p_type = Type; | 
|  | H.p_flags = Flags; | 
|  | } | 
|  |  | 
|  | template<class ELFT> | 
|  | void PhdrEntry<ELFT>::add(OutputSectionBase<ELFT> *Sec) { | 
|  | Last = Sec; | 
|  | if (!First) | 
|  | First = Sec; | 
|  | H.p_align = std::max<typename ELFT::uint>(H.p_align, Sec->getAlignment()); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static Symbol *addOptionalSynthetic(StringRef Name, | 
|  | OutputSectionBase<ELFT> *Sec, | 
|  | typename ELFT::uint Val) { | 
|  | SymbolBody *S = Symtab<ELFT>::X->find(Name); | 
|  | if (!S) | 
|  | return nullptr; | 
|  | if (!S->isUndefined() && !S->isShared()) | 
|  | return S->symbol(); | 
|  | return Symtab<ELFT>::X->addSynthetic(Name, Sec, Val, STV_HIDDEN); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | static void addSynthetic(StringRef Name, OutputSectionBase<ELFT> *Sec, | 
|  | typename ELFT::uint Val) { | 
|  | SymbolBody *S = Symtab<ELFT>::X->find(Name); | 
|  | if (!S || S->isUndefined() || S->isShared()) | 
|  | Symtab<ELFT>::X->addSynthetic(Name, Sec, Val, STV_HIDDEN); | 
|  | } | 
|  |  | 
|  | // The beginning and the ending of .rel[a].plt section are marked | 
|  | // with __rel[a]_iplt_{start,end} symbols if it is a statically linked | 
|  | // executable. The runtime needs these symbols in order to resolve | 
|  | // all IRELATIVE relocs on startup. For dynamic executables, we don't | 
|  | // need these symbols, since IRELATIVE relocs are resolved through GOT | 
|  | // and PLT. For details, see http://www.airs.com/blog/archives/403. | 
|  | template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() { | 
|  | if (Out<ELFT>::DynSymTab || !Out<ELFT>::RelaPlt) | 
|  | return; | 
|  | StringRef S = Config->Rela ? "__rela_iplt_start" : "__rel_iplt_start"; | 
|  | addOptionalSynthetic(S, Out<ELFT>::RelaPlt, 0); | 
|  |  | 
|  | S = Config->Rela ? "__rela_iplt_end" : "__rel_iplt_end"; | 
|  | addOptionalSynthetic(S, Out<ELFT>::RelaPlt, | 
|  | DefinedSynthetic<ELFT>::SectionEnd); | 
|  | } | 
|  |  | 
|  | // The linker is expected to define some symbols depending on | 
|  | // the linking result. This function defines such symbols. | 
|  | template <class ELFT> void Writer<ELFT>::addReservedSymbols() { | 
|  | if (Config->EMachine == EM_MIPS && !Config->Relocatable) { | 
|  | // Define _gp for MIPS. st_value of _gp symbol will be updated by Writer | 
|  | // so that it points to an absolute address which is relative to GOT. | 
|  | // See "Global Data Symbols" in Chapter 6 in the following document: | 
|  | // ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf | 
|  | Symtab<ELFT>::X->addSynthetic("_gp", Out<ELFT>::Got, MipsGPOffset, | 
|  | STV_HIDDEN); | 
|  |  | 
|  | // On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between | 
|  | // start of function and 'gp' pointer into GOT. | 
|  | Symbol *Sym = | 
|  | addOptionalSynthetic("_gp_disp", Out<ELFT>::Got, MipsGPOffset); | 
|  | if (Sym) | 
|  | ElfSym<ELFT>::MipsGpDisp = Sym->body(); | 
|  |  | 
|  | // The __gnu_local_gp is a magic symbol equal to the current value of 'gp' | 
|  | // pointer. This symbol is used in the code generated by .cpload pseudo-op | 
|  | // in case of using -mno-shared option. | 
|  | // https://sourceware.org/ml/binutils/2004-12/msg00094.html | 
|  | addOptionalSynthetic("__gnu_local_gp", Out<ELFT>::Got, MipsGPOffset); | 
|  | } | 
|  |  | 
|  | // In the assembly for 32 bit x86 the _GLOBAL_OFFSET_TABLE_ symbol | 
|  | // is magical and is used to produce a R_386_GOTPC relocation. | 
|  | // The R_386_GOTPC relocation value doesn't actually depend on the | 
|  | // symbol value, so it could use an index of STN_UNDEF which, according | 
|  | // to the spec, means the symbol value is 0. | 
|  | // Unfortunately both gas and MC keep the _GLOBAL_OFFSET_TABLE_ symbol in | 
|  | // the object file. | 
|  | // The situation is even stranger on x86_64 where the assembly doesn't | 
|  | // need the magical symbol, but gas still puts _GLOBAL_OFFSET_TABLE_ as | 
|  | // an undefined symbol in the .o files. | 
|  | // Given that the symbol is effectively unused, we just create a dummy | 
|  | // hidden one to avoid the undefined symbol error. | 
|  | if (!Config->Relocatable) | 
|  | Symtab<ELFT>::X->addIgnored("_GLOBAL_OFFSET_TABLE_"); | 
|  |  | 
|  | // __tls_get_addr is defined by the dynamic linker for dynamic ELFs. For | 
|  | // static linking the linker is required to optimize away any references to | 
|  | // __tls_get_addr, so it's not defined anywhere. Create a hidden definition | 
|  | // to avoid the undefined symbol error. As usual as special case is MIPS - | 
|  | // MIPS libc defines __tls_get_addr itself because there are no TLS | 
|  | // optimizations for this target. | 
|  | if (!Out<ELFT>::DynSymTab && Config->EMachine != EM_MIPS) | 
|  | Symtab<ELFT>::X->addIgnored("__tls_get_addr"); | 
|  |  | 
|  | // If linker script do layout we do not need to create any standart symbols. | 
|  | if (ScriptConfig->HasSections) | 
|  | return; | 
|  |  | 
|  | ElfSym<ELFT>::EhdrStart = Symtab<ELFT>::X->addIgnored("__ehdr_start"); | 
|  |  | 
|  | auto Define = [this](StringRef S, DefinedRegular<ELFT> *&Sym1, | 
|  | DefinedRegular<ELFT> *&Sym2) { | 
|  | Sym1 = Symtab<ELFT>::X->addIgnored(S, STV_DEFAULT); | 
|  |  | 
|  | // The name without the underscore is not a reserved name, | 
|  | // so it is defined only when there is a reference against it. | 
|  | assert(S.startswith("_")); | 
|  | S = S.substr(1); | 
|  | if (SymbolBody *B = Symtab<ELFT>::X->find(S)) | 
|  | if (B->isUndefined()) | 
|  | Sym2 = Symtab<ELFT>::X->addAbsolute(S, STV_DEFAULT); | 
|  | }; | 
|  |  | 
|  | Define("_end", ElfSym<ELFT>::End, ElfSym<ELFT>::End2); | 
|  | Define("_etext", ElfSym<ELFT>::Etext, ElfSym<ELFT>::Etext2); | 
|  | Define("_edata", ElfSym<ELFT>::Edata, ElfSym<ELFT>::Edata2); | 
|  | } | 
|  |  | 
|  | // Sort input sections by section name suffixes for | 
|  | // __attribute__((init_priority(N))). | 
|  | template <class ELFT> static void sortInitFini(OutputSectionBase<ELFT> *S) { | 
|  | if (S) | 
|  | reinterpret_cast<OutputSection<ELFT> *>(S)->sortInitFini(); | 
|  | } | 
|  |  | 
|  | // Sort input sections by the special rule for .ctors and .dtors. | 
|  | template <class ELFT> static void sortCtorsDtors(OutputSectionBase<ELFT> *S) { | 
|  | if (S) | 
|  | reinterpret_cast<OutputSection<ELFT> *>(S)->sortCtorsDtors(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::forEachRelSec( | 
|  | std::function<void(InputSectionBase<ELFT> &, const typename ELFT::Shdr &)> | 
|  | Fn) { | 
|  | for (elf::ObjectFile<ELFT> *F : Symtab<ELFT>::X->getObjectFiles()) { | 
|  | for (InputSectionBase<ELFT> *C : F->getSections()) { | 
|  | if (isDiscarded(C)) | 
|  | continue; | 
|  | // Scan all relocations. Each relocation goes through a series | 
|  | // of tests to determine if it needs special treatment, such as | 
|  | // creating GOT, PLT, copy relocations, etc. | 
|  | // Note that relocations for non-alloc sections are directly | 
|  | // processed by InputSection::relocateNonAlloc. | 
|  | if (!(C->getSectionHdr()->sh_flags & SHF_ALLOC)) | 
|  | continue; | 
|  | if (auto *S = dyn_cast<InputSection<ELFT>>(C)) { | 
|  | for (const Elf_Shdr *RelSec : S->RelocSections) | 
|  | Fn(*S, *RelSec); | 
|  | continue; | 
|  | } | 
|  | if (auto *S = dyn_cast<EhInputSection<ELFT>>(C)) | 
|  | if (S->RelocSection) | 
|  | Fn(*S, *S->RelocSection); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::createSections() { | 
|  | for (elf::ObjectFile<ELFT> *F : Symtab<ELFT>::X->getObjectFiles()) { | 
|  | for (InputSectionBase<ELFT> *C : F->getSections()) { | 
|  | if (isDiscarded(C)) { | 
|  | reportDiscarded(C); | 
|  | continue; | 
|  | } | 
|  | OutputSectionBase<ELFT> *Sec; | 
|  | bool IsNew; | 
|  | std::tie(Sec, IsNew) = Factory.create(C, getOutputSectionName(C)); | 
|  | if (IsNew) | 
|  | OutputSections.push_back(Sec); | 
|  | Sec->addSection(C); | 
|  | } | 
|  | } | 
|  |  | 
|  | sortInitFini(findSection(".init_array")); | 
|  | sortInitFini(findSection(".fini_array")); | 
|  | sortCtorsDtors(findSection(".ctors")); | 
|  | sortCtorsDtors(findSection(".dtors")); | 
|  |  | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) | 
|  | Sec->assignOffsets(); | 
|  | } | 
|  |  | 
|  | // Create output section objects and add them to OutputSections. | 
|  | template <class ELFT> void Writer<ELFT>::finalizeSections() { | 
|  | Out<ELFT>::PreinitArray = findSection(".preinit_array"); | 
|  | Out<ELFT>::InitArray = findSection(".init_array"); | 
|  | Out<ELFT>::FiniArray = findSection(".fini_array"); | 
|  |  | 
|  | // The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop | 
|  | // symbols for sections, so that the runtime can get the start and end | 
|  | // addresses of each section by section name. Add such symbols. | 
|  | if (!Config->Relocatable) { | 
|  | addStartEndSymbols(); | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) | 
|  | addStartStopSymbols(Sec); | 
|  | } | 
|  |  | 
|  | // Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type. | 
|  | // It should be okay as no one seems to care about the type. | 
|  | // Even the author of gold doesn't remember why gold behaves that way. | 
|  | // https://sourceware.org/ml/binutils/2002-03/msg00360.html | 
|  | if (Out<ELFT>::DynSymTab) | 
|  | Symtab<ELFT>::X->addSynthetic("_DYNAMIC", Out<ELFT>::Dynamic, 0, | 
|  | STV_HIDDEN); | 
|  |  | 
|  | // Define __rel[a]_iplt_{start,end} symbols if needed. | 
|  | addRelIpltSymbols(); | 
|  |  | 
|  | if (!Out<ELFT>::EhFrame->empty()) { | 
|  | OutputSections.push_back(Out<ELFT>::EhFrame); | 
|  | Out<ELFT>::EhFrame->finalize(); | 
|  | } | 
|  |  | 
|  | // Scan relocations. This must be done after every symbol is declared so that | 
|  | // we can correctly decide if a dynamic relocation is needed. | 
|  | forEachRelSec(scanRelocations<ELFT>); | 
|  |  | 
|  | // Now that we have defined all possible symbols including linker- | 
|  | // synthesized ones. Visit all symbols to give the finishing touches. | 
|  | for (Symbol *S : Symtab<ELFT>::X->getSymbols()) { | 
|  | SymbolBody *Body = S->body(); | 
|  |  | 
|  | // We only report undefined symbols in regular objects. This means that we | 
|  | // will accept an undefined reference in bitcode if it can be optimized out. | 
|  | if (S->IsUsedInRegularObj && Body->isUndefined() && !S->isWeak()) | 
|  | reportUndefined<ELFT>(Body); | 
|  |  | 
|  | if (!includeInSymtab<ELFT>(*Body)) | 
|  | continue; | 
|  | if (Out<ELFT>::SymTab) | 
|  | Out<ELFT>::SymTab->addSymbol(Body); | 
|  |  | 
|  | if (Out<ELFT>::DynSymTab && S->includeInDynsym()) { | 
|  | Out<ELFT>::DynSymTab->addSymbol(Body); | 
|  | if (auto *SS = dyn_cast<SharedSymbol<ELFT>>(Body)) | 
|  | if (SS->file()->isNeeded()) | 
|  | Out<ELFT>::VerNeed->addSymbol(SS); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Do not proceed if there was an undefined symbol. | 
|  | if (HasError) | 
|  | return; | 
|  |  | 
|  | // If linker script processor hasn't added common symbol section yet, | 
|  | // then add it to .bss now. | 
|  | if (!CommonInputSection<ELFT>::X->OutSec) { | 
|  | Out<ELFT>::Bss->addSection(CommonInputSection<ELFT>::X); | 
|  | Out<ELFT>::Bss->assignOffsets(); | 
|  | } | 
|  |  | 
|  | // So far we have added sections from input object files. | 
|  | // This function adds linker-created Out<ELFT>::* sections. | 
|  | addPredefinedSections(); | 
|  |  | 
|  | std::stable_sort(OutputSections.begin(), OutputSections.end(), | 
|  | compareSections<ELFT>); | 
|  |  | 
|  | unsigned I = 1; | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) { | 
|  | Sec->SectionIndex = I++; | 
|  | Sec->setSHName(Out<ELFT>::ShStrTab->addString(Sec->getName())); | 
|  | } | 
|  |  | 
|  | // Finalizers fix each section's size. | 
|  | // .dynsym is finalized early since that may fill up .gnu.hash. | 
|  | if (Out<ELFT>::DynSymTab) | 
|  | Out<ELFT>::DynSymTab->finalize(); | 
|  |  | 
|  | // Fill other section headers. The dynamic table is finalized | 
|  | // at the end because some tags like RELSZ depend on result | 
|  | // of finalizing other sections. The dynamic string table is | 
|  | // finalized once the .dynamic finalizer has added a few last | 
|  | // strings. See DynamicSection::finalize() | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) | 
|  | if (Sec != Out<ELFT>::DynStrTab && Sec != Out<ELFT>::Dynamic) | 
|  | Sec->finalize(); | 
|  |  | 
|  | if (Out<ELFT>::DynSymTab) | 
|  | Out<ELFT>::Dynamic->finalize(); | 
|  |  | 
|  | // Now that all output offsets are fixed. Finalize mergeable sections | 
|  | // to fix their maps from input offsets to output offsets. | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) | 
|  | Sec->finalizePieces(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> bool Writer<ELFT>::needsGot() { | 
|  | if (!Out<ELFT>::Got->empty()) | 
|  | return true; | 
|  |  | 
|  | // We add the .got section to the result for dynamic MIPS target because | 
|  | // its address and properties are mentioned in the .dynamic section. | 
|  | if (Config->EMachine == EM_MIPS && !Config->Relocatable) | 
|  | return true; | 
|  |  | 
|  | // If we have a relocation that is relative to GOT (such as GOTOFFREL), | 
|  | // we need to emit a GOT even if it's empty. | 
|  | return Out<ELFT>::Got->HasGotOffRel; | 
|  | } | 
|  |  | 
|  | // This function add Out<ELFT>::* sections to OutputSections. | 
|  | template <class ELFT> void Writer<ELFT>::addPredefinedSections() { | 
|  | auto Add = [&](OutputSectionBase<ELFT> *C) { | 
|  | if (C) | 
|  | OutputSections.push_back(C); | 
|  | }; | 
|  |  | 
|  | // A core file does not usually contain unmodified segments except | 
|  | // the first page of the executable. Add the build ID section to beginning of | 
|  | // the file so that the section is included in the first page. | 
|  | if (Out<ELFT>::BuildId) | 
|  | OutputSections.insert(OutputSections.begin(), Out<ELFT>::BuildId); | 
|  |  | 
|  | // Add .interp at first because some loaders want to see that section | 
|  | // on the first page of the executable file when loaded into memory. | 
|  | if (Out<ELFT>::Interp) | 
|  | OutputSections.insert(OutputSections.begin(), Out<ELFT>::Interp); | 
|  |  | 
|  | // This order is not the same as the final output order | 
|  | // because we sort the sections using their attributes below. | 
|  | Add(Out<ELFT>::SymTab); | 
|  | Add(Out<ELFT>::ShStrTab); | 
|  | Add(Out<ELFT>::StrTab); | 
|  | if (Out<ELFT>::DynSymTab) { | 
|  | Add(Out<ELFT>::DynSymTab); | 
|  |  | 
|  | bool HasVerNeed = Out<ELFT>::VerNeed->getNeedNum() != 0; | 
|  | if (Out<ELFT>::VerDef || HasVerNeed) | 
|  | Add(Out<ELFT>::VerSym); | 
|  | Add(Out<ELFT>::VerDef); | 
|  | if (HasVerNeed) | 
|  | Add(Out<ELFT>::VerNeed); | 
|  |  | 
|  | Add(Out<ELFT>::GnuHashTab); | 
|  | Add(Out<ELFT>::HashTab); | 
|  | Add(Out<ELFT>::Dynamic); | 
|  | Add(Out<ELFT>::DynStrTab); | 
|  | if (Out<ELFT>::RelaDyn->hasRelocs()) | 
|  | Add(Out<ELFT>::RelaDyn); | 
|  | Add(Out<ELFT>::MipsRldMap); | 
|  | } | 
|  |  | 
|  | // We always need to add rel[a].plt to output if it has entries. | 
|  | // Even during static linking it can contain R_[*]_IRELATIVE relocations. | 
|  | if (Out<ELFT>::RelaPlt && Out<ELFT>::RelaPlt->hasRelocs()) | 
|  | Add(Out<ELFT>::RelaPlt); | 
|  |  | 
|  | if (needsGot()) | 
|  | Add(Out<ELFT>::Got); | 
|  | if (Out<ELFT>::GotPlt && !Out<ELFT>::GotPlt->empty()) | 
|  | Add(Out<ELFT>::GotPlt); | 
|  | if (!Out<ELFT>::Plt->empty()) | 
|  | Add(Out<ELFT>::Plt); | 
|  | if (!Out<ELFT>::EhFrame->empty()) | 
|  | Add(Out<ELFT>::EhFrameHdr); | 
|  | if (Out<ELFT>::Bss->getSize() > 0) | 
|  | Add(Out<ELFT>::Bss); | 
|  | } | 
|  |  | 
|  | // The linker is expected to define SECNAME_start and SECNAME_end | 
|  | // symbols for a few sections. This function defines them. | 
|  | template <class ELFT> void Writer<ELFT>::addStartEndSymbols() { | 
|  | auto Define = [&](StringRef Start, StringRef End, | 
|  | OutputSectionBase<ELFT> *OS) { | 
|  | if (OS) { | 
|  | addSynthetic(Start, OS, 0); | 
|  | addSynthetic(End, OS, DefinedSynthetic<ELFT>::SectionEnd); | 
|  | } else { | 
|  | addOptionalSynthetic(Start, (OutputSectionBase<ELFT> *)nullptr, 0); | 
|  | addOptionalSynthetic(End, (OutputSectionBase<ELFT> *)nullptr, 0); | 
|  | } | 
|  | }; | 
|  |  | 
|  | Define("__preinit_array_start", "__preinit_array_end", | 
|  | Out<ELFT>::PreinitArray); | 
|  | Define("__init_array_start", "__init_array_end", Out<ELFT>::InitArray); | 
|  | Define("__fini_array_start", "__fini_array_end", Out<ELFT>::FiniArray); | 
|  | } | 
|  |  | 
|  | // If a section name is valid as a C identifier (which is rare because of | 
|  | // the leading '.'), linkers are expected to define __start_<secname> and | 
|  | // __stop_<secname> symbols. They are at beginning and end of the section, | 
|  | // respectively. This is not requested by the ELF standard, but GNU ld and | 
|  | // gold provide the feature, and used by many programs. | 
|  | template <class ELFT> | 
|  | void Writer<ELFT>::addStartStopSymbols(OutputSectionBase<ELFT> *Sec) { | 
|  | StringRef S = Sec->getName(); | 
|  | if (!isValidCIdentifier(S)) | 
|  | return; | 
|  | StringSaver Saver(Alloc); | 
|  | StringRef Start = Saver.save("__start_" + S); | 
|  | StringRef Stop = Saver.save("__stop_" + S); | 
|  | if (SymbolBody *B = Symtab<ELFT>::X->find(Start)) | 
|  | if (B->isUndefined()) | 
|  | Symtab<ELFT>::X->addSynthetic(Start, Sec, 0, B->getVisibility()); | 
|  | if (SymbolBody *B = Symtab<ELFT>::X->find(Stop)) | 
|  | if (B->isUndefined()) | 
|  | Symtab<ELFT>::X->addSynthetic( | 
|  | Stop, Sec, DefinedSynthetic<ELFT>::SectionEnd, B->getVisibility()); | 
|  | } | 
|  |  | 
|  | template <class ELFT> | 
|  | OutputSectionBase<ELFT> *Writer<ELFT>::findSection(StringRef Name) { | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) | 
|  | if (Sec->getName() == Name) | 
|  | return Sec; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | template <class ELFT> static bool needsPtLoad(OutputSectionBase<ELFT> *Sec) { | 
|  | if (!(Sec->getFlags() & SHF_ALLOC)) | 
|  | return false; | 
|  |  | 
|  | // Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is | 
|  | // responsible for allocating space for them, not the PT_LOAD that | 
|  | // contains the TLS initialization image. | 
|  | if (Sec->getFlags() & SHF_TLS && Sec->getType() == SHT_NOBITS) | 
|  | return false; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Decide which program headers to create and which sections to include in each | 
|  | // one. | 
|  | template <class ELFT> | 
|  | std::vector<PhdrEntry<ELFT>> Writer<ELFT>::createPhdrs() { | 
|  | std::vector<Phdr> Ret; | 
|  |  | 
|  | auto AddHdr = [&](unsigned Type, unsigned Flags) -> Phdr * { | 
|  | Ret.emplace_back(Type, Flags); | 
|  | return &Ret.back(); | 
|  | }; | 
|  |  | 
|  | // The first phdr entry is PT_PHDR which describes the program header itself. | 
|  | Phdr &Hdr = *AddHdr(PT_PHDR, PF_R); | 
|  | Hdr.add(Out<ELFT>::ProgramHeaders); | 
|  |  | 
|  | // PT_INTERP must be the second entry if exists. | 
|  | if (Out<ELFT>::Interp) { | 
|  | Phdr &Hdr = *AddHdr(PT_INTERP, Out<ELFT>::Interp->getPhdrFlags()); | 
|  | Hdr.add(Out<ELFT>::Interp); | 
|  | } | 
|  |  | 
|  | // Add the first PT_LOAD segment for regular output sections. | 
|  | uintX_t Flags = PF_R; | 
|  | Phdr *Load = AddHdr(PT_LOAD, Flags); | 
|  | Load->add(Out<ELFT>::ElfHeader); | 
|  | Load->add(Out<ELFT>::ProgramHeaders); | 
|  |  | 
|  | Phdr TlsHdr(PT_TLS, PF_R); | 
|  | Phdr RelRo(PT_GNU_RELRO, PF_R); | 
|  | Phdr Note(PT_NOTE, PF_R); | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) { | 
|  | // Skip non alloc section. | 
|  | // The reason we skip instead of just breaking out of the loop is the way | 
|  | // we implement linker scripts. We always put the linker script sections | 
|  | // first, which means that a non alloc section can be in the middle of the | 
|  | // file. Continuing in here means it will be included in a PT_LOAD anyway. | 
|  | // We should probably sort sections based of SHF_ALLOC even if they are | 
|  | // on linker scripts. | 
|  | if (!(Sec->getFlags() & SHF_ALLOC)) | 
|  | continue; | 
|  |  | 
|  | // If we meet TLS section then we create TLS header | 
|  | // and put all TLS sections inside for futher use when | 
|  | // assign addresses. | 
|  | if (Sec->getFlags() & SHF_TLS) | 
|  | TlsHdr.add(Sec); | 
|  |  | 
|  | if (!needsPtLoad(Sec)) | 
|  | continue; | 
|  |  | 
|  | // Segments are contiguous memory regions that has the same attributes | 
|  | // (e.g. executable or writable). There is one phdr for each segment. | 
|  | // Therefore, we need to create a new phdr when the next section has | 
|  | // different flags or is loaded at a discontiguous address using AT linker | 
|  | // script command. | 
|  | uintX_t NewFlags = Sec->getPhdrFlags(); | 
|  | if (Script<ELFT>::X->getLma(Sec->getName()) || Flags != NewFlags) { | 
|  | Load = AddHdr(PT_LOAD, NewFlags); | 
|  | Flags = NewFlags; | 
|  | } | 
|  |  | 
|  | Load->add(Sec); | 
|  |  | 
|  | if (isRelroSection(Sec)) | 
|  | RelRo.add(Sec); | 
|  | if (Sec->getType() == SHT_NOTE) | 
|  | Note.add(Sec); | 
|  | } | 
|  |  | 
|  | // Add the TLS segment unless it's empty. | 
|  | if (TlsHdr.First) | 
|  | Ret.push_back(std::move(TlsHdr)); | 
|  |  | 
|  | // Add an entry for .dynamic. | 
|  | if (Out<ELFT>::DynSymTab) { | 
|  | Phdr &H = *AddHdr(PT_DYNAMIC, Out<ELFT>::Dynamic->getPhdrFlags()); | 
|  | H.add(Out<ELFT>::Dynamic); | 
|  | } | 
|  |  | 
|  | // PT_GNU_RELRO includes all sections that should be marked as | 
|  | // read-only by dynamic linker after proccessing relocations. | 
|  | if (RelRo.First) | 
|  | Ret.push_back(std::move(RelRo)); | 
|  |  | 
|  | // PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr. | 
|  | if (!Out<ELFT>::EhFrame->empty() && Out<ELFT>::EhFrameHdr) { | 
|  | Phdr &Hdr = *AddHdr(PT_GNU_EH_FRAME, Out<ELFT>::EhFrameHdr->getPhdrFlags()); | 
|  | Hdr.add(Out<ELFT>::EhFrameHdr); | 
|  | } | 
|  |  | 
|  | // PT_GNU_STACK is a special section to tell the loader to make the | 
|  | // pages for the stack non-executable. | 
|  | if (!Config->ZExecStack) { | 
|  | Phdr &Hdr = *AddHdr(PT_GNU_STACK, PF_R | PF_W); | 
|  | if (Config->ZStackSize != uint64_t(-1)) | 
|  | Hdr.H.p_memsz = Config->ZStackSize; | 
|  | } | 
|  |  | 
|  | if (Note.First) | 
|  | Ret.push_back(std::move(Note)); | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | // The first section of each PT_LOAD and the first section after PT_GNU_RELRO | 
|  | // have to be page aligned so that the dynamic linker can set the permissions. | 
|  | template <class ELFT> void Writer<ELFT>::fixSectionAlignments() { | 
|  | for (const Phdr &P : Phdrs) | 
|  | if (P.H.p_type == PT_LOAD) | 
|  | P.First->PageAlign = true; | 
|  |  | 
|  | for (const Phdr &P : Phdrs) { | 
|  | if (P.H.p_type != PT_GNU_RELRO) | 
|  | continue; | 
|  | // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we | 
|  | // have to align it to a page. | 
|  | auto End = OutputSections.end(); | 
|  | auto I = std::find(OutputSections.begin(), End, P.Last); | 
|  | if (I == End || (I + 1) == End) | 
|  | continue; | 
|  | OutputSectionBase<ELFT> *Sec = *(I + 1); | 
|  | if (needsPtLoad(Sec)) | 
|  | Sec->PageAlign = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We should set file offsets and VAs for elf header and program headers | 
|  | // sections. These are special, we do not include them into output sections | 
|  | // list, but have them to simplify the code. | 
|  | template <class ELFT> void Writer<ELFT>::fixHeaders() { | 
|  | uintX_t BaseVA = ScriptConfig->HasSections ? 0 : Config->ImageBase; | 
|  | Out<ELFT>::ElfHeader->setVA(BaseVA); | 
|  | uintX_t Off = Out<ELFT>::ElfHeader->getSize(); | 
|  | Out<ELFT>::ProgramHeaders->setVA(Off + BaseVA); | 
|  | Out<ELFT>::ProgramHeaders->setSize(sizeof(Elf_Phdr) * Phdrs.size()); | 
|  | } | 
|  |  | 
|  | // Assign VAs (addresses at run-time) to output sections. | 
|  | template <class ELFT> void Writer<ELFT>::assignAddresses() { | 
|  | uintX_t VA = Config->ImageBase; | 
|  | if (!Config->OFormatBinary) | 
|  | VA += | 
|  | Out<ELFT>::ElfHeader->getSize() + Out<ELFT>::ProgramHeaders->getSize(); | 
|  |  | 
|  | uintX_t ThreadBssOffset = 0; | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) { | 
|  | uintX_t Alignment = Sec->getAlignment(); | 
|  | if (Sec->PageAlign) | 
|  | Alignment = std::max<uintX_t>(Alignment, Target->PageSize); | 
|  |  | 
|  | auto I = Config->SectionStartMap.find(Sec->getName()); | 
|  | if (I != Config->SectionStartMap.end()) | 
|  | VA = I->second; | 
|  |  | 
|  | // We only assign VAs to allocated sections. | 
|  | if (needsPtLoad(Sec)) { | 
|  | VA = alignTo(VA, Alignment); | 
|  | Sec->setVA(VA); | 
|  | VA += Sec->getSize(); | 
|  | } else if (Sec->getFlags() & SHF_TLS && Sec->getType() == SHT_NOBITS) { | 
|  | uintX_t TVA = VA + ThreadBssOffset; | 
|  | TVA = alignTo(TVA, Alignment); | 
|  | Sec->setVA(TVA); | 
|  | ThreadBssOffset = TVA - VA + Sec->getSize(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Adjusts the file alignment for a given output section and returns | 
|  | // its new file offset. The file offset must be the same with its | 
|  | // virtual address (modulo the page size) so that the loader can load | 
|  | // executables without any address adjustment. | 
|  | template <class ELFT, class uintX_t> | 
|  | static uintX_t getFileAlignment(uintX_t Off, OutputSectionBase<ELFT> *Sec) { | 
|  | uintX_t Alignment = Sec->getAlignment(); | 
|  | if (Sec->PageAlign) | 
|  | Alignment = std::max<uintX_t>(Alignment, Target->PageSize); | 
|  | Off = alignTo(Off, Alignment); | 
|  |  | 
|  | // Relocatable output does not have program headers | 
|  | // and does not need any other offset adjusting. | 
|  | if (Config->Relocatable || !(Sec->getFlags() & SHF_ALLOC)) | 
|  | return Off; | 
|  | return alignTo(Off, Target->PageSize, Sec->getVA()); | 
|  | } | 
|  |  | 
|  | template <class ELFT, class uintX_t> | 
|  | void setOffset(OutputSectionBase<ELFT> *Sec, uintX_t &Off) { | 
|  | if (Sec->getType() == SHT_NOBITS) { | 
|  | Sec->setFileOffset(Off); | 
|  | return; | 
|  | } | 
|  |  | 
|  | Off = getFileAlignment<ELFT>(Off, Sec); | 
|  | Sec->setFileOffset(Off); | 
|  | Off += Sec->getSize(); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() { | 
|  | uintX_t Off = 0; | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) | 
|  | if (Sec->getFlags() & SHF_ALLOC) | 
|  | setOffset(Sec, Off); | 
|  | FileSize = alignTo(Off, sizeof(uintX_t)); | 
|  | } | 
|  |  | 
|  | // Assign file offsets to output sections. | 
|  | template <class ELFT> void Writer<ELFT>::assignFileOffsets() { | 
|  | uintX_t Off = 0; | 
|  | setOffset(Out<ELFT>::ElfHeader, Off); | 
|  | setOffset(Out<ELFT>::ProgramHeaders, Off); | 
|  |  | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) | 
|  | setOffset(Sec, Off); | 
|  |  | 
|  | SectionHeaderOff = alignTo(Off, sizeof(uintX_t)); | 
|  | FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr); | 
|  | } | 
|  |  | 
|  | // Finalize the program headers. We call this function after we assign | 
|  | // file offsets and VAs to all sections. | 
|  | template <class ELFT> void Writer<ELFT>::setPhdrs() { | 
|  | for (Phdr &P : Phdrs) { | 
|  | Elf_Phdr &H = P.H; | 
|  | OutputSectionBase<ELFT> *First = P.First; | 
|  | OutputSectionBase<ELFT> *Last = P.Last; | 
|  | if (First) { | 
|  | H.p_filesz = Last->getFileOff() - First->getFileOff(); | 
|  | if (Last->getType() != SHT_NOBITS) | 
|  | H.p_filesz += Last->getSize(); | 
|  | H.p_memsz = Last->getVA() + Last->getSize() - First->getVA(); | 
|  | H.p_offset = First->getFileOff(); | 
|  | H.p_vaddr = First->getVA(); | 
|  | } | 
|  | if (H.p_type == PT_LOAD) | 
|  | H.p_align = Target->PageSize; | 
|  | else if (H.p_type == PT_GNU_RELRO) | 
|  | H.p_align = 1; | 
|  |  | 
|  | if (!P.HasLMA) { | 
|  | // The p_paddr field can be set using linker script AT command. | 
|  | // By default, it is the same value as p_vaddr. | 
|  | H.p_paddr = H.p_vaddr; | 
|  | if (H.p_type == PT_LOAD && First) | 
|  | if (Expr LmaExpr = Script<ELFT>::X->getLma(First->getName())) | 
|  | H.p_paddr = LmaExpr(H.p_vaddr); | 
|  | } | 
|  |  | 
|  | // The TLS pointer goes after PT_TLS. At least glibc will align it, | 
|  | // so round up the size to make sure the offsets are correct. | 
|  | if (H.p_type == PT_TLS) { | 
|  | Out<ELFT>::TlsPhdr = &H; | 
|  | if (H.p_memsz) | 
|  | H.p_memsz = alignTo(H.p_memsz, H.p_align); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> static typename ELFT::uint getEntryAddr() { | 
|  | if (Symbol *S = Config->EntrySym) | 
|  | return S->body()->getVA<ELFT>(); | 
|  | return Config->EntryAddr; | 
|  | } | 
|  |  | 
|  | template <class ELFT> static uint8_t getELFEncoding() { | 
|  | if (ELFT::TargetEndianness == llvm::support::little) | 
|  | return ELFDATA2LSB; | 
|  | return ELFDATA2MSB; | 
|  | } | 
|  |  | 
|  | static uint16_t getELFType() { | 
|  | if (Config->Pic) | 
|  | return ET_DYN; | 
|  | if (Config->Relocatable) | 
|  | return ET_REL; | 
|  | return ET_EXEC; | 
|  | } | 
|  |  | 
|  | // This function is called after we have assigned address and size | 
|  | // to each section. This function fixes some predefined absolute | 
|  | // symbol values that depend on section address and size. | 
|  | template <class ELFT> void Writer<ELFT>::fixAbsoluteSymbols() { | 
|  | // __ehdr_start is the location of program headers. | 
|  | if (ElfSym<ELFT>::EhdrStart) | 
|  | ElfSym<ELFT>::EhdrStart->Value = Out<ELFT>::ProgramHeaders->getVA(); | 
|  |  | 
|  | auto Set = [](DefinedRegular<ELFT> *S1, DefinedRegular<ELFT> *S2, uintX_t V) { | 
|  | if (S1) | 
|  | S1->Value = V; | 
|  | if (S2) | 
|  | S2->Value = V; | 
|  | }; | 
|  |  | 
|  | // _etext is the first location after the last read-only loadable segment. | 
|  | // _edata is the first location after the last read-write loadable segment. | 
|  | // _end is the first location after the uninitialized data region. | 
|  | for (Phdr &P : Phdrs) { | 
|  | Elf_Phdr &H = P.H; | 
|  | if (H.p_type != PT_LOAD) | 
|  | continue; | 
|  | Set(ElfSym<ELFT>::End, ElfSym<ELFT>::End2, H.p_vaddr + H.p_memsz); | 
|  |  | 
|  | uintX_t Val = H.p_vaddr + H.p_filesz; | 
|  | if (H.p_flags & PF_W) | 
|  | Set(ElfSym<ELFT>::Edata, ElfSym<ELFT>::Edata2, Val); | 
|  | else | 
|  | Set(ElfSym<ELFT>::Etext, ElfSym<ELFT>::Etext2, Val); | 
|  | } | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::writeHeader() { | 
|  | uint8_t *Buf = Buffer->getBufferStart(); | 
|  | memcpy(Buf, "\177ELF", 4); | 
|  |  | 
|  | auto &FirstObj = cast<ELFFileBase<ELFT>>(*Config->FirstElf); | 
|  |  | 
|  | // Write the ELF header. | 
|  | auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf); | 
|  | EHdr->e_ident[EI_CLASS] = ELFT::Is64Bits ? ELFCLASS64 : ELFCLASS32; | 
|  | EHdr->e_ident[EI_DATA] = getELFEncoding<ELFT>(); | 
|  | EHdr->e_ident[EI_VERSION] = EV_CURRENT; | 
|  | EHdr->e_ident[EI_OSABI] = FirstObj.getOSABI(); | 
|  | EHdr->e_type = getELFType(); | 
|  | EHdr->e_machine = FirstObj.EMachine; | 
|  | EHdr->e_version = EV_CURRENT; | 
|  | EHdr->e_entry = getEntryAddr<ELFT>(); | 
|  | EHdr->e_shoff = SectionHeaderOff; | 
|  | EHdr->e_ehsize = sizeof(Elf_Ehdr); | 
|  | EHdr->e_phnum = Phdrs.size(); | 
|  | EHdr->e_shentsize = sizeof(Elf_Shdr); | 
|  | EHdr->e_shnum = OutputSections.size() + 1; | 
|  | EHdr->e_shstrndx = Out<ELFT>::ShStrTab->SectionIndex; | 
|  |  | 
|  | if (Config->EMachine == EM_ARM) | 
|  | // We don't currently use any features incompatible with EF_ARM_EABI_VER5, | 
|  | // but we don't have any firm guarantees of conformance. Linux AArch64 | 
|  | // kernels (as of 2016) require an EABI version to be set. | 
|  | EHdr->e_flags = EF_ARM_EABI_VER5; | 
|  | else if (Config->EMachine == EM_MIPS) | 
|  | EHdr->e_flags = getMipsEFlags<ELFT>(); | 
|  |  | 
|  | if (!Config->Relocatable) { | 
|  | EHdr->e_phoff = sizeof(Elf_Ehdr); | 
|  | EHdr->e_phentsize = sizeof(Elf_Phdr); | 
|  | } | 
|  |  | 
|  | // Write the program header table. | 
|  | auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff); | 
|  | for (Phdr &P : Phdrs) | 
|  | *HBuf++ = P.H; | 
|  |  | 
|  | // Write the section header table. Note that the first table entry is null. | 
|  | auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff); | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) | 
|  | Sec->writeHeaderTo(++SHdrs); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::openFile() { | 
|  | ErrorOr<std::unique_ptr<FileOutputBuffer>> BufferOrErr = | 
|  | FileOutputBuffer::create(Config->OutputFile, FileSize, | 
|  | FileOutputBuffer::F_executable); | 
|  | if (auto EC = BufferOrErr.getError()) | 
|  | error(EC, "failed to open " + Config->OutputFile); | 
|  | else | 
|  | Buffer = std::move(*BufferOrErr); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::writeSectionsBinary() { | 
|  | uint8_t *Buf = Buffer->getBufferStart(); | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) | 
|  | if (Sec->getFlags() & SHF_ALLOC) | 
|  | Sec->writeTo(Buf + Sec->getFileOff()); | 
|  | } | 
|  |  | 
|  | // Write section contents to a mmap'ed file. | 
|  | template <class ELFT> void Writer<ELFT>::writeSections() { | 
|  | uint8_t *Buf = Buffer->getBufferStart(); | 
|  |  | 
|  | // PPC64 needs to process relocations in the .opd section | 
|  | // before processing relocations in code-containing sections. | 
|  | Out<ELFT>::Opd = findSection(".opd"); | 
|  | if (Out<ELFT>::Opd) { | 
|  | Out<ELFT>::OpdBuf = Buf + Out<ELFT>::Opd->getFileOff(); | 
|  | Out<ELFT>::Opd->writeTo(Buf + Out<ELFT>::Opd->getFileOff()); | 
|  | } | 
|  |  | 
|  | for (OutputSectionBase<ELFT> *Sec : OutputSections) | 
|  | if (Sec != Out<ELFT>::Opd && Sec != Out<ELFT>::EhFrameHdr) | 
|  | Sec->writeTo(Buf + Sec->getFileOff()); | 
|  |  | 
|  | // The .eh_frame_hdr depends on .eh_frame section contents, therefore | 
|  | // it should be written after .eh_frame is written. | 
|  | if (!Out<ELFT>::EhFrame->empty() && Out<ELFT>::EhFrameHdr) | 
|  | Out<ELFT>::EhFrameHdr->writeTo(Buf + Out<ELFT>::EhFrameHdr->getFileOff()); | 
|  | } | 
|  |  | 
|  | template <class ELFT> void Writer<ELFT>::writeBuildId() { | 
|  | if (!Out<ELFT>::BuildId) | 
|  | return; | 
|  |  | 
|  | // Compute a hash of all sections of the output file. | 
|  | uint8_t *Start = Buffer->getBufferStart(); | 
|  | uint8_t *End = Start + FileSize; | 
|  | Out<ELFT>::BuildId->writeBuildId({Start, End}); | 
|  | } | 
|  |  | 
|  | template void elf::writeResult<ELF32LE>(); | 
|  | template void elf::writeResult<ELF32BE>(); | 
|  | template void elf::writeResult<ELF64LE>(); | 
|  | template void elf::writeResult<ELF64BE>(); | 
|  |  | 
|  | template struct elf::PhdrEntry<ELF32LE>; | 
|  | template struct elf::PhdrEntry<ELF32BE>; | 
|  | template struct elf::PhdrEntry<ELF64LE>; | 
|  | template struct elf::PhdrEntry<ELF64BE>; | 
|  |  | 
|  | template bool elf::isRelroSection<ELF32LE>(OutputSectionBase<ELF32LE> *); | 
|  | template bool elf::isRelroSection<ELF32BE>(OutputSectionBase<ELF32BE> *); | 
|  | template bool elf::isRelroSection<ELF64LE>(OutputSectionBase<ELF64LE> *); | 
|  | template bool elf::isRelroSection<ELF64BE>(OutputSectionBase<ELF64BE> *); | 
|  |  | 
|  | template StringRef elf::getOutputSectionName<ELF32LE>(InputSectionBase<ELF32LE> *); | 
|  | template StringRef elf::getOutputSectionName<ELF32BE>(InputSectionBase<ELF32BE> *); | 
|  | template StringRef elf::getOutputSectionName<ELF64LE>(InputSectionBase<ELF64LE> *); | 
|  | template StringRef elf::getOutputSectionName<ELF64BE>(InputSectionBase<ELF64BE> *); | 
|  |  | 
|  | template void elf::reportDiscarded<ELF32LE>(InputSectionBase<ELF32LE> *); | 
|  | template void elf::reportDiscarded<ELF32BE>(InputSectionBase<ELF32BE> *); | 
|  | template void elf::reportDiscarded<ELF64LE>(InputSectionBase<ELF64LE> *); | 
|  | template void elf::reportDiscarded<ELF64BE>(InputSectionBase<ELF64BE> *); |