|  | //===-- SparcInstrInfo.td - Target Description for Sparc Target -----------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file describes the Sparc instructions in TableGen format. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Instruction format superclass | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | include "SparcInstrFormats.td" | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Feature predicates. | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // True when generating 32-bit code. | 
|  | def Is32Bit : Predicate<"!Subtarget->is64Bit()">; | 
|  |  | 
|  | // True when generating 64-bit code. This also implies HasV9. | 
|  | def Is64Bit : Predicate<"Subtarget->is64Bit()">; | 
|  |  | 
|  | // HasV9 - This predicate is true when the target processor supports V9 | 
|  | // instructions.  Note that the machine may be running in 32-bit mode. | 
|  | def HasV9   : Predicate<"Subtarget->isV9()">, | 
|  | AssemblerPredicate<"FeatureV9">; | 
|  |  | 
|  | // HasNoV9 - This predicate is true when the target doesn't have V9 | 
|  | // instructions.  Use of this is just a hack for the isel not having proper | 
|  | // costs for V8 instructions that are more expensive than their V9 ones. | 
|  | def HasNoV9 : Predicate<"!Subtarget->isV9()">; | 
|  |  | 
|  | // HasVIS - This is true when the target processor has VIS extensions. | 
|  | def HasVIS : Predicate<"Subtarget->isVIS()">, | 
|  | AssemblerPredicate<"FeatureVIS">; | 
|  | def HasVIS2 : Predicate<"Subtarget->isVIS2()">, | 
|  | AssemblerPredicate<"FeatureVIS2">; | 
|  | def HasVIS3 : Predicate<"Subtarget->isVIS3()">, | 
|  | AssemblerPredicate<"FeatureVIS3">; | 
|  |  | 
|  | // HasHardQuad - This is true when the target processor supports quad floating | 
|  | // point instructions. | 
|  | def HasHardQuad : Predicate<"Subtarget->hasHardQuad()">; | 
|  |  | 
|  | // UseDeprecatedInsts - This predicate is true when the target processor is a | 
|  | // V8, or when it is V9 but the V8 deprecated instructions are efficient enough | 
|  | // to use when appropriate.  In either of these cases, the instruction selector | 
|  | // will pick deprecated instructions. | 
|  | def UseDeprecatedInsts : Predicate<"Subtarget->useDeprecatedV8Instructions()">; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Instruction Pattern Stuff | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | def simm11  : PatLeaf<(imm), [{ return isInt<11>(N->getSExtValue()); }]>; | 
|  |  | 
|  | def simm13  : PatLeaf<(imm), [{ return isInt<13>(N->getSExtValue()); }]>; | 
|  |  | 
|  | def LO10 : SDNodeXForm<imm, [{ | 
|  | return CurDAG->getTargetConstant((unsigned)N->getZExtValue() & 1023, | 
|  | MVT::i32); | 
|  | }]>; | 
|  |  | 
|  | def HI22 : SDNodeXForm<imm, [{ | 
|  | // Transformation function: shift the immediate value down into the low bits. | 
|  | return CurDAG->getTargetConstant((unsigned)N->getZExtValue() >> 10, MVT::i32); | 
|  | }]>; | 
|  |  | 
|  | def SETHIimm : PatLeaf<(imm), [{ | 
|  | return isShiftedUInt<22, 10>(N->getZExtValue()); | 
|  | }], HI22>; | 
|  |  | 
|  | // Addressing modes. | 
|  | def ADDRrr : ComplexPattern<iPTR, 2, "SelectADDRrr", [], []>; | 
|  | def ADDRri : ComplexPattern<iPTR, 2, "SelectADDRri", [frameindex], []>; | 
|  |  | 
|  | // Address operands | 
|  | def SparcMEMrrAsmOperand : AsmOperandClass { | 
|  | let Name = "MEMrr"; | 
|  | let ParserMethod = "parseMEMOperand"; | 
|  | } | 
|  |  | 
|  | def SparcMEMriAsmOperand : AsmOperandClass { | 
|  | let Name = "MEMri"; | 
|  | let ParserMethod = "parseMEMOperand"; | 
|  | } | 
|  |  | 
|  | def MEMrr : Operand<iPTR> { | 
|  | let PrintMethod = "printMemOperand"; | 
|  | let MIOperandInfo = (ops ptr_rc, ptr_rc); | 
|  | let ParserMatchClass = SparcMEMrrAsmOperand; | 
|  | } | 
|  | def MEMri : Operand<iPTR> { | 
|  | let PrintMethod = "printMemOperand"; | 
|  | let MIOperandInfo = (ops ptr_rc, i32imm); | 
|  | let ParserMatchClass = SparcMEMriAsmOperand; | 
|  | } | 
|  |  | 
|  | def TLSSym : Operand<iPTR>; | 
|  |  | 
|  | // Branch targets have OtherVT type. | 
|  | def brtarget : Operand<OtherVT> { | 
|  | let EncoderMethod = "getBranchTargetOpValue"; | 
|  | } | 
|  |  | 
|  | def bprtarget : Operand<OtherVT> { | 
|  | let EncoderMethod = "getBranchPredTargetOpValue"; | 
|  | } | 
|  |  | 
|  | def bprtarget16 : Operand<OtherVT> { | 
|  | let EncoderMethod = "getBranchOnRegTargetOpValue"; | 
|  | } | 
|  |  | 
|  | def calltarget : Operand<i32> { | 
|  | let EncoderMethod = "getCallTargetOpValue"; | 
|  | let DecoderMethod = "DecodeCall"; | 
|  | } | 
|  |  | 
|  | def simm13Op : Operand<i32> { | 
|  | let DecoderMethod = "DecodeSIMM13"; | 
|  | } | 
|  |  | 
|  | // Operand for printing out a condition code. | 
|  | let PrintMethod = "printCCOperand" in | 
|  | def CCOp : Operand<i32>; | 
|  |  | 
|  | def SDTSPcmpicc : | 
|  | SDTypeProfile<0, 2, [SDTCisInt<0>, SDTCisSameAs<0, 1>]>; | 
|  | def SDTSPcmpfcc : | 
|  | SDTypeProfile<0, 2, [SDTCisFP<0>, SDTCisSameAs<0, 1>]>; | 
|  | def SDTSPbrcc : | 
|  | SDTypeProfile<0, 2, [SDTCisVT<0, OtherVT>, SDTCisVT<1, i32>]>; | 
|  | def SDTSPselectcc : | 
|  | SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisSameAs<1, 2>, SDTCisVT<3, i32>]>; | 
|  | def SDTSPFTOI : | 
|  | SDTypeProfile<1, 1, [SDTCisVT<0, f32>, SDTCisFP<1>]>; | 
|  | def SDTSPITOF : | 
|  | SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f32>]>; | 
|  | def SDTSPFTOX : | 
|  | SDTypeProfile<1, 1, [SDTCisVT<0, f64>, SDTCisFP<1>]>; | 
|  | def SDTSPXTOF : | 
|  | SDTypeProfile<1, 1, [SDTCisFP<0>, SDTCisVT<1, f64>]>; | 
|  |  | 
|  | def SDTSPtlsadd : | 
|  | SDTypeProfile<1, 3, [SDTCisInt<0>, SDTCisSameAs<0, 1>, SDTCisPtrTy<2>]>; | 
|  | def SDTSPtlsld : | 
|  | SDTypeProfile<1, 2, [SDTCisPtrTy<0>, SDTCisPtrTy<1>]>; | 
|  |  | 
|  | def SPcmpicc : SDNode<"SPISD::CMPICC", SDTSPcmpicc, [SDNPOutGlue]>; | 
|  | def SPcmpfcc : SDNode<"SPISD::CMPFCC", SDTSPcmpfcc, [SDNPOutGlue]>; | 
|  | def SPbricc : SDNode<"SPISD::BRICC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; | 
|  | def SPbrxcc : SDNode<"SPISD::BRXCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; | 
|  | def SPbrfcc : SDNode<"SPISD::BRFCC", SDTSPbrcc, [SDNPHasChain, SDNPInGlue]>; | 
|  |  | 
|  | def SPhi    : SDNode<"SPISD::Hi", SDTIntUnaryOp>; | 
|  | def SPlo    : SDNode<"SPISD::Lo", SDTIntUnaryOp>; | 
|  |  | 
|  | def SPftoi  : SDNode<"SPISD::FTOI", SDTSPFTOI>; | 
|  | def SPitof  : SDNode<"SPISD::ITOF", SDTSPITOF>; | 
|  | def SPftox  : SDNode<"SPISD::FTOX", SDTSPFTOX>; | 
|  | def SPxtof  : SDNode<"SPISD::XTOF", SDTSPXTOF>; | 
|  |  | 
|  | def SPselecticc : SDNode<"SPISD::SELECT_ICC", SDTSPselectcc, [SDNPInGlue]>; | 
|  | def SPselectxcc : SDNode<"SPISD::SELECT_XCC", SDTSPselectcc, [SDNPInGlue]>; | 
|  | def SPselectfcc : SDNode<"SPISD::SELECT_FCC", SDTSPselectcc, [SDNPInGlue]>; | 
|  |  | 
|  | //  These are target-independent nodes, but have target-specific formats. | 
|  | def SDT_SPCallSeqStart : SDCallSeqStart<[ SDTCisVT<0, i32> ]>; | 
|  | def SDT_SPCallSeqEnd   : SDCallSeqEnd<[ SDTCisVT<0, i32>, | 
|  | SDTCisVT<1, i32> ]>; | 
|  |  | 
|  | def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_SPCallSeqStart, | 
|  | [SDNPHasChain, SDNPOutGlue]>; | 
|  | def callseq_end   : SDNode<"ISD::CALLSEQ_END",   SDT_SPCallSeqEnd, | 
|  | [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; | 
|  |  | 
|  | def SDT_SPCall    : SDTypeProfile<0, -1, [SDTCisVT<0, i32>]>; | 
|  | def call          : SDNode<"SPISD::CALL", SDT_SPCall, | 
|  | [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, | 
|  | SDNPVariadic]>; | 
|  |  | 
|  | def SDT_SPRet     : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; | 
|  | def retflag       : SDNode<"SPISD::RET_FLAG", SDT_SPRet, | 
|  | [SDNPHasChain, SDNPOptInGlue, SDNPVariadic]>; | 
|  |  | 
|  | def flushw        : SDNode<"SPISD::FLUSHW", SDTNone, | 
|  | [SDNPHasChain, SDNPSideEffect, SDNPMayStore]>; | 
|  |  | 
|  | def tlsadd        : SDNode<"SPISD::TLS_ADD", SDTSPtlsadd>; | 
|  | def tlsld         : SDNode<"SPISD::TLS_LD",  SDTSPtlsld>; | 
|  | def tlscall       : SDNode<"SPISD::TLS_CALL", SDT_SPCall, | 
|  | [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, | 
|  | SDNPVariadic]>; | 
|  |  | 
|  | def getPCX        : Operand<iPTR> { | 
|  | let PrintMethod = "printGetPCX"; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // SPARC Flag Conditions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Note that these values must be kept in sync with the CCOp::CondCode enum | 
|  | // values. | 
|  | class ICC_VAL<int N> : PatLeaf<(i32 N)>; | 
|  | def ICC_NE  : ICC_VAL< 9>;  // Not Equal | 
|  | def ICC_E   : ICC_VAL< 1>;  // Equal | 
|  | def ICC_G   : ICC_VAL<10>;  // Greater | 
|  | def ICC_LE  : ICC_VAL< 2>;  // Less or Equal | 
|  | def ICC_GE  : ICC_VAL<11>;  // Greater or Equal | 
|  | def ICC_L   : ICC_VAL< 3>;  // Less | 
|  | def ICC_GU  : ICC_VAL<12>;  // Greater Unsigned | 
|  | def ICC_LEU : ICC_VAL< 4>;  // Less or Equal Unsigned | 
|  | def ICC_CC  : ICC_VAL<13>;  // Carry Clear/Great or Equal Unsigned | 
|  | def ICC_CS  : ICC_VAL< 5>;  // Carry Set/Less Unsigned | 
|  | def ICC_POS : ICC_VAL<14>;  // Positive | 
|  | def ICC_NEG : ICC_VAL< 6>;  // Negative | 
|  | def ICC_VC  : ICC_VAL<15>;  // Overflow Clear | 
|  | def ICC_VS  : ICC_VAL< 7>;  // Overflow Set | 
|  |  | 
|  | class FCC_VAL<int N> : PatLeaf<(i32 N)>; | 
|  | def FCC_U   : FCC_VAL<23>;  // Unordered | 
|  | def FCC_G   : FCC_VAL<22>;  // Greater | 
|  | def FCC_UG  : FCC_VAL<21>;  // Unordered or Greater | 
|  | def FCC_L   : FCC_VAL<20>;  // Less | 
|  | def FCC_UL  : FCC_VAL<19>;  // Unordered or Less | 
|  | def FCC_LG  : FCC_VAL<18>;  // Less or Greater | 
|  | def FCC_NE  : FCC_VAL<17>;  // Not Equal | 
|  | def FCC_E   : FCC_VAL<25>;  // Equal | 
|  | def FCC_UE  : FCC_VAL<24>;  // Unordered or Equal | 
|  | def FCC_GE  : FCC_VAL<25>;  // Greater or Equal | 
|  | def FCC_UGE : FCC_VAL<26>;  // Unordered or Greater or Equal | 
|  | def FCC_LE  : FCC_VAL<27>;  // Less or Equal | 
|  | def FCC_ULE : FCC_VAL<28>;  // Unordered or Less or Equal | 
|  | def FCC_O   : FCC_VAL<29>;  // Ordered | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Instruction Class Templates | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | /// F3_12 multiclass - Define a normal F3_1/F3_2 pattern in one shot. | 
|  | multiclass F3_12<string OpcStr, bits<6> Op3Val, SDNode OpNode, | 
|  | RegisterClass RC, ValueType Ty, Operand immOp> { | 
|  | def rr  : F3_1<2, Op3Val, | 
|  | (outs RC:$rd), (ins RC:$rs1, RC:$rs2), | 
|  | !strconcat(OpcStr, " $rs1, $rs2, $rd"), | 
|  | [(set Ty:$rd, (OpNode Ty:$rs1, Ty:$rs2))]>; | 
|  | def ri  : F3_2<2, Op3Val, | 
|  | (outs RC:$rd), (ins RC:$rs1, immOp:$simm13), | 
|  | !strconcat(OpcStr, " $rs1, $simm13, $rd"), | 
|  | [(set Ty:$rd, (OpNode Ty:$rs1, (Ty simm13:$simm13)))]>; | 
|  | } | 
|  |  | 
|  | /// F3_12np multiclass - Define a normal F3_1/F3_2 pattern in one shot, with no | 
|  | /// pattern. | 
|  | multiclass F3_12np<string OpcStr, bits<6> Op3Val> { | 
|  | def rr  : F3_1<2, Op3Val, | 
|  | (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), | 
|  | !strconcat(OpcStr, " $rs1, $rs2, $rd"), []>; | 
|  | def ri  : F3_2<2, Op3Val, | 
|  | (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), | 
|  | !strconcat(OpcStr, " $rs1, $simm13, $rd"), []>; | 
|  | } | 
|  |  | 
|  | // Load multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot. | 
|  | multiclass Load<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode, | 
|  | RegisterClass RC, ValueType Ty> { | 
|  | def rr  : F3_1<3, Op3Val, | 
|  | (outs RC:$dst), (ins MEMrr:$addr), | 
|  | !strconcat(OpcStr, " [$addr], $dst"), | 
|  | [(set Ty:$dst, (OpNode ADDRrr:$addr))]>; | 
|  | def ri  : F3_2<3, Op3Val, | 
|  | (outs RC:$dst), (ins MEMri:$addr), | 
|  | !strconcat(OpcStr, " [$addr], $dst"), | 
|  | [(set Ty:$dst, (OpNode ADDRri:$addr))]>; | 
|  | } | 
|  |  | 
|  | // Store multiclass - Define both Reg+Reg/Reg+Imm patterns in one shot. | 
|  | multiclass Store<string OpcStr, bits<6> Op3Val, SDPatternOperator OpNode, | 
|  | RegisterClass RC, ValueType Ty> { | 
|  | def rr  : F3_1<3, Op3Val, | 
|  | (outs), (ins MEMrr:$addr, RC:$rd), | 
|  | !strconcat(OpcStr, " $rd, [$addr]"), | 
|  | [(OpNode Ty:$rd, ADDRrr:$addr)]>; | 
|  | def ri  : F3_2<3, Op3Val, | 
|  | (outs), (ins MEMri:$addr, RC:$rd), | 
|  | !strconcat(OpcStr, " $rd, [$addr]"), | 
|  | [(OpNode Ty:$rd, ADDRri:$addr)]>; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Instructions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Pseudo instructions. | 
|  | class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern> | 
|  | : InstSP<outs, ins, asmstr, pattern> { | 
|  | let isCodeGenOnly = 1; | 
|  | let isPseudo = 1; | 
|  | } | 
|  |  | 
|  | // GETPCX for PIC | 
|  | let Defs = [O7] in { | 
|  | def GETPCX : Pseudo<(outs getPCX:$getpcseq), (ins), "$getpcseq", [] >; | 
|  | } | 
|  |  | 
|  | let Defs = [O6], Uses = [O6] in { | 
|  | def ADJCALLSTACKDOWN : Pseudo<(outs), (ins i32imm:$amt), | 
|  | "!ADJCALLSTACKDOWN $amt", | 
|  | [(callseq_start timm:$amt)]>; | 
|  | def ADJCALLSTACKUP : Pseudo<(outs), (ins i32imm:$amt1, i32imm:$amt2), | 
|  | "!ADJCALLSTACKUP $amt1", | 
|  | [(callseq_end timm:$amt1, timm:$amt2)]>; | 
|  | } | 
|  |  | 
|  | let hasSideEffects = 1, mayStore = 1 in { | 
|  | let rd = 0, rs1 = 0, rs2 = 0 in | 
|  | def FLUSHW : F3_1<0b10, 0b101011, (outs), (ins), | 
|  | "flushw", | 
|  | [(flushw)]>, Requires<[HasV9]>; | 
|  | let rd = 0, rs1 = 1, simm13 = 3 in | 
|  | def TA3 : F3_2<0b10, 0b111010, (outs), (ins), | 
|  | "ta 3", | 
|  | [(flushw)]>; | 
|  | } | 
|  |  | 
|  | let isBarrier = 1, isTerminator = 1, rd = 0b01000, rs1 = 0, simm13 = 5 in | 
|  | def TA5 : F3_2<0b10, 0b111010, (outs), (ins), "ta 5", [(trap)]>; | 
|  |  | 
|  | let rd = 0 in | 
|  | def UNIMP : F2_1<0b000, (outs), (ins i32imm:$imm22), | 
|  | "unimp $imm22", []>; | 
|  |  | 
|  | // SELECT_CC_* - Used to implement the SELECT_CC DAG operation.  Expanded after | 
|  | // instruction selection into a branch sequence.  This has to handle all | 
|  | // permutations of selection between i32/f32/f64 on ICC and FCC. | 
|  | // Expanded after instruction selection. | 
|  | let Uses = [ICC], usesCustomInserter = 1 in { | 
|  | def SELECT_CC_Int_ICC | 
|  | : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), | 
|  | "; SELECT_CC_Int_ICC PSEUDO!", | 
|  | [(set i32:$dst, (SPselecticc i32:$T, i32:$F, imm:$Cond))]>; | 
|  | def SELECT_CC_FP_ICC | 
|  | : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), | 
|  | "; SELECT_CC_FP_ICC PSEUDO!", | 
|  | [(set f32:$dst, (SPselecticc f32:$T, f32:$F, imm:$Cond))]>; | 
|  |  | 
|  | def SELECT_CC_DFP_ICC | 
|  | : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), | 
|  | "; SELECT_CC_DFP_ICC PSEUDO!", | 
|  | [(set f64:$dst, (SPselecticc f64:$T, f64:$F, imm:$Cond))]>; | 
|  |  | 
|  | def SELECT_CC_QFP_ICC | 
|  | : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond), | 
|  | "; SELECT_CC_QFP_ICC PSEUDO!", | 
|  | [(set f128:$dst, (SPselecticc f128:$T, f128:$F, imm:$Cond))]>; | 
|  | } | 
|  |  | 
|  | let usesCustomInserter = 1, Uses = [FCC0] in { | 
|  |  | 
|  | def SELECT_CC_Int_FCC | 
|  | : Pseudo<(outs IntRegs:$dst), (ins IntRegs:$T, IntRegs:$F, i32imm:$Cond), | 
|  | "; SELECT_CC_Int_FCC PSEUDO!", | 
|  | [(set i32:$dst, (SPselectfcc i32:$T, i32:$F, imm:$Cond))]>; | 
|  |  | 
|  | def SELECT_CC_FP_FCC | 
|  | : Pseudo<(outs FPRegs:$dst), (ins FPRegs:$T, FPRegs:$F, i32imm:$Cond), | 
|  | "; SELECT_CC_FP_FCC PSEUDO!", | 
|  | [(set f32:$dst, (SPselectfcc f32:$T, f32:$F, imm:$Cond))]>; | 
|  | def SELECT_CC_DFP_FCC | 
|  | : Pseudo<(outs DFPRegs:$dst), (ins DFPRegs:$T, DFPRegs:$F, i32imm:$Cond), | 
|  | "; SELECT_CC_DFP_FCC PSEUDO!", | 
|  | [(set f64:$dst, (SPselectfcc f64:$T, f64:$F, imm:$Cond))]>; | 
|  | def SELECT_CC_QFP_FCC | 
|  | : Pseudo<(outs QFPRegs:$dst), (ins QFPRegs:$T, QFPRegs:$F, i32imm:$Cond), | 
|  | "; SELECT_CC_QFP_FCC PSEUDO!", | 
|  | [(set f128:$dst, (SPselectfcc f128:$T, f128:$F, imm:$Cond))]>; | 
|  | } | 
|  |  | 
|  | // JMPL Instruction. | 
|  | let isTerminator = 1, hasDelaySlot = 1, isBarrier = 1, | 
|  | DecoderMethod = "DecodeJMPL" in { | 
|  | def JMPLrr: F3_1<2, 0b111000, (outs IntRegs:$dst), (ins MEMrr:$addr), | 
|  | "jmpl $addr, $dst", []>; | 
|  | def JMPLri: F3_2<2, 0b111000, (outs IntRegs:$dst), (ins MEMri:$addr), | 
|  | "jmpl $addr, $dst", []>; | 
|  | } | 
|  |  | 
|  | // Section A.3 - Synthetic Instructions, p. 85 | 
|  | // special cases of JMPL: | 
|  | let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, isBarrier = 1, | 
|  | isCodeGenOnly = 1 in { | 
|  | let rd = 0, rs1 = 15 in | 
|  | def RETL: F3_2<2, 0b111000, (outs), (ins i32imm:$val), | 
|  | "jmp %o7+$val", [(retflag simm13:$val)]>; | 
|  |  | 
|  | let rd = 0, rs1 = 31 in | 
|  | def RET: F3_2<2, 0b111000, (outs), (ins i32imm:$val), | 
|  | "jmp %i7+$val", []>; | 
|  | } | 
|  |  | 
|  | let isReturn = 1, isTerminator = 1, hasDelaySlot = 1, | 
|  | isBarrier = 1, rd = 0, DecoderMethod = "DecodeReturn" in { | 
|  | def RETTrr : F3_1<2, 0b111001, (outs), (ins MEMrr:$addr), | 
|  | "rett $addr", []>; | 
|  | def RETTri : F3_2<2, 0b111001, (outs), (ins MEMri:$addr), | 
|  | "rett $addr", []>; | 
|  | } | 
|  |  | 
|  | // Section B.1 - Load Integer Instructions, p. 90 | 
|  | let DecoderMethod = "DecodeLoadInt" in { | 
|  | defm LDSB : Load<"ldsb", 0b001001, sextloadi8,  IntRegs, i32>; | 
|  | defm LDSH : Load<"ldsh", 0b001010, sextloadi16, IntRegs, i32>; | 
|  | defm LDUB : Load<"ldub", 0b000001, zextloadi8,  IntRegs, i32>; | 
|  | defm LDUH : Load<"lduh", 0b000010, zextloadi16, IntRegs, i32>; | 
|  | defm LD   : Load<"ld",   0b000000, load,        IntRegs, i32>; | 
|  | } | 
|  |  | 
|  | // Section B.2 - Load Floating-point Instructions, p. 92 | 
|  | let DecoderMethod = "DecodeLoadFP" in | 
|  | defm LDF   : Load<"ld",  0b100000, load, FPRegs,  f32>; | 
|  | let DecoderMethod = "DecodeLoadDFP" in | 
|  | defm LDDF  : Load<"ldd", 0b100011, load, DFPRegs, f64>; | 
|  | let DecoderMethod = "DecodeLoadQFP" in | 
|  | defm LDQF  : Load<"ldq", 0b100010, load, QFPRegs, f128>, | 
|  | Requires<[HasV9, HasHardQuad]>; | 
|  |  | 
|  | // Section B.4 - Store Integer Instructions, p. 95 | 
|  | let DecoderMethod = "DecodeStoreInt" in { | 
|  | defm STB   : Store<"stb", 0b000101, truncstorei8,  IntRegs, i32>; | 
|  | defm STH   : Store<"sth", 0b000110, truncstorei16, IntRegs, i32>; | 
|  | defm ST    : Store<"st",  0b000100, store,         IntRegs, i32>; | 
|  | } | 
|  |  | 
|  | // Section B.5 - Store Floating-point Instructions, p. 97 | 
|  | let DecoderMethod = "DecodeStoreFP" in | 
|  | defm STF   : Store<"st",  0b100100, store,         FPRegs,  f32>; | 
|  | let DecoderMethod = "DecodeStoreDFP" in | 
|  | defm STDF  : Store<"std", 0b100111, store,         DFPRegs, f64>; | 
|  | let DecoderMethod = "DecodeStoreQFP" in | 
|  | defm STQF  : Store<"stq", 0b100110, store,         QFPRegs, f128>, | 
|  | Requires<[HasV9, HasHardQuad]>; | 
|  |  | 
|  | // Section B.9 - SETHI Instruction, p. 104 | 
|  | def SETHIi: F2_1<0b100, | 
|  | (outs IntRegs:$rd), (ins i32imm:$imm22), | 
|  | "sethi $imm22, $rd", | 
|  | [(set i32:$rd, SETHIimm:$imm22)]>; | 
|  |  | 
|  | // Section B.10 - NOP Instruction, p. 105 | 
|  | // (It's a special case of SETHI) | 
|  | let rd = 0, imm22 = 0 in | 
|  | def NOP : F2_1<0b100, (outs), (ins), "nop", []>; | 
|  |  | 
|  | // Section B.11 - Logical Instructions, p. 106 | 
|  | defm AND    : F3_12<"and", 0b000001, and, IntRegs, i32, simm13Op>; | 
|  |  | 
|  | def ANDNrr  : F3_1<2, 0b000101, | 
|  | (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), | 
|  | "andn $rs1, $rs2, $rd", | 
|  | [(set i32:$rd, (and i32:$rs1, (not i32:$rs2)))]>; | 
|  | def ANDNri  : F3_2<2, 0b000101, | 
|  | (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), | 
|  | "andn $rs1, $simm13, $rd", []>; | 
|  |  | 
|  | defm OR     : F3_12<"or", 0b000010, or, IntRegs, i32, simm13Op>; | 
|  |  | 
|  | def ORNrr   : F3_1<2, 0b000110, | 
|  | (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), | 
|  | "orn $rs1, $rs2, $rd", | 
|  | [(set i32:$rd, (or i32:$rs1, (not i32:$rs2)))]>; | 
|  | def ORNri   : F3_2<2, 0b000110, | 
|  | (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), | 
|  | "orn $rs1, $simm13, $rd", []>; | 
|  | defm XOR    : F3_12<"xor", 0b000011, xor, IntRegs, i32, simm13Op>; | 
|  |  | 
|  | def XNORrr  : F3_1<2, 0b000111, | 
|  | (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2), | 
|  | "xnor $rs1, $rs2, $rd", | 
|  | [(set i32:$rd, (not (xor i32:$rs1, i32:$rs2)))]>; | 
|  | def XNORri  : F3_2<2, 0b000111, | 
|  | (outs IntRegs:$rd), (ins IntRegs:$rs1, simm13Op:$simm13), | 
|  | "xnor $rs1, $simm13, $rd", []>; | 
|  |  | 
|  | let Defs = [ICC] in { | 
|  | defm ANDCC  : F3_12np<"andcc",  0b010001>; | 
|  | defm ANDNCC : F3_12np<"andncc", 0b010101>; | 
|  | defm ORCC   : F3_12np<"orcc",   0b010010>; | 
|  | defm ORNCC  : F3_12np<"orncc",  0b010110>; | 
|  | defm XORCC  : F3_12np<"xorcc",  0b010011>; | 
|  | defm XNORCC : F3_12np<"xnorcc", 0b010111>; | 
|  | } | 
|  |  | 
|  | // Section B.12 - Shift Instructions, p. 107 | 
|  | defm SLL : F3_12<"sll", 0b100101, shl, IntRegs, i32, simm13Op>; | 
|  | defm SRL : F3_12<"srl", 0b100110, srl, IntRegs, i32, simm13Op>; | 
|  | defm SRA : F3_12<"sra", 0b100111, sra, IntRegs, i32, simm13Op>; | 
|  |  | 
|  | // Section B.13 - Add Instructions, p. 108 | 
|  | defm ADD   : F3_12<"add", 0b000000, add, IntRegs, i32, simm13Op>; | 
|  |  | 
|  | // "LEA" forms of add (patterns to make tblgen happy) | 
|  | let Predicates = [Is32Bit], isCodeGenOnly = 1 in | 
|  | def LEA_ADDri   : F3_2<2, 0b000000, | 
|  | (outs IntRegs:$dst), (ins MEMri:$addr), | 
|  | "add ${addr:arith}, $dst", | 
|  | [(set iPTR:$dst, ADDRri:$addr)]>; | 
|  |  | 
|  | let Defs = [ICC] in | 
|  | defm ADDCC  : F3_12<"addcc", 0b010000, addc, IntRegs, i32, simm13Op>; | 
|  |  | 
|  | let Uses = [ICC] in | 
|  | defm ADDC   : F3_12np<"addx", 0b001000>; | 
|  |  | 
|  | let Uses = [ICC], Defs = [ICC] in | 
|  | defm ADDE  : F3_12<"addxcc", 0b011000, adde, IntRegs, i32, simm13Op>; | 
|  |  | 
|  | // Section B.15 - Subtract Instructions, p. 110 | 
|  | defm SUB    : F3_12  <"sub"  , 0b000100, sub, IntRegs, i32, simm13Op>; | 
|  | let Uses = [ICC], Defs = [ICC] in | 
|  | defm SUBE   : F3_12  <"subxcc" , 0b011100, sube, IntRegs, i32, simm13Op>; | 
|  |  | 
|  | let Defs = [ICC] in | 
|  | defm SUBCC  : F3_12  <"subcc", 0b010100, subc, IntRegs, i32, simm13Op>; | 
|  |  | 
|  | let Uses = [ICC] in | 
|  | defm SUBC   : F3_12np <"subx", 0b001100>; | 
|  |  | 
|  | let Defs = [ICC], rd = 0 in { | 
|  | def CMPrr   : F3_1<2, 0b010100, | 
|  | (outs), (ins IntRegs:$rs1, IntRegs:$rs2), | 
|  | "cmp $rs1, $rs2", | 
|  | [(SPcmpicc i32:$rs1, i32:$rs2)]>; | 
|  | def CMPri   : F3_2<2, 0b010100, | 
|  | (outs), (ins IntRegs:$rs1, simm13Op:$simm13), | 
|  | "cmp $rs1, $simm13", | 
|  | [(SPcmpicc i32:$rs1, (i32 simm13:$simm13))]>; | 
|  | } | 
|  |  | 
|  | // Section B.18 - Multiply Instructions, p. 113 | 
|  | let Defs = [Y] in { | 
|  | defm UMUL : F3_12np<"umul", 0b001010>; | 
|  | defm SMUL : F3_12  <"smul", 0b001011, mul, IntRegs, i32, simm13Op>; | 
|  | } | 
|  |  | 
|  | let Defs = [Y, ICC] in { | 
|  | defm UMULCC : F3_12np<"umulcc", 0b011010>; | 
|  | defm SMULCC : F3_12np<"smulcc", 0b011011>; | 
|  | } | 
|  |  | 
|  | // Section B.19 - Divide Instructions, p. 115 | 
|  | let Defs = [Y] in { | 
|  | defm UDIV : F3_12np<"udiv", 0b001110>; | 
|  | defm SDIV : F3_12np<"sdiv", 0b001111>; | 
|  | } | 
|  |  | 
|  | let Defs = [Y, ICC] in { | 
|  | defm UDIVCC : F3_12np<"udivcc", 0b011110>; | 
|  | defm SDIVCC : F3_12np<"sdivcc", 0b011111>; | 
|  | } | 
|  |  | 
|  | // Section B.20 - SAVE and RESTORE, p. 117 | 
|  | defm SAVE    : F3_12np<"save"   , 0b111100>; | 
|  | defm RESTORE : F3_12np<"restore", 0b111101>; | 
|  |  | 
|  | // Section B.21 - Branch on Integer Condition Codes Instructions, p. 119 | 
|  |  | 
|  | // unconditional branch class. | 
|  | class BranchAlways<dag ins, string asmstr, list<dag> pattern> | 
|  | : F2_2<0b010, 0, (outs), ins, asmstr, pattern> { | 
|  | let isBranch     = 1; | 
|  | let isTerminator = 1; | 
|  | let hasDelaySlot = 1; | 
|  | let isBarrier    = 1; | 
|  | } | 
|  |  | 
|  | let cond = 8 in | 
|  | def BA : BranchAlways<(ins brtarget:$imm22), "ba $imm22", [(br bb:$imm22)]>; | 
|  |  | 
|  |  | 
|  | let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { | 
|  |  | 
|  | // conditional branch class: | 
|  | class BranchSP<dag ins, string asmstr, list<dag> pattern> | 
|  | : F2_2<0b010, 0, (outs), ins, asmstr, pattern>; | 
|  |  | 
|  | // conditional branch with annul class: | 
|  | class BranchSPA<dag ins, string asmstr, list<dag> pattern> | 
|  | : F2_2<0b010, 1, (outs), ins, asmstr, pattern>; | 
|  |  | 
|  | // Conditional branch class on %icc|%xcc with predication: | 
|  | multiclass IPredBranch<string regstr, list<dag> CCPattern> { | 
|  | def CC    : F2_3<0b001, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond), | 
|  | !strconcat("b$cond ", !strconcat(regstr, ", $imm19")), | 
|  | CCPattern>; | 
|  | def CCA   : F2_3<0b001, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond), | 
|  | !strconcat("b$cond,a ", !strconcat(regstr, ", $imm19")), | 
|  | []>; | 
|  | def CCNT  : F2_3<0b001, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond), | 
|  | !strconcat("b$cond,pn ", !strconcat(regstr, ", $imm19")), | 
|  | []>; | 
|  | def CCANT : F2_3<0b001, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond), | 
|  | !strconcat("b$cond,a,pn ", !strconcat(regstr, ", $imm19")), | 
|  | []>; | 
|  | } | 
|  |  | 
|  | } // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 | 
|  |  | 
|  |  | 
|  | // Indirect branch instructions. | 
|  | let isTerminator = 1, isBarrier = 1,  hasDelaySlot = 1, isBranch =1, | 
|  | isIndirectBranch = 1, rd = 0, isCodeGenOnly = 1 in { | 
|  | def BINDrr  : F3_1<2, 0b111000, | 
|  | (outs), (ins MEMrr:$ptr), | 
|  | "jmp $ptr", | 
|  | [(brind ADDRrr:$ptr)]>; | 
|  | def BINDri  : F3_2<2, 0b111000, | 
|  | (outs), (ins MEMri:$ptr), | 
|  | "jmp $ptr", | 
|  | [(brind ADDRri:$ptr)]>; | 
|  | } | 
|  |  | 
|  | let Uses = [ICC] in { | 
|  | def BCOND : BranchSP<(ins brtarget:$imm22, CCOp:$cond), | 
|  | "b$cond $imm22", | 
|  | [(SPbricc bb:$imm22, imm:$cond)]>; | 
|  | def BCONDA : BranchSPA<(ins brtarget:$imm22, CCOp:$cond), | 
|  | "b$cond,a $imm22", []>; | 
|  |  | 
|  | let Predicates = [HasV9], cc = 0b00 in | 
|  | defm BPI : IPredBranch<"%icc", []>; | 
|  | } | 
|  |  | 
|  | // Section B.22 - Branch on Floating-point Condition Codes Instructions, p. 121 | 
|  |  | 
|  | let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 in { | 
|  |  | 
|  | // floating-point conditional branch class: | 
|  | class FPBranchSP<dag ins, string asmstr, list<dag> pattern> | 
|  | : F2_2<0b110, 0, (outs), ins, asmstr, pattern>; | 
|  |  | 
|  | // floating-point conditional branch with annul class: | 
|  | class FPBranchSPA<dag ins, string asmstr, list<dag> pattern> | 
|  | : F2_2<0b110, 1, (outs), ins, asmstr, pattern>; | 
|  |  | 
|  | // Conditional branch class on %fcc0-%fcc3 with predication: | 
|  | multiclass FPredBranch { | 
|  | def CC    : F2_3<0b101, 0, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond, | 
|  | FCCRegs:$cc), | 
|  | "fb$cond $cc, $imm19", []>; | 
|  | def CCA   : F2_3<0b101, 1, 1, (outs), (ins bprtarget:$imm19, CCOp:$cond, | 
|  | FCCRegs:$cc), | 
|  | "fb$cond,a $cc, $imm19", []>; | 
|  | def CCNT  : F2_3<0b101, 0, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond, | 
|  | FCCRegs:$cc), | 
|  | "fb$cond,pn $cc, $imm19", []>; | 
|  | def CCANT : F2_3<0b101, 1, 0, (outs), (ins bprtarget:$imm19, CCOp:$cond, | 
|  | FCCRegs:$cc), | 
|  | "fb$cond,a,pn $cc, $imm19", []>; | 
|  | } | 
|  | } // let isBranch = 1, isTerminator = 1, hasDelaySlot = 1 | 
|  |  | 
|  | let Uses = [FCC0] in { | 
|  | def FBCOND  : FPBranchSP<(ins brtarget:$imm22, CCOp:$cond), | 
|  | "fb$cond $imm22", | 
|  | [(SPbrfcc bb:$imm22, imm:$cond)]>; | 
|  | def FBCONDA : FPBranchSPA<(ins brtarget:$imm22, CCOp:$cond), | 
|  | "fb$cond,a $imm22", []>; | 
|  | } | 
|  |  | 
|  | let Predicates = [HasV9] in | 
|  | defm BPF : FPredBranch; | 
|  |  | 
|  |  | 
|  | // Section B.24 - Call and Link Instruction, p. 125 | 
|  | // This is the only Format 1 instruction | 
|  | let Uses = [O6], | 
|  | hasDelaySlot = 1, isCall = 1 in { | 
|  | def CALL : InstSP<(outs), (ins calltarget:$disp, variable_ops), | 
|  | "call $disp", []> { | 
|  | bits<30> disp; | 
|  | let op = 1; | 
|  | let Inst{29-0} = disp; | 
|  | } | 
|  |  | 
|  | // indirect calls: special cases of JMPL. | 
|  | let isCodeGenOnly = 1, rd = 15 in { | 
|  | def CALLrr : F3_1<2, 0b111000, | 
|  | (outs), (ins MEMrr:$ptr, variable_ops), | 
|  | "call $ptr", | 
|  | [(call ADDRrr:$ptr)]>; | 
|  | def CALLri : F3_2<2, 0b111000, | 
|  | (outs), (ins MEMri:$ptr, variable_ops), | 
|  | "call $ptr", | 
|  | [(call ADDRri:$ptr)]>; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Section B.28 - Read State Register Instructions | 
|  | let Uses = [Y], rs1 = 0, rs2 = 0 in | 
|  | def RDY : F3_1<2, 0b101000, | 
|  | (outs IntRegs:$dst), (ins), | 
|  | "rd %y, $dst", []>; | 
|  |  | 
|  | // Section B.29 - Write State Register Instructions | 
|  | let Defs = [Y], rd = 0 in { | 
|  | def WRYrr : F3_1<2, 0b110000, | 
|  | (outs), (ins IntRegs:$rs1, IntRegs:$rs2), | 
|  | "wr $rs1, $rs2, %y", []>; | 
|  | def WRYri : F3_2<2, 0b110000, | 
|  | (outs), (ins IntRegs:$rs1, simm13Op:$simm13), | 
|  | "wr $rs1, $simm13, %y", []>; | 
|  | } | 
|  | // Convert Integer to Floating-point Instructions, p. 141 | 
|  | def FITOS : F3_3u<2, 0b110100, 0b011000100, | 
|  | (outs FPRegs:$rd), (ins FPRegs:$rs2), | 
|  | "fitos $rs2, $rd", | 
|  | [(set FPRegs:$rd, (SPitof FPRegs:$rs2))]>; | 
|  | def FITOD : F3_3u<2, 0b110100, 0b011001000, | 
|  | (outs DFPRegs:$rd), (ins FPRegs:$rs2), | 
|  | "fitod $rs2, $rd", | 
|  | [(set DFPRegs:$rd, (SPitof FPRegs:$rs2))]>; | 
|  | def FITOQ : F3_3u<2, 0b110100, 0b011001100, | 
|  | (outs QFPRegs:$rd), (ins FPRegs:$rs2), | 
|  | "fitoq $rs2, $rd", | 
|  | [(set QFPRegs:$rd, (SPitof FPRegs:$rs2))]>, | 
|  | Requires<[HasHardQuad]>; | 
|  |  | 
|  | // Convert Floating-point to Integer Instructions, p. 142 | 
|  | def FSTOI : F3_3u<2, 0b110100, 0b011010001, | 
|  | (outs FPRegs:$rd), (ins FPRegs:$rs2), | 
|  | "fstoi $rs2, $rd", | 
|  | [(set FPRegs:$rd, (SPftoi FPRegs:$rs2))]>; | 
|  | def FDTOI : F3_3u<2, 0b110100, 0b011010010, | 
|  | (outs FPRegs:$rd), (ins DFPRegs:$rs2), | 
|  | "fdtoi $rs2, $rd", | 
|  | [(set FPRegs:$rd, (SPftoi DFPRegs:$rs2))]>; | 
|  | def FQTOI : F3_3u<2, 0b110100, 0b011010011, | 
|  | (outs FPRegs:$rd), (ins QFPRegs:$rs2), | 
|  | "fqtoi $rs2, $rd", | 
|  | [(set FPRegs:$rd, (SPftoi QFPRegs:$rs2))]>, | 
|  | Requires<[HasHardQuad]>; | 
|  |  | 
|  | // Convert between Floating-point Formats Instructions, p. 143 | 
|  | def FSTOD : F3_3u<2, 0b110100, 0b011001001, | 
|  | (outs DFPRegs:$rd), (ins FPRegs:$rs2), | 
|  | "fstod $rs2, $rd", | 
|  | [(set f64:$rd, (fextend f32:$rs2))]>; | 
|  | def FSTOQ : F3_3u<2, 0b110100, 0b011001101, | 
|  | (outs QFPRegs:$rd), (ins FPRegs:$rs2), | 
|  | "fstoq $rs2, $rd", | 
|  | [(set f128:$rd, (fextend f32:$rs2))]>, | 
|  | Requires<[HasHardQuad]>; | 
|  | def FDTOS : F3_3u<2, 0b110100, 0b011000110, | 
|  | (outs FPRegs:$rd), (ins DFPRegs:$rs2), | 
|  | "fdtos $rs2, $rd", | 
|  | [(set f32:$rd, (fround f64:$rs2))]>; | 
|  | def FDTOQ : F3_3u<2, 0b110100, 0b011001110, | 
|  | (outs QFPRegs:$rd), (ins DFPRegs:$rs2), | 
|  | "fdtoq $rs2, $rd", | 
|  | [(set f128:$rd, (fextend f64:$rs2))]>, | 
|  | Requires<[HasHardQuad]>; | 
|  | def FQTOS : F3_3u<2, 0b110100, 0b011000111, | 
|  | (outs FPRegs:$rd), (ins QFPRegs:$rs2), | 
|  | "fqtos $rs2, $rd", | 
|  | [(set f32:$rd, (fround f128:$rs2))]>, | 
|  | Requires<[HasHardQuad]>; | 
|  | def FQTOD : F3_3u<2, 0b110100, 0b011001011, | 
|  | (outs DFPRegs:$rd), (ins QFPRegs:$rs2), | 
|  | "fqtod $rs2, $rd", | 
|  | [(set f64:$rd, (fround f128:$rs2))]>, | 
|  | Requires<[HasHardQuad]>; | 
|  |  | 
|  | // Floating-point Move Instructions, p. 144 | 
|  | def FMOVS : F3_3u<2, 0b110100, 0b000000001, | 
|  | (outs FPRegs:$rd), (ins FPRegs:$rs2), | 
|  | "fmovs $rs2, $rd", []>; | 
|  | def FNEGS : F3_3u<2, 0b110100, 0b000000101, | 
|  | (outs FPRegs:$rd), (ins FPRegs:$rs2), | 
|  | "fnegs $rs2, $rd", | 
|  | [(set f32:$rd, (fneg f32:$rs2))]>; | 
|  | def FABSS : F3_3u<2, 0b110100, 0b000001001, | 
|  | (outs FPRegs:$rd), (ins FPRegs:$rs2), | 
|  | "fabss $rs2, $rd", | 
|  | [(set f32:$rd, (fabs f32:$rs2))]>; | 
|  |  | 
|  |  | 
|  | // Floating-point Square Root Instructions, p.145 | 
|  | def FSQRTS : F3_3u<2, 0b110100, 0b000101001, | 
|  | (outs FPRegs:$rd), (ins FPRegs:$rs2), | 
|  | "fsqrts $rs2, $rd", | 
|  | [(set f32:$rd, (fsqrt f32:$rs2))]>; | 
|  | def FSQRTD : F3_3u<2, 0b110100, 0b000101010, | 
|  | (outs DFPRegs:$rd), (ins DFPRegs:$rs2), | 
|  | "fsqrtd $rs2, $rd", | 
|  | [(set f64:$rd, (fsqrt f64:$rs2))]>; | 
|  | def FSQRTQ : F3_3u<2, 0b110100, 0b000101011, | 
|  | (outs QFPRegs:$rd), (ins QFPRegs:$rs2), | 
|  | "fsqrtq $rs2, $rd", | 
|  | [(set f128:$rd, (fsqrt f128:$rs2))]>, | 
|  | Requires<[HasHardQuad]>; | 
|  |  | 
|  |  | 
|  |  | 
|  | // Floating-point Add and Subtract Instructions, p. 146 | 
|  | def FADDS  : F3_3<2, 0b110100, 0b001000001, | 
|  | (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), | 
|  | "fadds $rs1, $rs2, $rd", | 
|  | [(set f32:$rd, (fadd f32:$rs1, f32:$rs2))]>; | 
|  | def FADDD  : F3_3<2, 0b110100, 0b001000010, | 
|  | (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), | 
|  | "faddd $rs1, $rs2, $rd", | 
|  | [(set f64:$rd, (fadd f64:$rs1, f64:$rs2))]>; | 
|  | def FADDQ  : F3_3<2, 0b110100, 0b001000011, | 
|  | (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), | 
|  | "faddq $rs1, $rs2, $rd", | 
|  | [(set f128:$rd, (fadd f128:$rs1, f128:$rs2))]>, | 
|  | Requires<[HasHardQuad]>; | 
|  |  | 
|  | def FSUBS  : F3_3<2, 0b110100, 0b001000101, | 
|  | (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), | 
|  | "fsubs $rs1, $rs2, $rd", | 
|  | [(set f32:$rd, (fsub f32:$rs1, f32:$rs2))]>; | 
|  | def FSUBD  : F3_3<2, 0b110100, 0b001000110, | 
|  | (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), | 
|  | "fsubd $rs1, $rs2, $rd", | 
|  | [(set f64:$rd, (fsub f64:$rs1, f64:$rs2))]>; | 
|  | def FSUBQ  : F3_3<2, 0b110100, 0b001000111, | 
|  | (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), | 
|  | "fsubq $rs1, $rs2, $rd", | 
|  | [(set f128:$rd, (fsub f128:$rs1, f128:$rs2))]>, | 
|  | Requires<[HasHardQuad]>; | 
|  |  | 
|  |  | 
|  | // Floating-point Multiply and Divide Instructions, p. 147 | 
|  | def FMULS  : F3_3<2, 0b110100, 0b001001001, | 
|  | (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), | 
|  | "fmuls $rs1, $rs2, $rd", | 
|  | [(set f32:$rd, (fmul f32:$rs1, f32:$rs2))]>; | 
|  | def FMULD  : F3_3<2, 0b110100, 0b001001010, | 
|  | (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), | 
|  | "fmuld $rs1, $rs2, $rd", | 
|  | [(set f64:$rd, (fmul f64:$rs1, f64:$rs2))]>; | 
|  | def FMULQ  : F3_3<2, 0b110100, 0b001001011, | 
|  | (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), | 
|  | "fmulq $rs1, $rs2, $rd", | 
|  | [(set f128:$rd, (fmul f128:$rs1, f128:$rs2))]>, | 
|  | Requires<[HasHardQuad]>; | 
|  |  | 
|  | def FSMULD : F3_3<2, 0b110100, 0b001101001, | 
|  | (outs DFPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), | 
|  | "fsmuld $rs1, $rs2, $rd", | 
|  | [(set f64:$rd, (fmul (fextend f32:$rs1), | 
|  | (fextend f32:$rs2)))]>; | 
|  | def FDMULQ : F3_3<2, 0b110100, 0b001101110, | 
|  | (outs QFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), | 
|  | "fdmulq $rs1, $rs2, $rd", | 
|  | [(set f128:$rd, (fmul (fextend f64:$rs1), | 
|  | (fextend f64:$rs2)))]>, | 
|  | Requires<[HasHardQuad]>; | 
|  |  | 
|  | def FDIVS  : F3_3<2, 0b110100, 0b001001101, | 
|  | (outs FPRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), | 
|  | "fdivs $rs1, $rs2, $rd", | 
|  | [(set f32:$rd, (fdiv f32:$rs1, f32:$rs2))]>; | 
|  | def FDIVD  : F3_3<2, 0b110100, 0b001001110, | 
|  | (outs DFPRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), | 
|  | "fdivd $rs1, $rs2, $rd", | 
|  | [(set f64:$rd, (fdiv f64:$rs1, f64:$rs2))]>; | 
|  | def FDIVQ  : F3_3<2, 0b110100, 0b001001111, | 
|  | (outs QFPRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), | 
|  | "fdivq $rs1, $rs2, $rd", | 
|  | [(set f128:$rd, (fdiv f128:$rs1, f128:$rs2))]>, | 
|  | Requires<[HasHardQuad]>; | 
|  |  | 
|  | // Floating-point Compare Instructions, p. 148 | 
|  | // Note: the 2nd template arg is different for these guys. | 
|  | // Note 2: the result of a FCMP is not available until the 2nd cycle | 
|  | // after the instr is retired, but there is no interlock in Sparc V8. | 
|  | // This behavior is modeled with a forced noop after the instruction in | 
|  | // DelaySlotFiller. | 
|  |  | 
|  | let Defs = [FCC0], rd = 0, isCodeGenOnly = 1 in { | 
|  | def FCMPS  : F3_3c<2, 0b110101, 0b001010001, | 
|  | (outs), (ins FPRegs:$rs1, FPRegs:$rs2), | 
|  | "fcmps $rs1, $rs2", | 
|  | [(SPcmpfcc f32:$rs1, f32:$rs2)]>; | 
|  | def FCMPD  : F3_3c<2, 0b110101, 0b001010010, | 
|  | (outs), (ins DFPRegs:$rs1, DFPRegs:$rs2), | 
|  | "fcmpd $rs1, $rs2", | 
|  | [(SPcmpfcc f64:$rs1, f64:$rs2)]>; | 
|  | def FCMPQ  : F3_3c<2, 0b110101, 0b001010011, | 
|  | (outs), (ins QFPRegs:$rs1, QFPRegs:$rs2), | 
|  | "fcmpq $rs1, $rs2", | 
|  | [(SPcmpfcc f128:$rs1, f128:$rs2)]>, | 
|  | Requires<[HasHardQuad]>; | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Instructions for Thread Local Storage(TLS). | 
|  | //===----------------------------------------------------------------------===// | 
|  | let isCodeGenOnly = 1, isAsmParserOnly = 1 in { | 
|  | def TLS_ADDrr : F3_1<2, 0b000000, | 
|  | (outs IntRegs:$rd), | 
|  | (ins IntRegs:$rs1, IntRegs:$rs2, TLSSym:$sym), | 
|  | "add $rs1, $rs2, $rd, $sym", | 
|  | [(set i32:$rd, | 
|  | (tlsadd i32:$rs1, i32:$rs2, tglobaltlsaddr:$sym))]>; | 
|  |  | 
|  | let mayLoad = 1 in | 
|  | def TLS_LDrr : F3_1<3, 0b000000, | 
|  | (outs IntRegs:$dst), (ins MEMrr:$addr, TLSSym:$sym), | 
|  | "ld [$addr], $dst, $sym", | 
|  | [(set i32:$dst, | 
|  | (tlsld ADDRrr:$addr, tglobaltlsaddr:$sym))]>; | 
|  |  | 
|  | let Uses = [O6], isCall = 1, hasDelaySlot = 1 in | 
|  | def TLS_CALL : InstSP<(outs), | 
|  | (ins calltarget:$disp, TLSSym:$sym, variable_ops), | 
|  | "call $disp, $sym", | 
|  | [(tlscall texternalsym:$disp, tglobaltlsaddr:$sym)]> { | 
|  | bits<30> disp; | 
|  | let op = 1; | 
|  | let Inst{29-0} = disp; | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // V9 Instructions | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // V9 Conditional Moves. | 
|  | let Predicates = [HasV9], Constraints = "$f = $rd" in { | 
|  | // Move Integer Register on Condition (MOVcc) p. 194 of the V9 manual. | 
|  | let Uses = [ICC], intcc = 1, cc = 0b00 in { | 
|  | def MOVICCrr | 
|  | : F4_1<0b101100, (outs IntRegs:$rd), | 
|  | (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond), | 
|  | "mov$cond %icc, $rs2, $rd", | 
|  | [(set i32:$rd, (SPselecticc i32:$rs2, i32:$f, imm:$cond))]>; | 
|  |  | 
|  | def MOVICCri | 
|  | : F4_2<0b101100, (outs IntRegs:$rd), | 
|  | (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond), | 
|  | "mov$cond %icc, $simm11, $rd", | 
|  | [(set i32:$rd, | 
|  | (SPselecticc simm11:$simm11, i32:$f, imm:$cond))]>; | 
|  | } | 
|  |  | 
|  | let Uses = [FCC0], intcc = 0, cc = 0b00 in { | 
|  | def MOVFCCrr | 
|  | : F4_1<0b101100, (outs IntRegs:$rd), | 
|  | (ins IntRegs:$rs2, IntRegs:$f, CCOp:$cond), | 
|  | "mov$cond %fcc0, $rs2, $rd", | 
|  | [(set i32:$rd, (SPselectfcc i32:$rs2, i32:$f, imm:$cond))]>; | 
|  | def MOVFCCri | 
|  | : F4_2<0b101100, (outs IntRegs:$rd), | 
|  | (ins i32imm:$simm11, IntRegs:$f, CCOp:$cond), | 
|  | "mov$cond %fcc0, $simm11, $rd", | 
|  | [(set i32:$rd, | 
|  | (SPselectfcc simm11:$simm11, i32:$f, imm:$cond))]>; | 
|  | } | 
|  |  | 
|  | let Uses = [ICC], intcc = 1, opf_cc = 0b00 in { | 
|  | def FMOVS_ICC | 
|  | : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), | 
|  | (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond), | 
|  | "fmovs$cond %icc, $rs2, $rd", | 
|  | [(set f32:$rd, (SPselecticc f32:$rs2, f32:$f, imm:$cond))]>; | 
|  | def FMOVD_ICC | 
|  | : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), | 
|  | (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), | 
|  | "fmovd$cond %icc, $rs2, $rd", | 
|  | [(set f64:$rd, (SPselecticc f64:$rs2, f64:$f, imm:$cond))]>; | 
|  | def FMOVQ_ICC | 
|  | : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), | 
|  | (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), | 
|  | "fmovq$cond %icc, $rs2, $rd", | 
|  | [(set f128:$rd, (SPselecticc f128:$rs2, f128:$f, imm:$cond))]>, | 
|  | Requires<[HasHardQuad]>; | 
|  | } | 
|  |  | 
|  | let Uses = [FCC0], intcc = 0, opf_cc = 0b00 in { | 
|  | def FMOVS_FCC | 
|  | : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), | 
|  | (ins FPRegs:$rs2, FPRegs:$f, CCOp:$cond), | 
|  | "fmovs$cond %fcc0, $rs2, $rd", | 
|  | [(set f32:$rd, (SPselectfcc f32:$rs2, f32:$f, imm:$cond))]>; | 
|  | def FMOVD_FCC | 
|  | : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), | 
|  | (ins DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), | 
|  | "fmovd$cond %fcc0, $rs2, $rd", | 
|  | [(set f64:$rd, (SPselectfcc f64:$rs2, f64:$f, imm:$cond))]>; | 
|  | def FMOVQ_FCC | 
|  | : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), | 
|  | (ins QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), | 
|  | "fmovq$cond %fcc0, $rs2, $rd", | 
|  | [(set f128:$rd, (SPselectfcc f128:$rs2, f128:$f, imm:$cond))]>, | 
|  | Requires<[HasHardQuad]>; | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | // Floating-Point Move Instructions, p. 164 of the V9 manual. | 
|  | let Predicates = [HasV9] in { | 
|  | def FMOVD : F3_3u<2, 0b110100, 0b000000010, | 
|  | (outs DFPRegs:$rd), (ins DFPRegs:$rs2), | 
|  | "fmovd $rs2, $rd", []>; | 
|  | def FMOVQ : F3_3u<2, 0b110100, 0b000000011, | 
|  | (outs QFPRegs:$rd), (ins QFPRegs:$rs2), | 
|  | "fmovq $rs2, $rd", []>, | 
|  | Requires<[HasHardQuad]>; | 
|  | def FNEGD : F3_3u<2, 0b110100, 0b000000110, | 
|  | (outs DFPRegs:$rd), (ins DFPRegs:$rs2), | 
|  | "fnegd $rs2, $rd", | 
|  | [(set f64:$rd, (fneg f64:$rs2))]>; | 
|  | def FNEGQ : F3_3u<2, 0b110100, 0b000000111, | 
|  | (outs QFPRegs:$rd), (ins QFPRegs:$rs2), | 
|  | "fnegq $rs2, $rd", | 
|  | [(set f128:$rd, (fneg f128:$rs2))]>, | 
|  | Requires<[HasHardQuad]>; | 
|  | def FABSD : F3_3u<2, 0b110100, 0b000001010, | 
|  | (outs DFPRegs:$rd), (ins DFPRegs:$rs2), | 
|  | "fabsd $rs2, $rd", | 
|  | [(set f64:$rd, (fabs f64:$rs2))]>; | 
|  | def FABSQ : F3_3u<2, 0b110100, 0b000001011, | 
|  | (outs QFPRegs:$rd), (ins QFPRegs:$rs2), | 
|  | "fabsq $rs2, $rd", | 
|  | [(set f128:$rd, (fabs f128:$rs2))]>, | 
|  | Requires<[HasHardQuad]>; | 
|  | } | 
|  |  | 
|  | // Floating-point compare instruction with %fcc0-%fcc3. | 
|  | def V9FCMPS  : F3_3c<2, 0b110101, 0b001010001, | 
|  | (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), | 
|  | "fcmps $rd, $rs1, $rs2", []>; | 
|  | def V9FCMPD  : F3_3c<2, 0b110101, 0b001010010, | 
|  | (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), | 
|  | "fcmpd $rd, $rs1, $rs2", []>; | 
|  | def V9FCMPQ  : F3_3c<2, 0b110101, 0b001010011, | 
|  | (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), | 
|  | "fcmpq $rd, $rs1, $rs2", []>, | 
|  | Requires<[HasHardQuad]>; | 
|  |  | 
|  | let hasSideEffects = 1 in { | 
|  | def V9FCMPES  : F3_3c<2, 0b110101, 0b001010101, | 
|  | (outs FCCRegs:$rd), (ins FPRegs:$rs1, FPRegs:$rs2), | 
|  | "fcmpes $rd, $rs1, $rs2", []>; | 
|  | def V9FCMPED  : F3_3c<2, 0b110101, 0b001010110, | 
|  | (outs FCCRegs:$rd), (ins DFPRegs:$rs1, DFPRegs:$rs2), | 
|  | "fcmped $rd, $rs1, $rs2", []>; | 
|  | def V9FCMPEQ  : F3_3c<2, 0b110101, 0b001010111, | 
|  | (outs FCCRegs:$rd), (ins QFPRegs:$rs1, QFPRegs:$rs2), | 
|  | "fcmpeq $rd, $rs1, $rs2", []>, | 
|  | Requires<[HasHardQuad]>; | 
|  | } | 
|  |  | 
|  | // Floating point conditional move instrucitons with %fcc0-%fcc3. | 
|  | let Predicates = [HasV9] in { | 
|  | let Constraints = "$f = $rd", intcc = 0 in { | 
|  | def V9MOVFCCrr | 
|  | : F4_1<0b101100, (outs IntRegs:$rd), | 
|  | (ins FCCRegs:$cc, IntRegs:$rs2, IntRegs:$f, CCOp:$cond), | 
|  | "mov$cond $cc, $rs2, $rd", []>; | 
|  | def V9MOVFCCri | 
|  | : F4_2<0b101100, (outs IntRegs:$rd), | 
|  | (ins FCCRegs:$cc, i32imm:$simm11, IntRegs:$f, CCOp:$cond), | 
|  | "mov$cond $cc, $simm11, $rd", []>; | 
|  | def V9FMOVS_FCC | 
|  | : F4_3<0b110101, 0b000001, (outs FPRegs:$rd), | 
|  | (ins FCCRegs:$opf_cc, FPRegs:$rs2, FPRegs:$f, CCOp:$cond), | 
|  | "fmovs$cond $opf_cc, $rs2, $rd", []>; | 
|  | def V9FMOVD_FCC | 
|  | : F4_3<0b110101, 0b000010, (outs DFPRegs:$rd), | 
|  | (ins FCCRegs:$opf_cc, DFPRegs:$rs2, DFPRegs:$f, CCOp:$cond), | 
|  | "fmovd$cond $opf_cc, $rs2, $rd", []>; | 
|  | def V9FMOVQ_FCC | 
|  | : F4_3<0b110101, 0b000011, (outs QFPRegs:$rd), | 
|  | (ins FCCRegs:$opf_cc, QFPRegs:$rs2, QFPRegs:$f, CCOp:$cond), | 
|  | "fmovq$cond $opf_cc, $rs2, $rd", []>, | 
|  | Requires<[HasHardQuad]>; | 
|  | } // Constraints = "$f = $rd", ... | 
|  | } // let Predicates = [hasV9] | 
|  |  | 
|  |  | 
|  | // POPCrr - This does a ctpop of a 64-bit register.  As such, we have to clear | 
|  | // the top 32-bits before using it.  To do this clearing, we use a SRLri X,0. | 
|  | let rs1 = 0 in | 
|  | def POPCrr : F3_1<2, 0b101110, | 
|  | (outs IntRegs:$dst), (ins IntRegs:$src), | 
|  | "popc $src, $dst", []>, Requires<[HasV9]>; | 
|  | def : Pat<(ctpop i32:$src), | 
|  | (POPCrr (SRLri $src, 0))>; | 
|  |  | 
|  | // Atomic swap. | 
|  | let hasSideEffects =1, rd = 0, rs1 = 0b01111, rs2 = 0 in | 
|  | def STBAR : F3_1<2, 0b101000, (outs), (ins), "stbar", []>; | 
|  |  | 
|  | let Predicates = [HasV9], hasSideEffects = 1, rd = 0, rs1 = 0b01111 in | 
|  | def MEMBARi : F3_2<2, 0b101000, (outs), (ins simm13Op:$simm13), | 
|  | "membar $simm13", []>; | 
|  |  | 
|  | let Constraints = "$val = $dst", DecoderMethod = "DecodeSWAP" in { | 
|  | def SWAPrr : F3_1<3, 0b001111, | 
|  | (outs IntRegs:$dst), (ins MEMrr:$addr, IntRegs:$val), | 
|  | "swap [$addr], $dst", | 
|  | [(set i32:$dst, (atomic_swap_32 ADDRrr:$addr, i32:$val))]>; | 
|  | def SWAPri : F3_2<3, 0b001111, | 
|  | (outs IntRegs:$dst), (ins MEMri:$addr, IntRegs:$val), | 
|  | "swap [$addr], $dst", | 
|  | [(set i32:$dst, (atomic_swap_32 ADDRri:$addr, i32:$val))]>; | 
|  | } | 
|  |  | 
|  | let Predicates = [HasV9], Constraints = "$swap = $rd" in | 
|  | def CASrr: F3_1_asi<3, 0b111100, 0b10000000, | 
|  | (outs IntRegs:$rd), (ins IntRegs:$rs1, IntRegs:$rs2, | 
|  | IntRegs:$swap), | 
|  | "cas [$rs1], $rs2, $rd", | 
|  | [(set i32:$rd, | 
|  | (atomic_cmp_swap iPTR:$rs1, i32:$rs2, i32:$swap))]>; | 
|  |  | 
|  | let Defs = [ICC] in { | 
|  | defm TADDCC   : F3_12np<"taddcc",   0b100000>; | 
|  | defm TSUBCC   : F3_12np<"tsubcc",   0b100001>; | 
|  |  | 
|  | let hasSideEffects = 1 in { | 
|  | defm TADDCCTV : F3_12np<"taddcctv", 0b100010>; | 
|  | defm TSUBCCTV : F3_12np<"tsubcctv", 0b100011>; | 
|  | } | 
|  | } | 
|  |  | 
|  | multiclass TRAP<string regStr> { | 
|  | def rr : TRAPSPrr<0b111010, (outs), (ins IntRegs:$rs1, IntRegs:$rs2, | 
|  | CCOp:$cond), | 
|  | !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $rs2"), []>; | 
|  | def ri : TRAPSPri<0b111010, (outs), (ins IntRegs:$rs1, i32imm:$imm, | 
|  | CCOp:$cond), | 
|  | !strconcat(!strconcat("t$cond ", regStr), ", $rs1 + $imm"), []>; | 
|  | } | 
|  |  | 
|  | let hasSideEffects = 1, Uses = [ICC], cc = 0b00 in | 
|  | defm TICC : TRAP<"%icc">; | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | // Non-Instruction Patterns | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | // Small immediates. | 
|  | def : Pat<(i32 simm13:$val), | 
|  | (ORri (i32 G0), imm:$val)>; | 
|  | // Arbitrary immediates. | 
|  | def : Pat<(i32 imm:$val), | 
|  | (ORri (SETHIi (HI22 imm:$val)), (LO10 imm:$val))>; | 
|  |  | 
|  |  | 
|  | // Global addresses, constant pool entries | 
|  | let Predicates = [Is32Bit] in { | 
|  |  | 
|  | def : Pat<(SPhi tglobaladdr:$in), (SETHIi tglobaladdr:$in)>; | 
|  | def : Pat<(SPlo tglobaladdr:$in), (ORri (i32 G0), tglobaladdr:$in)>; | 
|  | def : Pat<(SPhi tconstpool:$in), (SETHIi tconstpool:$in)>; | 
|  | def : Pat<(SPlo tconstpool:$in), (ORri (i32 G0), tconstpool:$in)>; | 
|  |  | 
|  | // GlobalTLS addresses | 
|  | def : Pat<(SPhi tglobaltlsaddr:$in), (SETHIi tglobaltlsaddr:$in)>; | 
|  | def : Pat<(SPlo tglobaltlsaddr:$in), (ORri (i32 G0), tglobaltlsaddr:$in)>; | 
|  | def : Pat<(add (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)), | 
|  | (ADDri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>; | 
|  | def : Pat<(xor (SPhi tglobaltlsaddr:$in1), (SPlo tglobaltlsaddr:$in2)), | 
|  | (XORri (SETHIi tglobaltlsaddr:$in1), (tglobaltlsaddr:$in2))>; | 
|  |  | 
|  | // Blockaddress | 
|  | def : Pat<(SPhi tblockaddress:$in), (SETHIi tblockaddress:$in)>; | 
|  | def : Pat<(SPlo tblockaddress:$in), (ORri (i32 G0), tblockaddress:$in)>; | 
|  |  | 
|  | // Add reg, lo.  This is used when taking the addr of a global/constpool entry. | 
|  | def : Pat<(add iPTR:$r, (SPlo tglobaladdr:$in)), (ADDri $r, tglobaladdr:$in)>; | 
|  | def : Pat<(add iPTR:$r, (SPlo tconstpool:$in)),  (ADDri $r, tconstpool:$in)>; | 
|  | def : Pat<(add iPTR:$r, (SPlo tblockaddress:$in)), | 
|  | (ADDri $r, tblockaddress:$in)>; | 
|  | } | 
|  |  | 
|  | // Calls: | 
|  | def : Pat<(call tglobaladdr:$dst), | 
|  | (CALL tglobaladdr:$dst)>; | 
|  | def : Pat<(call texternalsym:$dst), | 
|  | (CALL texternalsym:$dst)>; | 
|  |  | 
|  | // Map integer extload's to zextloads. | 
|  | def : Pat<(i32 (extloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; | 
|  | def : Pat<(i32 (extloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; | 
|  | def : Pat<(i32 (extloadi8 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; | 
|  | def : Pat<(i32 (extloadi8 ADDRri:$src)), (LDUBri ADDRri:$src)>; | 
|  | def : Pat<(i32 (extloadi16 ADDRrr:$src)), (LDUHrr ADDRrr:$src)>; | 
|  | def : Pat<(i32 (extloadi16 ADDRri:$src)), (LDUHri ADDRri:$src)>; | 
|  |  | 
|  | // zextload bool -> zextload byte | 
|  | def : Pat<(i32 (zextloadi1 ADDRrr:$src)), (LDUBrr ADDRrr:$src)>; | 
|  | def : Pat<(i32 (zextloadi1 ADDRri:$src)), (LDUBri ADDRri:$src)>; | 
|  |  | 
|  | // store 0, addr -> store %g0, addr | 
|  | def : Pat<(store (i32 0), ADDRrr:$dst), (STrr ADDRrr:$dst, (i32 G0))>; | 
|  | def : Pat<(store (i32 0), ADDRri:$dst), (STri ADDRri:$dst, (i32 G0))>; | 
|  |  | 
|  | // store bar for all atomic_fence in V8. | 
|  | let Predicates = [HasNoV9] in | 
|  | def : Pat<(atomic_fence imm, imm), (STBAR)>; | 
|  |  | 
|  | // atomic_load_32 addr -> load addr | 
|  | def : Pat<(i32 (atomic_load ADDRrr:$src)), (LDrr ADDRrr:$src)>; | 
|  | def : Pat<(i32 (atomic_load ADDRri:$src)), (LDri ADDRri:$src)>; | 
|  |  | 
|  | // atomic_store_32 val, addr -> store val, addr | 
|  | def : Pat<(atomic_store ADDRrr:$dst, i32:$val), (STrr ADDRrr:$dst, $val)>; | 
|  | def : Pat<(atomic_store ADDRri:$dst, i32:$val), (STri ADDRri:$dst, $val)>; | 
|  |  | 
|  |  | 
|  | include "SparcInstr64Bit.td" | 
|  | include "SparcInstrVIS.td" | 
|  | include "SparcInstrAliases.td" |