|  | //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This file implements the TwoAddress instruction pass which is used | 
|  | // by most register allocators. Two-Address instructions are rewritten | 
|  | // from: | 
|  | // | 
|  | //     A = B op C | 
|  | // | 
|  | // to: | 
|  | // | 
|  | //     A = B | 
|  | //     A op= C | 
|  | // | 
|  | // Note that if a register allocator chooses to use this pass, that it | 
|  | // has to be capable of handling the non-SSA nature of these rewritten | 
|  | // virtual registers. | 
|  | // | 
|  | // It is also worth noting that the duplicate operand of the two | 
|  | // address instruction is removed. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/ADT/DenseMap.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/CodeGen/LiveIntervalAnalysis.h" | 
|  | #include "llvm/CodeGen/LiveVariables.h" | 
|  | #include "llvm/CodeGen/MachineFunctionPass.h" | 
|  | #include "llvm/CodeGen/MachineInstr.h" | 
|  | #include "llvm/CodeGen/MachineInstrBuilder.h" | 
|  | #include "llvm/CodeGen/MachineRegisterInfo.h" | 
|  | #include "llvm/CodeGen/Passes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/MC/MCInstrItineraries.h" | 
|  | #include "llvm/Support/CommandLine.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/ErrorHandling.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Target/TargetInstrInfo.h" | 
|  | #include "llvm/Target/TargetMachine.h" | 
|  | #include "llvm/Target/TargetRegisterInfo.h" | 
|  | #include "llvm/Target/TargetSubtargetInfo.h" | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "twoaddressinstruction" | 
|  |  | 
|  | STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); | 
|  | STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce"); | 
|  | STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted"); | 
|  | STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); | 
|  | STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk"); | 
|  | STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up"); | 
|  | STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down"); | 
|  |  | 
|  | // Temporary flag to disable rescheduling. | 
|  | static cl::opt<bool> | 
|  | EnableRescheduling("twoaddr-reschedule", | 
|  | cl::desc("Coalesce copies by rescheduling (default=true)"), | 
|  | cl::init(true), cl::Hidden); | 
|  |  | 
|  | namespace { | 
|  | class TwoAddressInstructionPass : public MachineFunctionPass { | 
|  | MachineFunction *MF; | 
|  | const TargetInstrInfo *TII; | 
|  | const TargetRegisterInfo *TRI; | 
|  | const InstrItineraryData *InstrItins; | 
|  | MachineRegisterInfo *MRI; | 
|  | LiveVariables *LV; | 
|  | LiveIntervals *LIS; | 
|  | AliasAnalysis *AA; | 
|  | CodeGenOpt::Level OptLevel; | 
|  |  | 
|  | // The current basic block being processed. | 
|  | MachineBasicBlock *MBB; | 
|  |  | 
|  | // Keep track the distance of a MI from the start of the current basic block. | 
|  | DenseMap<MachineInstr*, unsigned> DistanceMap; | 
|  |  | 
|  | // Set of already processed instructions in the current block. | 
|  | SmallPtrSet<MachineInstr*, 8> Processed; | 
|  |  | 
|  | // A map from virtual registers to physical registers which are likely targets | 
|  | // to be coalesced to due to copies from physical registers to virtual | 
|  | // registers. e.g. v1024 = move r0. | 
|  | DenseMap<unsigned, unsigned> SrcRegMap; | 
|  |  | 
|  | // A map from virtual registers to physical registers which are likely targets | 
|  | // to be coalesced to due to copies to physical registers from virtual | 
|  | // registers. e.g. r1 = move v1024. | 
|  | DenseMap<unsigned, unsigned> DstRegMap; | 
|  |  | 
|  | bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg, | 
|  | MachineBasicBlock::iterator OldPos); | 
|  |  | 
|  | bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen); | 
|  |  | 
|  | bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef); | 
|  |  | 
|  | bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, | 
|  | MachineInstr *MI, unsigned Dist); | 
|  |  | 
|  | bool commuteInstruction(MachineInstr *MI, unsigned DstIdx, | 
|  | unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); | 
|  |  | 
|  | bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB); | 
|  |  | 
|  | bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, | 
|  | MachineBasicBlock::iterator &nmi, | 
|  | unsigned RegA, unsigned RegB, unsigned Dist); | 
|  |  | 
|  | bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI); | 
|  |  | 
|  | bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, | 
|  | MachineBasicBlock::iterator &nmi, | 
|  | unsigned Reg); | 
|  | bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, | 
|  | MachineBasicBlock::iterator &nmi, | 
|  | unsigned Reg); | 
|  |  | 
|  | bool tryInstructionTransform(MachineBasicBlock::iterator &mi, | 
|  | MachineBasicBlock::iterator &nmi, | 
|  | unsigned SrcIdx, unsigned DstIdx, | 
|  | unsigned Dist, bool shouldOnlyCommute); | 
|  |  | 
|  | bool tryInstructionCommute(MachineInstr *MI, | 
|  | unsigned DstOpIdx, | 
|  | unsigned BaseOpIdx, | 
|  | bool BaseOpKilled, | 
|  | unsigned Dist); | 
|  | void scanUses(unsigned DstReg); | 
|  |  | 
|  | void processCopy(MachineInstr *MI); | 
|  |  | 
|  | typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList; | 
|  | typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap; | 
|  | bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); | 
|  | void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); | 
|  | void eliminateRegSequence(MachineBasicBlock::iterator&); | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  | TwoAddressInstructionPass() : MachineFunctionPass(ID) { | 
|  | initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addUsedIfAvailable<AAResultsWrapperPass>(); | 
|  | AU.addUsedIfAvailable<LiveVariables>(); | 
|  | AU.addPreserved<LiveVariables>(); | 
|  | AU.addPreserved<SlotIndexes>(); | 
|  | AU.addPreserved<LiveIntervals>(); | 
|  | AU.addPreservedID(MachineLoopInfoID); | 
|  | AU.addPreservedID(MachineDominatorsID); | 
|  | MachineFunctionPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | /// Pass entry point. | 
|  | bool runOnMachineFunction(MachineFunction&) override; | 
|  | }; | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char TwoAddressInstructionPass::ID = 0; | 
|  | INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE, | 
|  | "Two-Address instruction pass", false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) | 
|  | INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE, | 
|  | "Two-Address instruction pass", false, false) | 
|  |  | 
|  | char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; | 
|  |  | 
|  | static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS); | 
|  |  | 
|  | /// A two-address instruction has been converted to a three-address instruction | 
|  | /// to avoid clobbering a register. Try to sink it past the instruction that | 
|  | /// would kill the above mentioned register to reduce register pressure. | 
|  | bool TwoAddressInstructionPass:: | 
|  | sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg, | 
|  | MachineBasicBlock::iterator OldPos) { | 
|  | // FIXME: Shouldn't we be trying to do this before we three-addressify the | 
|  | // instruction?  After this transformation is done, we no longer need | 
|  | // the instruction to be in three-address form. | 
|  |  | 
|  | // Check if it's safe to move this instruction. | 
|  | bool SeenStore = true; // Be conservative. | 
|  | if (!MI->isSafeToMove(AA, SeenStore)) | 
|  | return false; | 
|  |  | 
|  | unsigned DefReg = 0; | 
|  | SmallSet<unsigned, 4> UseRegs; | 
|  |  | 
|  | for (const MachineOperand &MO : MI->operands()) { | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | unsigned MOReg = MO.getReg(); | 
|  | if (!MOReg) | 
|  | continue; | 
|  | if (MO.isUse() && MOReg != SavedReg) | 
|  | UseRegs.insert(MO.getReg()); | 
|  | if (!MO.isDef()) | 
|  | continue; | 
|  | if (MO.isImplicit()) | 
|  | // Don't try to move it if it implicitly defines a register. | 
|  | return false; | 
|  | if (DefReg) | 
|  | // For now, don't move any instructions that define multiple registers. | 
|  | return false; | 
|  | DefReg = MO.getReg(); | 
|  | } | 
|  |  | 
|  | // Find the instruction that kills SavedReg. | 
|  | MachineInstr *KillMI = nullptr; | 
|  | if (LIS) { | 
|  | LiveInterval &LI = LIS->getInterval(SavedReg); | 
|  | assert(LI.end() != LI.begin() && | 
|  | "Reg should not have empty live interval."); | 
|  |  | 
|  | SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); | 
|  | LiveInterval::const_iterator I = LI.find(MBBEndIdx); | 
|  | if (I != LI.end() && I->start < MBBEndIdx) | 
|  | return false; | 
|  |  | 
|  | --I; | 
|  | KillMI = LIS->getInstructionFromIndex(I->end); | 
|  | } | 
|  | if (!KillMI) { | 
|  | for (MachineOperand &UseMO : MRI->use_nodbg_operands(SavedReg)) { | 
|  | if (!UseMO.isKill()) | 
|  | continue; | 
|  | KillMI = UseMO.getParent(); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we find the instruction that kills SavedReg, and it is in an | 
|  | // appropriate location, we can try to sink the current instruction | 
|  | // past it. | 
|  | if (!KillMI || KillMI->getParent() != MBB || KillMI == MI || | 
|  | MachineBasicBlock::iterator(KillMI) == OldPos || KillMI->isTerminator()) | 
|  | return false; | 
|  |  | 
|  | // If any of the definitions are used by another instruction between the | 
|  | // position and the kill use, then it's not safe to sink it. | 
|  | // | 
|  | // FIXME: This can be sped up if there is an easy way to query whether an | 
|  | // instruction is before or after another instruction. Then we can use | 
|  | // MachineRegisterInfo def / use instead. | 
|  | MachineOperand *KillMO = nullptr; | 
|  | MachineBasicBlock::iterator KillPos = KillMI; | 
|  | ++KillPos; | 
|  |  | 
|  | unsigned NumVisited = 0; | 
|  | for (MachineInstr &OtherMI : llvm::make_range(std::next(OldPos), KillPos)) { | 
|  | // DBG_VALUE cannot be counted against the limit. | 
|  | if (OtherMI.isDebugValue()) | 
|  | continue; | 
|  | if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost. | 
|  | return false; | 
|  | ++NumVisited; | 
|  | for (unsigned i = 0, e = OtherMI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = OtherMI.getOperand(i); | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | unsigned MOReg = MO.getReg(); | 
|  | if (!MOReg) | 
|  | continue; | 
|  | if (DefReg == MOReg) | 
|  | return false; | 
|  |  | 
|  | if (MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS))) { | 
|  | if (&OtherMI == KillMI && MOReg == SavedReg) | 
|  | // Save the operand that kills the register. We want to unset the kill | 
|  | // marker if we can sink MI past it. | 
|  | KillMO = &MO; | 
|  | else if (UseRegs.count(MOReg)) | 
|  | // One of the uses is killed before the destination. | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  | assert(KillMO && "Didn't find kill"); | 
|  |  | 
|  | if (!LIS) { | 
|  | // Update kill and LV information. | 
|  | KillMO->setIsKill(false); | 
|  | KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI); | 
|  | KillMO->setIsKill(true); | 
|  |  | 
|  | if (LV) | 
|  | LV->replaceKillInstruction(SavedReg, *KillMI, *MI); | 
|  | } | 
|  |  | 
|  | // Move instruction to its destination. | 
|  | MBB->remove(MI); | 
|  | MBB->insert(KillPos, MI); | 
|  |  | 
|  | if (LIS) | 
|  | LIS->handleMove(*MI); | 
|  |  | 
|  | ++Num3AddrSunk; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return the MachineInstr* if it is the single def of the Reg in current BB. | 
|  | static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB, | 
|  | const MachineRegisterInfo *MRI) { | 
|  | MachineInstr *Ret = nullptr; | 
|  | for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { | 
|  | if (DefMI.getParent() != BB || DefMI.isDebugValue()) | 
|  | continue; | 
|  | if (!Ret) | 
|  | Ret = &DefMI; | 
|  | else if (Ret != &DefMI) | 
|  | return nullptr; | 
|  | } | 
|  | return Ret; | 
|  | } | 
|  |  | 
|  | /// Check if there is a reversed copy chain from FromReg to ToReg: | 
|  | /// %Tmp1 = copy %Tmp2; | 
|  | /// %FromReg = copy %Tmp1; | 
|  | /// %ToReg = add %FromReg ... | 
|  | /// %Tmp2 = copy %ToReg; | 
|  | /// MaxLen specifies the maximum length of the copy chain the func | 
|  | /// can walk through. | 
|  | bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg, | 
|  | int Maxlen) { | 
|  | unsigned TmpReg = FromReg; | 
|  | for (int i = 0; i < Maxlen; i++) { | 
|  | MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); | 
|  | if (!Def || !Def->isCopy()) | 
|  | return false; | 
|  |  | 
|  | TmpReg = Def->getOperand(1).getReg(); | 
|  |  | 
|  | if (TmpReg == ToReg) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return true if there are no intervening uses between the last instruction | 
|  | /// in the MBB that defines the specified register and the two-address | 
|  | /// instruction which is being processed. It also returns the last def location | 
|  | /// by reference. | 
|  | bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist, | 
|  | unsigned &LastDef) { | 
|  | LastDef = 0; | 
|  | unsigned LastUse = Dist; | 
|  | for (MachineOperand &MO : MRI->reg_operands(Reg)) { | 
|  | MachineInstr *MI = MO.getParent(); | 
|  | if (MI->getParent() != MBB || MI->isDebugValue()) | 
|  | continue; | 
|  | DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); | 
|  | if (DI == DistanceMap.end()) | 
|  | continue; | 
|  | if (MO.isUse() && DI->second < LastUse) | 
|  | LastUse = DI->second; | 
|  | if (MO.isDef() && DI->second > LastDef) | 
|  | LastDef = DI->second; | 
|  | } | 
|  |  | 
|  | return !(LastUse > LastDef && LastUse < Dist); | 
|  | } | 
|  |  | 
|  | /// Return true if the specified MI is a copy instruction or an extract_subreg | 
|  | /// instruction. It also returns the source and destination registers and | 
|  | /// whether they are physical registers by reference. | 
|  | static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, | 
|  | unsigned &SrcReg, unsigned &DstReg, | 
|  | bool &IsSrcPhys, bool &IsDstPhys) { | 
|  | SrcReg = 0; | 
|  | DstReg = 0; | 
|  | if (MI.isCopy()) { | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SrcReg = MI.getOperand(1).getReg(); | 
|  | } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { | 
|  | DstReg = MI.getOperand(0).getReg(); | 
|  | SrcReg = MI.getOperand(2).getReg(); | 
|  | } else | 
|  | return false; | 
|  |  | 
|  | IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg); | 
|  | IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Test if the given register value, which is used by the | 
|  | /// given instruction, is killed by the given instruction. | 
|  | static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, | 
|  | LiveIntervals *LIS) { | 
|  | if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) && | 
|  | !LIS->isNotInMIMap(*MI)) { | 
|  | // FIXME: Sometimes tryInstructionTransform() will add instructions and | 
|  | // test whether they can be folded before keeping them. In this case it | 
|  | // sets a kill before recursively calling tryInstructionTransform() again. | 
|  | // If there is no interval available, we assume that this instruction is | 
|  | // one of those. A kill flag is manually inserted on the operand so the | 
|  | // check below will handle it. | 
|  | LiveInterval &LI = LIS->getInterval(Reg); | 
|  | // This is to match the kill flag version where undefs don't have kill | 
|  | // flags. | 
|  | if (!LI.hasAtLeastOneValue()) | 
|  | return false; | 
|  |  | 
|  | SlotIndex useIdx = LIS->getInstructionIndex(*MI); | 
|  | LiveInterval::const_iterator I = LI.find(useIdx); | 
|  | assert(I != LI.end() && "Reg must be live-in to use."); | 
|  | return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); | 
|  | } | 
|  |  | 
|  | return MI->killsRegister(Reg); | 
|  | } | 
|  |  | 
|  | /// Test if the given register value, which is used by the given | 
|  | /// instruction, is killed by the given instruction. This looks through | 
|  | /// coalescable copies to see if the original value is potentially not killed. | 
|  | /// | 
|  | /// For example, in this code: | 
|  | /// | 
|  | ///   %reg1034 = copy %reg1024 | 
|  | ///   %reg1035 = copy %reg1025<kill> | 
|  | ///   %reg1036 = add %reg1034<kill>, %reg1035<kill> | 
|  | /// | 
|  | /// %reg1034 is not considered to be killed, since it is copied from a | 
|  | /// register which is not killed. Treating it as not killed lets the | 
|  | /// normal heuristics commute the (two-address) add, which lets | 
|  | /// coalescing eliminate the extra copy. | 
|  | /// | 
|  | /// If allowFalsePositives is true then likely kills are treated as kills even | 
|  | /// if it can't be proven that they are kills. | 
|  | static bool isKilled(MachineInstr &MI, unsigned Reg, | 
|  | const MachineRegisterInfo *MRI, | 
|  | const TargetInstrInfo *TII, | 
|  | LiveIntervals *LIS, | 
|  | bool allowFalsePositives) { | 
|  | MachineInstr *DefMI = &MI; | 
|  | for (;;) { | 
|  | // All uses of physical registers are likely to be kills. | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg) && | 
|  | (allowFalsePositives || MRI->hasOneUse(Reg))) | 
|  | return true; | 
|  | if (!isPlainlyKilled(DefMI, Reg, LIS)) | 
|  | return false; | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg)) | 
|  | return true; | 
|  | MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); | 
|  | // If there are multiple defs, we can't do a simple analysis, so just | 
|  | // go with what the kill flag says. | 
|  | if (std::next(Begin) != MRI->def_end()) | 
|  | return true; | 
|  | DefMI = Begin->getParent(); | 
|  | bool IsSrcPhys, IsDstPhys; | 
|  | unsigned SrcReg,  DstReg; | 
|  | // If the def is something other than a copy, then it isn't going to | 
|  | // be coalesced, so follow the kill flag. | 
|  | if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) | 
|  | return true; | 
|  | Reg = SrcReg; | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Return true if the specified MI uses the specified register as a two-address | 
|  | /// use. If so, return the destination register by reference. | 
|  | static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) { | 
|  | for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { | 
|  | const MachineOperand &MO = MI.getOperand(i); | 
|  | if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) | 
|  | continue; | 
|  | unsigned ti; | 
|  | if (MI.isRegTiedToDefOperand(i, &ti)) { | 
|  | DstReg = MI.getOperand(ti).getReg(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Given a register, if has a single in-basic block use, return the use | 
|  | /// instruction if it's a copy or a two-address use. | 
|  | static | 
|  | MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB, | 
|  | MachineRegisterInfo *MRI, | 
|  | const TargetInstrInfo *TII, | 
|  | bool &IsCopy, | 
|  | unsigned &DstReg, bool &IsDstPhys) { | 
|  | if (!MRI->hasOneNonDBGUse(Reg)) | 
|  | // None or more than one use. | 
|  | return nullptr; | 
|  | MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg); | 
|  | if (UseMI.getParent() != MBB) | 
|  | return nullptr; | 
|  | unsigned SrcReg; | 
|  | bool IsSrcPhys; | 
|  | if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { | 
|  | IsCopy = true; | 
|  | return &UseMI; | 
|  | } | 
|  | IsDstPhys = false; | 
|  | if (isTwoAddrUse(UseMI, Reg, DstReg)) { | 
|  | IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg); | 
|  | return &UseMI; | 
|  | } | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | /// Return the physical register the specified virtual register might be mapped | 
|  | /// to. | 
|  | static unsigned | 
|  | getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) { | 
|  | while (TargetRegisterInfo::isVirtualRegister(Reg))  { | 
|  | DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg); | 
|  | if (SI == RegMap.end()) | 
|  | return 0; | 
|  | Reg = SI->second; | 
|  | } | 
|  | if (TargetRegisterInfo::isPhysicalRegister(Reg)) | 
|  | return Reg; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /// Return true if the two registers are equal or aliased. | 
|  | static bool | 
|  | regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) { | 
|  | if (RegA == RegB) | 
|  | return true; | 
|  | if (!RegA || !RegB) | 
|  | return false; | 
|  | return TRI->regsOverlap(RegA, RegB); | 
|  | } | 
|  |  | 
|  | // Returns true if Reg is equal or aliased to at least one register in Set. | 
|  | static bool regOverlapsSet(const SmallVectorImpl<unsigned> &Set, unsigned Reg, | 
|  | const TargetRegisterInfo *TRI) { | 
|  | for (unsigned R : Set) | 
|  | if (TRI->regsOverlap(R, Reg)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Return true if it's potentially profitable to commute the two-address | 
|  | /// instruction that's being processed. | 
|  | bool | 
|  | TwoAddressInstructionPass:: | 
|  | isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC, | 
|  | MachineInstr *MI, unsigned Dist) { | 
|  | if (OptLevel == CodeGenOpt::None) | 
|  | return false; | 
|  |  | 
|  | // Determine if it's profitable to commute this two address instruction. In | 
|  | // general, we want no uses between this instruction and the definition of | 
|  | // the two-address register. | 
|  | // e.g. | 
|  | // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 | 
|  | // %reg1029<def> = MOV8rr %reg1028 | 
|  | // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> | 
|  | // insert => %reg1030<def> = MOV8rr %reg1028 | 
|  | // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> | 
|  | // In this case, it might not be possible to coalesce the second MOV8rr | 
|  | // instruction if the first one is coalesced. So it would be profitable to | 
|  | // commute it: | 
|  | // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1 | 
|  | // %reg1029<def> = MOV8rr %reg1028 | 
|  | // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead> | 
|  | // insert => %reg1030<def> = MOV8rr %reg1029 | 
|  | // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead> | 
|  |  | 
|  | if (!isPlainlyKilled(MI, regC, LIS)) | 
|  | return false; | 
|  |  | 
|  | // Ok, we have something like: | 
|  | // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead> | 
|  | // let's see if it's worth commuting it. | 
|  |  | 
|  | // Look for situations like this: | 
|  | // %reg1024<def> = MOV r1 | 
|  | // %reg1025<def> = MOV r0 | 
|  | // %reg1026<def> = ADD %reg1024, %reg1025 | 
|  | // r0            = MOV %reg1026 | 
|  | // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. | 
|  | unsigned ToRegA = getMappedReg(regA, DstRegMap); | 
|  | if (ToRegA) { | 
|  | unsigned FromRegB = getMappedReg(regB, SrcRegMap); | 
|  | unsigned FromRegC = getMappedReg(regC, SrcRegMap); | 
|  | bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); | 
|  | bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); | 
|  |  | 
|  | // Compute if any of the following are true: | 
|  | // -RegB is not tied to a register and RegC is compatible with RegA. | 
|  | // -RegB is tied to the wrong physical register, but RegC is. | 
|  | // -RegB is tied to the wrong physical register, and RegC isn't tied. | 
|  | if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) | 
|  | return true; | 
|  | // Don't compute if any of the following are true: | 
|  | // -RegC is not tied to a register and RegB is compatible with RegA. | 
|  | // -RegC is tied to the wrong physical register, but RegB is. | 
|  | // -RegC is tied to the wrong physical register, and RegB isn't tied. | 
|  | if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If there is a use of regC between its last def (could be livein) and this | 
|  | // instruction, then bail. | 
|  | unsigned LastDefC = 0; | 
|  | if (!noUseAfterLastDef(regC, Dist, LastDefC)) | 
|  | return false; | 
|  |  | 
|  | // If there is a use of regB between its last def (could be livein) and this | 
|  | // instruction, then go ahead and make this transformation. | 
|  | unsigned LastDefB = 0; | 
|  | if (!noUseAfterLastDef(regB, Dist, LastDefB)) | 
|  | return true; | 
|  |  | 
|  | // Look for situation like this: | 
|  | // %reg101 = MOV %reg100 | 
|  | // %reg102 = ... | 
|  | // %reg103 = ADD %reg102, %reg101 | 
|  | // ... = %reg103 ... | 
|  | // %reg100 = MOV %reg103 | 
|  | // If there is a reversed copy chain from reg101 to reg103, commute the ADD | 
|  | // to eliminate an otherwise unavoidable copy. | 
|  | // FIXME: | 
|  | // We can extend the logic further: If an pair of operands in an insn has | 
|  | // been merged, the insn could be regarded as a virtual copy, and the virtual | 
|  | // copy could also be used to construct a copy chain. | 
|  | // To more generally minimize register copies, ideally the logic of two addr | 
|  | // instruction pass should be integrated with register allocation pass where | 
|  | // interference graph is available. | 
|  | if (isRevCopyChain(regC, regA, 3)) | 
|  | return true; | 
|  |  | 
|  | if (isRevCopyChain(regB, regA, 3)) | 
|  | return false; | 
|  |  | 
|  | // Since there are no intervening uses for both registers, then commute | 
|  | // if the def of regC is closer. Its live interval is shorter. | 
|  | return LastDefB && LastDefC && LastDefC > LastDefB; | 
|  | } | 
|  |  | 
|  | /// Commute a two-address instruction and update the basic block, distance map, | 
|  | /// and live variables if needed. Return true if it is successful. | 
|  | bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, | 
|  | unsigned DstIdx, | 
|  | unsigned RegBIdx, | 
|  | unsigned RegCIdx, | 
|  | unsigned Dist) { | 
|  | unsigned RegC = MI->getOperand(RegCIdx).getReg(); | 
|  | DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI); | 
|  | MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx); | 
|  |  | 
|  | if (NewMI == nullptr) { | 
|  | DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); | 
|  | assert(NewMI == MI && | 
|  | "TargetInstrInfo::commuteInstruction() should not return a new " | 
|  | "instruction unless it was requested."); | 
|  |  | 
|  | // Update source register map. | 
|  | unsigned FromRegC = getMappedReg(RegC, SrcRegMap); | 
|  | if (FromRegC) { | 
|  | unsigned RegA = MI->getOperand(DstIdx).getReg(); | 
|  | SrcRegMap[RegA] = FromRegC; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if it is profitable to convert the given 2-address instruction | 
|  | /// to a 3-address one. | 
|  | bool | 
|  | TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){ | 
|  | // Look for situations like this: | 
|  | // %reg1024<def> = MOV r1 | 
|  | // %reg1025<def> = MOV r0 | 
|  | // %reg1026<def> = ADD %reg1024, %reg1025 | 
|  | // r2            = MOV %reg1026 | 
|  | // Turn ADD into a 3-address instruction to avoid a copy. | 
|  | unsigned FromRegB = getMappedReg(RegB, SrcRegMap); | 
|  | if (!FromRegB) | 
|  | return false; | 
|  | unsigned ToRegA = getMappedReg(RegA, DstRegMap); | 
|  | return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); | 
|  | } | 
|  |  | 
|  | /// Convert the specified two-address instruction into a three address one. | 
|  | /// Return true if this transformation was successful. | 
|  | bool | 
|  | TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi, | 
|  | MachineBasicBlock::iterator &nmi, | 
|  | unsigned RegA, unsigned RegB, | 
|  | unsigned Dist) { | 
|  | // FIXME: Why does convertToThreeAddress() need an iterator reference? | 
|  | MachineFunction::iterator MFI = MBB->getIterator(); | 
|  | MachineInstr *NewMI = TII->convertToThreeAddress(MFI, *mi, LV); | 
|  | assert(MBB->getIterator() == MFI && | 
|  | "convertToThreeAddress changed iterator reference"); | 
|  | if (!NewMI) | 
|  | return false; | 
|  |  | 
|  | DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); | 
|  | DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI); | 
|  | bool Sunk = false; | 
|  |  | 
|  | if (LIS) | 
|  | LIS->ReplaceMachineInstrInMaps(*mi, *NewMI); | 
|  |  | 
|  | if (NewMI->findRegisterUseOperand(RegB, false, TRI)) | 
|  | // FIXME: Temporary workaround. If the new instruction doesn't | 
|  | // uses RegB, convertToThreeAddress must have created more | 
|  | // then one instruction. | 
|  | Sunk = sink3AddrInstruction(NewMI, RegB, mi); | 
|  |  | 
|  | MBB->erase(mi); // Nuke the old inst. | 
|  |  | 
|  | if (!Sunk) { | 
|  | DistanceMap.insert(std::make_pair(NewMI, Dist)); | 
|  | mi = NewMI; | 
|  | nmi = std::next(mi); | 
|  | } | 
|  |  | 
|  | // Update source and destination register maps. | 
|  | SrcRegMap.erase(RegA); | 
|  | DstRegMap.erase(RegB); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Scan forward recursively for only uses, update maps if the use is a copy or | 
|  | /// a two-address instruction. | 
|  | void | 
|  | TwoAddressInstructionPass::scanUses(unsigned DstReg) { | 
|  | SmallVector<unsigned, 4> VirtRegPairs; | 
|  | bool IsDstPhys; | 
|  | bool IsCopy = false; | 
|  | unsigned NewReg = 0; | 
|  | unsigned Reg = DstReg; | 
|  | while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, | 
|  | NewReg, IsDstPhys)) { | 
|  | if (IsCopy && !Processed.insert(UseMI).second) | 
|  | break; | 
|  |  | 
|  | DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); | 
|  | if (DI != DistanceMap.end()) | 
|  | // Earlier in the same MBB.Reached via a back edge. | 
|  | break; | 
|  |  | 
|  | if (IsDstPhys) { | 
|  | VirtRegPairs.push_back(NewReg); | 
|  | break; | 
|  | } | 
|  | bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second; | 
|  | if (!isNew) | 
|  | assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!"); | 
|  | VirtRegPairs.push_back(NewReg); | 
|  | Reg = NewReg; | 
|  | } | 
|  |  | 
|  | if (!VirtRegPairs.empty()) { | 
|  | unsigned ToReg = VirtRegPairs.back(); | 
|  | VirtRegPairs.pop_back(); | 
|  | while (!VirtRegPairs.empty()) { | 
|  | unsigned FromReg = VirtRegPairs.back(); | 
|  | VirtRegPairs.pop_back(); | 
|  | bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; | 
|  | if (!isNew) | 
|  | assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); | 
|  | ToReg = FromReg; | 
|  | } | 
|  | bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; | 
|  | if (!isNew) | 
|  | assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// If the specified instruction is not yet processed, process it if it's a | 
|  | /// copy. For a copy instruction, we find the physical registers the | 
|  | /// source and destination registers might be mapped to. These are kept in | 
|  | /// point-to maps used to determine future optimizations. e.g. | 
|  | /// v1024 = mov r0 | 
|  | /// v1025 = mov r1 | 
|  | /// v1026 = add v1024, v1025 | 
|  | /// r1    = mov r1026 | 
|  | /// If 'add' is a two-address instruction, v1024, v1026 are both potentially | 
|  | /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is | 
|  | /// potentially joined with r1 on the output side. It's worthwhile to commute | 
|  | /// 'add' to eliminate a copy. | 
|  | void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { | 
|  | if (Processed.count(MI)) | 
|  | return; | 
|  |  | 
|  | bool IsSrcPhys, IsDstPhys; | 
|  | unsigned SrcReg, DstReg; | 
|  | if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) | 
|  | return; | 
|  |  | 
|  | if (IsDstPhys && !IsSrcPhys) | 
|  | DstRegMap.insert(std::make_pair(SrcReg, DstReg)); | 
|  | else if (!IsDstPhys && IsSrcPhys) { | 
|  | bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; | 
|  | if (!isNew) | 
|  | assert(SrcRegMap[DstReg] == SrcReg && | 
|  | "Can't map to two src physical registers!"); | 
|  |  | 
|  | scanUses(DstReg); | 
|  | } | 
|  |  | 
|  | Processed.insert(MI); | 
|  | } | 
|  |  | 
|  | /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, | 
|  | /// consider moving the instruction below the kill instruction in order to | 
|  | /// eliminate the need for the copy. | 
|  | bool TwoAddressInstructionPass:: | 
|  | rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, | 
|  | MachineBasicBlock::iterator &nmi, | 
|  | unsigned Reg) { | 
|  | // Bail immediately if we don't have LV or LIS available. We use them to find | 
|  | // kills efficiently. | 
|  | if (!LV && !LIS) | 
|  | return false; | 
|  |  | 
|  | MachineInstr *MI = &*mi; | 
|  | DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); | 
|  | if (DI == DistanceMap.end()) | 
|  | // Must be created from unfolded load. Don't waste time trying this. | 
|  | return false; | 
|  |  | 
|  | MachineInstr *KillMI = nullptr; | 
|  | if (LIS) { | 
|  | LiveInterval &LI = LIS->getInterval(Reg); | 
|  | assert(LI.end() != LI.begin() && | 
|  | "Reg should not have empty live interval."); | 
|  |  | 
|  | SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); | 
|  | LiveInterval::const_iterator I = LI.find(MBBEndIdx); | 
|  | if (I != LI.end() && I->start < MBBEndIdx) | 
|  | return false; | 
|  |  | 
|  | --I; | 
|  | KillMI = LIS->getInstructionFromIndex(I->end); | 
|  | } else { | 
|  | KillMI = LV->getVarInfo(Reg).findKill(MBB); | 
|  | } | 
|  | if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) | 
|  | // Don't mess with copies, they may be coalesced later. | 
|  | return false; | 
|  |  | 
|  | if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || | 
|  | KillMI->isBranch() || KillMI->isTerminator()) | 
|  | // Don't move pass calls, etc. | 
|  | return false; | 
|  |  | 
|  | unsigned DstReg; | 
|  | if (isTwoAddrUse(*KillMI, Reg, DstReg)) | 
|  | return false; | 
|  |  | 
|  | bool SeenStore = true; | 
|  | if (!MI->isSafeToMove(AA, SeenStore)) | 
|  | return false; | 
|  |  | 
|  | if (TII->getInstrLatency(InstrItins, *MI) > 1) | 
|  | // FIXME: Needs more sophisticated heuristics. | 
|  | return false; | 
|  |  | 
|  | SmallVector<unsigned, 2> Uses; | 
|  | SmallVector<unsigned, 2> Kills; | 
|  | SmallVector<unsigned, 2> Defs; | 
|  | for (const MachineOperand &MO : MI->operands()) { | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | unsigned MOReg = MO.getReg(); | 
|  | if (!MOReg) | 
|  | continue; | 
|  | if (MO.isDef()) | 
|  | Defs.push_back(MOReg); | 
|  | else { | 
|  | Uses.push_back(MOReg); | 
|  | if (MOReg != Reg && (MO.isKill() || | 
|  | (LIS && isPlainlyKilled(MI, MOReg, LIS)))) | 
|  | Kills.push_back(MOReg); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Move the copies connected to MI down as well. | 
|  | MachineBasicBlock::iterator Begin = MI; | 
|  | MachineBasicBlock::iterator AfterMI = std::next(Begin); | 
|  |  | 
|  | MachineBasicBlock::iterator End = AfterMI; | 
|  | while (End->isCopy() && | 
|  | regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI)) { | 
|  | Defs.push_back(End->getOperand(0).getReg()); | 
|  | ++End; | 
|  | } | 
|  |  | 
|  | // Check if the reschedule will not break dependencies. | 
|  | unsigned NumVisited = 0; | 
|  | MachineBasicBlock::iterator KillPos = KillMI; | 
|  | ++KillPos; | 
|  | for (MachineInstr &OtherMI : llvm::make_range(End, KillPos)) { | 
|  | // DBG_VALUE cannot be counted against the limit. | 
|  | if (OtherMI.isDebugValue()) | 
|  | continue; | 
|  | if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost. | 
|  | return false; | 
|  | ++NumVisited; | 
|  | if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || | 
|  | OtherMI.isBranch() || OtherMI.isTerminator()) | 
|  | // Don't move pass calls, etc. | 
|  | return false; | 
|  | for (const MachineOperand &MO : OtherMI.operands()) { | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | unsigned MOReg = MO.getReg(); | 
|  | if (!MOReg) | 
|  | continue; | 
|  | if (MO.isDef()) { | 
|  | if (regOverlapsSet(Uses, MOReg, TRI)) | 
|  | // Physical register use would be clobbered. | 
|  | return false; | 
|  | if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI)) | 
|  | // May clobber a physical register def. | 
|  | // FIXME: This may be too conservative. It's ok if the instruction | 
|  | // is sunken completely below the use. | 
|  | return false; | 
|  | } else { | 
|  | if (regOverlapsSet(Defs, MOReg, TRI)) | 
|  | return false; | 
|  | bool isKill = | 
|  | MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)); | 
|  | if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) || | 
|  | regOverlapsSet(Kills, MOReg, TRI))) | 
|  | // Don't want to extend other live ranges and update kills. | 
|  | return false; | 
|  | if (MOReg == Reg && !isKill) | 
|  | // We can't schedule across a use of the register in question. | 
|  | return false; | 
|  | // Ensure that if this is register in question, its the kill we expect. | 
|  | assert((MOReg != Reg || &OtherMI == KillMI) && | 
|  | "Found multiple kills of a register in a basic block"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Move debug info as well. | 
|  | while (Begin != MBB->begin() && std::prev(Begin)->isDebugValue()) | 
|  | --Begin; | 
|  |  | 
|  | nmi = End; | 
|  | MachineBasicBlock::iterator InsertPos = KillPos; | 
|  | if (LIS) { | 
|  | // We have to move the copies first so that the MBB is still well-formed | 
|  | // when calling handleMove(). | 
|  | for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { | 
|  | auto CopyMI = MBBI++; | 
|  | MBB->splice(InsertPos, MBB, CopyMI); | 
|  | LIS->handleMove(*CopyMI); | 
|  | InsertPos = CopyMI; | 
|  | } | 
|  | End = std::next(MachineBasicBlock::iterator(MI)); | 
|  | } | 
|  |  | 
|  | // Copies following MI may have been moved as well. | 
|  | MBB->splice(InsertPos, MBB, Begin, End); | 
|  | DistanceMap.erase(DI); | 
|  |  | 
|  | // Update live variables | 
|  | if (LIS) { | 
|  | LIS->handleMove(*MI); | 
|  | } else { | 
|  | LV->removeVirtualRegisterKilled(Reg, *KillMI); | 
|  | LV->addVirtualRegisterKilled(Reg, *MI); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Return true if the re-scheduling will put the given instruction too close | 
|  | /// to the defs of its register dependencies. | 
|  | bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist, | 
|  | MachineInstr *MI) { | 
|  | for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { | 
|  | if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) | 
|  | continue; | 
|  | if (&DefMI == MI) | 
|  | return true; // MI is defining something KillMI uses | 
|  | DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); | 
|  | if (DDI == DistanceMap.end()) | 
|  | return true;  // Below MI | 
|  | unsigned DefDist = DDI->second; | 
|  | assert(Dist > DefDist && "Visited def already?"); | 
|  | if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, | 
|  | /// consider moving the kill instruction above the current two-address | 
|  | /// instruction in order to eliminate the need for the copy. | 
|  | bool TwoAddressInstructionPass:: | 
|  | rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, | 
|  | MachineBasicBlock::iterator &nmi, | 
|  | unsigned Reg) { | 
|  | // Bail immediately if we don't have LV or LIS available. We use them to find | 
|  | // kills efficiently. | 
|  | if (!LV && !LIS) | 
|  | return false; | 
|  |  | 
|  | MachineInstr *MI = &*mi; | 
|  | DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); | 
|  | if (DI == DistanceMap.end()) | 
|  | // Must be created from unfolded load. Don't waste time trying this. | 
|  | return false; | 
|  |  | 
|  | MachineInstr *KillMI = nullptr; | 
|  | if (LIS) { | 
|  | LiveInterval &LI = LIS->getInterval(Reg); | 
|  | assert(LI.end() != LI.begin() && | 
|  | "Reg should not have empty live interval."); | 
|  |  | 
|  | SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); | 
|  | LiveInterval::const_iterator I = LI.find(MBBEndIdx); | 
|  | if (I != LI.end() && I->start < MBBEndIdx) | 
|  | return false; | 
|  |  | 
|  | --I; | 
|  | KillMI = LIS->getInstructionFromIndex(I->end); | 
|  | } else { | 
|  | KillMI = LV->getVarInfo(Reg).findKill(MBB); | 
|  | } | 
|  | if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) | 
|  | // Don't mess with copies, they may be coalesced later. | 
|  | return false; | 
|  |  | 
|  | unsigned DstReg; | 
|  | if (isTwoAddrUse(*KillMI, Reg, DstReg)) | 
|  | return false; | 
|  |  | 
|  | bool SeenStore = true; | 
|  | if (!KillMI->isSafeToMove(AA, SeenStore)) | 
|  | return false; | 
|  |  | 
|  | SmallSet<unsigned, 2> Uses; | 
|  | SmallSet<unsigned, 2> Kills; | 
|  | SmallSet<unsigned, 2> Defs; | 
|  | SmallSet<unsigned, 2> LiveDefs; | 
|  | for (const MachineOperand &MO : KillMI->operands()) { | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | unsigned MOReg = MO.getReg(); | 
|  | if (MO.isUse()) { | 
|  | if (!MOReg) | 
|  | continue; | 
|  | if (isDefTooClose(MOReg, DI->second, MI)) | 
|  | return false; | 
|  | bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); | 
|  | if (MOReg == Reg && !isKill) | 
|  | return false; | 
|  | Uses.insert(MOReg); | 
|  | if (isKill && MOReg != Reg) | 
|  | Kills.insert(MOReg); | 
|  | } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) { | 
|  | Defs.insert(MOReg); | 
|  | if (!MO.isDead()) | 
|  | LiveDefs.insert(MOReg); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check if the reschedule will not break depedencies. | 
|  | unsigned NumVisited = 0; | 
|  | for (MachineInstr &OtherMI : | 
|  | llvm::make_range(mi, MachineBasicBlock::iterator(KillMI))) { | 
|  | // DBG_VALUE cannot be counted against the limit. | 
|  | if (OtherMI.isDebugValue()) | 
|  | continue; | 
|  | if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost. | 
|  | return false; | 
|  | ++NumVisited; | 
|  | if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || | 
|  | OtherMI.isBranch() || OtherMI.isTerminator()) | 
|  | // Don't move pass calls, etc. | 
|  | return false; | 
|  | SmallVector<unsigned, 2> OtherDefs; | 
|  | for (const MachineOperand &MO : OtherMI.operands()) { | 
|  | if (!MO.isReg()) | 
|  | continue; | 
|  | unsigned MOReg = MO.getReg(); | 
|  | if (!MOReg) | 
|  | continue; | 
|  | if (MO.isUse()) { | 
|  | if (Defs.count(MOReg)) | 
|  | // Moving KillMI can clobber the physical register if the def has | 
|  | // not been seen. | 
|  | return false; | 
|  | if (Kills.count(MOReg)) | 
|  | // Don't want to extend other live ranges and update kills. | 
|  | return false; | 
|  | if (&OtherMI != MI && MOReg == Reg && | 
|  | !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)))) | 
|  | // We can't schedule across a use of the register in question. | 
|  | return false; | 
|  | } else { | 
|  | OtherDefs.push_back(MOReg); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { | 
|  | unsigned MOReg = OtherDefs[i]; | 
|  | if (Uses.count(MOReg)) | 
|  | return false; | 
|  | if (TargetRegisterInfo::isPhysicalRegister(MOReg) && | 
|  | LiveDefs.count(MOReg)) | 
|  | return false; | 
|  | // Physical register def is seen. | 
|  | Defs.erase(MOReg); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Move the old kill above MI, don't forget to move debug info as well. | 
|  | MachineBasicBlock::iterator InsertPos = mi; | 
|  | while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugValue()) | 
|  | --InsertPos; | 
|  | MachineBasicBlock::iterator From = KillMI; | 
|  | MachineBasicBlock::iterator To = std::next(From); | 
|  | while (std::prev(From)->isDebugValue()) | 
|  | --From; | 
|  | MBB->splice(InsertPos, MBB, From, To); | 
|  |  | 
|  | nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. | 
|  | DistanceMap.erase(DI); | 
|  |  | 
|  | // Update live variables | 
|  | if (LIS) { | 
|  | LIS->handleMove(*KillMI); | 
|  | } else { | 
|  | LV->removeVirtualRegisterKilled(Reg, *KillMI); | 
|  | LV->addVirtualRegisterKilled(Reg, *MI); | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Tries to commute the operand 'BaseOpIdx' and some other operand in the | 
|  | /// given machine instruction to improve opportunities for coalescing and | 
|  | /// elimination of a register to register copy. | 
|  | /// | 
|  | /// 'DstOpIdx' specifies the index of MI def operand. | 
|  | /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' | 
|  | /// operand is killed by the given instruction. | 
|  | /// The 'Dist' arguments provides the distance of MI from the start of the | 
|  | /// current basic block and it is used to determine if it is profitable | 
|  | /// to commute operands in the instruction. | 
|  | /// | 
|  | /// Returns true if the transformation happened. Otherwise, returns false. | 
|  | bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, | 
|  | unsigned DstOpIdx, | 
|  | unsigned BaseOpIdx, | 
|  | bool BaseOpKilled, | 
|  | unsigned Dist) { | 
|  | if (!MI->isCommutable()) | 
|  | return false; | 
|  |  | 
|  | unsigned DstOpReg = MI->getOperand(DstOpIdx).getReg(); | 
|  | unsigned BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); | 
|  | unsigned OpsNum = MI->getDesc().getNumOperands(); | 
|  | unsigned OtherOpIdx = MI->getDesc().getNumDefs(); | 
|  | for (; OtherOpIdx < OpsNum; OtherOpIdx++) { | 
|  | // The call of findCommutedOpIndices below only checks if BaseOpIdx | 
|  | // and OtherOpIdx are commutable, it does not really search for | 
|  | // other commutable operands and does not change the values of passed | 
|  | // variables. | 
|  | if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() || | 
|  | !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx)) | 
|  | continue; | 
|  |  | 
|  | unsigned OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); | 
|  | bool AggressiveCommute = false; | 
|  |  | 
|  | // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp | 
|  | // operands. This makes the live ranges of DstOp and OtherOp joinable. | 
|  | bool DoCommute = | 
|  | !BaseOpKilled && isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); | 
|  |  | 
|  | if (!DoCommute && | 
|  | isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { | 
|  | DoCommute = true; | 
|  | AggressiveCommute = true; | 
|  | } | 
|  |  | 
|  | // If it's profitable to commute, try to do so. | 
|  | if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx, | 
|  | Dist)) { | 
|  | ++NumCommuted; | 
|  | if (AggressiveCommute) | 
|  | ++NumAggrCommuted; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// For the case where an instruction has a single pair of tied register | 
|  | /// operands, attempt some transformations that may either eliminate the tied | 
|  | /// operands or improve the opportunities for coalescing away the register copy. | 
|  | /// Returns true if no copy needs to be inserted to untie mi's operands | 
|  | /// (either because they were untied, or because mi was rescheduled, and will | 
|  | /// be visited again later). If the shouldOnlyCommute flag is true, only | 
|  | /// instruction commutation is attempted. | 
|  | bool TwoAddressInstructionPass:: | 
|  | tryInstructionTransform(MachineBasicBlock::iterator &mi, | 
|  | MachineBasicBlock::iterator &nmi, | 
|  | unsigned SrcIdx, unsigned DstIdx, | 
|  | unsigned Dist, bool shouldOnlyCommute) { | 
|  | if (OptLevel == CodeGenOpt::None) | 
|  | return false; | 
|  |  | 
|  | MachineInstr &MI = *mi; | 
|  | unsigned regA = MI.getOperand(DstIdx).getReg(); | 
|  | unsigned regB = MI.getOperand(SrcIdx).getReg(); | 
|  |  | 
|  | assert(TargetRegisterInfo::isVirtualRegister(regB) && | 
|  | "cannot make instruction into two-address form"); | 
|  | bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); | 
|  |  | 
|  | if (TargetRegisterInfo::isVirtualRegister(regA)) | 
|  | scanUses(regA); | 
|  |  | 
|  | bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); | 
|  |  | 
|  | // If the instruction is convertible to 3 Addr, instead | 
|  | // of returning try 3 Addr transformation aggresively and | 
|  | // use this variable to check later. Because it might be better. | 
|  | // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` | 
|  | // instead of the following code. | 
|  | //   addl     %esi, %edi | 
|  | //   movl     %edi, %eax | 
|  | //   ret | 
|  | if (Commuted && !MI.isConvertibleTo3Addr()) | 
|  | return false; | 
|  |  | 
|  | if (shouldOnlyCommute) | 
|  | return false; | 
|  |  | 
|  | // If there is one more use of regB later in the same MBB, consider | 
|  | // re-schedule this MI below it. | 
|  | if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { | 
|  | ++NumReSchedDowns; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If we commuted, regB may have changed so we should re-sample it to avoid | 
|  | // confusing the three address conversion below. | 
|  | if (Commuted) { | 
|  | regB = MI.getOperand(SrcIdx).getReg(); | 
|  | regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); | 
|  | } | 
|  |  | 
|  | if (MI.isConvertibleTo3Addr()) { | 
|  | // This instruction is potentially convertible to a true | 
|  | // three-address instruction.  Check if it is profitable. | 
|  | if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { | 
|  | // Try to convert it. | 
|  | if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { | 
|  | ++NumConvertedTo3Addr; | 
|  | return true; // Done with this instruction. | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Return if it is commuted but 3 addr conversion is failed. | 
|  | if (Commuted) | 
|  | return false; | 
|  |  | 
|  | // If there is one more use of regB later in the same MBB, consider | 
|  | // re-schedule it before this MI if it's legal. | 
|  | if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { | 
|  | ++NumReSchedUps; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If this is an instruction with a load folded into it, try unfolding | 
|  | // the load, e.g. avoid this: | 
|  | //   movq %rdx, %rcx | 
|  | //   addq (%rax), %rcx | 
|  | // in favor of this: | 
|  | //   movq (%rax), %rcx | 
|  | //   addq %rdx, %rcx | 
|  | // because it's preferable to schedule a load than a register copy. | 
|  | if (MI.mayLoad() && !regBKilled) { | 
|  | // Determine if a load can be unfolded. | 
|  | unsigned LoadRegIndex; | 
|  | unsigned NewOpc = | 
|  | TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), | 
|  | /*UnfoldLoad=*/true, | 
|  | /*UnfoldStore=*/false, | 
|  | &LoadRegIndex); | 
|  | if (NewOpc != 0) { | 
|  | const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); | 
|  | if (UnfoldMCID.getNumDefs() == 1) { | 
|  | // Unfold the load. | 
|  | DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI); | 
|  | const TargetRegisterClass *RC = | 
|  | TRI->getAllocatableClass( | 
|  | TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); | 
|  | unsigned Reg = MRI->createVirtualRegister(RC); | 
|  | SmallVector<MachineInstr *, 2> NewMIs; | 
|  | if (!TII->unfoldMemoryOperand(*MF, MI, Reg, | 
|  | /*UnfoldLoad=*/true, | 
|  | /*UnfoldStore=*/false, NewMIs)) { | 
|  | DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); | 
|  | return false; | 
|  | } | 
|  | assert(NewMIs.size() == 2 && | 
|  | "Unfolded a load into multiple instructions!"); | 
|  | // The load was previously folded, so this is the only use. | 
|  | NewMIs[1]->addRegisterKilled(Reg, TRI); | 
|  |  | 
|  | // Tentatively insert the instructions into the block so that they | 
|  | // look "normal" to the transformation logic. | 
|  | MBB->insert(mi, NewMIs[0]); | 
|  | MBB->insert(mi, NewMIs[1]); | 
|  |  | 
|  | DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0] | 
|  | << "2addr:    NEW INST: " << *NewMIs[1]); | 
|  |  | 
|  | // Transform the instruction, now that it no longer has a load. | 
|  | unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); | 
|  | unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); | 
|  | MachineBasicBlock::iterator NewMI = NewMIs[1]; | 
|  | bool TransformResult = | 
|  | tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); | 
|  | (void)TransformResult; | 
|  | assert(!TransformResult && | 
|  | "tryInstructionTransform() should return false."); | 
|  | if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { | 
|  | // Success, or at least we made an improvement. Keep the unfolded | 
|  | // instructions and discard the original. | 
|  | if (LV) { | 
|  | for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { | 
|  | MachineOperand &MO = MI.getOperand(i); | 
|  | if (MO.isReg() && | 
|  | TargetRegisterInfo::isVirtualRegister(MO.getReg())) { | 
|  | if (MO.isUse()) { | 
|  | if (MO.isKill()) { | 
|  | if (NewMIs[0]->killsRegister(MO.getReg())) | 
|  | LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]); | 
|  | else { | 
|  | assert(NewMIs[1]->killsRegister(MO.getReg()) && | 
|  | "Kill missing after load unfold!"); | 
|  | LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]); | 
|  | } | 
|  | } | 
|  | } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) { | 
|  | if (NewMIs[1]->registerDefIsDead(MO.getReg())) | 
|  | LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]); | 
|  | else { | 
|  | assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && | 
|  | "Dead flag missing after load unfold!"); | 
|  | LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | LV->addVirtualRegisterKilled(Reg, *NewMIs[1]); | 
|  | } | 
|  |  | 
|  | SmallVector<unsigned, 4> OrigRegs; | 
|  | if (LIS) { | 
|  | for (const MachineOperand &MO : MI.operands()) { | 
|  | if (MO.isReg()) | 
|  | OrigRegs.push_back(MO.getReg()); | 
|  | } | 
|  | } | 
|  |  | 
|  | MI.eraseFromParent(); | 
|  |  | 
|  | // Update LiveIntervals. | 
|  | if (LIS) { | 
|  | MachineBasicBlock::iterator Begin(NewMIs[0]); | 
|  | MachineBasicBlock::iterator End(NewMIs[1]); | 
|  | LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); | 
|  | } | 
|  |  | 
|  | mi = NewMIs[1]; | 
|  | } else { | 
|  | // Transforming didn't eliminate the tie and didn't lead to an | 
|  | // improvement. Clean up the unfolded instructions and keep the | 
|  | // original. | 
|  | DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); | 
|  | NewMIs[0]->eraseFromParent(); | 
|  | NewMIs[1]->eraseFromParent(); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Collect tied operands of MI that need to be handled. | 
|  | // Rewrite trivial cases immediately. | 
|  | // Return true if any tied operands where found, including the trivial ones. | 
|  | bool TwoAddressInstructionPass:: | 
|  | collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { | 
|  | const MCInstrDesc &MCID = MI->getDesc(); | 
|  | bool AnyOps = false; | 
|  | unsigned NumOps = MI->getNumOperands(); | 
|  |  | 
|  | for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { | 
|  | unsigned DstIdx = 0; | 
|  | if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) | 
|  | continue; | 
|  | AnyOps = true; | 
|  | MachineOperand &SrcMO = MI->getOperand(SrcIdx); | 
|  | MachineOperand &DstMO = MI->getOperand(DstIdx); | 
|  | unsigned SrcReg = SrcMO.getReg(); | 
|  | unsigned DstReg = DstMO.getReg(); | 
|  | // Tied constraint already satisfied? | 
|  | if (SrcReg == DstReg) | 
|  | continue; | 
|  |  | 
|  | assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); | 
|  |  | 
|  | // Deal with <undef> uses immediately - simply rewrite the src operand. | 
|  | if (SrcMO.isUndef() && !DstMO.getSubReg()) { | 
|  | // Constrain the DstReg register class if required. | 
|  | if (TargetRegisterInfo::isVirtualRegister(DstReg)) | 
|  | if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx, | 
|  | TRI, *MF)) | 
|  | MRI->constrainRegClass(DstReg, RC); | 
|  | SrcMO.setReg(DstReg); | 
|  | SrcMO.setSubReg(0); | 
|  | DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); | 
|  | continue; | 
|  | } | 
|  | TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); | 
|  | } | 
|  | return AnyOps; | 
|  | } | 
|  |  | 
|  | // Process a list of tied MI operands that all use the same source register. | 
|  | // The tied pairs are of the form (SrcIdx, DstIdx). | 
|  | void | 
|  | TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, | 
|  | TiedPairList &TiedPairs, | 
|  | unsigned &Dist) { | 
|  | bool IsEarlyClobber = false; | 
|  | for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { | 
|  | const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second); | 
|  | IsEarlyClobber |= DstMO.isEarlyClobber(); | 
|  | } | 
|  |  | 
|  | bool RemovedKillFlag = false; | 
|  | bool AllUsesCopied = true; | 
|  | unsigned LastCopiedReg = 0; | 
|  | SlotIndex LastCopyIdx; | 
|  | unsigned RegB = 0; | 
|  | unsigned SubRegB = 0; | 
|  | for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) { | 
|  | unsigned SrcIdx = TiedPairs[tpi].first; | 
|  | unsigned DstIdx = TiedPairs[tpi].second; | 
|  |  | 
|  | const MachineOperand &DstMO = MI->getOperand(DstIdx); | 
|  | unsigned RegA = DstMO.getReg(); | 
|  |  | 
|  | // Grab RegB from the instruction because it may have changed if the | 
|  | // instruction was commuted. | 
|  | RegB = MI->getOperand(SrcIdx).getReg(); | 
|  | SubRegB = MI->getOperand(SrcIdx).getSubReg(); | 
|  |  | 
|  | if (RegA == RegB) { | 
|  | // The register is tied to multiple destinations (or else we would | 
|  | // not have continued this far), but this use of the register | 
|  | // already matches the tied destination.  Leave it. | 
|  | AllUsesCopied = false; | 
|  | continue; | 
|  | } | 
|  | LastCopiedReg = RegA; | 
|  |  | 
|  | assert(TargetRegisterInfo::isVirtualRegister(RegB) && | 
|  | "cannot make instruction into two-address form"); | 
|  |  | 
|  | #ifndef NDEBUG | 
|  | // First, verify that we don't have a use of "a" in the instruction | 
|  | // (a = b + a for example) because our transformation will not | 
|  | // work. This should never occur because we are in SSA form. | 
|  | for (unsigned i = 0; i != MI->getNumOperands(); ++i) | 
|  | assert(i == DstIdx || | 
|  | !MI->getOperand(i).isReg() || | 
|  | MI->getOperand(i).getReg() != RegA); | 
|  | #endif | 
|  |  | 
|  | // Emit a copy. | 
|  | MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), | 
|  | TII->get(TargetOpcode::COPY), RegA); | 
|  | // If this operand is folding a truncation, the truncation now moves to the | 
|  | // copy so that the register classes remain valid for the operands. | 
|  | MIB.addReg(RegB, 0, SubRegB); | 
|  | const TargetRegisterClass *RC = MRI->getRegClass(RegB); | 
|  | if (SubRegB) { | 
|  | if (TargetRegisterInfo::isVirtualRegister(RegA)) { | 
|  | assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), | 
|  | SubRegB) && | 
|  | "tied subregister must be a truncation"); | 
|  | // The superreg class will not be used to constrain the subreg class. | 
|  | RC = nullptr; | 
|  | } | 
|  | else { | 
|  | assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) | 
|  | && "tied subregister must be a truncation"); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update DistanceMap. | 
|  | MachineBasicBlock::iterator PrevMI = MI; | 
|  | --PrevMI; | 
|  | DistanceMap.insert(std::make_pair(&*PrevMI, Dist)); | 
|  | DistanceMap[MI] = ++Dist; | 
|  |  | 
|  | if (LIS) { | 
|  | LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot(); | 
|  |  | 
|  | if (TargetRegisterInfo::isVirtualRegister(RegA)) { | 
|  | LiveInterval &LI = LIS->getInterval(RegA); | 
|  | VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); | 
|  | SlotIndex endIdx = | 
|  | LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber); | 
|  | LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI)); | 
|  | } | 
|  | } | 
|  |  | 
|  | DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); | 
|  |  | 
|  | MachineOperand &MO = MI->getOperand(SrcIdx); | 
|  | assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && | 
|  | "inconsistent operand info for 2-reg pass"); | 
|  | if (MO.isKill()) { | 
|  | MO.setIsKill(false); | 
|  | RemovedKillFlag = true; | 
|  | } | 
|  |  | 
|  | // Make sure regA is a legal regclass for the SrcIdx operand. | 
|  | if (TargetRegisterInfo::isVirtualRegister(RegA) && | 
|  | TargetRegisterInfo::isVirtualRegister(RegB)) | 
|  | MRI->constrainRegClass(RegA, RC); | 
|  | MO.setReg(RegA); | 
|  | // The getMatchingSuper asserts guarantee that the register class projected | 
|  | // by SubRegB is compatible with RegA with no subregister. So regardless of | 
|  | // whether the dest oper writes a subreg, the source oper should not. | 
|  | MO.setSubReg(0); | 
|  |  | 
|  | // Propagate SrcRegMap. | 
|  | SrcRegMap[RegA] = RegB; | 
|  | } | 
|  |  | 
|  | if (AllUsesCopied) { | 
|  | if (!IsEarlyClobber) { | 
|  | // Replace other (un-tied) uses of regB with LastCopiedReg. | 
|  | for (MachineOperand &MO : MI->operands()) { | 
|  | if (MO.isReg() && MO.getReg() == RegB && | 
|  | MO.isUse()) { | 
|  | if (MO.isKill()) { | 
|  | MO.setIsKill(false); | 
|  | RemovedKillFlag = true; | 
|  | } | 
|  | MO.setReg(LastCopiedReg); | 
|  | MO.setSubReg(MO.getSubReg()); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Update live variables for regB. | 
|  | if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(*MI)) { | 
|  | MachineBasicBlock::iterator PrevMI = MI; | 
|  | --PrevMI; | 
|  | LV->addVirtualRegisterKilled(RegB, *PrevMI); | 
|  | } | 
|  |  | 
|  | // Update LiveIntervals. | 
|  | if (LIS) { | 
|  | LiveInterval &LI = LIS->getInterval(RegB); | 
|  | SlotIndex MIIdx = LIS->getInstructionIndex(*MI); | 
|  | LiveInterval::const_iterator I = LI.find(MIIdx); | 
|  | assert(I != LI.end() && "RegB must be live-in to use."); | 
|  |  | 
|  | SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber); | 
|  | if (I->end == UseIdx) | 
|  | LI.removeSegment(LastCopyIdx, UseIdx); | 
|  | } | 
|  |  | 
|  | } else if (RemovedKillFlag) { | 
|  | // Some tied uses of regB matched their destination registers, so | 
|  | // regB is still used in this instruction, but a kill flag was | 
|  | // removed from a different tied use of regB, so now we need to add | 
|  | // a kill flag to one of the remaining uses of regB. | 
|  | for (MachineOperand &MO : MI->operands()) { | 
|  | if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { | 
|  | MO.setIsKill(true); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /// Reduce two-address instructions to two operands. | 
|  | bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { | 
|  | MF = &Func; | 
|  | const TargetMachine &TM = MF->getTarget(); | 
|  | MRI = &MF->getRegInfo(); | 
|  | TII = MF->getSubtarget().getInstrInfo(); | 
|  | TRI = MF->getSubtarget().getRegisterInfo(); | 
|  | InstrItins = MF->getSubtarget().getInstrItineraryData(); | 
|  | LV = getAnalysisIfAvailable<LiveVariables>(); | 
|  | LIS = getAnalysisIfAvailable<LiveIntervals>(); | 
|  | if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>()) | 
|  | AA = &AAPass->getAAResults(); | 
|  | else | 
|  | AA = nullptr; | 
|  | OptLevel = TM.getOptLevel(); | 
|  |  | 
|  | bool MadeChange = false; | 
|  |  | 
|  | DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); | 
|  | DEBUG(dbgs() << "********** Function: " | 
|  | << MF->getName() << '\n'); | 
|  |  | 
|  | // This pass takes the function out of SSA form. | 
|  | MRI->leaveSSA(); | 
|  |  | 
|  | TiedOperandMap TiedOperands; | 
|  | for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); | 
|  | MBBI != MBBE; ++MBBI) { | 
|  | MBB = &*MBBI; | 
|  | unsigned Dist = 0; | 
|  | DistanceMap.clear(); | 
|  | SrcRegMap.clear(); | 
|  | DstRegMap.clear(); | 
|  | Processed.clear(); | 
|  | for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); | 
|  | mi != me; ) { | 
|  | MachineBasicBlock::iterator nmi = std::next(mi); | 
|  | if (mi->isDebugValue()) { | 
|  | mi = nmi; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Expand REG_SEQUENCE instructions. This will position mi at the first | 
|  | // expanded instruction. | 
|  | if (mi->isRegSequence()) | 
|  | eliminateRegSequence(mi); | 
|  |  | 
|  | DistanceMap.insert(std::make_pair(&*mi, ++Dist)); | 
|  |  | 
|  | processCopy(&*mi); | 
|  |  | 
|  | // First scan through all the tied register uses in this instruction | 
|  | // and record a list of pairs of tied operands for each register. | 
|  | if (!collectTiedOperands(&*mi, TiedOperands)) { | 
|  | mi = nmi; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | ++NumTwoAddressInstrs; | 
|  | MadeChange = true; | 
|  | DEBUG(dbgs() << '\t' << *mi); | 
|  |  | 
|  | // If the instruction has a single pair of tied operands, try some | 
|  | // transformations that may either eliminate the tied operands or | 
|  | // improve the opportunities for coalescing away the register copy. | 
|  | if (TiedOperands.size() == 1) { | 
|  | SmallVectorImpl<std::pair<unsigned, unsigned> > &TiedPairs | 
|  | = TiedOperands.begin()->second; | 
|  | if (TiedPairs.size() == 1) { | 
|  | unsigned SrcIdx = TiedPairs[0].first; | 
|  | unsigned DstIdx = TiedPairs[0].second; | 
|  | unsigned SrcReg = mi->getOperand(SrcIdx).getReg(); | 
|  | unsigned DstReg = mi->getOperand(DstIdx).getReg(); | 
|  | if (SrcReg != DstReg && | 
|  | tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { | 
|  | // The tied operands have been eliminated or shifted further down | 
|  | // the block to ease elimination. Continue processing with 'nmi'. | 
|  | TiedOperands.clear(); | 
|  | mi = nmi; | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now iterate over the information collected above. | 
|  | for (auto &TO : TiedOperands) { | 
|  | processTiedPairs(&*mi, TO.second, Dist); | 
|  | DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); | 
|  | } | 
|  |  | 
|  | // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. | 
|  | if (mi->isInsertSubreg()) { | 
|  | // From %reg = INSERT_SUBREG %reg, %subreg, subidx | 
|  | // To   %reg:subidx = COPY %subreg | 
|  | unsigned SubIdx = mi->getOperand(3).getImm(); | 
|  | mi->RemoveOperand(3); | 
|  | assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); | 
|  | mi->getOperand(0).setSubReg(SubIdx); | 
|  | mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); | 
|  | mi->RemoveOperand(1); | 
|  | mi->setDesc(TII->get(TargetOpcode::COPY)); | 
|  | DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); | 
|  | } | 
|  |  | 
|  | // Clear TiedOperands here instead of at the top of the loop | 
|  | // since most instructions do not have tied operands. | 
|  | TiedOperands.clear(); | 
|  | mi = nmi; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (LIS) | 
|  | MF->verify(this, "After two-address instruction pass"); | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. | 
|  | /// | 
|  | /// The instruction is turned into a sequence of sub-register copies: | 
|  | /// | 
|  | ///   %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 | 
|  | /// | 
|  | /// Becomes: | 
|  | /// | 
|  | ///   %dst:ssub0<def,undef> = COPY %v1 | 
|  | ///   %dst:ssub1<def> = COPY %v2 | 
|  | /// | 
|  | void TwoAddressInstructionPass:: | 
|  | eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { | 
|  | MachineInstr &MI = *MBBI; | 
|  | unsigned DstReg = MI.getOperand(0).getReg(); | 
|  | if (MI.getOperand(0).getSubReg() || | 
|  | TargetRegisterInfo::isPhysicalRegister(DstReg) || | 
|  | !(MI.getNumOperands() & 1)) { | 
|  | DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << MI); | 
|  | llvm_unreachable(nullptr); | 
|  | } | 
|  |  | 
|  | SmallVector<unsigned, 4> OrigRegs; | 
|  | if (LIS) { | 
|  | OrigRegs.push_back(MI.getOperand(0).getReg()); | 
|  | for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) | 
|  | OrigRegs.push_back(MI.getOperand(i).getReg()); | 
|  | } | 
|  |  | 
|  | bool DefEmitted = false; | 
|  | for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) { | 
|  | MachineOperand &UseMO = MI.getOperand(i); | 
|  | unsigned SrcReg = UseMO.getReg(); | 
|  | unsigned SubIdx = MI.getOperand(i+1).getImm(); | 
|  | // Nothing needs to be inserted for <undef> operands. | 
|  | if (UseMO.isUndef()) | 
|  | continue; | 
|  |  | 
|  | // Defer any kill flag to the last operand using SrcReg. Otherwise, we | 
|  | // might insert a COPY that uses SrcReg after is was killed. | 
|  | bool isKill = UseMO.isKill(); | 
|  | if (isKill) | 
|  | for (unsigned j = i + 2; j < e; j += 2) | 
|  | if (MI.getOperand(j).getReg() == SrcReg) { | 
|  | MI.getOperand(j).setIsKill(); | 
|  | UseMO.setIsKill(false); | 
|  | isKill = false; | 
|  | break; | 
|  | } | 
|  |  | 
|  | // Insert the sub-register copy. | 
|  | MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), | 
|  | TII->get(TargetOpcode::COPY)) | 
|  | .addReg(DstReg, RegState::Define, SubIdx) | 
|  | .add(UseMO); | 
|  |  | 
|  | // The first def needs an <undef> flag because there is no live register | 
|  | // before it. | 
|  | if (!DefEmitted) { | 
|  | CopyMI->getOperand(0).setIsUndef(true); | 
|  | // Return an iterator pointing to the first inserted instr. | 
|  | MBBI = CopyMI; | 
|  | } | 
|  | DefEmitted = true; | 
|  |  | 
|  | // Update LiveVariables' kill info. | 
|  | if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg)) | 
|  | LV->replaceKillInstruction(SrcReg, MI, *CopyMI); | 
|  |  | 
|  | DEBUG(dbgs() << "Inserted: " << *CopyMI); | 
|  | } | 
|  |  | 
|  | MachineBasicBlock::iterator EndMBBI = | 
|  | std::next(MachineBasicBlock::iterator(MI)); | 
|  |  | 
|  | if (!DefEmitted) { | 
|  | DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF"); | 
|  | MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); | 
|  | for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j) | 
|  | MI.RemoveOperand(j); | 
|  | } else { | 
|  | DEBUG(dbgs() << "Eliminated: " << MI); | 
|  | MI.eraseFromParent(); | 
|  | } | 
|  |  | 
|  | // Udpate LiveIntervals. | 
|  | if (LIS) | 
|  | LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); | 
|  | } |