|  | //===- ArgumentPromotion.cpp - Promote by-reference arguments -------------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass promotes "by reference" arguments to be "by value" arguments.  In | 
|  | // practice, this means looking for internal functions that have pointer | 
|  | // arguments.  If it can prove, through the use of alias analysis, that an | 
|  | // argument is *only* loaded, then it can pass the value into the function | 
|  | // instead of the address of the value.  This can cause recursive simplification | 
|  | // of code and lead to the elimination of allocas (especially in C++ template | 
|  | // code like the STL). | 
|  | // | 
|  | // This pass also handles aggregate arguments that are passed into a function, | 
|  | // scalarizing them if the elements of the aggregate are only loaded.  Note that | 
|  | // by default it refuses to scalarize aggregates which would require passing in | 
|  | // more than three operands to the function, because passing thousands of | 
|  | // operands for a large array or structure is unprofitable! This limit can be | 
|  | // configured or disabled, however. | 
|  | // | 
|  | // Note that this transformation could also be done for arguments that are only | 
|  | // stored to (returning the value instead), but does not currently.  This case | 
|  | // would be best handled when and if LLVM begins supporting multiple return | 
|  | // values from functions. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/IPO/ArgumentPromotion.h" | 
|  | #include "llvm/ADT/DepthFirstIterator.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/Optional.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallPtrSet.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/StringExtras.h" | 
|  | #include "llvm/ADT/Twine.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/BasicAliasAnalysis.h" | 
|  | #include "llvm/Analysis/CGSCCPassManager.h" | 
|  | #include "llvm/Analysis/CallGraph.h" | 
|  | #include "llvm/Analysis/CallGraphSCCPass.h" | 
|  | #include "llvm/Analysis/LazyCallGraph.h" | 
|  | #include "llvm/Analysis/Loads.h" | 
|  | #include "llvm/Analysis/MemoryLocation.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/IR/Argument.h" | 
|  | #include "llvm/IR/Attributes.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CFG.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/Metadata.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/PassManager.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/Use.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/IPO.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <functional> | 
|  | #include <iterator> | 
|  | #include <map> | 
|  | #include <set> | 
|  | #include <string> | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "argpromotion" | 
|  |  | 
|  | STATISTIC(NumArgumentsPromoted, "Number of pointer arguments promoted"); | 
|  | STATISTIC(NumAggregatesPromoted, "Number of aggregate arguments promoted"); | 
|  | STATISTIC(NumByValArgsPromoted, "Number of byval arguments promoted"); | 
|  | STATISTIC(NumArgumentsDead, "Number of dead pointer args eliminated"); | 
|  |  | 
|  | /// A vector used to hold the indices of a single GEP instruction | 
|  | using IndicesVector = std::vector<uint64_t>; | 
|  |  | 
|  | /// DoPromotion - This method actually performs the promotion of the specified | 
|  | /// arguments, and returns the new function.  At this point, we know that it's | 
|  | /// safe to do so. | 
|  | static Function * | 
|  | doPromotion(Function *F, SmallPtrSetImpl<Argument *> &ArgsToPromote, | 
|  | SmallPtrSetImpl<Argument *> &ByValArgsToTransform, | 
|  | Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>> | 
|  | ReplaceCallSite) { | 
|  | // Start by computing a new prototype for the function, which is the same as | 
|  | // the old function, but has modified arguments. | 
|  | FunctionType *FTy = F->getFunctionType(); | 
|  | std::vector<Type *> Params; | 
|  |  | 
|  | using ScalarizeTable = std::set<std::pair<Type *, IndicesVector>>; | 
|  |  | 
|  | // ScalarizedElements - If we are promoting a pointer that has elements | 
|  | // accessed out of it, keep track of which elements are accessed so that we | 
|  | // can add one argument for each. | 
|  | // | 
|  | // Arguments that are directly loaded will have a zero element value here, to | 
|  | // handle cases where there are both a direct load and GEP accesses. | 
|  | std::map<Argument *, ScalarizeTable> ScalarizedElements; | 
|  |  | 
|  | // OriginalLoads - Keep track of a representative load instruction from the | 
|  | // original function so that we can tell the alias analysis implementation | 
|  | // what the new GEP/Load instructions we are inserting look like. | 
|  | // We need to keep the original loads for each argument and the elements | 
|  | // of the argument that are accessed. | 
|  | std::map<std::pair<Argument *, IndicesVector>, LoadInst *> OriginalLoads; | 
|  |  | 
|  | // Attribute - Keep track of the parameter attributes for the arguments | 
|  | // that we are *not* promoting. For the ones that we do promote, the parameter | 
|  | // attributes are lost | 
|  | SmallVector<AttributeSet, 8> ArgAttrVec; | 
|  | AttributeList PAL = F->getAttributes(); | 
|  |  | 
|  | // First, determine the new argument list | 
|  | unsigned ArgNo = 0; | 
|  | for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; | 
|  | ++I, ++ArgNo) { | 
|  | if (ByValArgsToTransform.count(&*I)) { | 
|  | // Simple byval argument? Just add all the struct element types. | 
|  | Type *AgTy = cast<PointerType>(I->getType())->getElementType(); | 
|  | StructType *STy = cast<StructType>(AgTy); | 
|  | Params.insert(Params.end(), STy->element_begin(), STy->element_end()); | 
|  | ArgAttrVec.insert(ArgAttrVec.end(), STy->getNumElements(), | 
|  | AttributeSet()); | 
|  | ++NumByValArgsPromoted; | 
|  | } else if (!ArgsToPromote.count(&*I)) { | 
|  | // Unchanged argument | 
|  | Params.push_back(I->getType()); | 
|  | ArgAttrVec.push_back(PAL.getParamAttributes(ArgNo)); | 
|  | } else if (I->use_empty()) { | 
|  | // Dead argument (which are always marked as promotable) | 
|  | ++NumArgumentsDead; | 
|  |  | 
|  | // There may be remaining metadata uses of the argument for things like | 
|  | // llvm.dbg.value. Replace them with undef. | 
|  | I->replaceAllUsesWith(UndefValue::get(I->getType())); | 
|  | } else { | 
|  | // Okay, this is being promoted. This means that the only uses are loads | 
|  | // or GEPs which are only used by loads | 
|  |  | 
|  | // In this table, we will track which indices are loaded from the argument | 
|  | // (where direct loads are tracked as no indices). | 
|  | ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; | 
|  | for (User *U : I->users()) { | 
|  | Instruction *UI = cast<Instruction>(U); | 
|  | Type *SrcTy; | 
|  | if (LoadInst *L = dyn_cast<LoadInst>(UI)) | 
|  | SrcTy = L->getType(); | 
|  | else | 
|  | SrcTy = cast<GetElementPtrInst>(UI)->getSourceElementType(); | 
|  | IndicesVector Indices; | 
|  | Indices.reserve(UI->getNumOperands() - 1); | 
|  | // Since loads will only have a single operand, and GEPs only a single | 
|  | // non-index operand, this will record direct loads without any indices, | 
|  | // and gep+loads with the GEP indices. | 
|  | for (User::op_iterator II = UI->op_begin() + 1, IE = UI->op_end(); | 
|  | II != IE; ++II) | 
|  | Indices.push_back(cast<ConstantInt>(*II)->getSExtValue()); | 
|  | // GEPs with a single 0 index can be merged with direct loads | 
|  | if (Indices.size() == 1 && Indices.front() == 0) | 
|  | Indices.clear(); | 
|  | ArgIndices.insert(std::make_pair(SrcTy, Indices)); | 
|  | LoadInst *OrigLoad; | 
|  | if (LoadInst *L = dyn_cast<LoadInst>(UI)) | 
|  | OrigLoad = L; | 
|  | else | 
|  | // Take any load, we will use it only to update Alias Analysis | 
|  | OrigLoad = cast<LoadInst>(UI->user_back()); | 
|  | OriginalLoads[std::make_pair(&*I, Indices)] = OrigLoad; | 
|  | } | 
|  |  | 
|  | // Add a parameter to the function for each element passed in. | 
|  | for (const auto &ArgIndex : ArgIndices) { | 
|  | // not allowed to dereference ->begin() if size() is 0 | 
|  | Params.push_back(GetElementPtrInst::getIndexedType( | 
|  | cast<PointerType>(I->getType()->getScalarType())->getElementType(), | 
|  | ArgIndex.second)); | 
|  | ArgAttrVec.push_back(AttributeSet()); | 
|  | assert(Params.back()); | 
|  | } | 
|  |  | 
|  | if (ArgIndices.size() == 1 && ArgIndices.begin()->second.empty()) | 
|  | ++NumArgumentsPromoted; | 
|  | else | 
|  | ++NumAggregatesPromoted; | 
|  | } | 
|  | } | 
|  |  | 
|  | Type *RetTy = FTy->getReturnType(); | 
|  |  | 
|  | // Construct the new function type using the new arguments. | 
|  | FunctionType *NFTy = FunctionType::get(RetTy, Params, FTy->isVarArg()); | 
|  |  | 
|  | // Create the new function body and insert it into the module. | 
|  | Function *NF = Function::Create(NFTy, F->getLinkage(), F->getName()); | 
|  | NF->copyAttributesFrom(F); | 
|  |  | 
|  | // Patch the pointer to LLVM function in debug info descriptor. | 
|  | NF->setSubprogram(F->getSubprogram()); | 
|  | F->setSubprogram(nullptr); | 
|  |  | 
|  | DEBUG(dbgs() << "ARG PROMOTION:  Promoting to:" << *NF << "\n" | 
|  | << "From: " << *F); | 
|  |  | 
|  | // Recompute the parameter attributes list based on the new arguments for | 
|  | // the function. | 
|  | NF->setAttributes(AttributeList::get(F->getContext(), PAL.getFnAttributes(), | 
|  | PAL.getRetAttributes(), ArgAttrVec)); | 
|  | ArgAttrVec.clear(); | 
|  |  | 
|  | F->getParent()->getFunctionList().insert(F->getIterator(), NF); | 
|  | NF->takeName(F); | 
|  |  | 
|  | // Loop over all of the callers of the function, transforming the call sites | 
|  | // to pass in the loaded pointers. | 
|  | // | 
|  | SmallVector<Value *, 16> Args; | 
|  | while (!F->use_empty()) { | 
|  | CallSite CS(F->user_back()); | 
|  | assert(CS.getCalledFunction() == F); | 
|  | Instruction *Call = CS.getInstruction(); | 
|  | const AttributeList &CallPAL = CS.getAttributes(); | 
|  |  | 
|  | // Loop over the operands, inserting GEP and loads in the caller as | 
|  | // appropriate. | 
|  | CallSite::arg_iterator AI = CS.arg_begin(); | 
|  | ArgNo = 0; | 
|  | for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; | 
|  | ++I, ++AI, ++ArgNo) | 
|  | if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { | 
|  | Args.push_back(*AI); // Unmodified argument | 
|  | ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo)); | 
|  | } else if (ByValArgsToTransform.count(&*I)) { | 
|  | // Emit a GEP and load for each element of the struct. | 
|  | Type *AgTy = cast<PointerType>(I->getType())->getElementType(); | 
|  | StructType *STy = cast<StructType>(AgTy); | 
|  | Value *Idxs[2] = { | 
|  | ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), nullptr}; | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | 
|  | Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); | 
|  | Value *Idx = GetElementPtrInst::Create( | 
|  | STy, *AI, Idxs, (*AI)->getName() + "." + Twine(i), Call); | 
|  | // TODO: Tell AA about the new values? | 
|  | Args.push_back(new LoadInst(Idx, Idx->getName() + ".val", Call)); | 
|  | ArgAttrVec.push_back(AttributeSet()); | 
|  | } | 
|  | } else if (!I->use_empty()) { | 
|  | // Non-dead argument: insert GEPs and loads as appropriate. | 
|  | ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; | 
|  | // Store the Value* version of the indices in here, but declare it now | 
|  | // for reuse. | 
|  | std::vector<Value *> Ops; | 
|  | for (const auto &ArgIndex : ArgIndices) { | 
|  | Value *V = *AI; | 
|  | LoadInst *OrigLoad = | 
|  | OriginalLoads[std::make_pair(&*I, ArgIndex.second)]; | 
|  | if (!ArgIndex.second.empty()) { | 
|  | Ops.reserve(ArgIndex.second.size()); | 
|  | Type *ElTy = V->getType(); | 
|  | for (auto II : ArgIndex.second) { | 
|  | // Use i32 to index structs, and i64 for others (pointers/arrays). | 
|  | // This satisfies GEP constraints. | 
|  | Type *IdxTy = | 
|  | (ElTy->isStructTy() ? Type::getInt32Ty(F->getContext()) | 
|  | : Type::getInt64Ty(F->getContext())); | 
|  | Ops.push_back(ConstantInt::get(IdxTy, II)); | 
|  | // Keep track of the type we're currently indexing. | 
|  | if (auto *ElPTy = dyn_cast<PointerType>(ElTy)) | 
|  | ElTy = ElPTy->getElementType(); | 
|  | else | 
|  | ElTy = cast<CompositeType>(ElTy)->getTypeAtIndex(II); | 
|  | } | 
|  | // And create a GEP to extract those indices. | 
|  | V = GetElementPtrInst::Create(ArgIndex.first, V, Ops, | 
|  | V->getName() + ".idx", Call); | 
|  | Ops.clear(); | 
|  | } | 
|  | // Since we're replacing a load make sure we take the alignment | 
|  | // of the previous load. | 
|  | LoadInst *newLoad = new LoadInst(V, V->getName() + ".val", Call); | 
|  | newLoad->setAlignment(OrigLoad->getAlignment()); | 
|  | // Transfer the AA info too. | 
|  | AAMDNodes AAInfo; | 
|  | OrigLoad->getAAMetadata(AAInfo); | 
|  | newLoad->setAAMetadata(AAInfo); | 
|  |  | 
|  | Args.push_back(newLoad); | 
|  | ArgAttrVec.push_back(AttributeSet()); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Push any varargs arguments on the list. | 
|  | for (; AI != CS.arg_end(); ++AI, ++ArgNo) { | 
|  | Args.push_back(*AI); | 
|  | ArgAttrVec.push_back(CallPAL.getParamAttributes(ArgNo)); | 
|  | } | 
|  |  | 
|  | SmallVector<OperandBundleDef, 1> OpBundles; | 
|  | CS.getOperandBundlesAsDefs(OpBundles); | 
|  |  | 
|  | CallSite NewCS; | 
|  | if (InvokeInst *II = dyn_cast<InvokeInst>(Call)) { | 
|  | NewCS = InvokeInst::Create(NF, II->getNormalDest(), II->getUnwindDest(), | 
|  | Args, OpBundles, "", Call); | 
|  | } else { | 
|  | auto *NewCall = CallInst::Create(NF, Args, OpBundles, "", Call); | 
|  | NewCall->setTailCallKind(cast<CallInst>(Call)->getTailCallKind()); | 
|  | NewCS = NewCall; | 
|  | } | 
|  | NewCS.setCallingConv(CS.getCallingConv()); | 
|  | NewCS.setAttributes( | 
|  | AttributeList::get(F->getContext(), CallPAL.getFnAttributes(), | 
|  | CallPAL.getRetAttributes(), ArgAttrVec)); | 
|  | NewCS->setDebugLoc(Call->getDebugLoc()); | 
|  | uint64_t W; | 
|  | if (Call->extractProfTotalWeight(W)) | 
|  | NewCS->setProfWeight(W); | 
|  | Args.clear(); | 
|  | ArgAttrVec.clear(); | 
|  |  | 
|  | // Update the callgraph to know that the callsite has been transformed. | 
|  | if (ReplaceCallSite) | 
|  | (*ReplaceCallSite)(CS, NewCS); | 
|  |  | 
|  | if (!Call->use_empty()) { | 
|  | Call->replaceAllUsesWith(NewCS.getInstruction()); | 
|  | NewCS->takeName(Call); | 
|  | } | 
|  |  | 
|  | // Finally, remove the old call from the program, reducing the use-count of | 
|  | // F. | 
|  | Call->eraseFromParent(); | 
|  | } | 
|  |  | 
|  | const DataLayout &DL = F->getParent()->getDataLayout(); | 
|  |  | 
|  | // Since we have now created the new function, splice the body of the old | 
|  | // function right into the new function, leaving the old rotting hulk of the | 
|  | // function empty. | 
|  | NF->getBasicBlockList().splice(NF->begin(), F->getBasicBlockList()); | 
|  |  | 
|  | // Loop over the argument list, transferring uses of the old arguments over to | 
|  | // the new arguments, also transferring over the names as well. | 
|  | for (Function::arg_iterator I = F->arg_begin(), E = F->arg_end(), | 
|  | I2 = NF->arg_begin(); | 
|  | I != E; ++I) { | 
|  | if (!ArgsToPromote.count(&*I) && !ByValArgsToTransform.count(&*I)) { | 
|  | // If this is an unmodified argument, move the name and users over to the | 
|  | // new version. | 
|  | I->replaceAllUsesWith(&*I2); | 
|  | I2->takeName(&*I); | 
|  | ++I2; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (ByValArgsToTransform.count(&*I)) { | 
|  | // In the callee, we create an alloca, and store each of the new incoming | 
|  | // arguments into the alloca. | 
|  | Instruction *InsertPt = &NF->begin()->front(); | 
|  |  | 
|  | // Just add all the struct element types. | 
|  | Type *AgTy = cast<PointerType>(I->getType())->getElementType(); | 
|  | Value *TheAlloca = new AllocaInst(AgTy, DL.getAllocaAddrSpace(), nullptr, | 
|  | I->getParamAlignment(), "", InsertPt); | 
|  | StructType *STy = cast<StructType>(AgTy); | 
|  | Value *Idxs[2] = {ConstantInt::get(Type::getInt32Ty(F->getContext()), 0), | 
|  | nullptr}; | 
|  |  | 
|  | for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) { | 
|  | Idxs[1] = ConstantInt::get(Type::getInt32Ty(F->getContext()), i); | 
|  | Value *Idx = GetElementPtrInst::Create( | 
|  | AgTy, TheAlloca, Idxs, TheAlloca->getName() + "." + Twine(i), | 
|  | InsertPt); | 
|  | I2->setName(I->getName() + "." + Twine(i)); | 
|  | new StoreInst(&*I2++, Idx, InsertPt); | 
|  | } | 
|  |  | 
|  | // Anything that used the arg should now use the alloca. | 
|  | I->replaceAllUsesWith(TheAlloca); | 
|  | TheAlloca->takeName(&*I); | 
|  |  | 
|  | // If the alloca is used in a call, we must clear the tail flag since | 
|  | // the callee now uses an alloca from the caller. | 
|  | for (User *U : TheAlloca->users()) { | 
|  | CallInst *Call = dyn_cast<CallInst>(U); | 
|  | if (!Call) | 
|  | continue; | 
|  | Call->setTailCall(false); | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (I->use_empty()) | 
|  | continue; | 
|  |  | 
|  | // Otherwise, if we promoted this argument, then all users are load | 
|  | // instructions (or GEPs with only load users), and all loads should be | 
|  | // using the new argument that we added. | 
|  | ScalarizeTable &ArgIndices = ScalarizedElements[&*I]; | 
|  |  | 
|  | while (!I->use_empty()) { | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(I->user_back())) { | 
|  | assert(ArgIndices.begin()->second.empty() && | 
|  | "Load element should sort to front!"); | 
|  | I2->setName(I->getName() + ".val"); | 
|  | LI->replaceAllUsesWith(&*I2); | 
|  | LI->eraseFromParent(); | 
|  | DEBUG(dbgs() << "*** Promoted load of argument '" << I->getName() | 
|  | << "' in function '" << F->getName() << "'\n"); | 
|  | } else { | 
|  | GetElementPtrInst *GEP = cast<GetElementPtrInst>(I->user_back()); | 
|  | IndicesVector Operands; | 
|  | Operands.reserve(GEP->getNumIndices()); | 
|  | for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); | 
|  | II != IE; ++II) | 
|  | Operands.push_back(cast<ConstantInt>(*II)->getSExtValue()); | 
|  |  | 
|  | // GEPs with a single 0 index can be merged with direct loads | 
|  | if (Operands.size() == 1 && Operands.front() == 0) | 
|  | Operands.clear(); | 
|  |  | 
|  | Function::arg_iterator TheArg = I2; | 
|  | for (ScalarizeTable::iterator It = ArgIndices.begin(); | 
|  | It->second != Operands; ++It, ++TheArg) { | 
|  | assert(It != ArgIndices.end() && "GEP not handled??"); | 
|  | } | 
|  |  | 
|  | std::string NewName = I->getName(); | 
|  | for (unsigned i = 0, e = Operands.size(); i != e; ++i) { | 
|  | NewName += "." + utostr(Operands[i]); | 
|  | } | 
|  | NewName += ".val"; | 
|  | TheArg->setName(NewName); | 
|  |  | 
|  | DEBUG(dbgs() << "*** Promoted agg argument '" << TheArg->getName() | 
|  | << "' of function '" << NF->getName() << "'\n"); | 
|  |  | 
|  | // All of the uses must be load instructions.  Replace them all with | 
|  | // the argument specified by ArgNo. | 
|  | while (!GEP->use_empty()) { | 
|  | LoadInst *L = cast<LoadInst>(GEP->user_back()); | 
|  | L->replaceAllUsesWith(&*TheArg); | 
|  | L->eraseFromParent(); | 
|  | } | 
|  | GEP->eraseFromParent(); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Increment I2 past all of the arguments added for this promoted pointer. | 
|  | std::advance(I2, ArgIndices.size()); | 
|  | } | 
|  |  | 
|  | return NF; | 
|  | } | 
|  |  | 
|  | /// AllCallersPassInValidPointerForArgument - Return true if we can prove that | 
|  | /// all callees pass in a valid pointer for the specified function argument. | 
|  | static bool allCallersPassInValidPointerForArgument(Argument *Arg) { | 
|  | Function *Callee = Arg->getParent(); | 
|  | const DataLayout &DL = Callee->getParent()->getDataLayout(); | 
|  |  | 
|  | unsigned ArgNo = Arg->getArgNo(); | 
|  |  | 
|  | // Look at all call sites of the function.  At this point we know we only have | 
|  | // direct callees. | 
|  | for (User *U : Callee->users()) { | 
|  | CallSite CS(U); | 
|  | assert(CS && "Should only have direct calls!"); | 
|  |  | 
|  | if (!isDereferenceablePointer(CS.getArgument(ArgNo), DL)) | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Returns true if Prefix is a prefix of longer. That means, Longer has a size | 
|  | /// that is greater than or equal to the size of prefix, and each of the | 
|  | /// elements in Prefix is the same as the corresponding elements in Longer. | 
|  | /// | 
|  | /// This means it also returns true when Prefix and Longer are equal! | 
|  | static bool isPrefix(const IndicesVector &Prefix, const IndicesVector &Longer) { | 
|  | if (Prefix.size() > Longer.size()) | 
|  | return false; | 
|  | return std::equal(Prefix.begin(), Prefix.end(), Longer.begin()); | 
|  | } | 
|  |  | 
|  | /// Checks if Indices, or a prefix of Indices, is in Set. | 
|  | static bool prefixIn(const IndicesVector &Indices, | 
|  | std::set<IndicesVector> &Set) { | 
|  | std::set<IndicesVector>::iterator Low; | 
|  | Low = Set.upper_bound(Indices); | 
|  | if (Low != Set.begin()) | 
|  | Low--; | 
|  | // Low is now the last element smaller than or equal to Indices. This means | 
|  | // it points to a prefix of Indices (possibly Indices itself), if such | 
|  | // prefix exists. | 
|  | // | 
|  | // This load is safe if any prefix of its operands is safe to load. | 
|  | return Low != Set.end() && isPrefix(*Low, Indices); | 
|  | } | 
|  |  | 
|  | /// Mark the given indices (ToMark) as safe in the given set of indices | 
|  | /// (Safe). Marking safe usually means adding ToMark to Safe. However, if there | 
|  | /// is already a prefix of Indices in Safe, Indices are implicitely marked safe | 
|  | /// already. Furthermore, any indices that Indices is itself a prefix of, are | 
|  | /// removed from Safe (since they are implicitely safe because of Indices now). | 
|  | static void markIndicesSafe(const IndicesVector &ToMark, | 
|  | std::set<IndicesVector> &Safe) { | 
|  | std::set<IndicesVector>::iterator Low; | 
|  | Low = Safe.upper_bound(ToMark); | 
|  | // Guard against the case where Safe is empty | 
|  | if (Low != Safe.begin()) | 
|  | Low--; | 
|  | // Low is now the last element smaller than or equal to Indices. This | 
|  | // means it points to a prefix of Indices (possibly Indices itself), if | 
|  | // such prefix exists. | 
|  | if (Low != Safe.end()) { | 
|  | if (isPrefix(*Low, ToMark)) | 
|  | // If there is already a prefix of these indices (or exactly these | 
|  | // indices) marked a safe, don't bother adding these indices | 
|  | return; | 
|  |  | 
|  | // Increment Low, so we can use it as a "insert before" hint | 
|  | ++Low; | 
|  | } | 
|  | // Insert | 
|  | Low = Safe.insert(Low, ToMark); | 
|  | ++Low; | 
|  | // If there we're a prefix of longer index list(s), remove those | 
|  | std::set<IndicesVector>::iterator End = Safe.end(); | 
|  | while (Low != End && isPrefix(ToMark, *Low)) { | 
|  | std::set<IndicesVector>::iterator Remove = Low; | 
|  | ++Low; | 
|  | Safe.erase(Remove); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// isSafeToPromoteArgument - As you might guess from the name of this method, | 
|  | /// it checks to see if it is both safe and useful to promote the argument. | 
|  | /// This method limits promotion of aggregates to only promote up to three | 
|  | /// elements of the aggregate in order to avoid exploding the number of | 
|  | /// arguments passed in. | 
|  | static bool isSafeToPromoteArgument(Argument *Arg, bool isByValOrInAlloca, | 
|  | AAResults &AAR, unsigned MaxElements) { | 
|  | using GEPIndicesSet = std::set<IndicesVector>; | 
|  |  | 
|  | // Quick exit for unused arguments | 
|  | if (Arg->use_empty()) | 
|  | return true; | 
|  |  | 
|  | // We can only promote this argument if all of the uses are loads, or are GEP | 
|  | // instructions (with constant indices) that are subsequently loaded. | 
|  | // | 
|  | // Promoting the argument causes it to be loaded in the caller | 
|  | // unconditionally. This is only safe if we can prove that either the load | 
|  | // would have happened in the callee anyway (ie, there is a load in the entry | 
|  | // block) or the pointer passed in at every call site is guaranteed to be | 
|  | // valid. | 
|  | // In the former case, invalid loads can happen, but would have happened | 
|  | // anyway, in the latter case, invalid loads won't happen. This prevents us | 
|  | // from introducing an invalid load that wouldn't have happened in the | 
|  | // original code. | 
|  | // | 
|  | // This set will contain all sets of indices that are loaded in the entry | 
|  | // block, and thus are safe to unconditionally load in the caller. | 
|  | // | 
|  | // This optimization is also safe for InAlloca parameters, because it verifies | 
|  | // that the address isn't captured. | 
|  | GEPIndicesSet SafeToUnconditionallyLoad; | 
|  |  | 
|  | // This set contains all the sets of indices that we are planning to promote. | 
|  | // This makes it possible to limit the number of arguments added. | 
|  | GEPIndicesSet ToPromote; | 
|  |  | 
|  | // If the pointer is always valid, any load with first index 0 is valid. | 
|  | if (isByValOrInAlloca || allCallersPassInValidPointerForArgument(Arg)) | 
|  | SafeToUnconditionallyLoad.insert(IndicesVector(1, 0)); | 
|  |  | 
|  | // First, iterate the entry block and mark loads of (geps of) arguments as | 
|  | // safe. | 
|  | BasicBlock &EntryBlock = Arg->getParent()->front(); | 
|  | // Declare this here so we can reuse it | 
|  | IndicesVector Indices; | 
|  | for (Instruction &I : EntryBlock) | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { | 
|  | Value *V = LI->getPointerOperand(); | 
|  | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(V)) { | 
|  | V = GEP->getPointerOperand(); | 
|  | if (V == Arg) { | 
|  | // This load actually loads (part of) Arg? Check the indices then. | 
|  | Indices.reserve(GEP->getNumIndices()); | 
|  | for (User::op_iterator II = GEP->idx_begin(), IE = GEP->idx_end(); | 
|  | II != IE; ++II) | 
|  | if (ConstantInt *CI = dyn_cast<ConstantInt>(*II)) | 
|  | Indices.push_back(CI->getSExtValue()); | 
|  | else | 
|  | // We found a non-constant GEP index for this argument? Bail out | 
|  | // right away, can't promote this argument at all. | 
|  | return false; | 
|  |  | 
|  | // Indices checked out, mark them as safe | 
|  | markIndicesSafe(Indices, SafeToUnconditionallyLoad); | 
|  | Indices.clear(); | 
|  | } | 
|  | } else if (V == Arg) { | 
|  | // Direct loads are equivalent to a GEP with a single 0 index. | 
|  | markIndicesSafe(IndicesVector(1, 0), SafeToUnconditionallyLoad); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now, iterate all uses of the argument to see if there are any uses that are | 
|  | // not (GEP+)loads, or any (GEP+)loads that are not safe to promote. | 
|  | SmallVector<LoadInst *, 16> Loads; | 
|  | IndicesVector Operands; | 
|  | for (Use &U : Arg->uses()) { | 
|  | User *UR = U.getUser(); | 
|  | Operands.clear(); | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(UR)) { | 
|  | // Don't hack volatile/atomic loads | 
|  | if (!LI->isSimple()) | 
|  | return false; | 
|  | Loads.push_back(LI); | 
|  | // Direct loads are equivalent to a GEP with a zero index and then a load. | 
|  | Operands.push_back(0); | 
|  | } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(UR)) { | 
|  | if (GEP->use_empty()) { | 
|  | // Dead GEP's cause trouble later.  Just remove them if we run into | 
|  | // them. | 
|  | GEP->eraseFromParent(); | 
|  | // TODO: This runs the above loop over and over again for dead GEPs | 
|  | // Couldn't we just do increment the UI iterator earlier and erase the | 
|  | // use? | 
|  | return isSafeToPromoteArgument(Arg, isByValOrInAlloca, AAR, | 
|  | MaxElements); | 
|  | } | 
|  |  | 
|  | // Ensure that all of the indices are constants. | 
|  | for (User::op_iterator i = GEP->idx_begin(), e = GEP->idx_end(); i != e; | 
|  | ++i) | 
|  | if (ConstantInt *C = dyn_cast<ConstantInt>(*i)) | 
|  | Operands.push_back(C->getSExtValue()); | 
|  | else | 
|  | return false; // Not a constant operand GEP! | 
|  |  | 
|  | // Ensure that the only users of the GEP are load instructions. | 
|  | for (User *GEPU : GEP->users()) | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(GEPU)) { | 
|  | // Don't hack volatile/atomic loads | 
|  | if (!LI->isSimple()) | 
|  | return false; | 
|  | Loads.push_back(LI); | 
|  | } else { | 
|  | // Other uses than load? | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | return false; // Not a load or a GEP. | 
|  | } | 
|  |  | 
|  | // Now, see if it is safe to promote this load / loads of this GEP. Loading | 
|  | // is safe if Operands, or a prefix of Operands, is marked as safe. | 
|  | if (!prefixIn(Operands, SafeToUnconditionallyLoad)) | 
|  | return false; | 
|  |  | 
|  | // See if we are already promoting a load with these indices. If not, check | 
|  | // to make sure that we aren't promoting too many elements.  If so, nothing | 
|  | // to do. | 
|  | if (ToPromote.find(Operands) == ToPromote.end()) { | 
|  | if (MaxElements > 0 && ToPromote.size() == MaxElements) { | 
|  | DEBUG(dbgs() << "argpromotion not promoting argument '" | 
|  | << Arg->getName() | 
|  | << "' because it would require adding more " | 
|  | << "than " << MaxElements | 
|  | << " arguments to the function.\n"); | 
|  | // We limit aggregate promotion to only promoting up to a fixed number | 
|  | // of elements of the aggregate. | 
|  | return false; | 
|  | } | 
|  | ToPromote.insert(std::move(Operands)); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (Loads.empty()) | 
|  | return true; // No users, this is a dead argument. | 
|  |  | 
|  | // Okay, now we know that the argument is only used by load instructions and | 
|  | // it is safe to unconditionally perform all of them. Use alias analysis to | 
|  | // check to see if the pointer is guaranteed to not be modified from entry of | 
|  | // the function to each of the load instructions. | 
|  |  | 
|  | // Because there could be several/many load instructions, remember which | 
|  | // blocks we know to be transparent to the load. | 
|  | df_iterator_default_set<BasicBlock *, 16> TranspBlocks; | 
|  |  | 
|  | for (LoadInst *Load : Loads) { | 
|  | // Check to see if the load is invalidated from the start of the block to | 
|  | // the load itself. | 
|  | BasicBlock *BB = Load->getParent(); | 
|  |  | 
|  | MemoryLocation Loc = MemoryLocation::get(Load); | 
|  | if (AAR.canInstructionRangeModRef(BB->front(), *Load, Loc, ModRefInfo::Mod)) | 
|  | return false; // Pointer is invalidated! | 
|  |  | 
|  | // Now check every path from the entry block to the load for transparency. | 
|  | // To do this, we perform a depth first search on the inverse CFG from the | 
|  | // loading block. | 
|  | for (BasicBlock *P : predecessors(BB)) { | 
|  | for (BasicBlock *TranspBB : inverse_depth_first_ext(P, TranspBlocks)) | 
|  | if (AAR.canBasicBlockModify(*TranspBB, Loc)) | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the path from the entry of the function to each load is free of | 
|  | // instructions that potentially invalidate the load, we can make the | 
|  | // transformation! | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Checks if a type could have padding bytes. | 
|  | static bool isDenselyPacked(Type *type, const DataLayout &DL) { | 
|  | // There is no size information, so be conservative. | 
|  | if (!type->isSized()) | 
|  | return false; | 
|  |  | 
|  | // If the alloc size is not equal to the storage size, then there are padding | 
|  | // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128. | 
|  | if (DL.getTypeSizeInBits(type) != DL.getTypeAllocSizeInBits(type)) | 
|  | return false; | 
|  |  | 
|  | if (!isa<CompositeType>(type)) | 
|  | return true; | 
|  |  | 
|  | // For homogenous sequential types, check for padding within members. | 
|  | if (SequentialType *seqTy = dyn_cast<SequentialType>(type)) | 
|  | return isDenselyPacked(seqTy->getElementType(), DL); | 
|  |  | 
|  | // Check for padding within and between elements of a struct. | 
|  | StructType *StructTy = cast<StructType>(type); | 
|  | const StructLayout *Layout = DL.getStructLayout(StructTy); | 
|  | uint64_t StartPos = 0; | 
|  | for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) { | 
|  | Type *ElTy = StructTy->getElementType(i); | 
|  | if (!isDenselyPacked(ElTy, DL)) | 
|  | return false; | 
|  | if (StartPos != Layout->getElementOffsetInBits(i)) | 
|  | return false; | 
|  | StartPos += DL.getTypeAllocSizeInBits(ElTy); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// \brief Checks if the padding bytes of an argument could be accessed. | 
|  | static bool canPaddingBeAccessed(Argument *arg) { | 
|  | assert(arg->hasByValAttr()); | 
|  |  | 
|  | // Track all the pointers to the argument to make sure they are not captured. | 
|  | SmallPtrSet<Value *, 16> PtrValues; | 
|  | PtrValues.insert(arg); | 
|  |  | 
|  | // Track all of the stores. | 
|  | SmallVector<StoreInst *, 16> Stores; | 
|  |  | 
|  | // Scan through the uses recursively to make sure the pointer is always used | 
|  | // sanely. | 
|  | SmallVector<Value *, 16> WorkList; | 
|  | WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end()); | 
|  | while (!WorkList.empty()) { | 
|  | Value *V = WorkList.back(); | 
|  | WorkList.pop_back(); | 
|  | if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) { | 
|  | if (PtrValues.insert(V).second) | 
|  | WorkList.insert(WorkList.end(), V->user_begin(), V->user_end()); | 
|  | } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) { | 
|  | Stores.push_back(Store); | 
|  | } else if (!isa<LoadInst>(V)) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Check to make sure the pointers aren't captured | 
|  | for (StoreInst *Store : Stores) | 
|  | if (PtrValues.count(Store->getValueOperand())) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// PromoteArguments - This method checks the specified function to see if there | 
|  | /// are any promotable arguments and if it is safe to promote the function (for | 
|  | /// example, all callers are direct).  If safe to promote some arguments, it | 
|  | /// calls the DoPromotion method. | 
|  | static Function * | 
|  | promoteArguments(Function *F, function_ref<AAResults &(Function &F)> AARGetter, | 
|  | unsigned MaxElements, | 
|  | Optional<function_ref<void(CallSite OldCS, CallSite NewCS)>> | 
|  | ReplaceCallSite) { | 
|  | // Don't perform argument promotion for naked functions; otherwise we can end | 
|  | // up removing parameters that are seemingly 'not used' as they are referred | 
|  | // to in the assembly. | 
|  | if(F->hasFnAttribute(Attribute::Naked)) | 
|  | return nullptr; | 
|  |  | 
|  | // Make sure that it is local to this module. | 
|  | if (!F->hasLocalLinkage()) | 
|  | return nullptr; | 
|  |  | 
|  | // Don't promote arguments for variadic functions. Adding, removing, or | 
|  | // changing non-pack parameters can change the classification of pack | 
|  | // parameters. Frontends encode that classification at the call site in the | 
|  | // IR, while in the callee the classification is determined dynamically based | 
|  | // on the number of registers consumed so far. | 
|  | if (F->isVarArg()) | 
|  | return nullptr; | 
|  |  | 
|  | // First check: see if there are any pointer arguments!  If not, quick exit. | 
|  | SmallVector<Argument *, 16> PointerArgs; | 
|  | for (Argument &I : F->args()) | 
|  | if (I.getType()->isPointerTy()) | 
|  | PointerArgs.push_back(&I); | 
|  | if (PointerArgs.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | // Second check: make sure that all callers are direct callers.  We can't | 
|  | // transform functions that have indirect callers.  Also see if the function | 
|  | // is self-recursive. | 
|  | bool isSelfRecursive = false; | 
|  | for (Use &U : F->uses()) { | 
|  | CallSite CS(U.getUser()); | 
|  | // Must be a direct call. | 
|  | if (CS.getInstruction() == nullptr || !CS.isCallee(&U)) | 
|  | return nullptr; | 
|  |  | 
|  | // Can't change signature of musttail callee | 
|  | if (CS.isMustTailCall()) | 
|  | return nullptr; | 
|  |  | 
|  | if (CS.getInstruction()->getParent()->getParent() == F) | 
|  | isSelfRecursive = true; | 
|  | } | 
|  |  | 
|  | // Can't change signature of musttail caller | 
|  | // FIXME: Support promoting whole chain of musttail functions | 
|  | for (BasicBlock &BB : *F) | 
|  | if (BB.getTerminatingMustTailCall()) | 
|  | return nullptr; | 
|  |  | 
|  | const DataLayout &DL = F->getParent()->getDataLayout(); | 
|  |  | 
|  | AAResults &AAR = AARGetter(*F); | 
|  |  | 
|  | // Check to see which arguments are promotable.  If an argument is promotable, | 
|  | // add it to ArgsToPromote. | 
|  | SmallPtrSet<Argument *, 8> ArgsToPromote; | 
|  | SmallPtrSet<Argument *, 8> ByValArgsToTransform; | 
|  | for (Argument *PtrArg : PointerArgs) { | 
|  | Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType(); | 
|  |  | 
|  | // Replace sret attribute with noalias. This reduces register pressure by | 
|  | // avoiding a register copy. | 
|  | if (PtrArg->hasStructRetAttr()) { | 
|  | unsigned ArgNo = PtrArg->getArgNo(); | 
|  | F->removeParamAttr(ArgNo, Attribute::StructRet); | 
|  | F->addParamAttr(ArgNo, Attribute::NoAlias); | 
|  | for (Use &U : F->uses()) { | 
|  | CallSite CS(U.getUser()); | 
|  | CS.removeParamAttr(ArgNo, Attribute::StructRet); | 
|  | CS.addParamAttr(ArgNo, Attribute::NoAlias); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If this is a byval argument, and if the aggregate type is small, just | 
|  | // pass the elements, which is always safe, if the passed value is densely | 
|  | // packed or if we can prove the padding bytes are never accessed. This does | 
|  | // not apply to inalloca. | 
|  | bool isSafeToPromote = | 
|  | PtrArg->hasByValAttr() && | 
|  | (isDenselyPacked(AgTy, DL) || !canPaddingBeAccessed(PtrArg)); | 
|  | if (isSafeToPromote) { | 
|  | if (StructType *STy = dyn_cast<StructType>(AgTy)) { | 
|  | if (MaxElements > 0 && STy->getNumElements() > MaxElements) { | 
|  | DEBUG(dbgs() << "argpromotion disable promoting argument '" | 
|  | << PtrArg->getName() | 
|  | << "' because it would require adding more" | 
|  | << " than " << MaxElements | 
|  | << " arguments to the function.\n"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // If all the elements are single-value types, we can promote it. | 
|  | bool AllSimple = true; | 
|  | for (const auto *EltTy : STy->elements()) { | 
|  | if (!EltTy->isSingleValueType()) { | 
|  | AllSimple = false; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Safe to transform, don't even bother trying to "promote" it. | 
|  | // Passing the elements as a scalar will allow sroa to hack on | 
|  | // the new alloca we introduce. | 
|  | if (AllSimple) { | 
|  | ByValArgsToTransform.insert(PtrArg); | 
|  | continue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // If the argument is a recursive type and we're in a recursive | 
|  | // function, we could end up infinitely peeling the function argument. | 
|  | if (isSelfRecursive) { | 
|  | if (StructType *STy = dyn_cast<StructType>(AgTy)) { | 
|  | bool RecursiveType = false; | 
|  | for (const auto *EltTy : STy->elements()) { | 
|  | if (EltTy == PtrArg->getType()) { | 
|  | RecursiveType = true; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (RecursiveType) | 
|  | continue; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Otherwise, see if we can promote the pointer to its value. | 
|  | if (isSafeToPromoteArgument(PtrArg, PtrArg->hasByValOrInAllocaAttr(), AAR, | 
|  | MaxElements)) | 
|  | ArgsToPromote.insert(PtrArg); | 
|  | } | 
|  |  | 
|  | // No promotable pointer arguments. | 
|  | if (ArgsToPromote.empty() && ByValArgsToTransform.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | return doPromotion(F, ArgsToPromote, ByValArgsToTransform, ReplaceCallSite); | 
|  | } | 
|  |  | 
|  | PreservedAnalyses ArgumentPromotionPass::run(LazyCallGraph::SCC &C, | 
|  | CGSCCAnalysisManager &AM, | 
|  | LazyCallGraph &CG, | 
|  | CGSCCUpdateResult &UR) { | 
|  | bool Changed = false, LocalChange; | 
|  |  | 
|  | // Iterate until we stop promoting from this SCC. | 
|  | do { | 
|  | LocalChange = false; | 
|  |  | 
|  | for (LazyCallGraph::Node &N : C) { | 
|  | Function &OldF = N.getFunction(); | 
|  |  | 
|  | FunctionAnalysisManager &FAM = | 
|  | AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager(); | 
|  | // FIXME: This lambda must only be used with this function. We should | 
|  | // skip the lambda and just get the AA results directly. | 
|  | auto AARGetter = [&](Function &F) -> AAResults & { | 
|  | assert(&F == &OldF && "Called with an unexpected function!"); | 
|  | return FAM.getResult<AAManager>(F); | 
|  | }; | 
|  |  | 
|  | Function *NewF = promoteArguments(&OldF, AARGetter, MaxElements, None); | 
|  | if (!NewF) | 
|  | continue; | 
|  | LocalChange = true; | 
|  |  | 
|  | // Directly substitute the functions in the call graph. Note that this | 
|  | // requires the old function to be completely dead and completely | 
|  | // replaced by the new function. It does no call graph updates, it merely | 
|  | // swaps out the particular function mapped to a particular node in the | 
|  | // graph. | 
|  | C.getOuterRefSCC().replaceNodeFunction(N, *NewF); | 
|  | OldF.eraseFromParent(); | 
|  | } | 
|  |  | 
|  | Changed |= LocalChange; | 
|  | } while (LocalChange); | 
|  |  | 
|  | if (!Changed) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | return PreservedAnalyses::none(); | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// ArgPromotion - The 'by reference' to 'by value' argument promotion pass. | 
|  | struct ArgPromotion : public CallGraphSCCPass { | 
|  | // Pass identification, replacement for typeid | 
|  | static char ID; | 
|  |  | 
|  | explicit ArgPromotion(unsigned MaxElements = 3) | 
|  | : CallGraphSCCPass(ID), MaxElements(MaxElements) { | 
|  | initializeArgPromotionPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | getAAResultsAnalysisUsage(AU); | 
|  | CallGraphSCCPass::getAnalysisUsage(AU); | 
|  | } | 
|  |  | 
|  | bool runOnSCC(CallGraphSCC &SCC) override; | 
|  |  | 
|  | private: | 
|  | using llvm::Pass::doInitialization; | 
|  |  | 
|  | bool doInitialization(CallGraph &CG) override; | 
|  |  | 
|  | /// The maximum number of elements to expand, or 0 for unlimited. | 
|  | unsigned MaxElements; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char ArgPromotion::ID = 0; | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(ArgPromotion, "argpromotion", | 
|  | "Promote 'by reference' arguments to scalars", false, | 
|  | false) | 
|  | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
|  | INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
|  | INITIALIZE_PASS_END(ArgPromotion, "argpromotion", | 
|  | "Promote 'by reference' arguments to scalars", false, false) | 
|  |  | 
|  | Pass *llvm::createArgumentPromotionPass(unsigned MaxElements) { | 
|  | return new ArgPromotion(MaxElements); | 
|  | } | 
|  |  | 
|  | bool ArgPromotion::runOnSCC(CallGraphSCC &SCC) { | 
|  | if (skipSCC(SCC)) | 
|  | return false; | 
|  |  | 
|  | // Get the callgraph information that we need to update to reflect our | 
|  | // changes. | 
|  | CallGraph &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph(); | 
|  |  | 
|  | LegacyAARGetter AARGetter(*this); | 
|  |  | 
|  | bool Changed = false, LocalChange; | 
|  |  | 
|  | // Iterate until we stop promoting from this SCC. | 
|  | do { | 
|  | LocalChange = false; | 
|  | // Attempt to promote arguments from all functions in this SCC. | 
|  | for (CallGraphNode *OldNode : SCC) { | 
|  | Function *OldF = OldNode->getFunction(); | 
|  | if (!OldF) | 
|  | continue; | 
|  |  | 
|  | auto ReplaceCallSite = [&](CallSite OldCS, CallSite NewCS) { | 
|  | Function *Caller = OldCS.getInstruction()->getParent()->getParent(); | 
|  | CallGraphNode *NewCalleeNode = | 
|  | CG.getOrInsertFunction(NewCS.getCalledFunction()); | 
|  | CallGraphNode *CallerNode = CG[Caller]; | 
|  | CallerNode->replaceCallEdge(OldCS, NewCS, NewCalleeNode); | 
|  | }; | 
|  |  | 
|  | if (Function *NewF = promoteArguments(OldF, AARGetter, MaxElements, | 
|  | {ReplaceCallSite})) { | 
|  | LocalChange = true; | 
|  |  | 
|  | // Update the call graph for the newly promoted function. | 
|  | CallGraphNode *NewNode = CG.getOrInsertFunction(NewF); | 
|  | NewNode->stealCalledFunctionsFrom(OldNode); | 
|  | if (OldNode->getNumReferences() == 0) | 
|  | delete CG.removeFunctionFromModule(OldNode); | 
|  | else | 
|  | OldF->setLinkage(Function::ExternalLinkage); | 
|  |  | 
|  | // And updat ethe SCC we're iterating as well. | 
|  | SCC.ReplaceNode(OldNode, NewNode); | 
|  | } | 
|  | } | 
|  | // Remember that we changed something. | 
|  | Changed |= LocalChange; | 
|  | } while (LocalChange); | 
|  |  | 
|  | return Changed; | 
|  | } | 
|  |  | 
|  | bool ArgPromotion::doInitialization(CallGraph &CG) { | 
|  | return CallGraphSCCPass::doInitialization(CG); | 
|  | } |