|  | //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===// | 
|  | // | 
|  | //                     The LLVM Compiler Infrastructure | 
|  | // | 
|  | // This file is distributed under the University of Illinois Open Source | 
|  | // License. See LICENSE.TXT for details. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  | // | 
|  | // This pass performs various transformations related to eliminating memcpy | 
|  | // calls, or transforming sets of stores into memset's. | 
|  | // | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | #include "llvm/Transforms/Scalar/MemCpyOptimizer.h" | 
|  | #include "llvm/ADT/DenseSet.h" | 
|  | #include "llvm/ADT/None.h" | 
|  | #include "llvm/ADT/STLExtras.h" | 
|  | #include "llvm/ADT/SmallVector.h" | 
|  | #include "llvm/ADT/Statistic.h" | 
|  | #include "llvm/ADT/iterator_range.h" | 
|  | #include "llvm/Analysis/AliasAnalysis.h" | 
|  | #include "llvm/Analysis/AssumptionCache.h" | 
|  | #include "llvm/Analysis/GlobalsModRef.h" | 
|  | #include "llvm/Analysis/MemoryDependenceAnalysis.h" | 
|  | #include "llvm/Analysis/MemoryLocation.h" | 
|  | #include "llvm/Analysis/TargetLibraryInfo.h" | 
|  | #include "llvm/Analysis/ValueTracking.h" | 
|  | #include "llvm/IR/Argument.h" | 
|  | #include "llvm/IR/BasicBlock.h" | 
|  | #include "llvm/IR/CallSite.h" | 
|  | #include "llvm/IR/Constants.h" | 
|  | #include "llvm/IR/DataLayout.h" | 
|  | #include "llvm/IR/DerivedTypes.h" | 
|  | #include "llvm/IR/Dominators.h" | 
|  | #include "llvm/IR/Function.h" | 
|  | #include "llvm/IR/GetElementPtrTypeIterator.h" | 
|  | #include "llvm/IR/GlobalVariable.h" | 
|  | #include "llvm/IR/IRBuilder.h" | 
|  | #include "llvm/IR/InstrTypes.h" | 
|  | #include "llvm/IR/Instruction.h" | 
|  | #include "llvm/IR/Instructions.h" | 
|  | #include "llvm/IR/IntrinsicInst.h" | 
|  | #include "llvm/IR/Intrinsics.h" | 
|  | #include "llvm/IR/LLVMContext.h" | 
|  | #include "llvm/IR/Module.h" | 
|  | #include "llvm/IR/Operator.h" | 
|  | #include "llvm/IR/PassManager.h" | 
|  | #include "llvm/IR/Type.h" | 
|  | #include "llvm/IR/User.h" | 
|  | #include "llvm/IR/Value.h" | 
|  | #include "llvm/Pass.h" | 
|  | #include "llvm/Support/Casting.h" | 
|  | #include "llvm/Support/Debug.h" | 
|  | #include "llvm/Support/MathExtras.h" | 
|  | #include "llvm/Support/raw_ostream.h" | 
|  | #include "llvm/Transforms/Scalar.h" | 
|  | #include "llvm/Transforms/Utils/Local.h" | 
|  | #include <algorithm> | 
|  | #include <cassert> | 
|  | #include <cstdint> | 
|  | #include <utility> | 
|  |  | 
|  | using namespace llvm; | 
|  |  | 
|  | #define DEBUG_TYPE "memcpyopt" | 
|  |  | 
|  | STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted"); | 
|  | STATISTIC(NumMemSetInfer, "Number of memsets inferred"); | 
|  | STATISTIC(NumMoveToCpy,   "Number of memmoves converted to memcpy"); | 
|  | STATISTIC(NumCpyToSet,    "Number of memcpys converted to memset"); | 
|  |  | 
|  | static int64_t GetOffsetFromIndex(const GEPOperator *GEP, unsigned Idx, | 
|  | bool &VariableIdxFound, | 
|  | const DataLayout &DL) { | 
|  | // Skip over the first indices. | 
|  | gep_type_iterator GTI = gep_type_begin(GEP); | 
|  | for (unsigned i = 1; i != Idx; ++i, ++GTI) | 
|  | /*skip along*/; | 
|  |  | 
|  | // Compute the offset implied by the rest of the indices. | 
|  | int64_t Offset = 0; | 
|  | for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) { | 
|  | ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i)); | 
|  | if (!OpC) | 
|  | return VariableIdxFound = true; | 
|  | if (OpC->isZero()) continue;  // No offset. | 
|  |  | 
|  | // Handle struct indices, which add their field offset to the pointer. | 
|  | if (StructType *STy = GTI.getStructTypeOrNull()) { | 
|  | Offset += DL.getStructLayout(STy)->getElementOffset(OpC->getZExtValue()); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Otherwise, we have a sequential type like an array or vector.  Multiply | 
|  | // the index by the ElementSize. | 
|  | uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType()); | 
|  | Offset += Size*OpC->getSExtValue(); | 
|  | } | 
|  |  | 
|  | return Offset; | 
|  | } | 
|  |  | 
|  | /// Return true if Ptr1 is provably equal to Ptr2 plus a constant offset, and | 
|  | /// return that constant offset. For example, Ptr1 might be &A[42], and Ptr2 | 
|  | /// might be &A[40]. In this case offset would be -8. | 
|  | static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset, | 
|  | const DataLayout &DL) { | 
|  | Ptr1 = Ptr1->stripPointerCasts(); | 
|  | Ptr2 = Ptr2->stripPointerCasts(); | 
|  |  | 
|  | // Handle the trivial case first. | 
|  | if (Ptr1 == Ptr2) { | 
|  | Offset = 0; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | GEPOperator *GEP1 = dyn_cast<GEPOperator>(Ptr1); | 
|  | GEPOperator *GEP2 = dyn_cast<GEPOperator>(Ptr2); | 
|  |  | 
|  | bool VariableIdxFound = false; | 
|  |  | 
|  | // If one pointer is a GEP and the other isn't, then see if the GEP is a | 
|  | // constant offset from the base, as in "P" and "gep P, 1". | 
|  | if (GEP1 && !GEP2 && GEP1->getOperand(0)->stripPointerCasts() == Ptr2) { | 
|  | Offset = -GetOffsetFromIndex(GEP1, 1, VariableIdxFound, DL); | 
|  | return !VariableIdxFound; | 
|  | } | 
|  |  | 
|  | if (GEP2 && !GEP1 && GEP2->getOperand(0)->stripPointerCasts() == Ptr1) { | 
|  | Offset = GetOffsetFromIndex(GEP2, 1, VariableIdxFound, DL); | 
|  | return !VariableIdxFound; | 
|  | } | 
|  |  | 
|  | // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical | 
|  | // base.  After that base, they may have some number of common (and | 
|  | // potentially variable) indices.  After that they handle some constant | 
|  | // offset, which determines their offset from each other.  At this point, we | 
|  | // handle no other case. | 
|  | if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0)) | 
|  | return false; | 
|  |  | 
|  | // Skip any common indices and track the GEP types. | 
|  | unsigned Idx = 1; | 
|  | for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx) | 
|  | if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx)) | 
|  | break; | 
|  |  | 
|  | int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, DL); | 
|  | int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, DL); | 
|  | if (VariableIdxFound) return false; | 
|  |  | 
|  | Offset = Offset2-Offset1; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | /// Represents a range of memset'd bytes with the ByteVal value. | 
|  | /// This allows us to analyze stores like: | 
|  | ///   store 0 -> P+1 | 
|  | ///   store 0 -> P+0 | 
|  | ///   store 0 -> P+3 | 
|  | ///   store 0 -> P+2 | 
|  | /// which sometimes happens with stores to arrays of structs etc.  When we see | 
|  | /// the first store, we make a range [1, 2).  The second store extends the range | 
|  | /// to [0, 2).  The third makes a new range [2, 3).  The fourth store joins the | 
|  | /// two ranges into [0, 3) which is memset'able. | 
|  | struct MemsetRange { | 
|  | // Start/End - A semi range that describes the span that this range covers. | 
|  | // The range is closed at the start and open at the end: [Start, End). | 
|  | int64_t Start, End; | 
|  |  | 
|  | /// StartPtr - The getelementptr instruction that points to the start of the | 
|  | /// range. | 
|  | Value *StartPtr; | 
|  |  | 
|  | /// Alignment - The known alignment of the first store. | 
|  | unsigned Alignment; | 
|  |  | 
|  | /// TheStores - The actual stores that make up this range. | 
|  | SmallVector<Instruction*, 16> TheStores; | 
|  |  | 
|  | bool isProfitableToUseMemset(const DataLayout &DL) const; | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | bool MemsetRange::isProfitableToUseMemset(const DataLayout &DL) const { | 
|  | // If we found more than 4 stores to merge or 16 bytes, use memset. | 
|  | if (TheStores.size() >= 4 || End-Start >= 16) return true; | 
|  |  | 
|  | // If there is nothing to merge, don't do anything. | 
|  | if (TheStores.size() < 2) return false; | 
|  |  | 
|  | // If any of the stores are a memset, then it is always good to extend the | 
|  | // memset. | 
|  | for (Instruction *SI : TheStores) | 
|  | if (!isa<StoreInst>(SI)) | 
|  | return true; | 
|  |  | 
|  | // Assume that the code generator is capable of merging pairs of stores | 
|  | // together if it wants to. | 
|  | if (TheStores.size() == 2) return false; | 
|  |  | 
|  | // If we have fewer than 8 stores, it can still be worthwhile to do this. | 
|  | // For example, merging 4 i8 stores into an i32 store is useful almost always. | 
|  | // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the | 
|  | // memset will be split into 2 32-bit stores anyway) and doing so can | 
|  | // pessimize the llvm optimizer. | 
|  | // | 
|  | // Since we don't have perfect knowledge here, make some assumptions: assume | 
|  | // the maximum GPR width is the same size as the largest legal integer | 
|  | // size. If so, check to see whether we will end up actually reducing the | 
|  | // number of stores used. | 
|  | unsigned Bytes = unsigned(End-Start); | 
|  | unsigned MaxIntSize = DL.getLargestLegalIntTypeSizeInBits() / 8; | 
|  | if (MaxIntSize == 0) | 
|  | MaxIntSize = 1; | 
|  | unsigned NumPointerStores = Bytes / MaxIntSize; | 
|  |  | 
|  | // Assume the remaining bytes if any are done a byte at a time. | 
|  | unsigned NumByteStores = Bytes % MaxIntSize; | 
|  |  | 
|  | // If we will reduce the # stores (according to this heuristic), do the | 
|  | // transformation.  This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32 | 
|  | // etc. | 
|  | return TheStores.size() > NumPointerStores+NumByteStores; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class MemsetRanges { | 
|  | using range_iterator = SmallVectorImpl<MemsetRange>::iterator; | 
|  |  | 
|  | /// A sorted list of the memset ranges. | 
|  | SmallVector<MemsetRange, 8> Ranges; | 
|  |  | 
|  | const DataLayout &DL; | 
|  |  | 
|  | public: | 
|  | MemsetRanges(const DataLayout &DL) : DL(DL) {} | 
|  |  | 
|  | using const_iterator = SmallVectorImpl<MemsetRange>::const_iterator; | 
|  |  | 
|  | const_iterator begin() const { return Ranges.begin(); } | 
|  | const_iterator end() const { return Ranges.end(); } | 
|  | bool empty() const { return Ranges.empty(); } | 
|  |  | 
|  | void addInst(int64_t OffsetFromFirst, Instruction *Inst) { | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) | 
|  | addStore(OffsetFromFirst, SI); | 
|  | else | 
|  | addMemSet(OffsetFromFirst, cast<MemSetInst>(Inst)); | 
|  | } | 
|  |  | 
|  | void addStore(int64_t OffsetFromFirst, StoreInst *SI) { | 
|  | int64_t StoreSize = DL.getTypeStoreSize(SI->getOperand(0)->getType()); | 
|  |  | 
|  | addRange(OffsetFromFirst, StoreSize, | 
|  | SI->getPointerOperand(), SI->getAlignment(), SI); | 
|  | } | 
|  |  | 
|  | void addMemSet(int64_t OffsetFromFirst, MemSetInst *MSI) { | 
|  | int64_t Size = cast<ConstantInt>(MSI->getLength())->getZExtValue(); | 
|  | addRange(OffsetFromFirst, Size, MSI->getDest(), MSI->getAlignment(), MSI); | 
|  | } | 
|  |  | 
|  | void addRange(int64_t Start, int64_t Size, Value *Ptr, | 
|  | unsigned Alignment, Instruction *Inst); | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | /// Add a new store to the MemsetRanges data structure.  This adds a | 
|  | /// new range for the specified store at the specified offset, merging into | 
|  | /// existing ranges as appropriate. | 
|  | void MemsetRanges::addRange(int64_t Start, int64_t Size, Value *Ptr, | 
|  | unsigned Alignment, Instruction *Inst) { | 
|  | int64_t End = Start+Size; | 
|  |  | 
|  | range_iterator I = std::lower_bound(Ranges.begin(), Ranges.end(), Start, | 
|  | [](const MemsetRange &LHS, int64_t RHS) { return LHS.End < RHS; }); | 
|  |  | 
|  | // We now know that I == E, in which case we didn't find anything to merge | 
|  | // with, or that Start <= I->End.  If End < I->Start or I == E, then we need | 
|  | // to insert a new range.  Handle this now. | 
|  | if (I == Ranges.end() || End < I->Start) { | 
|  | MemsetRange &R = *Ranges.insert(I, MemsetRange()); | 
|  | R.Start        = Start; | 
|  | R.End          = End; | 
|  | R.StartPtr     = Ptr; | 
|  | R.Alignment    = Alignment; | 
|  | R.TheStores.push_back(Inst); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // This store overlaps with I, add it. | 
|  | I->TheStores.push_back(Inst); | 
|  |  | 
|  | // At this point, we may have an interval that completely contains our store. | 
|  | // If so, just add it to the interval and return. | 
|  | if (I->Start <= Start && I->End >= End) | 
|  | return; | 
|  |  | 
|  | // Now we know that Start <= I->End and End >= I->Start so the range overlaps | 
|  | // but is not entirely contained within the range. | 
|  |  | 
|  | // See if the range extends the start of the range.  In this case, it couldn't | 
|  | // possibly cause it to join the prior range, because otherwise we would have | 
|  | // stopped on *it*. | 
|  | if (Start < I->Start) { | 
|  | I->Start = Start; | 
|  | I->StartPtr = Ptr; | 
|  | I->Alignment = Alignment; | 
|  | } | 
|  |  | 
|  | // Now we know that Start <= I->End and Start >= I->Start (so the startpoint | 
|  | // is in or right at the end of I), and that End >= I->Start.  Extend I out to | 
|  | // End. | 
|  | if (End > I->End) { | 
|  | I->End = End; | 
|  | range_iterator NextI = I; | 
|  | while (++NextI != Ranges.end() && End >= NextI->Start) { | 
|  | // Merge the range in. | 
|  | I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end()); | 
|  | if (NextI->End > I->End) | 
|  | I->End = NextI->End; | 
|  | Ranges.erase(NextI); | 
|  | NextI = I; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | //===----------------------------------------------------------------------===// | 
|  | //                         MemCpyOptLegacyPass Pass | 
|  | //===----------------------------------------------------------------------===// | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | class MemCpyOptLegacyPass : public FunctionPass { | 
|  | MemCpyOptPass Impl; | 
|  |  | 
|  | public: | 
|  | static char ID; // Pass identification, replacement for typeid | 
|  |  | 
|  | MemCpyOptLegacyPass() : FunctionPass(ID) { | 
|  | initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry()); | 
|  | } | 
|  |  | 
|  | bool runOnFunction(Function &F) override; | 
|  |  | 
|  | private: | 
|  | // This transformation requires dominator postdominator info | 
|  | void getAnalysisUsage(AnalysisUsage &AU) const override { | 
|  | AU.setPreservesCFG(); | 
|  | AU.addRequired<AssumptionCacheTracker>(); | 
|  | AU.addRequired<DominatorTreeWrapperPass>(); | 
|  | AU.addRequired<MemoryDependenceWrapperPass>(); | 
|  | AU.addRequired<AAResultsWrapperPass>(); | 
|  | AU.addRequired<TargetLibraryInfoWrapperPass>(); | 
|  | AU.addPreserved<GlobalsAAWrapperPass>(); | 
|  | AU.addPreserved<MemoryDependenceWrapperPass>(); | 
|  | } | 
|  | }; | 
|  |  | 
|  | } // end anonymous namespace | 
|  |  | 
|  | char MemCpyOptLegacyPass::ID = 0; | 
|  |  | 
|  | /// The public interface to this file... | 
|  | FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); } | 
|  |  | 
|  | INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", | 
|  | false, false) | 
|  | INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) | 
|  | INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) | 
|  | INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) | 
|  | INITIALIZE_PASS_END(MemCpyOptLegacyPass, "memcpyopt", "MemCpy Optimization", | 
|  | false, false) | 
|  |  | 
|  | /// When scanning forward over instructions, we look for some other patterns to | 
|  | /// fold away. In particular, this looks for stores to neighboring locations of | 
|  | /// memory. If it sees enough consecutive ones, it attempts to merge them | 
|  | /// together into a memcpy/memset. | 
|  | Instruction *MemCpyOptPass::tryMergingIntoMemset(Instruction *StartInst, | 
|  | Value *StartPtr, | 
|  | Value *ByteVal) { | 
|  | const DataLayout &DL = StartInst->getModule()->getDataLayout(); | 
|  |  | 
|  | // Okay, so we now have a single store that can be splatable.  Scan to find | 
|  | // all subsequent stores of the same value to offset from the same pointer. | 
|  | // Join these together into ranges, so we can decide whether contiguous blocks | 
|  | // are stored. | 
|  | MemsetRanges Ranges(DL); | 
|  |  | 
|  | BasicBlock::iterator BI(StartInst); | 
|  | for (++BI; !isa<TerminatorInst>(BI); ++BI) { | 
|  | if (!isa<StoreInst>(BI) && !isa<MemSetInst>(BI)) { | 
|  | // If the instruction is readnone, ignore it, otherwise bail out.  We | 
|  | // don't even allow readonly here because we don't want something like: | 
|  | // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A). | 
|  | if (BI->mayWriteToMemory() || BI->mayReadFromMemory()) | 
|  | break; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (StoreInst *NextStore = dyn_cast<StoreInst>(BI)) { | 
|  | // If this is a store, see if we can merge it in. | 
|  | if (!NextStore->isSimple()) break; | 
|  |  | 
|  | // Check to see if this stored value is of the same byte-splattable value. | 
|  | if (ByteVal != isBytewiseValue(NextStore->getOperand(0))) | 
|  | break; | 
|  |  | 
|  | // Check to see if this store is to a constant offset from the start ptr. | 
|  | int64_t Offset; | 
|  | if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, | 
|  | DL)) | 
|  | break; | 
|  |  | 
|  | Ranges.addStore(Offset, NextStore); | 
|  | } else { | 
|  | MemSetInst *MSI = cast<MemSetInst>(BI); | 
|  |  | 
|  | if (MSI->isVolatile() || ByteVal != MSI->getValue() || | 
|  | !isa<ConstantInt>(MSI->getLength())) | 
|  | break; | 
|  |  | 
|  | // Check to see if this store is to a constant offset from the start ptr. | 
|  | int64_t Offset; | 
|  | if (!IsPointerOffset(StartPtr, MSI->getDest(), Offset, DL)) | 
|  | break; | 
|  |  | 
|  | Ranges.addMemSet(Offset, MSI); | 
|  | } | 
|  | } | 
|  |  | 
|  | // If we have no ranges, then we just had a single store with nothing that | 
|  | // could be merged in.  This is a very common case of course. | 
|  | if (Ranges.empty()) | 
|  | return nullptr; | 
|  |  | 
|  | // If we had at least one store that could be merged in, add the starting | 
|  | // store as well.  We try to avoid this unless there is at least something | 
|  | // interesting as a small compile-time optimization. | 
|  | Ranges.addInst(0, StartInst); | 
|  |  | 
|  | // If we create any memsets, we put it right before the first instruction that | 
|  | // isn't part of the memset block.  This ensure that the memset is dominated | 
|  | // by any addressing instruction needed by the start of the block. | 
|  | IRBuilder<> Builder(&*BI); | 
|  |  | 
|  | // Now that we have full information about ranges, loop over the ranges and | 
|  | // emit memset's for anything big enough to be worthwhile. | 
|  | Instruction *AMemSet = nullptr; | 
|  | for (const MemsetRange &Range : Ranges) { | 
|  | if (Range.TheStores.size() == 1) continue; | 
|  |  | 
|  | // If it is profitable to lower this range to memset, do so now. | 
|  | if (!Range.isProfitableToUseMemset(DL)) | 
|  | continue; | 
|  |  | 
|  | // Otherwise, we do want to transform this!  Create a new memset. | 
|  | // Get the starting pointer of the block. | 
|  | StartPtr = Range.StartPtr; | 
|  |  | 
|  | // Determine alignment | 
|  | unsigned Alignment = Range.Alignment; | 
|  | if (Alignment == 0) { | 
|  | Type *EltType = | 
|  | cast<PointerType>(StartPtr->getType())->getElementType(); | 
|  | Alignment = DL.getABITypeAlignment(EltType); | 
|  | } | 
|  |  | 
|  | AMemSet = | 
|  | Builder.CreateMemSet(StartPtr, ByteVal, Range.End-Range.Start, Alignment); | 
|  |  | 
|  | DEBUG(dbgs() << "Replace stores:\n"; | 
|  | for (Instruction *SI : Range.TheStores) | 
|  | dbgs() << *SI << '\n'; | 
|  | dbgs() << "With: " << *AMemSet << '\n'); | 
|  |  | 
|  | if (!Range.TheStores.empty()) | 
|  | AMemSet->setDebugLoc(Range.TheStores[0]->getDebugLoc()); | 
|  |  | 
|  | // Zap all the stores. | 
|  | for (Instruction *SI : Range.TheStores) { | 
|  | MD->removeInstruction(SI); | 
|  | SI->eraseFromParent(); | 
|  | } | 
|  | ++NumMemSetInfer; | 
|  | } | 
|  |  | 
|  | return AMemSet; | 
|  | } | 
|  |  | 
|  | static unsigned findCommonAlignment(const DataLayout &DL, const StoreInst *SI, | 
|  | const LoadInst *LI) { | 
|  | unsigned StoreAlign = SI->getAlignment(); | 
|  | if (!StoreAlign) | 
|  | StoreAlign = DL.getABITypeAlignment(SI->getOperand(0)->getType()); | 
|  | unsigned LoadAlign = LI->getAlignment(); | 
|  | if (!LoadAlign) | 
|  | LoadAlign = DL.getABITypeAlignment(LI->getType()); | 
|  |  | 
|  | return std::min(StoreAlign, LoadAlign); | 
|  | } | 
|  |  | 
|  | // This method try to lift a store instruction before position P. | 
|  | // It will lift the store and its argument + that anything that | 
|  | // may alias with these. | 
|  | // The method returns true if it was successful. | 
|  | static bool moveUp(AliasAnalysis &AA, StoreInst *SI, Instruction *P, | 
|  | const LoadInst *LI) { | 
|  | // If the store alias this position, early bail out. | 
|  | MemoryLocation StoreLoc = MemoryLocation::get(SI); | 
|  | if (isModOrRefSet(AA.getModRefInfo(P, StoreLoc))) | 
|  | return false; | 
|  |  | 
|  | // Keep track of the arguments of all instruction we plan to lift | 
|  | // so we can make sure to lift them as well if apropriate. | 
|  | DenseSet<Instruction*> Args; | 
|  | if (auto *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) | 
|  | if (Ptr->getParent() == SI->getParent()) | 
|  | Args.insert(Ptr); | 
|  |  | 
|  | // Instruction to lift before P. | 
|  | SmallVector<Instruction*, 8> ToLift; | 
|  |  | 
|  | // Memory locations of lifted instructions. | 
|  | SmallVector<MemoryLocation, 8> MemLocs{StoreLoc}; | 
|  |  | 
|  | // Lifted callsites. | 
|  | SmallVector<ImmutableCallSite, 8> CallSites; | 
|  |  | 
|  | const MemoryLocation LoadLoc = MemoryLocation::get(LI); | 
|  |  | 
|  | for (auto I = --SI->getIterator(), E = P->getIterator(); I != E; --I) { | 
|  | auto *C = &*I; | 
|  |  | 
|  | bool MayAlias = isModOrRefSet(AA.getModRefInfo(C, None)); | 
|  |  | 
|  | bool NeedLift = false; | 
|  | if (Args.erase(C)) | 
|  | NeedLift = true; | 
|  | else if (MayAlias) { | 
|  | NeedLift = llvm::any_of(MemLocs, [C, &AA](const MemoryLocation &ML) { | 
|  | return isModOrRefSet(AA.getModRefInfo(C, ML)); | 
|  | }); | 
|  |  | 
|  | if (!NeedLift) | 
|  | NeedLift = | 
|  | llvm::any_of(CallSites, [C, &AA](const ImmutableCallSite &CS) { | 
|  | return isModOrRefSet(AA.getModRefInfo(C, CS)); | 
|  | }); | 
|  | } | 
|  |  | 
|  | if (!NeedLift) | 
|  | continue; | 
|  |  | 
|  | if (MayAlias) { | 
|  | // Since LI is implicitly moved downwards past the lifted instructions, | 
|  | // none of them may modify its source. | 
|  | if (isModSet(AA.getModRefInfo(C, LoadLoc))) | 
|  | return false; | 
|  | else if (auto CS = ImmutableCallSite(C)) { | 
|  | // If we can't lift this before P, it's game over. | 
|  | if (isModOrRefSet(AA.getModRefInfo(P, CS))) | 
|  | return false; | 
|  |  | 
|  | CallSites.push_back(CS); | 
|  | } else if (isa<LoadInst>(C) || isa<StoreInst>(C) || isa<VAArgInst>(C)) { | 
|  | // If we can't lift this before P, it's game over. | 
|  | auto ML = MemoryLocation::get(C); | 
|  | if (isModOrRefSet(AA.getModRefInfo(P, ML))) | 
|  | return false; | 
|  |  | 
|  | MemLocs.push_back(ML); | 
|  | } else | 
|  | // We don't know how to lift this instruction. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | ToLift.push_back(C); | 
|  | for (unsigned k = 0, e = C->getNumOperands(); k != e; ++k) | 
|  | if (auto *A = dyn_cast<Instruction>(C->getOperand(k))) | 
|  | if (A->getParent() == SI->getParent()) | 
|  | Args.insert(A); | 
|  | } | 
|  |  | 
|  | // We made it, we need to lift | 
|  | for (auto *I : llvm::reverse(ToLift)) { | 
|  | DEBUG(dbgs() << "Lifting " << *I << " before " << *P << "\n"); | 
|  | I->moveBefore(P); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool MemCpyOptPass::processStore(StoreInst *SI, BasicBlock::iterator &BBI) { | 
|  | if (!SI->isSimple()) return false; | 
|  |  | 
|  | // Avoid merging nontemporal stores since the resulting | 
|  | // memcpy/memset would not be able to preserve the nontemporal hint. | 
|  | // In theory we could teach how to propagate the !nontemporal metadata to | 
|  | // memset calls. However, that change would force the backend to | 
|  | // conservatively expand !nontemporal memset calls back to sequences of | 
|  | // store instructions (effectively undoing the merging). | 
|  | if (SI->getMetadata(LLVMContext::MD_nontemporal)) | 
|  | return false; | 
|  |  | 
|  | const DataLayout &DL = SI->getModule()->getDataLayout(); | 
|  |  | 
|  | // Load to store forwarding can be interpreted as memcpy. | 
|  | if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) { | 
|  | if (LI->isSimple() && LI->hasOneUse() && | 
|  | LI->getParent() == SI->getParent()) { | 
|  |  | 
|  | auto *T = LI->getType(); | 
|  | if (T->isAggregateType()) { | 
|  | AliasAnalysis &AA = LookupAliasAnalysis(); | 
|  | MemoryLocation LoadLoc = MemoryLocation::get(LI); | 
|  |  | 
|  | // We use alias analysis to check if an instruction may store to | 
|  | // the memory we load from in between the load and the store. If | 
|  | // such an instruction is found, we try to promote there instead | 
|  | // of at the store position. | 
|  | Instruction *P = SI; | 
|  | for (auto &I : make_range(++LI->getIterator(), SI->getIterator())) { | 
|  | if (isModSet(AA.getModRefInfo(&I, LoadLoc))) { | 
|  | P = &I; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | // We found an instruction that may write to the loaded memory. | 
|  | // We can try to promote at this position instead of the store | 
|  | // position if nothing alias the store memory after this and the store | 
|  | // destination is not in the range. | 
|  | if (P && P != SI) { | 
|  | if (!moveUp(AA, SI, P, LI)) | 
|  | P = nullptr; | 
|  | } | 
|  |  | 
|  | // If a valid insertion position is found, then we can promote | 
|  | // the load/store pair to a memcpy. | 
|  | if (P) { | 
|  | // If we load from memory that may alias the memory we store to, | 
|  | // memmove must be used to preserve semantic. If not, memcpy can | 
|  | // be used. | 
|  | bool UseMemMove = false; | 
|  | if (!AA.isNoAlias(MemoryLocation::get(SI), LoadLoc)) | 
|  | UseMemMove = true; | 
|  |  | 
|  | unsigned Align = findCommonAlignment(DL, SI, LI); | 
|  | uint64_t Size = DL.getTypeStoreSize(T); | 
|  |  | 
|  | IRBuilder<> Builder(P); | 
|  | Instruction *M; | 
|  | if (UseMemMove) | 
|  | M = Builder.CreateMemMove(SI->getPointerOperand(), | 
|  | LI->getPointerOperand(), Size, | 
|  | Align, SI->isVolatile()); | 
|  | else | 
|  | M = Builder.CreateMemCpy(SI->getPointerOperand(), | 
|  | LI->getPointerOperand(), Size, | 
|  | Align, SI->isVolatile()); | 
|  |  | 
|  | DEBUG(dbgs() << "Promoting " << *LI << " to " << *SI | 
|  | << " => " << *M << "\n"); | 
|  |  | 
|  | MD->removeInstruction(SI); | 
|  | SI->eraseFromParent(); | 
|  | MD->removeInstruction(LI); | 
|  | LI->eraseFromParent(); | 
|  | ++NumMemCpyInstr; | 
|  |  | 
|  | // Make sure we do not invalidate the iterator. | 
|  | BBI = M->getIterator(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Detect cases where we're performing call slot forwarding, but | 
|  | // happen to be using a load-store pair to implement it, rather than | 
|  | // a memcpy. | 
|  | MemDepResult ldep = MD->getDependency(LI); | 
|  | CallInst *C = nullptr; | 
|  | if (ldep.isClobber() && !isa<MemCpyInst>(ldep.getInst())) | 
|  | C = dyn_cast<CallInst>(ldep.getInst()); | 
|  |  | 
|  | if (C) { | 
|  | // Check that nothing touches the dest of the "copy" between | 
|  | // the call and the store. | 
|  | Value *CpyDest = SI->getPointerOperand()->stripPointerCasts(); | 
|  | bool CpyDestIsLocal = isa<AllocaInst>(CpyDest); | 
|  | AliasAnalysis &AA = LookupAliasAnalysis(); | 
|  | MemoryLocation StoreLoc = MemoryLocation::get(SI); | 
|  | for (BasicBlock::iterator I = --SI->getIterator(), E = C->getIterator(); | 
|  | I != E; --I) { | 
|  | if (isModOrRefSet(AA.getModRefInfo(&*I, StoreLoc))) { | 
|  | C = nullptr; | 
|  | break; | 
|  | } | 
|  | // The store to dest may never happen if an exception can be thrown | 
|  | // between the load and the store. | 
|  | if (I->mayThrow() && !CpyDestIsLocal) { | 
|  | C = nullptr; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (C) { | 
|  | bool changed = performCallSlotOptzn( | 
|  | LI, SI->getPointerOperand()->stripPointerCasts(), | 
|  | LI->getPointerOperand()->stripPointerCasts(), | 
|  | DL.getTypeStoreSize(SI->getOperand(0)->getType()), | 
|  | findCommonAlignment(DL, SI, LI), C); | 
|  | if (changed) { | 
|  | MD->removeInstruction(SI); | 
|  | SI->eraseFromParent(); | 
|  | MD->removeInstruction(LI); | 
|  | LI->eraseFromParent(); | 
|  | ++NumMemCpyInstr; | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // There are two cases that are interesting for this code to handle: memcpy | 
|  | // and memset.  Right now we only handle memset. | 
|  |  | 
|  | // Ensure that the value being stored is something that can be memset'able a | 
|  | // byte at a time like "0" or "-1" or any width, as well as things like | 
|  | // 0xA0A0A0A0 and 0.0. | 
|  | auto *V = SI->getOperand(0); | 
|  | if (Value *ByteVal = isBytewiseValue(V)) { | 
|  | if (Instruction *I = tryMergingIntoMemset(SI, SI->getPointerOperand(), | 
|  | ByteVal)) { | 
|  | BBI = I->getIterator(); // Don't invalidate iterator. | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // If we have an aggregate, we try to promote it to memset regardless | 
|  | // of opportunity for merging as it can expose optimization opportunities | 
|  | // in subsequent passes. | 
|  | auto *T = V->getType(); | 
|  | if (T->isAggregateType()) { | 
|  | uint64_t Size = DL.getTypeStoreSize(T); | 
|  | unsigned Align = SI->getAlignment(); | 
|  | if (!Align) | 
|  | Align = DL.getABITypeAlignment(T); | 
|  | IRBuilder<> Builder(SI); | 
|  | auto *M = Builder.CreateMemSet(SI->getPointerOperand(), ByteVal, | 
|  | Size, Align, SI->isVolatile()); | 
|  |  | 
|  | DEBUG(dbgs() << "Promoting " << *SI << " to " << *M << "\n"); | 
|  |  | 
|  | MD->removeInstruction(SI); | 
|  | SI->eraseFromParent(); | 
|  | NumMemSetInfer++; | 
|  |  | 
|  | // Make sure we do not invalidate the iterator. | 
|  | BBI = M->getIterator(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool MemCpyOptPass::processMemSet(MemSetInst *MSI, BasicBlock::iterator &BBI) { | 
|  | // See if there is another memset or store neighboring this memset which | 
|  | // allows us to widen out the memset to do a single larger store. | 
|  | if (isa<ConstantInt>(MSI->getLength()) && !MSI->isVolatile()) | 
|  | if (Instruction *I = tryMergingIntoMemset(MSI, MSI->getDest(), | 
|  | MSI->getValue())) { | 
|  | BBI = I->getIterator(); // Don't invalidate iterator. | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Takes a memcpy and a call that it depends on, | 
|  | /// and checks for the possibility of a call slot optimization by having | 
|  | /// the call write its result directly into the destination of the memcpy. | 
|  | bool MemCpyOptPass::performCallSlotOptzn(Instruction *cpy, Value *cpyDest, | 
|  | Value *cpySrc, uint64_t cpyLen, | 
|  | unsigned cpyAlign, CallInst *C) { | 
|  | // The general transformation to keep in mind is | 
|  | // | 
|  | //   call @func(..., src, ...) | 
|  | //   memcpy(dest, src, ...) | 
|  | // | 
|  | // -> | 
|  | // | 
|  | //   memcpy(dest, src, ...) | 
|  | //   call @func(..., dest, ...) | 
|  | // | 
|  | // Since moving the memcpy is technically awkward, we additionally check that | 
|  | // src only holds uninitialized values at the moment of the call, meaning that | 
|  | // the memcpy can be discarded rather than moved. | 
|  |  | 
|  | // Lifetime marks shouldn't be operated on. | 
|  | if (Function *F = C->getCalledFunction()) | 
|  | if (F->isIntrinsic() && F->getIntrinsicID() == Intrinsic::lifetime_start) | 
|  | return false; | 
|  |  | 
|  | // Deliberately get the source and destination with bitcasts stripped away, | 
|  | // because we'll need to do type comparisons based on the underlying type. | 
|  | CallSite CS(C); | 
|  |  | 
|  | // Require that src be an alloca.  This simplifies the reasoning considerably. | 
|  | AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc); | 
|  | if (!srcAlloca) | 
|  | return false; | 
|  |  | 
|  | ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize()); | 
|  | if (!srcArraySize) | 
|  | return false; | 
|  |  | 
|  | const DataLayout &DL = cpy->getModule()->getDataLayout(); | 
|  | uint64_t srcSize = DL.getTypeAllocSize(srcAlloca->getAllocatedType()) * | 
|  | srcArraySize->getZExtValue(); | 
|  |  | 
|  | if (cpyLen < srcSize) | 
|  | return false; | 
|  |  | 
|  | // Check that accessing the first srcSize bytes of dest will not cause a | 
|  | // trap.  Otherwise the transform is invalid since it might cause a trap | 
|  | // to occur earlier than it otherwise would. | 
|  | if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) { | 
|  | // The destination is an alloca.  Check it is larger than srcSize. | 
|  | ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize()); | 
|  | if (!destArraySize) | 
|  | return false; | 
|  |  | 
|  | uint64_t destSize = DL.getTypeAllocSize(A->getAllocatedType()) * | 
|  | destArraySize->getZExtValue(); | 
|  |  | 
|  | if (destSize < srcSize) | 
|  | return false; | 
|  | } else if (Argument *A = dyn_cast<Argument>(cpyDest)) { | 
|  | // The store to dest may never happen if the call can throw. | 
|  | if (C->mayThrow()) | 
|  | return false; | 
|  |  | 
|  | if (A->getDereferenceableBytes() < srcSize) { | 
|  | // If the destination is an sret parameter then only accesses that are | 
|  | // outside of the returned struct type can trap. | 
|  | if (!A->hasStructRetAttr()) | 
|  | return false; | 
|  |  | 
|  | Type *StructTy = cast<PointerType>(A->getType())->getElementType(); | 
|  | if (!StructTy->isSized()) { | 
|  | // The call may never return and hence the copy-instruction may never | 
|  | // be executed, and therefore it's not safe to say "the destination | 
|  | // has at least <cpyLen> bytes, as implied by the copy-instruction", | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint64_t destSize = DL.getTypeAllocSize(StructTy); | 
|  | if (destSize < srcSize) | 
|  | return false; | 
|  | } | 
|  | } else { | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check that dest points to memory that is at least as aligned as src. | 
|  | unsigned srcAlign = srcAlloca->getAlignment(); | 
|  | if (!srcAlign) | 
|  | srcAlign = DL.getABITypeAlignment(srcAlloca->getAllocatedType()); | 
|  | bool isDestSufficientlyAligned = srcAlign <= cpyAlign; | 
|  | // If dest is not aligned enough and we can't increase its alignment then | 
|  | // bail out. | 
|  | if (!isDestSufficientlyAligned && !isa<AllocaInst>(cpyDest)) | 
|  | return false; | 
|  |  | 
|  | // Check that src is not accessed except via the call and the memcpy.  This | 
|  | // guarantees that it holds only undefined values when passed in (so the final | 
|  | // memcpy can be dropped), that it is not read or written between the call and | 
|  | // the memcpy, and that writing beyond the end of it is undefined. | 
|  | SmallVector<User*, 8> srcUseList(srcAlloca->user_begin(), | 
|  | srcAlloca->user_end()); | 
|  | while (!srcUseList.empty()) { | 
|  | User *U = srcUseList.pop_back_val(); | 
|  |  | 
|  | if (isa<BitCastInst>(U) || isa<AddrSpaceCastInst>(U)) { | 
|  | for (User *UU : U->users()) | 
|  | srcUseList.push_back(UU); | 
|  | continue; | 
|  | } | 
|  | if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(U)) { | 
|  | if (!G->hasAllZeroIndices()) | 
|  | return false; | 
|  |  | 
|  | for (User *UU : U->users()) | 
|  | srcUseList.push_back(UU); | 
|  | continue; | 
|  | } | 
|  | if (const IntrinsicInst *IT = dyn_cast<IntrinsicInst>(U)) | 
|  | if (IT->getIntrinsicID() == Intrinsic::lifetime_start || | 
|  | IT->getIntrinsicID() == Intrinsic::lifetime_end) | 
|  | continue; | 
|  |  | 
|  | if (U != C && U != cpy) | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Check that src isn't captured by the called function since the | 
|  | // transformation can cause aliasing issues in that case. | 
|  | for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) | 
|  | if (CS.getArgument(i) == cpySrc && !CS.doesNotCapture(i)) | 
|  | return false; | 
|  |  | 
|  | // Since we're changing the parameter to the callsite, we need to make sure | 
|  | // that what would be the new parameter dominates the callsite. | 
|  | DominatorTree &DT = LookupDomTree(); | 
|  | if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest)) | 
|  | if (!DT.dominates(cpyDestInst, C)) | 
|  | return false; | 
|  |  | 
|  | // In addition to knowing that the call does not access src in some | 
|  | // unexpected manner, for example via a global, which we deduce from | 
|  | // the use analysis, we also need to know that it does not sneakily | 
|  | // access dest.  We rely on AA to figure this out for us. | 
|  | AliasAnalysis &AA = LookupAliasAnalysis(); | 
|  | ModRefInfo MR = AA.getModRefInfo(C, cpyDest, srcSize); | 
|  | // If necessary, perform additional analysis. | 
|  | if (isModOrRefSet(MR)) | 
|  | MR = AA.callCapturesBefore(C, cpyDest, srcSize, &DT); | 
|  | if (isModOrRefSet(MR)) | 
|  | return false; | 
|  |  | 
|  | // We can't create address space casts here because we don't know if they're | 
|  | // safe for the target. | 
|  | if (cpySrc->getType()->getPointerAddressSpace() != | 
|  | cpyDest->getType()->getPointerAddressSpace()) | 
|  | return false; | 
|  | for (unsigned i = 0; i < CS.arg_size(); ++i) | 
|  | if (CS.getArgument(i)->stripPointerCasts() == cpySrc && | 
|  | cpySrc->getType()->getPointerAddressSpace() != | 
|  | CS.getArgument(i)->getType()->getPointerAddressSpace()) | 
|  | return false; | 
|  |  | 
|  | // All the checks have passed, so do the transformation. | 
|  | bool changedArgument = false; | 
|  | for (unsigned i = 0; i < CS.arg_size(); ++i) | 
|  | if (CS.getArgument(i)->stripPointerCasts() == cpySrc) { | 
|  | Value *Dest = cpySrc->getType() == cpyDest->getType() ?  cpyDest | 
|  | : CastInst::CreatePointerCast(cpyDest, cpySrc->getType(), | 
|  | cpyDest->getName(), C); | 
|  | changedArgument = true; | 
|  | if (CS.getArgument(i)->getType() == Dest->getType()) | 
|  | CS.setArgument(i, Dest); | 
|  | else | 
|  | CS.setArgument(i, CastInst::CreatePointerCast(Dest, | 
|  | CS.getArgument(i)->getType(), Dest->getName(), C)); | 
|  | } | 
|  |  | 
|  | if (!changedArgument) | 
|  | return false; | 
|  |  | 
|  | // If the destination wasn't sufficiently aligned then increase its alignment. | 
|  | if (!isDestSufficientlyAligned) { | 
|  | assert(isa<AllocaInst>(cpyDest) && "Can only increase alloca alignment!"); | 
|  | cast<AllocaInst>(cpyDest)->setAlignment(srcAlign); | 
|  | } | 
|  |  | 
|  | // Drop any cached information about the call, because we may have changed | 
|  | // its dependence information by changing its parameter. | 
|  | MD->removeInstruction(C); | 
|  |  | 
|  | // Update AA metadata | 
|  | // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be | 
|  | // handled here, but combineMetadata doesn't support them yet | 
|  | unsigned KnownIDs[] = {LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, | 
|  | LLVMContext::MD_noalias, | 
|  | LLVMContext::MD_invariant_group}; | 
|  | combineMetadata(C, cpy, KnownIDs); | 
|  |  | 
|  | // Remove the memcpy. | 
|  | MD->removeInstruction(cpy); | 
|  | ++NumMemCpyInstr; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// We've found that the (upward scanning) memory dependence of memcpy 'M' is | 
|  | /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can. | 
|  | bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst *M, | 
|  | MemCpyInst *MDep) { | 
|  | // We can only transforms memcpy's where the dest of one is the source of the | 
|  | // other. | 
|  | if (M->getSource() != MDep->getDest() || MDep->isVolatile()) | 
|  | return false; | 
|  |  | 
|  | // If dep instruction is reading from our current input, then it is a noop | 
|  | // transfer and substituting the input won't change this instruction.  Just | 
|  | // ignore the input and let someone else zap MDep.  This handles cases like: | 
|  | //    memcpy(a <- a) | 
|  | //    memcpy(b <- a) | 
|  | if (M->getSource() == MDep->getSource()) | 
|  | return false; | 
|  |  | 
|  | // Second, the length of the memcpy's must be the same, or the preceding one | 
|  | // must be larger than the following one. | 
|  | ConstantInt *MDepLen = dyn_cast<ConstantInt>(MDep->getLength()); | 
|  | ConstantInt *MLen = dyn_cast<ConstantInt>(M->getLength()); | 
|  | if (!MDepLen || !MLen || MDepLen->getZExtValue() < MLen->getZExtValue()) | 
|  | return false; | 
|  |  | 
|  | AliasAnalysis &AA = LookupAliasAnalysis(); | 
|  |  | 
|  | // Verify that the copied-from memory doesn't change in between the two | 
|  | // transfers.  For example, in: | 
|  | //    memcpy(a <- b) | 
|  | //    *b = 42; | 
|  | //    memcpy(c <- a) | 
|  | // It would be invalid to transform the second memcpy into memcpy(c <- b). | 
|  | // | 
|  | // TODO: If the code between M and MDep is transparent to the destination "c", | 
|  | // then we could still perform the xform by moving M up to the first memcpy. | 
|  | // | 
|  | // NOTE: This is conservative, it will stop on any read from the source loc, | 
|  | // not just the defining memcpy. | 
|  | MemDepResult SourceDep = | 
|  | MD->getPointerDependencyFrom(MemoryLocation::getForSource(MDep), false, | 
|  | M->getIterator(), M->getParent()); | 
|  | if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) | 
|  | return false; | 
|  |  | 
|  | // If the dest of the second might alias the source of the first, then the | 
|  | // source and dest might overlap.  We still want to eliminate the intermediate | 
|  | // value, but we have to generate a memmove instead of memcpy. | 
|  | bool UseMemMove = false; | 
|  | if (!AA.isNoAlias(MemoryLocation::getForDest(M), | 
|  | MemoryLocation::getForSource(MDep))) | 
|  | UseMemMove = true; | 
|  |  | 
|  | // If all checks passed, then we can transform M. | 
|  |  | 
|  | // Make sure to use the lesser of the alignment of the source and the dest | 
|  | // since we're changing where we're reading from, but don't want to increase | 
|  | // the alignment past what can be read from or written to. | 
|  | // TODO: Is this worth it if we're creating a less aligned memcpy? For | 
|  | // example we could be moving from movaps -> movq on x86. | 
|  | unsigned Align = std::min(MDep->getAlignment(), M->getAlignment()); | 
|  |  | 
|  | IRBuilder<> Builder(M); | 
|  | if (UseMemMove) | 
|  | Builder.CreateMemMove(M->getRawDest(), MDep->getRawSource(), M->getLength(), | 
|  | Align, M->isVolatile()); | 
|  | else | 
|  | Builder.CreateMemCpy(M->getRawDest(), MDep->getRawSource(), M->getLength(), | 
|  | Align, M->isVolatile()); | 
|  |  | 
|  | // Remove the instruction we're replacing. | 
|  | MD->removeInstruction(M); | 
|  | M->eraseFromParent(); | 
|  | ++NumMemCpyInstr; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// We've found that the (upward scanning) memory dependence of \p MemCpy is | 
|  | /// \p MemSet.  Try to simplify \p MemSet to only set the trailing bytes that | 
|  | /// weren't copied over by \p MemCpy. | 
|  | /// | 
|  | /// In other words, transform: | 
|  | /// \code | 
|  | ///   memset(dst, c, dst_size); | 
|  | ///   memcpy(dst, src, src_size); | 
|  | /// \endcode | 
|  | /// into: | 
|  | /// \code | 
|  | ///   memcpy(dst, src, src_size); | 
|  | ///   memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size); | 
|  | /// \endcode | 
|  | bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst *MemCpy, | 
|  | MemSetInst *MemSet) { | 
|  | // We can only transform memset/memcpy with the same destination. | 
|  | if (MemSet->getDest() != MemCpy->getDest()) | 
|  | return false; | 
|  |  | 
|  | // Check that there are no other dependencies on the memset destination. | 
|  | MemDepResult DstDepInfo = | 
|  | MD->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet), false, | 
|  | MemCpy->getIterator(), MemCpy->getParent()); | 
|  | if (DstDepInfo.getInst() != MemSet) | 
|  | return false; | 
|  |  | 
|  | // Use the same i8* dest as the memcpy, killing the memset dest if different. | 
|  | Value *Dest = MemCpy->getRawDest(); | 
|  | Value *DestSize = MemSet->getLength(); | 
|  | Value *SrcSize = MemCpy->getLength(); | 
|  |  | 
|  | // By default, create an unaligned memset. | 
|  | unsigned Align = 1; | 
|  | // If Dest is aligned, and SrcSize is constant, use the minimum alignment | 
|  | // of the sum. | 
|  | const unsigned DestAlign = | 
|  | std::max(MemSet->getAlignment(), MemCpy->getAlignment()); | 
|  | if (DestAlign > 1) | 
|  | if (ConstantInt *SrcSizeC = dyn_cast<ConstantInt>(SrcSize)) | 
|  | Align = MinAlign(SrcSizeC->getZExtValue(), DestAlign); | 
|  |  | 
|  | IRBuilder<> Builder(MemCpy); | 
|  |  | 
|  | // If the sizes have different types, zext the smaller one. | 
|  | if (DestSize->getType() != SrcSize->getType()) { | 
|  | if (DestSize->getType()->getIntegerBitWidth() > | 
|  | SrcSize->getType()->getIntegerBitWidth()) | 
|  | SrcSize = Builder.CreateZExt(SrcSize, DestSize->getType()); | 
|  | else | 
|  | DestSize = Builder.CreateZExt(DestSize, SrcSize->getType()); | 
|  | } | 
|  |  | 
|  | Value *Ule = Builder.CreateICmpULE(DestSize, SrcSize); | 
|  | Value *SizeDiff = Builder.CreateSub(DestSize, SrcSize); | 
|  | Value *MemsetLen = Builder.CreateSelect( | 
|  | Ule, ConstantInt::getNullValue(DestSize->getType()), SizeDiff); | 
|  | Builder.CreateMemSet(Builder.CreateGEP(Dest, SrcSize), MemSet->getOperand(1), | 
|  | MemsetLen, Align); | 
|  |  | 
|  | MD->removeInstruction(MemSet); | 
|  | MemSet->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Transform memcpy to memset when its source was just memset. | 
|  | /// In other words, turn: | 
|  | /// \code | 
|  | ///   memset(dst1, c, dst1_size); | 
|  | ///   memcpy(dst2, dst1, dst2_size); | 
|  | /// \endcode | 
|  | /// into: | 
|  | /// \code | 
|  | ///   memset(dst1, c, dst1_size); | 
|  | ///   memset(dst2, c, dst2_size); | 
|  | /// \endcode | 
|  | /// When dst2_size <= dst1_size. | 
|  | /// | 
|  | /// The \p MemCpy must have a Constant length. | 
|  | bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst *MemCpy, | 
|  | MemSetInst *MemSet) { | 
|  | AliasAnalysis &AA = LookupAliasAnalysis(); | 
|  |  | 
|  | // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and | 
|  | // memcpying from the same address. Otherwise it is hard to reason about. | 
|  | if (!AA.isMustAlias(MemSet->getRawDest(), MemCpy->getRawSource())) | 
|  | return false; | 
|  |  | 
|  | ConstantInt *CopySize = cast<ConstantInt>(MemCpy->getLength()); | 
|  | ConstantInt *MemSetSize = dyn_cast<ConstantInt>(MemSet->getLength()); | 
|  | // Make sure the memcpy doesn't read any more than what the memset wrote. | 
|  | // Don't worry about sizes larger than i64. | 
|  | if (!MemSetSize || CopySize->getZExtValue() > MemSetSize->getZExtValue()) | 
|  | return false; | 
|  |  | 
|  | IRBuilder<> Builder(MemCpy); | 
|  | Builder.CreateMemSet(MemCpy->getRawDest(), MemSet->getOperand(1), | 
|  | CopySize, MemCpy->getAlignment()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Perform simplification of memcpy's.  If we have memcpy A | 
|  | /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite | 
|  | /// B to be a memcpy from X to Z (or potentially a memmove, depending on | 
|  | /// circumstances). This allows later passes to remove the first memcpy | 
|  | /// altogether. | 
|  | bool MemCpyOptPass::processMemCpy(MemCpyInst *M) { | 
|  | // We can only optimize non-volatile memcpy's. | 
|  | if (M->isVolatile()) return false; | 
|  |  | 
|  | // If the source and destination of the memcpy are the same, then zap it. | 
|  | if (M->getSource() == M->getDest()) { | 
|  | MD->removeInstruction(M); | 
|  | M->eraseFromParent(); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // If copying from a constant, try to turn the memcpy into a memset. | 
|  | if (GlobalVariable *GV = dyn_cast<GlobalVariable>(M->getSource())) | 
|  | if (GV->isConstant() && GV->hasDefinitiveInitializer()) | 
|  | if (Value *ByteVal = isBytewiseValue(GV->getInitializer())) { | 
|  | IRBuilder<> Builder(M); | 
|  | Builder.CreateMemSet(M->getRawDest(), ByteVal, M->getLength(), | 
|  | M->getAlignment(), false); | 
|  | MD->removeInstruction(M); | 
|  | M->eraseFromParent(); | 
|  | ++NumCpyToSet; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | MemDepResult DepInfo = MD->getDependency(M); | 
|  |  | 
|  | // Try to turn a partially redundant memset + memcpy into | 
|  | // memcpy + smaller memset.  We don't need the memcpy size for this. | 
|  | if (DepInfo.isClobber()) | 
|  | if (MemSetInst *MDep = dyn_cast<MemSetInst>(DepInfo.getInst())) | 
|  | if (processMemSetMemCpyDependence(M, MDep)) | 
|  | return true; | 
|  |  | 
|  | // The optimizations after this point require the memcpy size. | 
|  | ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength()); | 
|  | if (!CopySize) return false; | 
|  |  | 
|  | // There are four possible optimizations we can do for memcpy: | 
|  | //   a) memcpy-memcpy xform which exposes redundance for DSE. | 
|  | //   b) call-memcpy xform for return slot optimization. | 
|  | //   c) memcpy from freshly alloca'd space or space that has just started its | 
|  | //      lifetime copies undefined data, and we can therefore eliminate the | 
|  | //      memcpy in favor of the data that was already at the destination. | 
|  | //   d) memcpy from a just-memset'd source can be turned into memset. | 
|  | if (DepInfo.isClobber()) { | 
|  | if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) { | 
|  | if (performCallSlotOptzn(M, M->getDest(), M->getSource(), | 
|  | CopySize->getZExtValue(), M->getAlignment(), | 
|  | C)) { | 
|  | MD->removeInstruction(M); | 
|  | M->eraseFromParent(); | 
|  | return true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | MemoryLocation SrcLoc = MemoryLocation::getForSource(M); | 
|  | MemDepResult SrcDepInfo = MD->getPointerDependencyFrom( | 
|  | SrcLoc, true, M->getIterator(), M->getParent()); | 
|  |  | 
|  | if (SrcDepInfo.isClobber()) { | 
|  | if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(SrcDepInfo.getInst())) | 
|  | return processMemCpyMemCpyDependence(M, MDep); | 
|  | } else if (SrcDepInfo.isDef()) { | 
|  | Instruction *I = SrcDepInfo.getInst(); | 
|  | bool hasUndefContents = false; | 
|  |  | 
|  | if (isa<AllocaInst>(I)) { | 
|  | hasUndefContents = true; | 
|  | } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { | 
|  | if (II->getIntrinsicID() == Intrinsic::lifetime_start) | 
|  | if (ConstantInt *LTSize = dyn_cast<ConstantInt>(II->getArgOperand(0))) | 
|  | if (LTSize->getZExtValue() >= CopySize->getZExtValue()) | 
|  | hasUndefContents = true; | 
|  | } | 
|  |  | 
|  | if (hasUndefContents) { | 
|  | MD->removeInstruction(M); | 
|  | M->eraseFromParent(); | 
|  | ++NumMemCpyInstr; | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (SrcDepInfo.isClobber()) | 
|  | if (MemSetInst *MDep = dyn_cast<MemSetInst>(SrcDepInfo.getInst())) | 
|  | if (performMemCpyToMemSetOptzn(M, MDep)) { | 
|  | MD->removeInstruction(M); | 
|  | M->eraseFromParent(); | 
|  | ++NumCpyToSet; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed | 
|  | /// not to alias. | 
|  | bool MemCpyOptPass::processMemMove(MemMoveInst *M) { | 
|  | AliasAnalysis &AA = LookupAliasAnalysis(); | 
|  |  | 
|  | if (!TLI->has(LibFunc_memmove)) | 
|  | return false; | 
|  |  | 
|  | // See if the pointers alias. | 
|  | if (!AA.isNoAlias(MemoryLocation::getForDest(M), | 
|  | MemoryLocation::getForSource(M))) | 
|  | return false; | 
|  |  | 
|  | DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M | 
|  | << "\n"); | 
|  |  | 
|  | // If not, then we know we can transform this. | 
|  | Type *ArgTys[3] = { M->getRawDest()->getType(), | 
|  | M->getRawSource()->getType(), | 
|  | M->getLength()->getType() }; | 
|  | M->setCalledFunction(Intrinsic::getDeclaration(M->getModule(), | 
|  | Intrinsic::memcpy, ArgTys)); | 
|  |  | 
|  | // MemDep may have over conservative information about this instruction, just | 
|  | // conservatively flush it from the cache. | 
|  | MD->removeInstruction(M); | 
|  |  | 
|  | ++NumMoveToCpy; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// This is called on every byval argument in call sites. | 
|  | bool MemCpyOptPass::processByValArgument(CallSite CS, unsigned ArgNo) { | 
|  | const DataLayout &DL = CS.getCaller()->getParent()->getDataLayout(); | 
|  | // Find out what feeds this byval argument. | 
|  | Value *ByValArg = CS.getArgument(ArgNo); | 
|  | Type *ByValTy = cast<PointerType>(ByValArg->getType())->getElementType(); | 
|  | uint64_t ByValSize = DL.getTypeAllocSize(ByValTy); | 
|  | MemDepResult DepInfo = MD->getPointerDependencyFrom( | 
|  | MemoryLocation(ByValArg, ByValSize), true, | 
|  | CS.getInstruction()->getIterator(), CS.getInstruction()->getParent()); | 
|  | if (!DepInfo.isClobber()) | 
|  | return false; | 
|  |  | 
|  | // If the byval argument isn't fed by a memcpy, ignore it.  If it is fed by | 
|  | // a memcpy, see if we can byval from the source of the memcpy instead of the | 
|  | // result. | 
|  | MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()); | 
|  | if (!MDep || MDep->isVolatile() || | 
|  | ByValArg->stripPointerCasts() != MDep->getDest()) | 
|  | return false; | 
|  |  | 
|  | // The length of the memcpy must be larger or equal to the size of the byval. | 
|  | ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength()); | 
|  | if (!C1 || C1->getValue().getZExtValue() < ByValSize) | 
|  | return false; | 
|  |  | 
|  | // Get the alignment of the byval.  If the call doesn't specify the alignment, | 
|  | // then it is some target specific value that we can't know. | 
|  | unsigned ByValAlign = CS.getParamAlignment(ArgNo); | 
|  | if (ByValAlign == 0) return false; | 
|  |  | 
|  | // If it is greater than the memcpy, then we check to see if we can force the | 
|  | // source of the memcpy to the alignment we need.  If we fail, we bail out. | 
|  | AssumptionCache &AC = LookupAssumptionCache(); | 
|  | DominatorTree &DT = LookupDomTree(); | 
|  | if (MDep->getAlignment() < ByValAlign && | 
|  | getOrEnforceKnownAlignment(MDep->getSource(), ByValAlign, DL, | 
|  | CS.getInstruction(), &AC, &DT) < ByValAlign) | 
|  | return false; | 
|  |  | 
|  | // The address space of the memcpy source must match the byval argument | 
|  | if (MDep->getSource()->getType()->getPointerAddressSpace() != | 
|  | ByValArg->getType()->getPointerAddressSpace()) | 
|  | return false; | 
|  |  | 
|  | // Verify that the copied-from memory doesn't change in between the memcpy and | 
|  | // the byval call. | 
|  | //    memcpy(a <- b) | 
|  | //    *b = 42; | 
|  | //    foo(*a) | 
|  | // It would be invalid to transform the second memcpy into foo(*b). | 
|  | // | 
|  | // NOTE: This is conservative, it will stop on any read from the source loc, | 
|  | // not just the defining memcpy. | 
|  | MemDepResult SourceDep = MD->getPointerDependencyFrom( | 
|  | MemoryLocation::getForSource(MDep), false, | 
|  | CS.getInstruction()->getIterator(), MDep->getParent()); | 
|  | if (!SourceDep.isClobber() || SourceDep.getInst() != MDep) | 
|  | return false; | 
|  |  | 
|  | Value *TmpCast = MDep->getSource(); | 
|  | if (MDep->getSource()->getType() != ByValArg->getType()) | 
|  | TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(), | 
|  | "tmpcast", CS.getInstruction()); | 
|  |  | 
|  | DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n" | 
|  | << "  " << *MDep << "\n" | 
|  | << "  " << *CS.getInstruction() << "\n"); | 
|  |  | 
|  | // Otherwise we're good!  Update the byval argument. | 
|  | CS.setArgument(ArgNo, TmpCast); | 
|  | ++NumMemCpyInstr; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /// Executes one iteration of MemCpyOptPass. | 
|  | bool MemCpyOptPass::iterateOnFunction(Function &F) { | 
|  | bool MadeChange = false; | 
|  |  | 
|  | // Walk all instruction in the function. | 
|  | for (BasicBlock &BB : F) { | 
|  | for (BasicBlock::iterator BI = BB.begin(), BE = BB.end(); BI != BE;) { | 
|  | // Avoid invalidating the iterator. | 
|  | Instruction *I = &*BI++; | 
|  |  | 
|  | bool RepeatInstruction = false; | 
|  |  | 
|  | if (StoreInst *SI = dyn_cast<StoreInst>(I)) | 
|  | MadeChange |= processStore(SI, BI); | 
|  | else if (MemSetInst *M = dyn_cast<MemSetInst>(I)) | 
|  | RepeatInstruction = processMemSet(M, BI); | 
|  | else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) | 
|  | RepeatInstruction = processMemCpy(M); | 
|  | else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) | 
|  | RepeatInstruction = processMemMove(M); | 
|  | else if (auto CS = CallSite(I)) { | 
|  | for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) | 
|  | if (CS.isByValArgument(i)) | 
|  | MadeChange |= processByValArgument(CS, i); | 
|  | } | 
|  |  | 
|  | // Reprocess the instruction if desired. | 
|  | if (RepeatInstruction) { | 
|  | if (BI != BB.begin()) | 
|  | --BI; | 
|  | MadeChange = true; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | PreservedAnalyses MemCpyOptPass::run(Function &F, FunctionAnalysisManager &AM) { | 
|  | auto &MD = AM.getResult<MemoryDependenceAnalysis>(F); | 
|  | auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); | 
|  |  | 
|  | auto LookupAliasAnalysis = [&]() -> AliasAnalysis & { | 
|  | return AM.getResult<AAManager>(F); | 
|  | }; | 
|  | auto LookupAssumptionCache = [&]() -> AssumptionCache & { | 
|  | return AM.getResult<AssumptionAnalysis>(F); | 
|  | }; | 
|  | auto LookupDomTree = [&]() -> DominatorTree & { | 
|  | return AM.getResult<DominatorTreeAnalysis>(F); | 
|  | }; | 
|  |  | 
|  | bool MadeChange = runImpl(F, &MD, &TLI, LookupAliasAnalysis, | 
|  | LookupAssumptionCache, LookupDomTree); | 
|  | if (!MadeChange) | 
|  | return PreservedAnalyses::all(); | 
|  |  | 
|  | PreservedAnalyses PA; | 
|  | PA.preserveSet<CFGAnalyses>(); | 
|  | PA.preserve<GlobalsAA>(); | 
|  | PA.preserve<MemoryDependenceAnalysis>(); | 
|  | return PA; | 
|  | } | 
|  |  | 
|  | bool MemCpyOptPass::runImpl( | 
|  | Function &F, MemoryDependenceResults *MD_, TargetLibraryInfo *TLI_, | 
|  | std::function<AliasAnalysis &()> LookupAliasAnalysis_, | 
|  | std::function<AssumptionCache &()> LookupAssumptionCache_, | 
|  | std::function<DominatorTree &()> LookupDomTree_) { | 
|  | bool MadeChange = false; | 
|  | MD = MD_; | 
|  | TLI = TLI_; | 
|  | LookupAliasAnalysis = std::move(LookupAliasAnalysis_); | 
|  | LookupAssumptionCache = std::move(LookupAssumptionCache_); | 
|  | LookupDomTree = std::move(LookupDomTree_); | 
|  |  | 
|  | // If we don't have at least memset and memcpy, there is little point of doing | 
|  | // anything here.  These are required by a freestanding implementation, so if | 
|  | // even they are disabled, there is no point in trying hard. | 
|  | if (!TLI->has(LibFunc_memset) || !TLI->has(LibFunc_memcpy)) | 
|  | return false; | 
|  |  | 
|  | while (true) { | 
|  | if (!iterateOnFunction(F)) | 
|  | break; | 
|  | MadeChange = true; | 
|  | } | 
|  |  | 
|  | MD = nullptr; | 
|  | return MadeChange; | 
|  | } | 
|  |  | 
|  | /// This is the main transformation entry point for a function. | 
|  | bool MemCpyOptLegacyPass::runOnFunction(Function &F) { | 
|  | if (skipFunction(F)) | 
|  | return false; | 
|  |  | 
|  | auto *MD = &getAnalysis<MemoryDependenceWrapperPass>().getMemDep(); | 
|  | auto *TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(); | 
|  |  | 
|  | auto LookupAliasAnalysis = [this]() -> AliasAnalysis & { | 
|  | return getAnalysis<AAResultsWrapperPass>().getAAResults(); | 
|  | }; | 
|  | auto LookupAssumptionCache = [this, &F]() -> AssumptionCache & { | 
|  | return getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); | 
|  | }; | 
|  | auto LookupDomTree = [this]() -> DominatorTree & { | 
|  | return getAnalysis<DominatorTreeWrapperPass>().getDomTree(); | 
|  | }; | 
|  |  | 
|  | return Impl.runImpl(F, MD, TLI, LookupAliasAnalysis, LookupAssumptionCache, | 
|  | LookupDomTree); | 
|  | } |