| //===---- NewGVN.cpp - Global Value Numbering Pass --------------*- C++ -*-===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| /// \file |
| /// This file implements the new LLVM's Global Value Numbering pass. |
| /// GVN partitions values computed by a function into congruence classes. |
| /// Values ending up in the same congruence class are guaranteed to be the same |
| /// for every execution of the program. In that respect, congruency is a |
| /// compile-time approximation of equivalence of values at runtime. |
| /// The algorithm implemented here uses a sparse formulation and it's based |
| /// on the ideas described in the paper: |
| /// "A Sparse Algorithm for Predicated Global Value Numbering" from |
| /// Karthik Gargi. |
| /// |
| //===----------------------------------------------------------------------===// |
| |
| #include "llvm/Transforms/Scalar/NewGVN.h" |
| #include "llvm/ADT/BitVector.h" |
| #include "llvm/ADT/DenseMap.h" |
| #include "llvm/ADT/DenseSet.h" |
| #include "llvm/ADT/DepthFirstIterator.h" |
| #include "llvm/ADT/Hashing.h" |
| #include "llvm/ADT/MapVector.h" |
| #include "llvm/ADT/PostOrderIterator.h" |
| #include "llvm/ADT/STLExtras.h" |
| #include "llvm/ADT/SmallPtrSet.h" |
| #include "llvm/ADT/SmallSet.h" |
| #include "llvm/ADT/SparseBitVector.h" |
| #include "llvm/ADT/Statistic.h" |
| #include "llvm/ADT/TinyPtrVector.h" |
| #include "llvm/Analysis/AliasAnalysis.h" |
| #include "llvm/Analysis/AssumptionCache.h" |
| #include "llvm/Analysis/CFG.h" |
| #include "llvm/Analysis/CFGPrinter.h" |
| #include "llvm/Analysis/ConstantFolding.h" |
| #include "llvm/Analysis/GlobalsModRef.h" |
| #include "llvm/Analysis/InstructionSimplify.h" |
| #include "llvm/Analysis/Loads.h" |
| #include "llvm/Analysis/MemoryBuiltins.h" |
| #include "llvm/Analysis/MemoryDependenceAnalysis.h" |
| #include "llvm/Analysis/MemoryLocation.h" |
| #include "llvm/Analysis/PHITransAddr.h" |
| #include "llvm/Analysis/TargetLibraryInfo.h" |
| #include "llvm/Analysis/ValueTracking.h" |
| #include "llvm/IR/DataLayout.h" |
| #include "llvm/IR/Dominators.h" |
| #include "llvm/IR/GlobalVariable.h" |
| #include "llvm/IR/IRBuilder.h" |
| #include "llvm/IR/IntrinsicInst.h" |
| #include "llvm/IR/LLVMContext.h" |
| #include "llvm/IR/Metadata.h" |
| #include "llvm/IR/PatternMatch.h" |
| #include "llvm/IR/PredIteratorCache.h" |
| #include "llvm/IR/Type.h" |
| #include "llvm/Support/Allocator.h" |
| #include "llvm/Support/CommandLine.h" |
| #include "llvm/Support/Debug.h" |
| #include "llvm/Transforms/Scalar.h" |
| #include "llvm/Transforms/Scalar/GVNExpression.h" |
| #include "llvm/Transforms/Utils/BasicBlockUtils.h" |
| #include "llvm/Transforms/Utils/Local.h" |
| #include "llvm/Transforms/Utils/MemorySSA.h" |
| #include "llvm/Transforms/Utils/SSAUpdater.h" |
| #include <unordered_map> |
| #include <utility> |
| #include <vector> |
| using namespace llvm; |
| using namespace PatternMatch; |
| using namespace llvm::GVNExpression; |
| |
| #define DEBUG_TYPE "newgvn" |
| |
| STATISTIC(NumGVNInstrDeleted, "Number of instructions deleted"); |
| STATISTIC(NumGVNBlocksDeleted, "Number of blocks deleted"); |
| STATISTIC(NumGVNOpsSimplified, "Number of Expressions simplified"); |
| STATISTIC(NumGVNPhisAllSame, "Number of PHIs whos arguments are all the same"); |
| STATISTIC(NumGVNMaxIterations, |
| "Maximum Number of iterations it took to converge GVN"); |
| STATISTIC(NumGVNLeaderChanges, "Number of leader changes"); |
| STATISTIC(NumGVNSortedLeaderChanges, "Number of sorted leader changes"); |
| STATISTIC(NumGVNAvoidedSortedLeaderChanges, |
| "Number of avoided sorted leader changes"); |
| |
| //===----------------------------------------------------------------------===// |
| // GVN Pass |
| //===----------------------------------------------------------------------===// |
| |
| // Anchor methods. |
| namespace llvm { |
| namespace GVNExpression { |
| Expression::~Expression() = default; |
| BasicExpression::~BasicExpression() = default; |
| CallExpression::~CallExpression() = default; |
| LoadExpression::~LoadExpression() = default; |
| StoreExpression::~StoreExpression() = default; |
| AggregateValueExpression::~AggregateValueExpression() = default; |
| PHIExpression::~PHIExpression() = default; |
| } |
| } |
| |
| // Congruence classes represent the set of expressions/instructions |
| // that are all the same *during some scope in the function*. |
| // That is, because of the way we perform equality propagation, and |
| // because of memory value numbering, it is not correct to assume |
| // you can willy-nilly replace any member with any other at any |
| // point in the function. |
| // |
| // For any Value in the Member set, it is valid to replace any dominated member |
| // with that Value. |
| // |
| // Every congruence class has a leader, and the leader is used to |
| // symbolize instructions in a canonical way (IE every operand of an |
| // instruction that is a member of the same congruence class will |
| // always be replaced with leader during symbolization). |
| // To simplify symbolization, we keep the leader as a constant if class can be |
| // proved to be a constant value. |
| // Otherwise, the leader is a randomly chosen member of the value set, it does |
| // not matter which one is chosen. |
| // Each congruence class also has a defining expression, |
| // though the expression may be null. If it exists, it can be used for forward |
| // propagation and reassociation of values. |
| // |
| struct CongruenceClass { |
| using MemberSet = SmallPtrSet<Value *, 4>; |
| unsigned ID; |
| // Representative leader. |
| Value *RepLeader = nullptr; |
| // Defining Expression. |
| const Expression *DefiningExpr = nullptr; |
| // Actual members of this class. |
| MemberSet Members; |
| |
| // True if this class has no members left. This is mainly used for assertion |
| // purposes, and for skipping empty classes. |
| bool Dead = false; |
| |
| // Number of stores in this congruence class. |
| // This is used so we can detect store equivalence changes properly. |
| int StoreCount = 0; |
| |
| // The most dominating leader after our current leader, because the member set |
| // is not sorted and is expensive to keep sorted all the time. |
| std::pair<Value *, unsigned int> NextLeader = {nullptr, ~0U}; |
| |
| explicit CongruenceClass(unsigned ID) : ID(ID) {} |
| CongruenceClass(unsigned ID, Value *Leader, const Expression *E) |
| : ID(ID), RepLeader(Leader), DefiningExpr(E) {} |
| }; |
| |
| namespace llvm { |
| template <> struct DenseMapInfo<const Expression *> { |
| static const Expression *getEmptyKey() { |
| auto Val = static_cast<uintptr_t>(-1); |
| Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable; |
| return reinterpret_cast<const Expression *>(Val); |
| } |
| static const Expression *getTombstoneKey() { |
| auto Val = static_cast<uintptr_t>(~1U); |
| Val <<= PointerLikeTypeTraits<const Expression *>::NumLowBitsAvailable; |
| return reinterpret_cast<const Expression *>(Val); |
| } |
| static unsigned getHashValue(const Expression *V) { |
| return static_cast<unsigned>(V->getHashValue()); |
| } |
| static bool isEqual(const Expression *LHS, const Expression *RHS) { |
| if (LHS == RHS) |
| return true; |
| if (LHS == getTombstoneKey() || RHS == getTombstoneKey() || |
| LHS == getEmptyKey() || RHS == getEmptyKey()) |
| return false; |
| return *LHS == *RHS; |
| } |
| }; |
| } // end namespace llvm |
| |
| class NewGVN : public FunctionPass { |
| DominatorTree *DT; |
| const DataLayout *DL; |
| const TargetLibraryInfo *TLI; |
| AssumptionCache *AC; |
| AliasAnalysis *AA; |
| MemorySSA *MSSA; |
| MemorySSAWalker *MSSAWalker; |
| BumpPtrAllocator ExpressionAllocator; |
| ArrayRecycler<Value *> ArgRecycler; |
| |
| // Congruence class info. |
| CongruenceClass *InitialClass; |
| std::vector<CongruenceClass *> CongruenceClasses; |
| unsigned NextCongruenceNum; |
| |
| // Value Mappings. |
| DenseMap<Value *, CongruenceClass *> ValueToClass; |
| DenseMap<Value *, const Expression *> ValueToExpression; |
| |
| // A table storing which memorydefs/phis represent a memory state provably |
| // equivalent to another memory state. |
| // We could use the congruence class machinery, but the MemoryAccess's are |
| // abstract memory states, so they can only ever be equivalent to each other, |
| // and not to constants, etc. |
| DenseMap<const MemoryAccess *, MemoryAccess *> MemoryAccessEquiv; |
| |
| // Expression to class mapping. |
| using ExpressionClassMap = DenseMap<const Expression *, CongruenceClass *>; |
| ExpressionClassMap ExpressionToClass; |
| |
| // Which values have changed as a result of leader changes. |
| SmallPtrSet<Value *, 8> LeaderChanges; |
| |
| // Reachability info. |
| using BlockEdge = BasicBlockEdge; |
| DenseSet<BlockEdge> ReachableEdges; |
| SmallPtrSet<const BasicBlock *, 8> ReachableBlocks; |
| |
| // This is a bitvector because, on larger functions, we may have |
| // thousands of touched instructions at once (entire blocks, |
| // instructions with hundreds of uses, etc). Even with optimization |
| // for when we mark whole blocks as touched, when this was a |
| // SmallPtrSet or DenseSet, for some functions, we spent >20% of all |
| // the time in GVN just managing this list. The bitvector, on the |
| // other hand, efficiently supports test/set/clear of both |
| // individual and ranges, as well as "find next element" This |
| // enables us to use it as a worklist with essentially 0 cost. |
| BitVector TouchedInstructions; |
| |
| DenseMap<const BasicBlock *, std::pair<unsigned, unsigned>> BlockInstRange; |
| DenseMap<const DomTreeNode *, std::pair<unsigned, unsigned>> |
| DominatedInstRange; |
| |
| #ifndef NDEBUG |
| // Debugging for how many times each block and instruction got processed. |
| DenseMap<const Value *, unsigned> ProcessedCount; |
| #endif |
| |
| // DFS info. |
| DenseMap<const Value *, unsigned> InstrDFS; |
| SmallVector<Value *, 32> DFSToInstr; |
| |
| // Deletion info. |
| SmallPtrSet<Instruction *, 8> InstructionsToErase; |
| |
| public: |
| static char ID; // Pass identification, replacement for typeid. |
| NewGVN() : FunctionPass(ID) { |
| initializeNewGVNPass(*PassRegistry::getPassRegistry()); |
| } |
| |
| bool runOnFunction(Function &F) override; |
| bool runGVN(Function &F, DominatorTree *DT, AssumptionCache *AC, |
| TargetLibraryInfo *TLI, AliasAnalysis *AA, MemorySSA *MSSA); |
| |
| private: |
| // This transformation requires dominator postdominator info. |
| void getAnalysisUsage(AnalysisUsage &AU) const override { |
| AU.addRequired<AssumptionCacheTracker>(); |
| AU.addRequired<DominatorTreeWrapperPass>(); |
| AU.addRequired<TargetLibraryInfoWrapperPass>(); |
| AU.addRequired<MemorySSAWrapperPass>(); |
| AU.addRequired<AAResultsWrapperPass>(); |
| |
| AU.addPreserved<DominatorTreeWrapperPass>(); |
| AU.addPreserved<GlobalsAAWrapperPass>(); |
| } |
| |
| // Expression handling. |
| const Expression *createExpression(Instruction *, const BasicBlock *); |
| const Expression *createBinaryExpression(unsigned, Type *, Value *, Value *, |
| const BasicBlock *); |
| PHIExpression *createPHIExpression(Instruction *); |
| const VariableExpression *createVariableExpression(Value *); |
| const ConstantExpression *createConstantExpression(Constant *); |
| const Expression *createVariableOrConstant(Value *V, const BasicBlock *B); |
| const UnknownExpression *createUnknownExpression(Instruction *); |
| const StoreExpression *createStoreExpression(StoreInst *, MemoryAccess *, |
| const BasicBlock *); |
| LoadExpression *createLoadExpression(Type *, Value *, LoadInst *, |
| MemoryAccess *, const BasicBlock *); |
| |
| const CallExpression *createCallExpression(CallInst *, MemoryAccess *, |
| const BasicBlock *); |
| const AggregateValueExpression * |
| createAggregateValueExpression(Instruction *, const BasicBlock *); |
| bool setBasicExpressionInfo(Instruction *, BasicExpression *, |
| const BasicBlock *); |
| |
| // Congruence class handling. |
| CongruenceClass *createCongruenceClass(Value *Leader, const Expression *E) { |
| auto *result = new CongruenceClass(NextCongruenceNum++, Leader, E); |
| CongruenceClasses.emplace_back(result); |
| return result; |
| } |
| |
| CongruenceClass *createSingletonCongruenceClass(Value *Member) { |
| CongruenceClass *CClass = createCongruenceClass(Member, nullptr); |
| CClass->Members.insert(Member); |
| ValueToClass[Member] = CClass; |
| return CClass; |
| } |
| void initializeCongruenceClasses(Function &F); |
| |
| // Value number an Instruction or MemoryPhi. |
| void valueNumberMemoryPhi(MemoryPhi *); |
| void valueNumberInstruction(Instruction *); |
| |
| // Symbolic evaluation. |
| const Expression *checkSimplificationResults(Expression *, Instruction *, |
| Value *); |
| const Expression *performSymbolicEvaluation(Value *, const BasicBlock *); |
| const Expression *performSymbolicLoadEvaluation(Instruction *, |
| const BasicBlock *); |
| const Expression *performSymbolicStoreEvaluation(Instruction *, |
| const BasicBlock *); |
| const Expression *performSymbolicCallEvaluation(Instruction *, |
| const BasicBlock *); |
| const Expression *performSymbolicPHIEvaluation(Instruction *, |
| const BasicBlock *); |
| bool setMemoryAccessEquivTo(MemoryAccess *From, MemoryAccess *To); |
| const Expression *performSymbolicAggrValueEvaluation(Instruction *, |
| const BasicBlock *); |
| |
| // Congruence finding. |
| // Templated to allow them to work both on BB's and BB-edges. |
| template <class T> |
| Value *lookupOperandLeader(Value *, const User *, const T &) const; |
| void performCongruenceFinding(Instruction *, const Expression *); |
| void moveValueToNewCongruenceClass(Instruction *, CongruenceClass *, |
| CongruenceClass *); |
| // Reachability handling. |
| void updateReachableEdge(BasicBlock *, BasicBlock *); |
| void processOutgoingEdges(TerminatorInst *, BasicBlock *); |
| bool isOnlyReachableViaThisEdge(const BasicBlockEdge &) const; |
| Value *findConditionEquivalence(Value *, BasicBlock *) const; |
| MemoryAccess *lookupMemoryAccessEquiv(MemoryAccess *) const; |
| |
| // Elimination. |
| struct ValueDFS; |
| void convertDenseToDFSOrdered(CongruenceClass::MemberSet &, |
| SmallVectorImpl<ValueDFS> &); |
| |
| bool eliminateInstructions(Function &); |
| void replaceInstruction(Instruction *, Value *); |
| void markInstructionForDeletion(Instruction *); |
| void deleteInstructionsInBlock(BasicBlock *); |
| |
| // New instruction creation. |
| void handleNewInstruction(Instruction *){}; |
| |
| // Various instruction touch utilities |
| void markUsersTouched(Value *); |
| void markMemoryUsersTouched(MemoryAccess *); |
| void markLeaderChangeTouched(CongruenceClass *CC); |
| |
| // Utilities. |
| void cleanupTables(); |
| std::pair<unsigned, unsigned> assignDFSNumbers(BasicBlock *, unsigned); |
| void updateProcessedCount(Value *V); |
| void verifyMemoryCongruency() const; |
| bool singleReachablePHIPath(const MemoryAccess *, const MemoryAccess *) const; |
| }; |
| |
| char NewGVN::ID = 0; |
| |
| // createGVNPass - The public interface to this file. |
| FunctionPass *llvm::createNewGVNPass() { return new NewGVN(); } |
| |
| template <typename T> |
| static bool equalsLoadStoreHelper(const T &LHS, const Expression &RHS) { |
| if ((!isa<LoadExpression>(RHS) && !isa<StoreExpression>(RHS)) || |
| !LHS.BasicExpression::equals(RHS)) { |
| return false; |
| } else if (const auto *L = dyn_cast<LoadExpression>(&RHS)) { |
| if (LHS.getDefiningAccess() != L->getDefiningAccess()) |
| return false; |
| } else if (const auto *S = dyn_cast<StoreExpression>(&RHS)) { |
| if (LHS.getDefiningAccess() != S->getDefiningAccess()) |
| return false; |
| } |
| return true; |
| } |
| |
| bool LoadExpression::equals(const Expression &Other) const { |
| return equalsLoadStoreHelper(*this, Other); |
| } |
| |
| bool StoreExpression::equals(const Expression &Other) const { |
| return equalsLoadStoreHelper(*this, Other); |
| } |
| |
| #ifndef NDEBUG |
| static std::string getBlockName(const BasicBlock *B) { |
| return DOTGraphTraits<const Function *>::getSimpleNodeLabel(B, nullptr); |
| } |
| #endif |
| |
| INITIALIZE_PASS_BEGIN(NewGVN, "newgvn", "Global Value Numbering", false, false) |
| INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) |
| INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) |
| INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass) |
| INITIALIZE_PASS_END(NewGVN, "newgvn", "Global Value Numbering", false, false) |
| |
| PHIExpression *NewGVN::createPHIExpression(Instruction *I) { |
| BasicBlock *PHIBlock = I->getParent(); |
| auto *PN = cast<PHINode>(I); |
| auto *E = |
| new (ExpressionAllocator) PHIExpression(PN->getNumOperands(), PHIBlock); |
| |
| E->allocateOperands(ArgRecycler, ExpressionAllocator); |
| E->setType(I->getType()); |
| E->setOpcode(I->getOpcode()); |
| |
| auto ReachablePhiArg = [&](const Use &U) { |
| return ReachableBlocks.count(PN->getIncomingBlock(U)); |
| }; |
| |
| // Filter out unreachable operands |
| auto Filtered = make_filter_range(PN->operands(), ReachablePhiArg); |
| |
| std::transform(Filtered.begin(), Filtered.end(), op_inserter(E), |
| [&](const Use &U) -> Value * { |
| // Don't try to transform self-defined phis. |
| if (U == PN) |
| return PN; |
| const BasicBlockEdge BBE(PN->getIncomingBlock(U), PHIBlock); |
| return lookupOperandLeader(U, I, BBE); |
| }); |
| return E; |
| } |
| |
| // Set basic expression info (Arguments, type, opcode) for Expression |
| // E from Instruction I in block B. |
| bool NewGVN::setBasicExpressionInfo(Instruction *I, BasicExpression *E, |
| const BasicBlock *B) { |
| bool AllConstant = true; |
| if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) |
| E->setType(GEP->getSourceElementType()); |
| else |
| E->setType(I->getType()); |
| E->setOpcode(I->getOpcode()); |
| E->allocateOperands(ArgRecycler, ExpressionAllocator); |
| |
| // Transform the operand array into an operand leader array, and keep track of |
| // whether all members are constant. |
| std::transform(I->op_begin(), I->op_end(), op_inserter(E), [&](Value *O) { |
| auto Operand = lookupOperandLeader(O, I, B); |
| AllConstant &= isa<Constant>(Operand); |
| return Operand; |
| }); |
| |
| return AllConstant; |
| } |
| |
| const Expression *NewGVN::createBinaryExpression(unsigned Opcode, Type *T, |
| Value *Arg1, Value *Arg2, |
| const BasicBlock *B) { |
| auto *E = new (ExpressionAllocator) BasicExpression(2); |
| |
| E->setType(T); |
| E->setOpcode(Opcode); |
| E->allocateOperands(ArgRecycler, ExpressionAllocator); |
| if (Instruction::isCommutative(Opcode)) { |
| // Ensure that commutative instructions that only differ by a permutation |
| // of their operands get the same value number by sorting the operand value |
| // numbers. Since all commutative instructions have two operands it is more |
| // efficient to sort by hand rather than using, say, std::sort. |
| if (Arg1 > Arg2) |
| std::swap(Arg1, Arg2); |
| } |
| E->op_push_back(lookupOperandLeader(Arg1, nullptr, B)); |
| E->op_push_back(lookupOperandLeader(Arg2, nullptr, B)); |
| |
| Value *V = SimplifyBinOp(Opcode, E->getOperand(0), E->getOperand(1), *DL, TLI, |
| DT, AC); |
| if (const Expression *SimplifiedE = checkSimplificationResults(E, nullptr, V)) |
| return SimplifiedE; |
| return E; |
| } |
| |
| // Take a Value returned by simplification of Expression E/Instruction |
| // I, and see if it resulted in a simpler expression. If so, return |
| // that expression. |
| // TODO: Once finished, this should not take an Instruction, we only |
| // use it for printing. |
| const Expression *NewGVN::checkSimplificationResults(Expression *E, |
| Instruction *I, Value *V) { |
| if (!V) |
| return nullptr; |
| if (auto *C = dyn_cast<Constant>(V)) { |
| if (I) |
| DEBUG(dbgs() << "Simplified " << *I << " to " |
| << " constant " << *C << "\n"); |
| NumGVNOpsSimplified++; |
| assert(isa<BasicExpression>(E) && |
| "We should always have had a basic expression here"); |
| |
| cast<BasicExpression>(E)->deallocateOperands(ArgRecycler); |
| ExpressionAllocator.Deallocate(E); |
| return createConstantExpression(C); |
| } else if (isa<Argument>(V) || isa<GlobalVariable>(V)) { |
| if (I) |
| DEBUG(dbgs() << "Simplified " << *I << " to " |
| << " variable " << *V << "\n"); |
| cast<BasicExpression>(E)->deallocateOperands(ArgRecycler); |
| ExpressionAllocator.Deallocate(E); |
| return createVariableExpression(V); |
| } |
| |
| CongruenceClass *CC = ValueToClass.lookup(V); |
| if (CC && CC->DefiningExpr) { |
| if (I) |
| DEBUG(dbgs() << "Simplified " << *I << " to " |
| << " expression " << *V << "\n"); |
| NumGVNOpsSimplified++; |
| assert(isa<BasicExpression>(E) && |
| "We should always have had a basic expression here"); |
| cast<BasicExpression>(E)->deallocateOperands(ArgRecycler); |
| ExpressionAllocator.Deallocate(E); |
| return CC->DefiningExpr; |
| } |
| return nullptr; |
| } |
| |
| const Expression *NewGVN::createExpression(Instruction *I, |
| const BasicBlock *B) { |
| |
| auto *E = new (ExpressionAllocator) BasicExpression(I->getNumOperands()); |
| |
| bool AllConstant = setBasicExpressionInfo(I, E, B); |
| |
| if (I->isCommutative()) { |
| // Ensure that commutative instructions that only differ by a permutation |
| // of their operands get the same value number by sorting the operand value |
| // numbers. Since all commutative instructions have two operands it is more |
| // efficient to sort by hand rather than using, say, std::sort. |
| assert(I->getNumOperands() == 2 && "Unsupported commutative instruction!"); |
| if (E->getOperand(0) > E->getOperand(1)) |
| E->swapOperands(0, 1); |
| } |
| |
| // Perform simplificaiton |
| // TODO: Right now we only check to see if we get a constant result. |
| // We may get a less than constant, but still better, result for |
| // some operations. |
| // IE |
| // add 0, x -> x |
| // and x, x -> x |
| // We should handle this by simply rewriting the expression. |
| if (auto *CI = dyn_cast<CmpInst>(I)) { |
| // Sort the operand value numbers so x<y and y>x get the same value |
| // number. |
| CmpInst::Predicate Predicate = CI->getPredicate(); |
| if (E->getOperand(0) > E->getOperand(1)) { |
| E->swapOperands(0, 1); |
| Predicate = CmpInst::getSwappedPredicate(Predicate); |
| } |
| E->setOpcode((CI->getOpcode() << 8) | Predicate); |
| // TODO: 25% of our time is spent in SimplifyCmpInst with pointer operands |
| // TODO: Since we noop bitcasts, we may need to check types before |
| // simplifying, so that we don't end up simplifying based on a wrong |
| // type assumption. We should clean this up so we can use constants of the |
| // wrong type |
| |
| assert(I->getOperand(0)->getType() == I->getOperand(1)->getType() && |
| "Wrong types on cmp instruction"); |
| if ((E->getOperand(0)->getType() == I->getOperand(0)->getType() && |
| E->getOperand(1)->getType() == I->getOperand(1)->getType())) { |
| Value *V = SimplifyCmpInst(Predicate, E->getOperand(0), E->getOperand(1), |
| *DL, TLI, DT, AC); |
| if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) |
| return SimplifiedE; |
| } |
| } else if (isa<SelectInst>(I)) { |
| if (isa<Constant>(E->getOperand(0)) || |
| (E->getOperand(1)->getType() == I->getOperand(1)->getType() && |
| E->getOperand(2)->getType() == I->getOperand(2)->getType())) { |
| Value *V = SimplifySelectInst(E->getOperand(0), E->getOperand(1), |
| E->getOperand(2), *DL, TLI, DT, AC); |
| if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) |
| return SimplifiedE; |
| } |
| } else if (I->isBinaryOp()) { |
| Value *V = SimplifyBinOp(E->getOpcode(), E->getOperand(0), E->getOperand(1), |
| *DL, TLI, DT, AC); |
| if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) |
| return SimplifiedE; |
| } else if (auto *BI = dyn_cast<BitCastInst>(I)) { |
| Value *V = SimplifyInstruction(BI, *DL, TLI, DT, AC); |
| if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) |
| return SimplifiedE; |
| } else if (isa<GetElementPtrInst>(I)) { |
| Value *V = SimplifyGEPInst(E->getType(), |
| ArrayRef<Value *>(E->op_begin(), E->op_end()), |
| *DL, TLI, DT, AC); |
| if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) |
| return SimplifiedE; |
| } else if (AllConstant) { |
| // We don't bother trying to simplify unless all of the operands |
| // were constant. |
| // TODO: There are a lot of Simplify*'s we could call here, if we |
| // wanted to. The original motivating case for this code was a |
| // zext i1 false to i8, which we don't have an interface to |
| // simplify (IE there is no SimplifyZExt). |
| |
| SmallVector<Constant *, 8> C; |
| for (Value *Arg : E->operands()) |
| C.emplace_back(cast<Constant>(Arg)); |
| |
| if (Value *V = ConstantFoldInstOperands(I, C, *DL, TLI)) |
| if (const Expression *SimplifiedE = checkSimplificationResults(E, I, V)) |
| return SimplifiedE; |
| } |
| return E; |
| } |
| |
| const AggregateValueExpression * |
| NewGVN::createAggregateValueExpression(Instruction *I, const BasicBlock *B) { |
| if (auto *II = dyn_cast<InsertValueInst>(I)) { |
| auto *E = new (ExpressionAllocator) |
| AggregateValueExpression(I->getNumOperands(), II->getNumIndices()); |
| setBasicExpressionInfo(I, E, B); |
| E->allocateIntOperands(ExpressionAllocator); |
| std::copy(II->idx_begin(), II->idx_end(), int_op_inserter(E)); |
| return E; |
| } else if (auto *EI = dyn_cast<ExtractValueInst>(I)) { |
| auto *E = new (ExpressionAllocator) |
| AggregateValueExpression(I->getNumOperands(), EI->getNumIndices()); |
| setBasicExpressionInfo(EI, E, B); |
| E->allocateIntOperands(ExpressionAllocator); |
| std::copy(EI->idx_begin(), EI->idx_end(), int_op_inserter(E)); |
| return E; |
| } |
| llvm_unreachable("Unhandled type of aggregate value operation"); |
| } |
| |
| const VariableExpression *NewGVN::createVariableExpression(Value *V) { |
| auto *E = new (ExpressionAllocator) VariableExpression(V); |
| E->setOpcode(V->getValueID()); |
| return E; |
| } |
| |
| const Expression *NewGVN::createVariableOrConstant(Value *V, |
| const BasicBlock *B) { |
| auto Leader = lookupOperandLeader(V, nullptr, B); |
| if (auto *C = dyn_cast<Constant>(Leader)) |
| return createConstantExpression(C); |
| return createVariableExpression(Leader); |
| } |
| |
| const ConstantExpression *NewGVN::createConstantExpression(Constant *C) { |
| auto *E = new (ExpressionAllocator) ConstantExpression(C); |
| E->setOpcode(C->getValueID()); |
| return E; |
| } |
| |
| const UnknownExpression *NewGVN::createUnknownExpression(Instruction *I) { |
| auto *E = new (ExpressionAllocator) UnknownExpression(I); |
| E->setOpcode(I->getOpcode()); |
| return E; |
| } |
| |
| const CallExpression *NewGVN::createCallExpression(CallInst *CI, |
| MemoryAccess *HV, |
| const BasicBlock *B) { |
| // FIXME: Add operand bundles for calls. |
| auto *E = |
| new (ExpressionAllocator) CallExpression(CI->getNumOperands(), CI, HV); |
| setBasicExpressionInfo(CI, E, B); |
| return E; |
| } |
| |
| // See if we have a congruence class and leader for this operand, and if so, |
| // return it. Otherwise, return the operand itself. |
| template <class T> |
| Value *NewGVN::lookupOperandLeader(Value *V, const User *U, const T &B) const { |
| CongruenceClass *CC = ValueToClass.lookup(V); |
| if (CC && (CC != InitialClass)) |
| return CC->RepLeader; |
| return V; |
| } |
| |
| MemoryAccess *NewGVN::lookupMemoryAccessEquiv(MemoryAccess *MA) const { |
| MemoryAccess *Result = MemoryAccessEquiv.lookup(MA); |
| return Result ? Result : MA; |
| } |
| |
| LoadExpression *NewGVN::createLoadExpression(Type *LoadType, Value *PointerOp, |
| LoadInst *LI, MemoryAccess *DA, |
| const BasicBlock *B) { |
| auto *E = new (ExpressionAllocator) LoadExpression(1, LI, DA); |
| E->allocateOperands(ArgRecycler, ExpressionAllocator); |
| E->setType(LoadType); |
| |
| // Give store and loads same opcode so they value number together. |
| E->setOpcode(0); |
| E->op_push_back(lookupOperandLeader(PointerOp, LI, B)); |
| if (LI) |
| E->setAlignment(LI->getAlignment()); |
| |
| // TODO: Value number heap versions. We may be able to discover |
| // things alias analysis can't on it's own (IE that a store and a |
| // load have the same value, and thus, it isn't clobbering the load). |
| return E; |
| } |
| |
| const StoreExpression *NewGVN::createStoreExpression(StoreInst *SI, |
| MemoryAccess *DA, |
| const BasicBlock *B) { |
| auto *E = |
| new (ExpressionAllocator) StoreExpression(SI->getNumOperands(), SI, DA); |
| E->allocateOperands(ArgRecycler, ExpressionAllocator); |
| E->setType(SI->getValueOperand()->getType()); |
| |
| // Give store and loads same opcode so they value number together. |
| E->setOpcode(0); |
| E->op_push_back(lookupOperandLeader(SI->getPointerOperand(), SI, B)); |
| |
| // TODO: Value number heap versions. We may be able to discover |
| // things alias analysis can't on it's own (IE that a store and a |
| // load have the same value, and thus, it isn't clobbering the load). |
| return E; |
| } |
| |
| // Utility function to check whether the congruence class has a member other |
| // than the given instruction. |
| bool hasMemberOtherThanUs(const CongruenceClass *CC, Instruction *I) { |
| // Either it has more than one store, in which case it must contain something |
| // other than us (because it's indexed by value), or if it only has one store |
| // right now, that member should not be us. |
| return CC->StoreCount > 1 || CC->Members.count(I) == 0; |
| } |
| |
| const Expression *NewGVN::performSymbolicStoreEvaluation(Instruction *I, |
| const BasicBlock *B) { |
| // Unlike loads, we never try to eliminate stores, so we do not check if they |
| // are simple and avoid value numbering them. |
| auto *SI = cast<StoreInst>(I); |
| MemoryAccess *StoreAccess = MSSA->getMemoryAccess(SI); |
| // See if we are defined by a previous store expression, it already has a |
| // value, and it's the same value as our current store. FIXME: Right now, we |
| // only do this for simple stores, we should expand to cover memcpys, etc. |
| if (SI->isSimple()) { |
| // Get the expression, if any, for the RHS of the MemoryDef. |
| MemoryAccess *StoreRHS = lookupMemoryAccessEquiv( |
| cast<MemoryDef>(StoreAccess)->getDefiningAccess()); |
| const Expression *OldStore = createStoreExpression(SI, StoreRHS, B); |
| CongruenceClass *CC = ExpressionToClass.lookup(OldStore); |
| // Basically, check if the congruence class the store is in is defined by a |
| // store that isn't us, and has the same value. MemorySSA takes care of |
| // ensuring the store has the same memory state as us already. |
| if (CC && CC->DefiningExpr && isa<StoreExpression>(CC->DefiningExpr) && |
| CC->RepLeader == lookupOperandLeader(SI->getValueOperand(), SI, B) && |
| hasMemberOtherThanUs(CC, I)) |
| return createStoreExpression(SI, StoreRHS, B); |
| } |
| |
| return createStoreExpression(SI, StoreAccess, B); |
| } |
| |
| const Expression *NewGVN::performSymbolicLoadEvaluation(Instruction *I, |
| const BasicBlock *B) { |
| auto *LI = cast<LoadInst>(I); |
| |
| // We can eliminate in favor of non-simple loads, but we won't be able to |
| // eliminate the loads themselves. |
| if (!LI->isSimple()) |
| return nullptr; |
| |
| Value *LoadAddressLeader = lookupOperandLeader(LI->getPointerOperand(), I, B); |
| // Load of undef is undef. |
| if (isa<UndefValue>(LoadAddressLeader)) |
| return createConstantExpression(UndefValue::get(LI->getType())); |
| |
| MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(I); |
| |
| if (!MSSA->isLiveOnEntryDef(DefiningAccess)) { |
| if (auto *MD = dyn_cast<MemoryDef>(DefiningAccess)) { |
| Instruction *DefiningInst = MD->getMemoryInst(); |
| // If the defining instruction is not reachable, replace with undef. |
| if (!ReachableBlocks.count(DefiningInst->getParent())) |
| return createConstantExpression(UndefValue::get(LI->getType())); |
| } |
| } |
| |
| const Expression *E = |
| createLoadExpression(LI->getType(), LI->getPointerOperand(), LI, |
| lookupMemoryAccessEquiv(DefiningAccess), B); |
| return E; |
| } |
| |
| // Evaluate read only and pure calls, and create an expression result. |
| const Expression *NewGVN::performSymbolicCallEvaluation(Instruction *I, |
| const BasicBlock *B) { |
| auto *CI = cast<CallInst>(I); |
| if (AA->doesNotAccessMemory(CI)) |
| return createCallExpression(CI, nullptr, B); |
| if (AA->onlyReadsMemory(CI)) { |
| MemoryAccess *DefiningAccess = MSSAWalker->getClobberingMemoryAccess(CI); |
| return createCallExpression(CI, lookupMemoryAccessEquiv(DefiningAccess), B); |
| } |
| return nullptr; |
| } |
| |
| // Update the memory access equivalence table to say that From is equal to To, |
| // and return true if this is different from what already existed in the table. |
| bool NewGVN::setMemoryAccessEquivTo(MemoryAccess *From, MemoryAccess *To) { |
| DEBUG(dbgs() << "Setting " << *From << " equivalent to "); |
| if (!To) |
| DEBUG(dbgs() << "itself"); |
| else |
| DEBUG(dbgs() << *To); |
| DEBUG(dbgs() << "\n"); |
| auto LookupResult = MemoryAccessEquiv.find(From); |
| bool Changed = false; |
| // If it's already in the table, see if the value changed. |
| if (LookupResult != MemoryAccessEquiv.end()) { |
| if (To && LookupResult->second != To) { |
| // It wasn't equivalent before, and now it is. |
| LookupResult->second = To; |
| Changed = true; |
| } else if (!To) { |
| // It used to be equivalent to something, and now it's not. |
| MemoryAccessEquiv.erase(LookupResult); |
| Changed = true; |
| } |
| } else { |
| assert(!To && |
| "Memory equivalence should never change from nothing to something"); |
| } |
| |
| return Changed; |
| } |
| // Evaluate PHI nodes symbolically, and create an expression result. |
| const Expression *NewGVN::performSymbolicPHIEvaluation(Instruction *I, |
| const BasicBlock *B) { |
| auto *E = cast<PHIExpression>(createPHIExpression(I)); |
| // We match the semantics of SimplifyPhiNode from InstructionSimplify here. |
| |
| // See if all arguaments are the same. |
| // We track if any were undef because they need special handling. |
| bool HasUndef = false; |
| auto Filtered = make_filter_range(E->operands(), [&](const Value *Arg) { |
| if (Arg == I) |
| return false; |
| if (isa<UndefValue>(Arg)) { |
| HasUndef = true; |
| return false; |
| } |
| return true; |
| }); |
| // If we are left with no operands, it's undef |
| if (Filtered.begin() == Filtered.end()) { |
| DEBUG(dbgs() << "Simplified PHI node " << *I << " to undef" |
| << "\n"); |
| E->deallocateOperands(ArgRecycler); |
| ExpressionAllocator.Deallocate(E); |
| return createConstantExpression(UndefValue::get(I->getType())); |
| } |
| Value *AllSameValue = *(Filtered.begin()); |
| ++Filtered.begin(); |
| // Can't use std::equal here, sadly, because filter.begin moves. |
| if (llvm::all_of(Filtered, [AllSameValue](const Value *V) { |
| return V == AllSameValue; |
| })) { |
| // In LLVM's non-standard representation of phi nodes, it's possible to have |
| // phi nodes with cycles (IE dependent on other phis that are .... dependent |
| // on the original phi node), especially in weird CFG's where some arguments |
| // are unreachable, or uninitialized along certain paths. This can cause |
| // infinite loops during evaluation. We work around this by not trying to |
| // really evaluate them independently, but instead using a variable |
| // expression to say if one is equivalent to the other. |
| // We also special case undef, so that if we have an undef, we can't use the |
| // common value unless it dominates the phi block. |
| if (HasUndef) { |
| // Only have to check for instructions |
| if (auto *AllSameInst = dyn_cast<Instruction>(AllSameValue)) |
| if (!DT->dominates(AllSameInst, I)) |
| return E; |
| } |
| |
| NumGVNPhisAllSame++; |
| DEBUG(dbgs() << "Simplified PHI node " << *I << " to " << *AllSameValue |
| << "\n"); |
| E->deallocateOperands(ArgRecycler); |
| ExpressionAllocator.Deallocate(E); |
| if (auto *C = dyn_cast<Constant>(AllSameValue)) |
| return createConstantExpression(C); |
| return createVariableExpression(AllSameValue); |
| } |
| return E; |
| } |
| |
| const Expression * |
| NewGVN::performSymbolicAggrValueEvaluation(Instruction *I, |
| const BasicBlock *B) { |
| if (auto *EI = dyn_cast<ExtractValueInst>(I)) { |
| auto *II = dyn_cast<IntrinsicInst>(EI->getAggregateOperand()); |
| if (II && EI->getNumIndices() == 1 && *EI->idx_begin() == 0) { |
| unsigned Opcode = 0; |
| // EI might be an extract from one of our recognised intrinsics. If it |
| // is we'll synthesize a semantically equivalent expression instead on |
| // an extract value expression. |
| switch (II->getIntrinsicID()) { |
| case Intrinsic::sadd_with_overflow: |
| case Intrinsic::uadd_with_overflow: |
| Opcode = Instruction::Add; |
| break; |
| case Intrinsic::ssub_with_overflow: |
| case Intrinsic::usub_with_overflow: |
| Opcode = Instruction::Sub; |
| break; |
| case Intrinsic::smul_with_overflow: |
| case Intrinsic::umul_with_overflow: |
| Opcode = Instruction::Mul; |
| break; |
| default: |
| break; |
| } |
| |
| if (Opcode != 0) { |
| // Intrinsic recognized. Grab its args to finish building the |
| // expression. |
| assert(II->getNumArgOperands() == 2 && |
| "Expect two args for recognised intrinsics."); |
| return createBinaryExpression(Opcode, EI->getType(), |
| II->getArgOperand(0), |
| II->getArgOperand(1), B); |
| } |
| } |
| } |
| |
| return createAggregateValueExpression(I, B); |
| } |
| |
| // Substitute and symbolize the value before value numbering. |
| const Expression *NewGVN::performSymbolicEvaluation(Value *V, |
| const BasicBlock *B) { |
| const Expression *E = nullptr; |
| if (auto *C = dyn_cast<Constant>(V)) |
| E = createConstantExpression(C); |
| else if (isa<Argument>(V) || isa<GlobalVariable>(V)) { |
| E = createVariableExpression(V); |
| } else { |
| // TODO: memory intrinsics. |
| // TODO: Some day, we should do the forward propagation and reassociation |
| // parts of the algorithm. |
| auto *I = cast<Instruction>(V); |
| switch (I->getOpcode()) { |
| case Instruction::ExtractValue: |
| case Instruction::InsertValue: |
| E = performSymbolicAggrValueEvaluation(I, B); |
| break; |
| case Instruction::PHI: |
| E = performSymbolicPHIEvaluation(I, B); |
| break; |
| case Instruction::Call: |
| E = performSymbolicCallEvaluation(I, B); |
| break; |
| case Instruction::Store: |
| E = performSymbolicStoreEvaluation(I, B); |
| break; |
| case Instruction::Load: |
| E = performSymbolicLoadEvaluation(I, B); |
| break; |
| case Instruction::BitCast: { |
| E = createExpression(I, B); |
| } break; |
| |
| case Instruction::Add: |
| case Instruction::FAdd: |
| case Instruction::Sub: |
| case Instruction::FSub: |
| case Instruction::Mul: |
| case Instruction::FMul: |
| case Instruction::UDiv: |
| case Instruction::SDiv: |
| case Instruction::FDiv: |
| case Instruction::URem: |
| case Instruction::SRem: |
| case Instruction::FRem: |
| case Instruction::Shl: |
| case Instruction::LShr: |
| case Instruction::AShr: |
| case Instruction::And: |
| case Instruction::Or: |
| case Instruction::Xor: |
| case Instruction::ICmp: |
| case Instruction::FCmp: |
| case Instruction::Trunc: |
| case Instruction::ZExt: |
| case Instruction::SExt: |
| case Instruction::FPToUI: |
| case Instruction::FPToSI: |
| case Instruction::UIToFP: |
| case Instruction::SIToFP: |
| case Instruction::FPTrunc: |
| case Instruction::FPExt: |
| case Instruction::PtrToInt: |
| case Instruction::IntToPtr: |
| case Instruction::Select: |
| case Instruction::ExtractElement: |
| case Instruction::InsertElement: |
| case Instruction::ShuffleVector: |
| case Instruction::GetElementPtr: |
| E = createExpression(I, B); |
| break; |
| default: |
| return nullptr; |
| } |
| } |
| return E; |
| } |
| |
| // There is an edge from 'Src' to 'Dst'. Return true if every path from |
| // the entry block to 'Dst' passes via this edge. In particular 'Dst' |
| // must not be reachable via another edge from 'Src'. |
| bool NewGVN::isOnlyReachableViaThisEdge(const BasicBlockEdge &E) const { |
| |
| // While in theory it is interesting to consider the case in which Dst has |
| // more than one predecessor, because Dst might be part of a loop which is |
| // only reachable from Src, in practice it is pointless since at the time |
| // GVN runs all such loops have preheaders, which means that Dst will have |
| // been changed to have only one predecessor, namely Src. |
| const BasicBlock *Pred = E.getEnd()->getSinglePredecessor(); |
| const BasicBlock *Src = E.getStart(); |
| assert((!Pred || Pred == Src) && "No edge between these basic blocks!"); |
| (void)Src; |
| return Pred != nullptr; |
| } |
| |
| void NewGVN::markUsersTouched(Value *V) { |
| // Now mark the users as touched. |
| for (auto *User : V->users()) { |
| assert(isa<Instruction>(User) && "Use of value not within an instruction?"); |
| TouchedInstructions.set(InstrDFS[User]); |
| } |
| } |
| |
| void NewGVN::markMemoryUsersTouched(MemoryAccess *MA) { |
| for (auto U : MA->users()) { |
| if (auto *MUD = dyn_cast<MemoryUseOrDef>(U)) |
| TouchedInstructions.set(InstrDFS[MUD->getMemoryInst()]); |
| else |
| TouchedInstructions.set(InstrDFS[U]); |
| } |
| } |
| |
| // Touch the instructions that need to be updated after a congruence class has a |
| // leader change, and mark changed values. |
| void NewGVN::markLeaderChangeTouched(CongruenceClass *CC) { |
| for (auto M : CC->Members) { |
| if (auto *I = dyn_cast<Instruction>(M)) |
| TouchedInstructions.set(InstrDFS[I]); |
| LeaderChanges.insert(M); |
| } |
| } |
| |
| // Move a value, currently in OldClass, to be part of NewClass |
| // Update OldClass for the move (including changing leaders, etc) |
| void NewGVN::moveValueToNewCongruenceClass(Instruction *I, |
| CongruenceClass *OldClass, |
| CongruenceClass *NewClass) { |
| DEBUG(dbgs() << "New congruence class for " << I << " is " << NewClass->ID |
| << "\n"); |
| |
| if (I == OldClass->NextLeader.first) |
| OldClass->NextLeader = {nullptr, ~0U}; |
| |
| // The new instruction and new class leader may either be siblings in the |
| // dominator tree, or the new class leader should dominate the new member |
| // instruction. We simply check that the member instruction does not properly |
| // dominate the new class leader. |
| assert((!isa<Instruction>(NewClass->RepLeader) || !NewClass->RepLeader || |
| I == NewClass->RepLeader || |
| !DT->properlyDominates( |
| I->getParent(), |
| cast<Instruction>(NewClass->RepLeader)->getParent())) && |
| "New class for instruction should not be dominated by instruction"); |
| |
| if (NewClass->RepLeader != I) { |
| auto DFSNum = InstrDFS.lookup(I); |
| if (DFSNum < NewClass->NextLeader.second) |
| NewClass->NextLeader = {I, DFSNum}; |
| } |
| |
| OldClass->Members.erase(I); |
| NewClass->Members.insert(I); |
| if (isa<StoreInst>(I)) { |
| --OldClass->StoreCount; |
| assert(OldClass->StoreCount >= 0); |
| ++NewClass->StoreCount; |
| assert(NewClass->StoreCount > 0); |
| } |
| |
| ValueToClass[I] = NewClass; |
| // See if we destroyed the class or need to swap leaders. |
| if (OldClass->Members.empty() && OldClass != InitialClass) { |
| if (OldClass->DefiningExpr) { |
| OldClass->Dead = true; |
| DEBUG(dbgs() << "Erasing expression " << OldClass->DefiningExpr |
| << " from table\n"); |
| ExpressionToClass.erase(OldClass->DefiningExpr); |
| } |
| } else if (OldClass->RepLeader == I) { |
| // When the leader changes, the value numbering of |
| // everything may change due to symbolization changes, so we need to |
| // reprocess. |
| DEBUG(dbgs() << "Leader change!\n"); |
| ++NumGVNLeaderChanges; |
| // We don't need to sort members if there is only 1, and we don't care about |
| // sorting the initial class because everything either gets out of it or is |
| // unreachable. |
| if (OldClass->Members.size() == 1 || OldClass == InitialClass) { |
| OldClass->RepLeader = *(OldClass->Members.begin()); |
| } else if (OldClass->NextLeader.first) { |
| ++NumGVNAvoidedSortedLeaderChanges; |
| OldClass->RepLeader = OldClass->NextLeader.first; |
| OldClass->NextLeader = {nullptr, ~0U}; |
| } else { |
| ++NumGVNSortedLeaderChanges; |
| // TODO: If this ends up to slow, we can maintain a dual structure for |
| // member testing/insertion, or keep things mostly sorted, and sort only |
| // here, or .... |
| std::pair<Value *, unsigned> MinDFS = {nullptr, ~0U}; |
| for (const auto X : OldClass->Members) { |
| auto DFSNum = InstrDFS.lookup(X); |
| if (DFSNum < MinDFS.second) |
| MinDFS = {X, DFSNum}; |
| } |
| OldClass->RepLeader = MinDFS.first; |
| } |
| markLeaderChangeTouched(OldClass); |
| } |
| } |
| |
| // Perform congruence finding on a given value numbering expression. |
| void NewGVN::performCongruenceFinding(Instruction *I, const Expression *E) { |
| ValueToExpression[I] = E; |
| // This is guaranteed to return something, since it will at least find |
| // INITIAL. |
| |
| CongruenceClass *IClass = ValueToClass[I]; |
| assert(IClass && "Should have found a IClass"); |
| // Dead classes should have been eliminated from the mapping. |
| assert(!IClass->Dead && "Found a dead class"); |
| |
| CongruenceClass *EClass; |
| if (const auto *VE = dyn_cast<VariableExpression>(E)) { |
| EClass = ValueToClass[VE->getVariableValue()]; |
| } else { |
| auto lookupResult = ExpressionToClass.insert({E, nullptr}); |
| |
| // If it's not in the value table, create a new congruence class. |
| if (lookupResult.second) { |
| CongruenceClass *NewClass = createCongruenceClass(nullptr, E); |
| auto place = lookupResult.first; |
| place->second = NewClass; |
| |
| // Constants and variables should always be made the leader. |
| if (const auto *CE = dyn_cast<ConstantExpression>(E)) { |
| NewClass->RepLeader = CE->getConstantValue(); |
| } else if (const auto *SE = dyn_cast<StoreExpression>(E)) { |
| StoreInst *SI = SE->getStoreInst(); |
| NewClass->RepLeader = |
| lookupOperandLeader(SI->getValueOperand(), SI, SI->getParent()); |
| } else { |
| NewClass->RepLeader = I; |
| } |
| assert(!isa<VariableExpression>(E) && |
| "VariableExpression should have been handled already"); |
| |
| EClass = NewClass; |
| DEBUG(dbgs() << "Created new congruence class for " << *I |
| << " using expression " << *E << " at " << NewClass->ID |
| << " and leader " << *(NewClass->RepLeader) << "\n"); |
| DEBUG(dbgs() << "Hash value was " << E->getHashValue() << "\n"); |
| } else { |
| EClass = lookupResult.first->second; |
| if (isa<ConstantExpression>(E)) |
| assert(isa<Constant>(EClass->RepLeader) && |
| "Any class with a constant expression should have a " |
| "constant leader"); |
| |
| assert(EClass && "Somehow don't have an eclass"); |
| |
| assert(!EClass->Dead && "We accidentally looked up a dead class"); |
| } |
| } |
| bool ClassChanged = IClass != EClass; |
| bool LeaderChanged = LeaderChanges.erase(I); |
| if (ClassChanged || LeaderChanged) { |
| DEBUG(dbgs() << "Found class " << EClass->ID << " for expression " << E |
| << "\n"); |
| |
| if (ClassChanged) |
| moveValueToNewCongruenceClass(I, IClass, EClass); |
| markUsersTouched(I); |
| if (MemoryAccess *MA = MSSA->getMemoryAccess(I)) { |
| // If this is a MemoryDef, we need to update the equivalence table. If |
| // we determined the expression is congruent to a different memory |
| // state, use that different memory state. If we determined it didn't, |
| // we update that as well. Right now, we only support store |
| // expressions. |
| if (!isa<MemoryUse>(MA) && isa<StoreExpression>(E) && |
| EClass->Members.size() != 1) { |
| auto *DefAccess = cast<StoreExpression>(E)->getDefiningAccess(); |
| setMemoryAccessEquivTo(MA, DefAccess != MA ? DefAccess : nullptr); |
| } else { |
| setMemoryAccessEquivTo(MA, nullptr); |
| } |
| markMemoryUsersTouched(MA); |
| } |
| } else if (auto *SI = dyn_cast<StoreInst>(I)) { |
| // There is, sadly, one complicating thing for stores. Stores do not |
| // produce values, only consume them. However, in order to make loads and |
| // stores value number the same, we ignore the value operand of the store. |
| // But the value operand will still be the leader of our class, and thus, it |
| // may change. Because the store is a use, the store will get reprocessed, |
| // but nothing will change about it, and so nothing above will catch it |
| // (since the class will not change). In order to make sure everything ends |
| // up okay, we need to recheck the leader of the class. Since stores of |
| // different values value number differently due to different memorydefs, we |
| // are guaranteed the leader is always the same between stores in the same |
| // class. |
| DEBUG(dbgs() << "Checking store leader\n"); |
| auto ProperLeader = |
| lookupOperandLeader(SI->getValueOperand(), SI, SI->getParent()); |
| if (EClass->RepLeader != ProperLeader) { |
| DEBUG(dbgs() << "Store leader changed, fixing\n"); |
| EClass->RepLeader = ProperLeader; |
| markLeaderChangeTouched(EClass); |
| markMemoryUsersTouched(MSSA->getMemoryAccess(SI)); |
| } |
| } |
| } |
| |
| // Process the fact that Edge (from, to) is reachable, including marking |
| // any newly reachable blocks and instructions for processing. |
| void NewGVN::updateReachableEdge(BasicBlock *From, BasicBlock *To) { |
| // Check if the Edge was reachable before. |
| if (ReachableEdges.insert({From, To}).second) { |
| // If this block wasn't reachable before, all instructions are touched. |
| if (ReachableBlocks.insert(To).second) { |
| DEBUG(dbgs() << "Block " << getBlockName(To) << " marked reachable\n"); |
| const auto &InstRange = BlockInstRange.lookup(To); |
| TouchedInstructions.set(InstRange.first, InstRange.second); |
| } else { |
| DEBUG(dbgs() << "Block " << getBlockName(To) |
| << " was reachable, but new edge {" << getBlockName(From) |
| << "," << getBlockName(To) << "} to it found\n"); |
| |
| // We've made an edge reachable to an existing block, which may |
| // impact predicates. Otherwise, only mark the phi nodes as touched, as |
| // they are the only thing that depend on new edges. Anything using their |
| // values will get propagated to if necessary. |
| if (MemoryAccess *MemPhi = MSSA->getMemoryAccess(To)) |
| TouchedInstructions.set(InstrDFS[MemPhi]); |
| |
| auto BI = To->begin(); |
| while (isa<PHINode>(BI)) { |
| TouchedInstructions.set(InstrDFS[&*BI]); |
| ++BI; |
| } |
| } |
| } |
| } |
| |
| // Given a predicate condition (from a switch, cmp, or whatever) and a block, |
| // see if we know some constant value for it already. |
| Value *NewGVN::findConditionEquivalence(Value *Cond, BasicBlock *B) const { |
| auto Result = lookupOperandLeader(Cond, nullptr, B); |
| if (isa<Constant>(Result)) |
| return Result; |
| return nullptr; |
| } |
| |
| // Process the outgoing edges of a block for reachability. |
| void NewGVN::processOutgoingEdges(TerminatorInst *TI, BasicBlock *B) { |
| // Evaluate reachability of terminator instruction. |
| BranchInst *BR; |
| if ((BR = dyn_cast<BranchInst>(TI)) && BR->isConditional()) { |
| Value *Cond = BR->getCondition(); |
| Value *CondEvaluated = findConditionEquivalence(Cond, B); |
| if (!CondEvaluated) { |
| if (auto *I = dyn_cast<Instruction>(Cond)) { |
| const Expression *E = createExpression(I, B); |
| if (const auto *CE = dyn_cast<ConstantExpression>(E)) { |
| CondEvaluated = CE->getConstantValue(); |
| } |
| } else if (isa<ConstantInt>(Cond)) { |
| CondEvaluated = Cond; |
| } |
| } |
| ConstantInt *CI; |
| BasicBlock *TrueSucc = BR->getSuccessor(0); |
| BasicBlock *FalseSucc = BR->getSuccessor(1); |
| if (CondEvaluated && (CI = dyn_cast<ConstantInt>(CondEvaluated))) { |
| if (CI->isOne()) { |
| DEBUG(dbgs() << "Condition for Terminator " << *TI |
| << " evaluated to true\n"); |
| updateReachableEdge(B, TrueSucc); |
| } else if (CI->isZero()) { |
| DEBUG(dbgs() << "Condition for Terminator " << *TI |
| << " evaluated to false\n"); |
| updateReachableEdge(B, FalseSucc); |
| } |
| } else { |
| updateReachableEdge(B, TrueSucc); |
| updateReachableEdge(B, FalseSucc); |
| } |
| } else if (auto *SI = dyn_cast<SwitchInst>(TI)) { |
| // For switches, propagate the case values into the case |
| // destinations. |
| |
| // Remember how many outgoing edges there are to every successor. |
| SmallDenseMap<BasicBlock *, unsigned, 16> SwitchEdges; |
| |
| Value *SwitchCond = SI->getCondition(); |
| Value *CondEvaluated = findConditionEquivalence(SwitchCond, B); |
| // See if we were able to turn this switch statement into a constant. |
| if (CondEvaluated && isa<ConstantInt>(CondEvaluated)) { |
| auto *CondVal = cast<ConstantInt>(CondEvaluated); |
| // We should be able to get case value for this. |
| auto CaseVal = SI->findCaseValue(CondVal); |
| if (CaseVal.getCaseSuccessor() == SI->getDefaultDest()) { |
| // We proved the value is outside of the range of the case. |
| // We can't do anything other than mark the default dest as reachable, |
| // and go home. |
| updateReachableEdge(B, SI->getDefaultDest()); |
| return; |
| } |
| // Now get where it goes and mark it reachable. |
| BasicBlock *TargetBlock = CaseVal.getCaseSuccessor(); |
| updateReachableEdge(B, TargetBlock); |
| } else { |
| for (unsigned i = 0, e = SI->getNumSuccessors(); i != e; ++i) { |
| BasicBlock *TargetBlock = SI->getSuccessor(i); |
| ++SwitchEdges[TargetBlock]; |
| updateReachableEdge(B, TargetBlock); |
| } |
| } |
| } else { |
| // Otherwise this is either unconditional, or a type we have no |
| // idea about. Just mark successors as reachable. |
| for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { |
| BasicBlock *TargetBlock = TI->getSuccessor(i); |
| updateReachableEdge(B, TargetBlock); |
| } |
| |
| // This also may be a memory defining terminator, in which case, set it |
| // equivalent to nothing. |
| if (MemoryAccess *MA = MSSA->getMemoryAccess(TI)) |
| setMemoryAccessEquivTo(MA, nullptr); |
| } |
| } |
| |
| // The algorithm initially places the values of the routine in the INITIAL |
| // congruence |
| // class. The leader of INITIAL is the undetermined value `TOP`. |
| // When the algorithm has finished, values still in INITIAL are unreachable. |
| void NewGVN::initializeCongruenceClasses(Function &F) { |
| // FIXME now i can't remember why this is 2 |
| NextCongruenceNum = 2; |
| // Initialize all other instructions to be in INITIAL class. |
| CongruenceClass::MemberSet InitialValues; |
| InitialClass = createCongruenceClass(nullptr, nullptr); |
| for (auto &B : F) { |
| if (auto *MP = MSSA->getMemoryAccess(&B)) |
| MemoryAccessEquiv.insert({MP, MSSA->getLiveOnEntryDef()}); |
| |
| for (auto &I : B) { |
| InitialValues.insert(&I); |
| ValueToClass[&I] = InitialClass; |
| // All memory accesses are equivalent to live on entry to start. They must |
| // be initialized to something so that initial changes are noticed. For |
| // the maximal answer, we initialize them all to be the same as |
| // liveOnEntry. Note that to save time, we only initialize the |
| // MemoryDef's for stores and all MemoryPhis to be equal. Right now, no |
| // other expression can generate a memory equivalence. If we start |
| // handling memcpy/etc, we can expand this. |
| if (isa<StoreInst>(&I)) { |
| MemoryAccessEquiv.insert( |
| {MSSA->getMemoryAccess(&I), MSSA->getLiveOnEntryDef()}); |
| ++InitialClass->StoreCount; |
| assert(InitialClass->StoreCount > 0); |
| } |
| } |
| } |
| InitialClass->Members.swap(InitialValues); |
| |
| // Initialize arguments to be in their own unique congruence classes |
| for (auto &FA : F.args()) |
| createSingletonCongruenceClass(&FA); |
| } |
| |
| void NewGVN::cleanupTables() { |
| for (unsigned i = 0, e = CongruenceClasses.size(); i != e; ++i) { |
| DEBUG(dbgs() << "Congruence class " << CongruenceClasses[i]->ID << " has " |
| << CongruenceClasses[i]->Members.size() << " members\n"); |
| // Make sure we delete the congruence class (probably worth switching to |
| // a unique_ptr at some point. |
| delete CongruenceClasses[i]; |
| CongruenceClasses[i] = nullptr; |
| } |
| |
| ValueToClass.clear(); |
| ArgRecycler.clear(ExpressionAllocator); |
| ExpressionAllocator.Reset(); |
| CongruenceClasses.clear(); |
| ExpressionToClass.clear(); |
| ValueToExpression.clear(); |
| ReachableBlocks.clear(); |
| ReachableEdges.clear(); |
| #ifndef NDEBUG |
| ProcessedCount.clear(); |
| #endif |
| InstrDFS.clear(); |
| InstructionsToErase.clear(); |
| |
| DFSToInstr.clear(); |
| BlockInstRange.clear(); |
| TouchedInstructions.clear(); |
| DominatedInstRange.clear(); |
| MemoryAccessEquiv.clear(); |
| } |
| |
| std::pair<unsigned, unsigned> NewGVN::assignDFSNumbers(BasicBlock *B, |
| unsigned Start) { |
| unsigned End = Start; |
| if (MemoryAccess *MemPhi = MSSA->getMemoryAccess(B)) { |
| InstrDFS[MemPhi] = End++; |
| DFSToInstr.emplace_back(MemPhi); |
| } |
| |
| for (auto &I : *B) { |
| InstrDFS[&I] = End++; |
| DFSToInstr.emplace_back(&I); |
| } |
| |
| // All of the range functions taken half-open ranges (open on the end side). |
| // So we do not subtract one from count, because at this point it is one |
| // greater than the last instruction. |
| return std::make_pair(Start, End); |
| } |
| |
| void NewGVN::updateProcessedCount(Value *V) { |
| #ifndef NDEBUG |
| if (ProcessedCount.count(V) == 0) { |
| ProcessedCount.insert({V, 1}); |
| } else { |
| ++ProcessedCount[V]; |
| assert(ProcessedCount[V] < 100 && |
| "Seem to have processed the same Value a lot"); |
| } |
| #endif |
| } |
| // Evaluate MemoryPhi nodes symbolically, just like PHI nodes |
| void NewGVN::valueNumberMemoryPhi(MemoryPhi *MP) { |
| // If all the arguments are the same, the MemoryPhi has the same value as the |
| // argument. |
| // Filter out unreachable blocks from our operands. |
| auto Filtered = make_filter_range(MP->operands(), [&](const Use &U) { |
| return ReachableBlocks.count(MP->getIncomingBlock(U)); |
| }); |
| |
| assert(Filtered.begin() != Filtered.end() && |
| "We should not be processing a MemoryPhi in a completely " |
| "unreachable block"); |
| |
| // Transform the remaining operands into operand leaders. |
| // FIXME: mapped_iterator should have a range version. |
| auto LookupFunc = [&](const Use &U) { |
| return lookupMemoryAccessEquiv(cast<MemoryAccess>(U)); |
| }; |
| auto MappedBegin = map_iterator(Filtered.begin(), LookupFunc); |
| auto MappedEnd = map_iterator(Filtered.end(), LookupFunc); |
| |
| // and now check if all the elements are equal. |
| // Sadly, we can't use std::equals since these are random access iterators. |
| MemoryAccess *AllSameValue = *MappedBegin; |
| ++MappedBegin; |
| bool AllEqual = std::all_of( |
| MappedBegin, MappedEnd, |
| [&AllSameValue](const MemoryAccess *V) { return V == AllSameValue; }); |
| |
| if (AllEqual) |
| DEBUG(dbgs() << "Memory Phi value numbered to " << *AllSameValue << "\n"); |
| else |
| DEBUG(dbgs() << "Memory Phi value numbered to itself\n"); |
| |
| if (setMemoryAccessEquivTo(MP, AllEqual ? AllSameValue : nullptr)) |
| markMemoryUsersTouched(MP); |
| } |
| |
| // Value number a single instruction, symbolically evaluating, performing |
| // congruence finding, and updating mappings. |
| void NewGVN::valueNumberInstruction(Instruction *I) { |
| DEBUG(dbgs() << "Processing instruction " << *I << "\n"); |
| if (isInstructionTriviallyDead(I, TLI)) { |
| DEBUG(dbgs() << "Skipping unused instruction\n"); |
| markInstructionForDeletion(I); |
| return; |
| } |
| if (!I->isTerminator()) { |
| const auto *Symbolized = performSymbolicEvaluation(I, I->getParent()); |
| // If we couldn't come up with a symbolic expression, use the unknown |
| // expression |
| if (Symbolized == nullptr) |
| Symbolized = createUnknownExpression(I); |
| performCongruenceFinding(I, Symbolized); |
| } else { |
| // Handle terminators that return values. All of them produce values we |
| // don't currently understand. |
| if (!I->getType()->isVoidTy()) { |
| auto *Symbolized = createUnknownExpression(I); |
| performCongruenceFinding(I, Symbolized); |
| } |
| processOutgoingEdges(dyn_cast<TerminatorInst>(I), I->getParent()); |
| } |
| } |
| |
| // Check if there is a path, using single or equal argument phi nodes, from |
| // First to Second. |
| bool NewGVN::singleReachablePHIPath(const MemoryAccess *First, |
| const MemoryAccess *Second) const { |
| if (First == Second) |
| return true; |
| |
| if (auto *FirstDef = dyn_cast<MemoryUseOrDef>(First)) { |
| auto *DefAccess = FirstDef->getDefiningAccess(); |
| return singleReachablePHIPath(DefAccess, Second); |
| } else { |
| auto *MP = cast<MemoryPhi>(First); |
| auto ReachableOperandPred = [&](const Use &U) { |
| return ReachableBlocks.count(MP->getIncomingBlock(U)); |
| }; |
| auto FilteredPhiArgs = |
| make_filter_range(MP->operands(), ReachableOperandPred); |
| SmallVector<const Value *, 32> OperandList; |
| std::copy(FilteredPhiArgs.begin(), FilteredPhiArgs.end(), |
| std::back_inserter(OperandList)); |
| bool Okay = OperandList.size() == 1; |
| if (!Okay) |
| Okay = std::equal(OperandList.begin(), OperandList.end(), |
| OperandList.begin()); |
| if (Okay) |
| return singleReachablePHIPath(cast<MemoryAccess>(OperandList[0]), Second); |
| return false; |
| } |
| } |
| |
| // Verify the that the memory equivalence table makes sense relative to the |
| // congruence classes. Note that this checking is not perfect, and is currently |
| // subject to very rare false negatives. It is only useful for |
| // testing/debugging. |
| void NewGVN::verifyMemoryCongruency() const { |
| // Anything equivalent in the memory access table should be in the same |
| // congruence class. |
| |
| // Filter out the unreachable and trivially dead entries, because they may |
| // never have been updated if the instructions were not processed. |
| auto ReachableAccessPred = |
| [&](const std::pair<const MemoryAccess *, MemoryAccess *> Pair) { |
| bool Result = ReachableBlocks.count(Pair.first->getBlock()); |
| if (!Result) |
| return false; |
| if (auto *MemDef = dyn_cast<MemoryDef>(Pair.first)) |
| return !isInstructionTriviallyDead(MemDef->getMemoryInst()); |
| return true; |
| }; |
| |
| auto Filtered = make_filter_range(MemoryAccessEquiv, ReachableAccessPred); |
| for (auto KV : Filtered) { |
| assert(KV.first != KV.second && |
| "We added a useless equivalence to the memory equivalence table"); |
| // Unreachable instructions may not have changed because we never process |
| // them. |
| if (!ReachableBlocks.count(KV.first->getBlock())) |
| continue; |
| if (auto *FirstMUD = dyn_cast<MemoryUseOrDef>(KV.first)) { |
| auto *SecondMUD = dyn_cast<MemoryUseOrDef>(KV.second); |
| if (FirstMUD && SecondMUD) |
| assert((singleReachablePHIPath(FirstMUD, SecondMUD) || |
| ValueToClass.lookup(FirstMUD->getMemoryInst()) == |
| ValueToClass.lookup(SecondMUD->getMemoryInst())) && |
| "The instructions for these memory operations should have " |
| "been in the same congruence class or reachable through" |
| "a single argument phi"); |
| } else if (auto *FirstMP = dyn_cast<MemoryPhi>(KV.first)) { |
| |
| // We can only sanely verify that MemoryDefs in the operand list all have |
| // the same class. |
| auto ReachableOperandPred = [&](const Use &U) { |
| return ReachableBlocks.count(FirstMP->getIncomingBlock(U)) && |
| isa<MemoryDef>(U); |
| |
| }; |
| // All arguments should in the same class, ignoring unreachable arguments |
| auto FilteredPhiArgs = |
| make_filter_range(FirstMP->operands(), ReachableOperandPred); |
| SmallVector<const CongruenceClass *, 16> PhiOpClasses; |
| std::transform(FilteredPhiArgs.begin(), FilteredPhiArgs.end(), |
| std::back_inserter(PhiOpClasses), [&](const Use &U) { |
| const MemoryDef *MD = cast<MemoryDef>(U); |
| return ValueToClass.lookup(MD->getMemoryInst()); |
| }); |
| assert(std::equal(PhiOpClasses.begin(), PhiOpClasses.end(), |
| PhiOpClasses.begin()) && |
| "All MemoryPhi arguments should be in the same class"); |
| } |
| } |
| } |
| |
| // This is the main transformation entry point. |
| bool NewGVN::runGVN(Function &F, DominatorTree *_DT, AssumptionCache *_AC, |
| TargetLibraryInfo *_TLI, AliasAnalysis *_AA, |
| MemorySSA *_MSSA) { |
| bool Changed = false; |
| DT = _DT; |
| AC = _AC; |
| TLI = _TLI; |
| AA = _AA; |
| MSSA = _MSSA; |
| DL = &F.getParent()->getDataLayout(); |
| MSSAWalker = MSSA->getWalker(); |
| |
| // Count number of instructions for sizing of hash tables, and come |
| // up with a global dfs numbering for instructions. |
| unsigned ICount = 1; |
| // Add an empty instruction to account for the fact that we start at 1 |
| DFSToInstr.emplace_back(nullptr); |
| // Note: We want RPO traversal of the blocks, which is not quite the same as |
| // dominator tree order, particularly with regard whether backedges get |
| // visited first or second, given a block with multiple successors. |
| // If we visit in the wrong order, we will end up performing N times as many |
| // iterations. |
| // The dominator tree does guarantee that, for a given dom tree node, it's |
| // parent must occur before it in the RPO ordering. Thus, we only need to sort |
| // the siblings. |
| DenseMap<const DomTreeNode *, unsigned> RPOOrdering; |
| ReversePostOrderTraversal<Function *> RPOT(&F); |
| unsigned Counter = 0; |
| for (auto &B : RPOT) { |
| auto *Node = DT->getNode(B); |
| assert(Node && "RPO and Dominator tree should have same reachability"); |
| RPOOrdering[Node] = ++Counter; |
| } |
| // Sort dominator tree children arrays into RPO. |
| for (auto &B : RPOT) { |
| auto *Node = DT->getNode(B); |
| if (Node->getChildren().size() > 1) |
| std::sort(Node->begin(), Node->end(), |
| [&RPOOrdering](const DomTreeNode *A, const DomTreeNode *B) { |
| return RPOOrdering[A] < RPOOrdering[B]; |
| }); |
| } |
| |
| // Now a standard depth first ordering of the domtree is equivalent to RPO. |
| auto DFI = df_begin(DT->getRootNode()); |
| for (auto DFE = df_end(DT->getRootNode()); DFI != DFE; ++DFI) { |
| BasicBlock *B = DFI->getBlock(); |
| const auto &BlockRange = assignDFSNumbers(B, ICount); |
| BlockInstRange.insert({B, BlockRange}); |
| ICount += BlockRange.second - BlockRange.first; |
| } |
| |
| // Handle forward unreachable blocks and figure out which blocks |
| // have single preds. |
| for (auto &B : F) { |
| // Assign numbers to unreachable blocks. |
| if (!DFI.nodeVisited(DT->getNode(&B))) { |
| const auto &BlockRange = assignDFSNumbers(&B, ICount); |
| BlockInstRange.insert({&B, BlockRange}); |
| ICount += BlockRange.second - BlockRange.first; |
| } |
| } |
| |
| TouchedInstructions.resize(ICount); |
| DominatedInstRange.reserve(F.size()); |
| // Ensure we don't end up resizing the expressionToClass map, as |
| // that can be quite expensive. At most, we have one expression per |
| // instruction. |
| ExpressionToClass.reserve(ICount); |
| |
| // Initialize the touched instructions to include the entry block. |
| const auto &InstRange = BlockInstRange.lookup(&F.getEntryBlock()); |
| TouchedInstructions.set(InstRange.first, InstRange.second); |
| ReachableBlocks.insert(&F.getEntryBlock()); |
| |
| initializeCongruenceClasses(F); |
| |
| unsigned int Iterations = 0; |
| // We start out in the entry block. |
| BasicBlock *LastBlock = &F.getEntryBlock(); |
| while (TouchedInstructions.any()) { |
| ++Iterations; |
| // Walk through all the instructions in all the blocks in RPO. |
| for (int InstrNum = TouchedInstructions.find_first(); InstrNum != -1; |
| InstrNum = TouchedInstructions.find_next(InstrNum)) { |
| assert(InstrNum != 0 && "Bit 0 should never be set, something touched an " |
| "instruction not in the lookup table"); |
| Value *V = DFSToInstr[InstrNum]; |
| BasicBlock *CurrBlock = nullptr; |
| |
| if (auto *I = dyn_cast<Instruction>(V)) |
| CurrBlock = I->getParent(); |
| else if (auto *MP = dyn_cast<MemoryPhi>(V)) |
| CurrBlock = MP->getBlock(); |
| else |
| llvm_unreachable("DFSToInstr gave us an unknown type of instruction"); |
| |
| // If we hit a new block, do reachability processing. |
| if (CurrBlock != LastBlock) { |
| LastBlock = CurrBlock; |
| bool BlockReachable = ReachableBlocks.count(CurrBlock); |
| const auto &CurrInstRange = BlockInstRange.lookup(CurrBlock); |
| |
| // If it's not reachable, erase any touched instructions and move on. |
| if (!BlockReachable) { |
| TouchedInstructions.reset(CurrInstRange.first, CurrInstRange.second); |
| DEBUG(dbgs() << "Skipping instructions in block " |
| << getBlockName(CurrBlock) |
| << " because it is unreachable\n"); |
| continue; |
| } |
| updateProcessedCount(CurrBlock); |
| } |
| |
| if (auto *MP = dyn_cast<MemoryPhi>(V)) { |
| DEBUG(dbgs() << "Processing MemoryPhi " << *MP << "\n"); |
| valueNumberMemoryPhi(MP); |
| } else if (auto *I = dyn_cast<Instruction>(V)) { |
| valueNumberInstruction(I); |
| } else { |
| llvm_unreachable("Should have been a MemoryPhi or Instruction"); |
| } |
| updateProcessedCount(V); |
| // Reset after processing (because we may mark ourselves as touched when |
| // we propagate equalities). |
| TouchedInstructions.reset(InstrNum); |
| } |
| } |
| NumGVNMaxIterations = std::max(NumGVNMaxIterations.getValue(), Iterations); |
| #ifndef NDEBUG |
| verifyMemoryCongruency(); |
| #endif |
| Changed |= eliminateInstructions(F); |
| |
| // Delete all instructions marked for deletion. |
| for (Instruction *ToErase : InstructionsToErase) { |
| if (!ToErase->use_empty()) |
| ToErase->replaceAllUsesWith(UndefValue::get(ToErase->getType())); |
| |
| ToErase->eraseFromParent(); |
| } |
| |
| // Delete all unreachable blocks. |
| auto UnreachableBlockPred = [&](const BasicBlock &BB) { |
| return !ReachableBlocks.count(&BB); |
| }; |
| |
| for (auto &BB : make_filter_range(F, UnreachableBlockPred)) { |
| DEBUG(dbgs() << "We believe block " << getBlockName(&BB) |
| << " is unreachable\n"); |
| deleteInstructionsInBlock(&BB); |
| Changed = true; |
| } |
| |
| cleanupTables(); |
| return Changed; |
| } |
| |
| bool NewGVN::runOnFunction(Function &F) { |
| if (skipFunction(F)) |
| return false; |
| return runGVN(F, &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), |
| &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), |
| &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), |
| &getAnalysis<AAResultsWrapperPass>().getAAResults(), |
| &getAnalysis<MemorySSAWrapperPass>().getMSSA()); |
| } |
| |
| PreservedAnalyses NewGVNPass::run(Function &F, AnalysisManager<Function> &AM) { |
| NewGVN Impl; |
| |
| // Apparently the order in which we get these results matter for |
| // the old GVN (see Chandler's comment in GVN.cpp). I'll keep |
| // the same order here, just in case. |
| auto &AC = AM.getResult<AssumptionAnalysis>(F); |
| auto &DT = AM.getResult<DominatorTreeAnalysis>(F); |
| auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); |
| auto &AA = AM.getResult<AAManager>(F); |
| auto &MSSA = AM.getResult<MemorySSAAnalysis>(F).getMSSA(); |
| bool Changed = Impl.runGVN(F, &DT, &AC, &TLI, &AA, &MSSA); |
| if (!Changed) |
| return PreservedAnalyses::all(); |
| PreservedAnalyses PA; |
| PA.preserve<DominatorTreeAnalysis>(); |
| PA.preserve<GlobalsAA>(); |
| return PA; |
| } |
| |
| // Return true if V is a value that will always be available (IE can |
| // be placed anywhere) in the function. We don't do globals here |
| // because they are often worse to put in place. |
| // TODO: Separate cost from availability |
| static bool alwaysAvailable(Value *V) { |
| return isa<Constant>(V) || isa<Argument>(V); |
| } |
| |
| // Get the basic block from an instruction/value. |
| static BasicBlock *getBlockForValue(Value *V) { |
| if (auto *I = dyn_cast<Instruction>(V)) |
| return I->getParent(); |
| return nullptr; |
| } |
| |
| struct NewGVN::ValueDFS { |
| int DFSIn = 0; |
| int DFSOut = 0; |
| int LocalNum = 0; |
| // Only one of these will be set. |
| Value *Val = nullptr; |
| Use *U = nullptr; |
| |
| bool operator<(const ValueDFS &Other) const { |
| // It's not enough that any given field be less than - we have sets |
| // of fields that need to be evaluated together to give a proper ordering. |
| // For example, if you have; |
| // DFS (1, 3) |
| // Val 0 |
| // DFS (1, 2) |
| // Val 50 |
| // We want the second to be less than the first, but if we just go field |
| // by field, we will get to Val 0 < Val 50 and say the first is less than |
| // the second. We only want it to be less than if the DFS orders are equal. |
| // |
| // Each LLVM instruction only produces one value, and thus the lowest-level |
| // differentiator that really matters for the stack (and what we use as as a |
| // replacement) is the local dfs number. |
| // Everything else in the structure is instruction level, and only affects |
| // the order in which we will replace operands of a given instruction. |
| // |
| // For a given instruction (IE things with equal dfsin, dfsout, localnum), |
| // the order of replacement of uses does not matter. |
| // IE given, |
| // a = 5 |
| // b = a + a |
| // When you hit b, you will have two valuedfs with the same dfsin, out, and |
| // localnum. |
| // The .val will be the same as well. |
| // The .u's will be different. |
| // You will replace both, and it does not matter what order you replace them |
| // in (IE whether you replace operand 2, then operand 1, or operand 1, then |
| // operand 2). |
| // Similarly for the case of same dfsin, dfsout, localnum, but different |
| // .val's |
| // a = 5 |
| // b = 6 |
| // c = a + b |
| // in c, we will a valuedfs for a, and one for b,with everything the same |
| // but .val and .u. |
| // It does not matter what order we replace these operands in. |
| // You will always end up with the same IR, and this is guaranteed. |
| return std::tie(DFSIn, DFSOut, LocalNum, Val, U) < |
| std::tie(Other.DFSIn, Other.DFSOut, Other.LocalNum, Other.Val, |
| Other.U); |
| } |
| }; |
| |
| void NewGVN::convertDenseToDFSOrdered( |
| CongruenceClass::MemberSet &Dense, |
| SmallVectorImpl<ValueDFS> &DFSOrderedSet) { |
| for (auto D : Dense) { |
| // First add the value. |
| BasicBlock *BB = getBlockForValue(D); |
| // Constants are handled prior to ever calling this function, so |
| // we should only be left with instructions as members. |
| assert(BB && "Should have figured out a basic block for value"); |
| ValueDFS VD; |
| |
| DomTreeNode *DomNode = DT->getNode(BB); |
| VD.DFSIn = DomNode->getDFSNumIn(); |
| VD.DFSOut = DomNode->getDFSNumOut(); |
| VD.Val = D; |
| // If it's an instruction, use the real local dfs number. |
| if (auto *I = dyn_cast<Instruction>(D)) |
| VD.LocalNum = InstrDFS[I]; |
| else |
| llvm_unreachable("Should have been an instruction"); |
| |
| DFSOrderedSet.emplace_back(VD); |
| |
| // Now add the uses. |
| for (auto &U : D->uses()) { |
| if (auto *I = dyn_cast<Instruction>(U.getUser())) { |
| ValueDFS VD; |
| // Put the phi node uses in the incoming block. |
| BasicBlock *IBlock; |
| if (auto *P = dyn_cast<PHINode>(I)) { |
| IBlock = P->getIncomingBlock(U); |
| // Make phi node users appear last in the incoming block |
| // they are from. |
| VD.LocalNum = InstrDFS.size() + 1; |
| } else { |
| IBlock = I->getParent(); |
| VD.LocalNum = InstrDFS[I]; |
| } |
| DomTreeNode *DomNode = DT->getNode(IBlock); |
| VD.DFSIn = DomNode->getDFSNumIn(); |
| VD.DFSOut = DomNode->getDFSNumOut(); |
| VD.U = &U; |
| DFSOrderedSet.emplace_back(VD); |
| } |
| } |
| } |
| } |
| |
| static void patchReplacementInstruction(Instruction *I, Value *Repl) { |
| // Patch the replacement so that it is not more restrictive than the value |
| // being replaced. |
| auto *Op = dyn_cast<BinaryOperator>(I); |
| auto *ReplOp = dyn_cast<BinaryOperator>(Repl); |
| |
| if (Op && ReplOp) |
| ReplOp->andIRFlags(Op); |
| |
| if (auto *ReplInst = dyn_cast<Instruction>(Repl)) { |
| // FIXME: If both the original and replacement value are part of the |
| // same control-flow region (meaning that the execution of one |
| // guarentees the executation of the other), then we can combine the |
| // noalias scopes here and do better than the general conservative |
| // answer used in combineMetadata(). |
| |
| // In general, GVN unifies expressions over different control-flow |
| // regions, and so we need a conservative combination of the noalias |
| // scopes. |
| unsigned KnownIDs[] = { |
| LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, |
| LLVMContext::MD_noalias, LLVMContext::MD_range, |
| LLVMContext::MD_fpmath, LLVMContext::MD_invariant_load, |
| LLVMContext::MD_invariant_group}; |
| combineMetadata(ReplInst, I, KnownIDs); |
| } |
| } |
| |
| static void patchAndReplaceAllUsesWith(Instruction *I, Value *Repl) { |
| patchReplacementInstruction(I, Repl); |
| I->replaceAllUsesWith(Repl); |
| } |
| |
| void NewGVN::deleteInstructionsInBlock(BasicBlock *BB) { |
| DEBUG(dbgs() << " BasicBlock Dead:" << *BB); |
| ++NumGVNBlocksDeleted; |
| |
| // Check to see if there are non-terminating instructions to delete. |
| if (isa<TerminatorInst>(BB->begin())) |
| return; |
| |
| // Delete the instructions backwards, as it has a reduced likelihood of having |
| // to update as many def-use and use-def chains. Start after the terminator. |
| auto StartPoint = BB->rbegin(); |
| ++StartPoint; |
| // Note that we explicitly recalculate BB->rend() on each iteration, |
| // as it may change when we remove the first instruction. |
| for (BasicBlock::reverse_iterator I(StartPoint); I != BB->rend();) { |
| Instruction &Inst = *I++; |
| if (!Inst.use_empty()) |
| Inst.replaceAllUsesWith(UndefValue::get(Inst.getType())); |
| if (isa<LandingPadInst>(Inst)) |
| continue; |
| |
| Inst.eraseFromParent(); |
| ++NumGVNInstrDeleted; |
| } |
| } |
| |
| void NewGVN::markInstructionForDeletion(Instruction *I) { |
| DEBUG(dbgs() << "Marking " << *I << " for deletion\n"); |
| InstructionsToErase.insert(I); |
| } |
| |
| void NewGVN::replaceInstruction(Instruction *I, Value *V) { |
| |
| DEBUG(dbgs() << "Replacing " << *I << " with " << *V << "\n"); |
| patchAndReplaceAllUsesWith(I, V); |
| // We save the actual erasing to avoid invalidating memory |
| // dependencies until we are done with everything. |
| markInstructionForDeletion(I); |
| } |
| |
| namespace { |
| |
| // This is a stack that contains both the value and dfs info of where |
| // that value is valid. |
| class ValueDFSStack { |
| public: |
| Value *back() const { return ValueStack.back(); } |
| std::pair<int, int> dfs_back() const { return DFSStack.back(); } |
| |
| void push_back(Value *V, int DFSIn, int DFSOut) { |
| ValueStack.emplace_back(V); |
| DFSStack.emplace_back(DFSIn, DFSOut); |
| } |
| bool empty() const { return DFSStack.empty(); } |
| bool isInScope(int DFSIn, int DFSOut) const { |
| if (empty()) |
| return false; |
| return DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second; |
| } |
| |
| void popUntilDFSScope(int DFSIn, int DFSOut) { |
| |
| // These two should always be in sync at this point. |
| assert(ValueStack.size() == DFSStack.size() && |
| "Mismatch between ValueStack and DFSStack"); |
| while ( |
| !DFSStack.empty() && |
| !(DFSIn >= DFSStack.back().first && DFSOut <= DFSStack.back().second)) { |
| DFSStack.pop_back(); |
| ValueStack.pop_back(); |
| } |
| } |
| |
| private: |
| SmallVector<Value *, 8> ValueStack; |
| SmallVector<std::pair<int, int>, 8> DFSStack; |
| }; |
| } |
| |
| bool NewGVN::eliminateInstructions(Function &F) { |
| // This is a non-standard eliminator. The normal way to eliminate is |
| // to walk the dominator tree in order, keeping track of available |
| // values, and eliminating them. However, this is mildly |
| // pointless. It requires doing lookups on every instruction, |
| // regardless of whether we will ever eliminate it. For |
| // instructions part of most singleton congruence classes, we know we |
| // will never eliminate them. |
| |
| // Instead, this eliminator looks at the congruence classes directly, sorts |
| // them into a DFS ordering of the dominator tree, and then we just |
| // perform elimination straight on the sets by walking the congruence |
| // class member uses in order, and eliminate the ones dominated by the |
| // last member. This is worst case O(E log E) where E = number of |
| // instructions in a single congruence class. In theory, this is all |
| // instructions. In practice, it is much faster, as most instructions are |
| // either in singleton congruence classes or can't possibly be eliminated |
| // anyway (if there are no overlapping DFS ranges in class). |
| // When we find something not dominated, it becomes the new leader |
| // for elimination purposes. |
| // TODO: If we wanted to be faster, We could remove any members with no |
| // overlapping ranges while sorting, as we will never eliminate anything |
| // with those members, as they don't dominate anything else in our set. |
| |
| bool AnythingReplaced = false; |
| |
| // Since we are going to walk the domtree anyway, and we can't guarantee the |
| // DFS numbers are updated, we compute some ourselves. |
| DT->updateDFSNumbers(); |
| |
| for (auto &B : F) { |
| if (!ReachableBlocks.count(&B)) { |
| for (const auto S : successors(&B)) { |
| for (auto II = S->begin(); isa<PHINode>(II); ++II) { |
| auto &Phi = cast<PHINode>(*II); |
| DEBUG(dbgs() << "Replacing incoming value of " << *II << " for block " |
| << getBlockName(&B) |
| << " with undef due to it being unreachable\n"); |
| for (auto &Operand : Phi.incoming_values()) |
| if (Phi.getIncomingBlock(Operand) == &B) |
| Operand.set(UndefValue::get(Phi.getType())); |
| } |
| } |
| } |
| } |
| |
| for (CongruenceClass *CC : CongruenceClasses) { |
| // FIXME: We should eventually be able to replace everything still |
| // in the initial class with undef, as they should be unreachable. |
| // Right now, initial still contains some things we skip value |
| // numbering of (UNREACHABLE's, for example). |
| if (CC == InitialClass || CC->Dead) |
| continue; |
| assert(CC->RepLeader && "We should have had a leader"); |
| |
| // If this is a leader that is always available, and it's a |
| // constant or has no equivalences, just replace everything with |
| // it. We then update the congruence class with whatever members |
| // are left. |
| if (alwaysAvailable(CC->RepLeader)) { |
| SmallPtrSet<Value *, 4> MembersLeft; |
| for (auto M : CC->Members) { |
| |
| Value *Member = M; |
| |
| // Void things have no uses we can replace. |
| if (Member == CC->RepLeader || Member->getType()->isVoidTy()) { |
| MembersLeft.insert(Member); |
| continue; |
| } |
| |
| DEBUG(dbgs() << "Found replacement " << *(CC->RepLeader) << " for " |
| << *Member << "\n"); |
| // Due to equality propagation, these may not always be |
| // instructions, they may be real values. We don't really |
| // care about trying to replace the non-instructions. |
| if (auto *I = dyn_cast<Instruction>(Member)) { |
| assert(CC->RepLeader != I && |
| "About to accidentally remove our leader"); |
| replaceInstruction(I, CC->RepLeader); |
| AnythingReplaced = true; |
| |
| continue; |
| } else { |
| MembersLeft.insert(I); |
| } |
| } |
| CC->Members.swap(MembersLeft); |
| |
| } else { |
| DEBUG(dbgs() << "Eliminating in congruence class " << CC->ID << "\n"); |
| // If this is a singleton, we can skip it. |
| if (CC->Members.size() != 1) { |
| |
| // This is a stack because equality replacement/etc may place |
| // constants in the middle of the member list, and we want to use |
| // those constant values in preference to the current leader, over |
| // the scope of those constants. |
| ValueDFSStack EliminationStack; |
| |
| // Convert the members to DFS ordered sets and then merge them. |
| SmallVector<ValueDFS, 8> DFSOrderedSet; |
| convertDenseToDFSOrdered(CC->Members, DFSOrderedSet); |
| |
| // Sort the whole thing. |
| std::sort(DFSOrderedSet.begin(), DFSOrderedSet.end()); |
| |
| for (auto &VD : DFSOrderedSet) { |
| int MemberDFSIn = VD.DFSIn; |
| int MemberDFSOut = VD.DFSOut; |
| Value *Member = VD.Val; |
| Use *MemberUse = VD.U; |
| |
| if (Member) { |
| // We ignore void things because we can't get a value from them. |
| // FIXME: We could actually use this to kill dead stores that are |
| // dominated by equivalent earlier stores. |
| if (Member->getType()->isVoidTy()) |
| continue; |
| } |
| |
| if (EliminationStack.empty()) { |
| DEBUG(dbgs() << "Elimination Stack is empty\n"); |
| } else { |
| DEBUG(dbgs() << "Elimination Stack Top DFS numbers are (" |
| << EliminationStack.dfs_back().first << "," |
| << EliminationStack.dfs_back().second << ")\n"); |
| } |
| |
| DEBUG(dbgs() << "Current DFS numbers are (" << MemberDFSIn << "," |
| << MemberDFSOut << ")\n"); |
| // First, we see if we are out of scope or empty. If so, |
| // and there equivalences, we try to replace the top of |
| // stack with equivalences (if it's on the stack, it must |
| // not have been eliminated yet). |
| // Then we synchronize to our current scope, by |
| // popping until we are back within a DFS scope that |
| // dominates the current member. |
| // Then, what happens depends on a few factors |
| // If the stack is now empty, we need to push |
| // If we have a constant or a local equivalence we want to |
| // start using, we also push. |
| // Otherwise, we walk along, processing members who are |
| // dominated by this scope, and eliminate them. |
| bool ShouldPush = |
| Member && (EliminationStack.empty() || isa<Constant>(Member)); |
| bool OutOfScope = |
| !EliminationStack.isInScope(MemberDFSIn, MemberDFSOut); |
| |
| if (OutOfScope || ShouldPush) { |
| // Sync to our current scope. |
| EliminationStack.popUntilDFSScope(MemberDFSIn, MemberDFSOut); |
| ShouldPush |= Member && EliminationStack.empty(); |
| if (ShouldPush) { |
| EliminationStack.push_back(Member, MemberDFSIn, MemberDFSOut); |
| } |
| } |
| |
| // If we get to this point, and the stack is empty we must have a use |
| // with nothing we can use to eliminate it, just skip it. |
| if (EliminationStack.empty()) |
| continue; |
| |
| // Skip the Value's, we only want to eliminate on their uses. |
| if (Member) |
| continue; |
| Value *Result = EliminationStack.back(); |
| |
| // Don't replace our existing users with ourselves. |
| if (MemberUse->get() == Result) |
| continue; |
| |
| DEBUG(dbgs() << "Found replacement " << *Result << " for " |
| << *MemberUse->get() << " in " << *(MemberUse->getUser()) |
| << "\n"); |
| |
| // If we replaced something in an instruction, handle the patching of |
| // metadata. |
| if (auto *ReplacedInst = dyn_cast<Instruction>(MemberUse->get())) |
| patchReplacementInstruction(ReplacedInst, Result); |
| |
| assert(isa<Instruction>(MemberUse->getUser())); |
| MemberUse->set(Result); |
| AnythingReplaced = true; |
| } |
| } |
| } |
| |
| // Cleanup the congruence class. |
| SmallPtrSet<Value *, 4> MembersLeft; |
| for (Value *Member : CC->Members) { |
| if (Member->getType()->isVoidTy()) { |
| MembersLeft.insert(Member); |
| continue; |
| } |
| |
| if (auto *MemberInst = dyn_cast<Instruction>(Member)) { |
| if (isInstructionTriviallyDead(MemberInst)) { |
| // TODO: Don't mark loads of undefs. |
| markInstructionForDeletion(MemberInst); |
| continue; |
| } |
| } |
| MembersLeft.insert(Member); |
| } |
| CC->Members.swap(MembersLeft); |
| } |
| |
| return AnythingReplaced; |
| } |